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Abstract—Machine learning (ML) methods, especially rein-
forcement learning (RL), have been widely considered for traffic
signal optimization in intelligent transportation systems. Most
of these ML methods are centralized, lacking in scalability and
adaptability in large traffic networks. Further, it is challenging to
train such ML models due to the lack of training platforms and/or
the cost of deploying and training in a real traffic networks. This
paper presents an approach for the integration of decentralized
graph-based multi-agent reinforcement learning (DGMARL) with
a Digital Twin (DT) to optimize traffic signals for the reduction
of traffic congestion and network-wide fuel consumption related
to stopping. Specifically, the DGMARL agents learn traffic state
patterns and make decisions regarding traffic signal control
with assistance from a Digital Twin module, which simulates
and replicates the traffic behaviors of a real traffic network.
The proposed approach was evaluated using PTV-Vissim [1], a
microscopic traffic simulation platform. PTV-Vissim is also the
simulation engine of the DT, enabling emulation and optimization
of the traffic signals on the MLK Smart Corridor in Chattanooga,
Tennessee. Compared to an actuated signal control baseline
approach, experiment results show that Eco_PI, a developed
performance measure capturing the impact of stops on fuel
consumption, was reduced by 44.27 % in a 24-hour and an average
of 29.88% in a PM-peak-hour scenario.

Index Terms—Multi-Agent Reinforcement Learning, Digital
Twin, Graph Neural Network, Traffic Signal Optimization, Fuel
Consumption

I. INTRODUCTION

Cities across the world are deploying Intelligent Transporta-
tion System (ITS) technologies to smart corridors, creating
smart and data-driven transportation systems [2]. The potential
to leverage smart corridor high-resolution and high-frequency
vehicle and infrastructure data, along with advancements in
machine learning, artificial intelligence, and high-performance
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computing, is being explored to solve safety, mobility, and en-
vironmental transportation system challenges [3]-[5]. A poten-
tial solution for optimizing and improving transportation sys-
tems is the application of Digital Twin assisted decentralized
multi-agent Reinforcement Learning (RL). The implementation
of such an application requires a seamless handshake between
the Digital Twin of the physical system and the decentralized
multi-agent RL. The objective of this effort is to demonstrate
this integration and utilize the resulting application to optimize
traffic signal timing to reduce selected Eco_PI performance
measure in a real-world cased study. Eco_PI performance
measure captures the impact of stops on fuel consumption and
delay. Additional details on Eco_PI may be found in [6]-[9].

II. BACKGROUND

The concept of DT has gained significant attention in recent
years, both in academia and industry, as a promising approach
to improve the performance of physical systems through the
use of virtual models [10], [11]. A DT is essentially a virtual
representation of a physical entity, such as a machine, build-
ing, a smart corridor, or even an entire city. In a real-time
application, the DT is continuously updated with data from
sensors and other sources to reflect the current and historical
state of the entire physical entity through different modeling
approaches. This real-time and accurate representation of the
physical entity, with different operational scenarios, allows
for better prediction of future behavior, refinement of control,
and optimization of operations. Diverse applications of DTa,
including transportation, as well as modeling techniques and
the benefits of integrating DT in system design are discussed
in [12]. In contrast to traditional simulation models, which
are often based on assumptions and simplified models, DTs
is based on actual data and can provide a more accurate
and realistic representation of the physical entity. This can be
particularly useful in real world deployments and industries
such as ITS technologies, where the performance and reliability
of complex systems are critical.
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Within transportation applications, DT simulations provide
a realistic representation of real-world transportation systems.
Thus, a DT may act as a crucial test bed to develop real-
time machine learning based traffic operations applications,
providing a safe, efficient, and economic environment to train
and test AI/ML algorithms.

Previous studies such as [13] have developed DT for trans-
portation systems that leverage real-time smart corridor data to
model the current traffic state and provide dynamic traffic and
performance measure updates. Data from various sources such
as detectors and cameras, is continuously collected and fed
to the DT. This enables the DT to accurately model the real-
time traffic state and identify congested network sections. Such
information can be used to make real-time or time-sensitive
decisions. For example, in this paper, one such application is
developed: intersection signal timing optimization to reduce
the number of stops and stop delay.

DT of transportation systems can provide significant ad-
vantages in transportation management by enabling real-time
monitoring and control, improving coordination across differ-
ent parts of the transportation system, and increase traffic effi-
ciency [14]. DT can enhance deep learning and reinforcement
learning algorithms for real-time adaptive, precision-centric,
and predictive traffic monitoring [15]. DT can assist rein-
forcement learning algorithms in learning the dynamic traffic
state and making better real-time decisions through adaptive
signal control [16] by utilizing data from various transportation
components, such as detector occupancy and pedestrian recall
time, and generating higher resolution representation on traffic
states. It has been shown that integrating DT with RL agents
could increase decision-making efficiency and enable agents to
learn from past experience for future decisions [15].

This paper proposes a novel approach of DT assisted decen-
tralized graph-based multi-agent RL (DGMARL) to learn the
dynamic traffic state in terms of different network features such
as detector occupancy, approach-level vehicle counts, pedes-
trian recall times, etc. These information are being received
and shared with the neighboring agents, that is, the upstream
and downstream intersections. This information allows the
DGMARL to understand the upcoming traffic conditions and
optimize the intersection signal timing. The proposed DG-
MARL signal timing solution is compared with a baseline
solution. The baseline solution models a vehicle coordinated-
actuated signal timing plan, received from the City. Both the
coordinated-actuated and DGMARL traffic signal timing plan
use sensors to detect the presence of vehicles and adjust the
timing of the signal phases. Actuated control is based on a gap
seeking logic, switching to conflicting movements as the length
of gaps in the traffic stream increase, indicating reduced vehicle
processing efficiency. The goal of DGMARL signal timing
plan is to reduce the chosen performance metric (Eco_PI in this
effort), providing superior performance to that of the actuated
control. Evaluation of the proposed DGMARL approach shows

better performance compared to the vehicle actuated signal
timing plan, highlighting the potential of this technology in
improving transportation operations and environmental impact.

The technical features of the proposed model include:

1) Integration of Digital Twin (DT) and Decentral-
ized Graph-based Multi-Agent Reinforcement Learning (DG-
MARL) to optimize traffic signal timing;

2) Multi-agent reinforcement learning agents are distributed
at individual intersections to observe traffic state features such
as detector occupancy and exchange this information with
neighboring agents. This information is used to find an optimal
policy and subsequently choose the best action to control
the traffic signals. The implementation of action is validated
with rules and constraints such as minimum green time and
pedestrian recall time, to enforce safe mobility for all users;

3) Proposed DGMARL model has the capability to handle
heterogeneous data including detector occupancy, approach
level vehicle count aggregates, pedestrian recall times, and
current signal state, from current, upstream and downstream
intersections;

4) Component Object Model (COM) interface of PTV-
Vissim to take actions and control signal timing through DT;

III. DIGITAL TWIN SYSTEM FOR TRAFFIC NETWORK
A. Physical Environment and Digital Twin

1) Digital Twin Architecture : Smart corridor Digital Twins
are typically driven using real-time and historic vehicle and
infrastructure data from the corridor [13], [16], [17]. In this
study, the DT is developed using vehicle real-time and historic
volume count, turn count, and Signal Phasing and Timing
(SPaT) data available from approximately 2.1 miles of Martin
Luther King Smart Corridor, Chattanooga, Tennessee, consist-
ing of 11 signalized intersections. A smart corridor DT model
architecture typically includes four key components as shown
in Figure 1:
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Fig. 1: Digital Twin Architecture

Module 1: Raw Data Stream Processing Module - in-
cludes processing of raw data to parse, format, and store the
data in a database. From the physical MLK Smart Corridor,
the left, through, and right turn vehicle counts per lane at
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the 11 intersections are obtained. This data is processed to
obtain approach level (Eastbound, Westbound, Northbound,
and Southbound) volume and turn counts. Further, 10 Hz
Signal Phase and Timing (SPaT) data is obtained from the
signal controllers in the corridor.

Module 2: Dynamic Data-Driven Traffic Simulation
Module - includes PTV-Vissim microscopic traffic simulation
model of the Smart Corridor, dynamically driven using vol-
ume, turn movement ratios, and signal indications data (from
Module 1). In this implementation intersection approach level
I-minute aggregate volume counts, 10-minute aggregate turn
counts data, and signal timing are dynamically driven using
PTV-Vissim’s COM module. Using COM the signal indica-
tions can be driven using external SPaT (Signal Phasing and
Timing) data or PTV-Vissim’s internal Ring Barrier Controller
(RBC) module.

Module 3: Simulation Testbed Application Module -
consists of tools and algorithms to process simulation outputs
based on the requirements of the application. This module
contains processes or algorithms that are driven using outputs
from the DT simulation. In this study, the outputs generated
from the PTV-Vissim simulation model are used as inputs for
prediction and optimization for the signal timing plan.

Module 4: Real Time Data Broker Module - handles
real time dynamic data transactions between modules. This
module consists of a Flask based web service to handle data
transactions/communication between other three modules.

2) Muti-tier Incremental Approach for Digital Twin Devel-
opment: Smart corridor DT development requires integration
and synchronization of multiple components within the DT
architecture described in previous section. This makes DT
development a time consuming process susceptible to coding,
integration, implementation, data processing, and other errors.
To tackle this, a three-tier incremental approach is used in
this study that allows for a parallel workflow. The DT de-
velopment process is broken into three tiers with increasing
communication and infrastructure integration complexity. Such
an approach enables training and testing of ML/RL based
applications early on, on the initial tiers, thus, reducing the wait
time required for development of a fully operational real-time
DT. The three-tier incremental approach includes the following
simulation model versions:

Tier 1 - Prepopulated model: traditional simulation model
prepopulated with archived data. This version includes automa-
tion of raw data extraction and ingestion of extracted data by
the PTV-Vissim model. Automation of the data handling in this
tier is critical to the overall usability and effectiveness of this
model version in training and testing the DGMARL model.

Tier 2 - Pseudo Digital Twin: simulation model driven
dynamically using archived data. In this tier, the data is
dynamically fed into the simulation. A significant advance in
Tier-2 is the development of the dynamic links between the
modules shown in Figure 1. Further, in this tier the signal
indications are controlled using field received SPaT messages.

This platform thus provides a test bed to develop the interface
that integrates the DGMARL optimization algorithm with data
driven DT simulation.

Tier 3 - Real time Digital Twin: online simulation model
driven dynamically using real time field data. In this tier the
simulation is driven using real-time data. The Tier-2 platform
is modified and updated to stream real-time data. This platform
will be used to develop the interface between the physical sys-
tem represented by the DT and the optimization development
algorithm.

In this study the interface between the RL optimization
algorithm and physical system is initially developed using the
Tier-1 platform. The developed RL algorithm in future will
also be integrated with the Tier-2 and Tier-3 platforms to test
and further improve the algorithm.

B. Digital Twin and RL

The integration of DGMARL model and its learning as
shown in Figure 2 focuses on training agents associated with
each intersection by learning from DT to make decisions to
optimize the signal timing based on the observed traffic state.
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Fig. 2: Digital Twin assisted DGMARL Learning

The integration between the DT and the distributed multi-
agent reinforcement learning algorithm is described as follow-
ing:

1) The distributed multi-agent reinforcement learning algo-
rithm takes the input, such as traffic occupancy, current phase
state, pedestrian recall time, etc., from the DT and makes the
decision of staying in current phase or switching to the phase
with the upcoming high traffic occupancy based on its current
state and the desired objective, that is to reduce the Eco_PI
measure.

2) The decision made by the distributed multi-agent rein-
forcement learning algorithm is then fed back to the DT, which
updates its simulation based on the decision. The updated
simulation is then used to provide new input to the distributed
multi-agent reinforcement learning algorithm, and the process
continues until the desired objective is achieved.
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This integration of DT and DGMARL avoids tedious field
training of the DGMARL model in signal timing optimization,
leading to efficient and safe model training and testing. The
digital twin’s data accumulation enables efficient visualization
and analysis of the traffic state.

IV. IMPLEMENTATION OF INTELLIGENT AGENTS TO
OPTIMIZE THE GLOBAL TRANSPORTATION

Motivations: Al enabled intelligent agents can enhance
transportation networks by analyzing data and making opti-
mized decisions, leading to increased efficiency, reliability, and
safety. This can have positive impacts on people’s quality of
life, the environment, and economic growth. Intelligent agents
can optimize transportation networks by monitoring real-time
traffic and making recommendations. They can suggest alter-
nate routes to avoid congestion, adjust traffic signals to improve
traffic state, and predict maintenance needs.

Graph Representation of the Transportation Network:
Using graph representation along with intelligent agents can
help provide comprehensive situational awareness by monitor-
ing the entire network efficiently [18], [19]. A transportation
network’s graph representation uses nodes for intersections
and edges for routes. Intelligent agents can use this graph
to predict congestion and optimize traffic state by analyzing
sensor data from key locations and communicating with local
signal controllers [20]. By incorporating machine learning
algorithms, such as reinforcement learning algorithms, agents
can learn traffic patterns from current and historical data, detect
anomalies, and optimize traffic state by controlling traffic
signals to avoid congestion.

Scalability Signal timing optimization coordinates traffic
signals at intersections to enhance traffic flow and reduce
congestion. However, scalability is a crucial factor in this
process as the transportation network’s size increases along
with the number of intersections and traffic signals. In a single-
agent architecture, a centralized agent optimizes traffic signal
timings across the network by using data from sensors and
other sources. Although effective for smaller transportation
networks, this architecture may face difficulties in scaling to
larger networks due to increased processing, communication
requirements, and latency.

In a multi-agent architecture, multiple agents optimize traffic
signal timings at different intersections in the transportation
network [21], [22]. Multiple agents coordinate signal tim-
ing across intersections by processing local sensor data and
communicating with each other. Asynchronous communication
protocols such as message passing and attention mechanisms
can reduce communication overhead, making the architecture
more scalable. By distributing the workload and utilizing local
data more efficiently, this approach can handle larger volumes
of data and more intersections.

A. Graph NN Oriented Formulation about Traffic Network

The proposed approach models the traffic environment as
a network using a bi-directional graph G(V,£). V represents
a set of intersections modeled as agents, and &£ represents
a set of roads considered links, where e;; € & is a link
that connects intersections ¢ and j. The static features of
each intersection ¢ include approach links, signal controllers,
signal phases, detectors, the number of lanes associated with
each link, uncontrolled approaching links, and neighboring
intersections N4 C V. Each intersection’s signal controller is
linked to a set of signal phases ¢;, each of which is associated
with a set of static features such as a list of signals, a minimum
mandatory green serving time, yellow time, red clearance time,
pedestrian recall time, and priority phase.

B. Infrastructure of DGMARL

Figure 3 shows the architecture of a DT assisted multi-
agent reinforcement learning empowered traffic environment.
Each intersection of the traffic network was designed as a
local agent. The multi-intersection traffic network signal timing
optimization problem is addressed with distributed multi-agent
reinforcement learning. The traffic signal control problem is
formulated as a Markov Decision Process (MDP): (S, A, p,r)
where S denotes the state space, A represents the action space,
and r is the reward that measures the benefit brought about
by a specific action. The objective is to learn the optimal
policy p that generates the best action for the next step and
maximizes the subsequent accumulative discounted rewards
produced by the action. To improve the learning efficiency of
agents and choose the best actions based on approaching traffic
from upstream and downstream intersections, the visibility
of neighboring agents’ states was increased by sharing local
observations through message passing.
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Fig. 3: Digital Twin assisted DGMARL Learning

Local state Space: The state of the global traffic network
at time t for the traffic network is defined as

Sy = {si V. (1)

where {s; .} is the state of the intersection 4 at time ¢ which is
the heterogeneous observation of traffic states and traffic signal
phase state.
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Action Space: The actions of an intersection ¢ are to switch
or not switch from the current phase ¢; and are defined as

;o Jaig, if ¢diy > max(gig,, pdie,)
Q; ¢+ = .
0, otherwise

2

where a}, = 0 indicates that the agent does not take action,
a;.+ was the initially defined action and is evaluated against the
physical constraints of the minimum green serving time g; ¢, of
the current phase active ¢; at intersection ¢ and the pedestrian
serving time pd; 4, based on the current phase duration ¢d; ¢,
to ensure the safety of all users of the transportation network.

Reward based on Eco_PI: The reward function was for-
mulated as Fcopi by measuring the number of stops and
stop delay that occurred in every traffic approach, following
an existing fuel consumption model proposed in [6], [7]. The
number of stops a vehicle makes is calculated by counting
the number of times the vehicle is stopped in a queue while
approaching from all directions in the intersection. The stop
delay is calculated as the amount of time a vehicle is stationary
in the queue before it reaches the intersection. For example,
as shown in Figure 4, at the Cater intersection in MLK
Smart Corridor, vehicle stops and stop delays are calculated
on the eastbound, southbound, westbound, and northbound
approaching links. These metrics are then used to calculate the
Eco_PI index, which serves as an indicator of fuel consumption
related to stopping. The immediate reward r; is calculated for
each traffic movement of intersection 7 as

L;
—(Z dig +
=1

where d; ; ; is the average stop delay that occurred in link [;,
N1+ is the number of stops, and K;;; is the average stop
penalty to penalize every stops [8], [9]. The policy of each
agent ¢ is optimized to maximize the global long-term return
E[Rf], where RT, = S T Am=tr; 4 is the return at time ¢, with
a discount factor .

riy = Bco_PI; = (Kige*Nige)) B
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Fig. 4: Vehicles Slops and Stop Delay at each approach

Spatio-temporal Multi-agent RL: Each intersection’s be-
havior is modeled using a decentralized graph network and
state and action spaces. Agents use the Advantage Actor-
Critic algorithm, with Actor and Critic designed using a graph
neural network. Agents learn spatial and temporal dependen-
cies through asynchronous communication protocols and make
decisions based on their current state and policies. Policies

are updated based on optimal long-term return values and
evaluated and updated based on physical constraints. Each
agent’s state, action, and reward are communicated to the
neighbors through message passing, and the reward is stored
to measure the global return for each agent. Therefore, the
multi-agent MDP was updated as (G, S, A, M, p,r,S") where
my;¢ € Mj; is the message passed from agent j to agent ¢
including the states, actions, and rewards of the neighboring
agent 4 at time t. N; = {j € V|ij € £} represents the set of
neighboring agents that are connected to agent 7 by links ; ;
in the communication graph (V, £). Then the local agent state
is updated as s’;; € S’ which is the joint state of the agent’s
current state and the neighbors state.

At time ¢, the state s;; of intersection ¢ includes traffic
state such as volume, detector occupancy, average waiting time,
delay, and velocity, as well as traffic signal state such as current
phase state, duration, and pedestrian recall time. The states of
neighboring agents ) are obtained through message passing,
including the aggregation of the agent’s state and policy.

mip = g(sje Uhji—1Umji—1, VjeN,) €]

Then the intersection ¢ state is updated by the linear transfor-
mation with a rectified linear function, with the dimensions of
the traffic state and traffic signal state input varying for each
intersection. The hidden state of temporal traffic information
is extracted by the LSTM layer.

hé,t =&(sitUhip1Umig1Umgy) &)

Then a linear transformation with a rectified linear function
is applied to the hidden graphs to identify the optimal policy,
7;. And the softmax function is applied to generate actions aj.
The policy is evaluated and adjusted by considering mandatory
physical constraints.

A2C with a Graph Neural Network (GNN) stabilizes the
learning process and enhances the performance of the proposed
model in identifying the optimal policy for maximizing the
expected cumulative discounted reward E[R]] over time
steps for intersection i. The advantage function A7 (s] ,,a; ;)
evaluates the benefit of taking an action a}, in a state s},
compared to the average value at that state and serves as a
reference point for the action-value function Q7 (s; ;,a; ;). The
state-value function V;7 (s} ;) defines the predicted cumulatlve
discounted reward from a specific state under a given policy
and is calculated as the weighted sum of the action-value
function for all possible actions.

The policy distribution approximates the anticipated cu-
mulative discounted reward from taking an action in a state
under the policy ;. The advantage function helps the critic
network reinforce the selection of the most suitable action
by updating the policy distribution with policy gradients as
directed by the critic, which in turn increases the probability
of actions proportional to the high expected return E| ;”0] =

Zs;’teS' p(sg’t)Vf (S;,t)'
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Learning from experiences: During each time step, the
experience replay buffer D stores the information including
the initial state, the updated state with neighbor networks,
updated policies and values, the new state after taking action,
and the step reward (si ¢, a;,, MA; ¢5Tits Siys Vtgs T, ). 1IN
each subsequent time interval, the model learns the tem-
poral dependency by utilizing the batch of experiences B
is {(8] 7o MmN, t,r0 @ 73 Tisrs 8300 Vi 7, T, ) }iev,rep stored in
the replay buffer D and updates the graph neural network
parameters based on the calculated losses. Where {7 }icv
is stationary policy and value {V };cy were updated after
physical constraints evaluation of intersection ¢. Actor loss
incorporates the negative log probability of the action that
was sampled under the current policy, and the actor is up-
dated based on the estimated advantage. And the Critic loss,
which involves computing the mean squared error between the
sampled action-value and the estimated state-value, is updated
using the estimated state-value.

C. Digital Twin Assisted Method

To reduce congestion and Eco_PI, a PTV-Vissim COM inter-
face was embedded with DT, which represents the distributed
graph-based multi-agent reinforcement learning framework us-
ing a DT to optimize traffic signal control as shown in Figure
3. The DT represents the physical transportation environment,
and each intersection in the DT is mapped to a corresponding
reinforcement learning agent. The DT can interact with agents
through COM interface and the physical environment within a
tolerable time frame. Hence, each agent maintains its optimal
policy and decides the best actions to control signal phases.

DT assisted DGMARL algorithm is shown in Algorithm
1. Each intersection in the DT is mapped to a corresponding
reinforcement learning agent ¢ as shown in Algorithm 1 ensure
section. At time ¢ the agent ¢ observes various features through
DT components, such as the detector occupancy, approach
level vehicle count aggregates, vehicles velocity, and current
signal state. Then collaborates with its neighbors N; to share
and receive their states through message passing as described
in Algorithm 1 line-5. And then the updated state s; ; of agent
i is processed through a graph neural network to derive the
optimal policy 7; and select actions to control the signal phase
¢; (line-6). Then agent ¢ validates the actions (line-7), against
the physical constraints configured in the DT, the minimum
green serving time and pedestrian recall time, to ensure user
safety. If the decision is to stay in the current phase in green,
then no actions are applied back to the DT; otherwise, agent
1 validates other phases detector occupancy and selects the
phase ¢; that has a higher upcoming traffic occupancy, then
applies the signal phase change action to the signal controller
in the DT (line-8), which updates the simulation. Once the
decided action is applied, each agent ¢ estimates the current
reward r; with the new observed traffic state s; ;1 (line-9),
and stores the experiences in replay buffer (line-10). And when
the buffer resize reaches minimum batch size the agent starts

to learn from the collection of experiences at ever time step to
minimizes the critic loss L(w;) and actor loss .J(8) (lines 12-
14). The agent 7 repeats the above processes until it achieves
the desired objective of identifying optimal policy to choose
best actions for reducing congestion and Eco_PI.

Due to the distributed agent environment, each agent makes
different decisions based on their local and neighboring traffic
state, so the convergence of an optimal policy is different for
each agent and the efficiency of learning is increased. Since
agents continue to interact with the real environment through
the DT, the probability of arriving at an optimal policy is faster.
Hence, by using a DT and reinforcement learning, the system
can adapt to changing traffic conditions in real time, leading to
more efficient signal control, and it can be further optimized
to maximize its benefits.

Algorithm 1 Digital Twin assisted DGMARL Learning

Require « learning rate, 3 entropy coefficient.

Ensure: Initialize graph G(V,E), agent ¢ € V, link [; € &,
physical constraints i., policy network parameters 6 and
value network parameters w.

1: for e =1 to episodes do

2:  Observe state s; from Digital Twin.

33 fort=0toT —1do

4: for agent : = 1 to V do

5: Update state s}, ~ s;; Unn, ,_, Uhy, ,_, through
message passing.

6: Select policy T, ,, action a;; ~ m(als;,), and get
value v(s; 4|w, ;).
7: Evaluate agent’s actions a} , = (a; ¢|i.) and update

(! / N / ! !/ /
value v'(s] ;|w,a; ;) and policy 7'(a; ,|v;,, s} ;).
Take action a; , in Digital Twin
: Observe reward 7; ; and new state s; ;. ;.
10: Replay buffer

D (S;A,t’ﬂJOi)t?a;,t’ri,t-i'hS;,t+17vzlu,i,t)'

11: if t >= B sample batch size B then

12: Learn from random minibatch and obtain target
return.

13: Update critic by minimizing the loss L(w;)

14: Update actor using sampled policy gradient de-
scent along with entropy loss .J(6).

15: end if

16: end for

17:  end for

18: end for

V. EXPERIMENTS

This section provides the details of the experiment setup
using a real-world dataset and optimization results that show
the efficiency of the DT assisted DGMARL model.
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A. Experimental Setup

The experimental environment was set up using the real-
world dataset collected by the Department of Computer Sci-
ence and Engineering at the University of Tennessee, Chat-
tanooga, USA [23].

Real-world dataset: The dataset is composed of the corridor
that connects 11 intersections on MLK Smart Corridor with
bidirectional traffic in East-West, West-East, North-South, and
South-North directions, which includes intersection geometry,
the traffic signal timing plans, camera and zone-detecting
device parameters, SPaT, vehicle flow, velocity, detector occu-
pancy, etc. Each intersection consists of a heterogeneous phase
setup with different number of signal light configurations. To
have a flexible and adaptive approach to traffic signal control,
the action has been designed with two decisions: either staying
in green in the current phase or switching to the phase that
has the highest traffic occupancy. Before switching to the
new phase, the current phase follows the configured yellow
and red clearance times. The yellow and red clearance timing
magnitudes are specific to for each phase at each intersection.

B. Digital Twin Setup

The Tier 1 DT platform is used in this experiment. The
simulation model of 11 intersections of the MLK Smart Corri-
dor in PTV-Vissim is developed following network creation
guidelines in [24], as shown in Figure 5. The developed
model is populated with archived December 15, 2022, one-
minute volume counts at network entry edges, 10-minute turn
percentages at each intersection approach, and signal timing
plans received from the city. Two versions of the simulation
model are created: 1) the PM peak model that simulates the
December 15, 2022, 3:00 PM-6:00 PM scenario, and 2) the
24-hour model that simulates the December 15, 2022, 24 hour
scenario. This model is prepopulated with data and runs faster
than wall clock time.

Fig. 5: MLK Smart Corridor network layout in PTV-Vissim

C. Impact of the Application of the Proposed Model

Efficiency of DT assisted DGMARL is measured using the
number of stops and stop delay at each intersection as the met-
rics. Also Eco_PI are calculated to measure the impact of fuel
consumption related to stopping. DGMARL starts optimizing
signal timing after a non-stationary period of 120 seconds. At

each time step, the graph neural network updates each agent’s
current state with Relu activation in the message passing layer.
Then, the actor and critic neural networks generate the value-
assisted action probability. This process continues until the
initial batch size of experiences is gathered. Afterward, at
each time step, the model learns from experience with random
samples and updates the graph neural network parameters to
arrive at the optimal policy distribution. The model decay rate
is customized based on the current learning episode. To achieve
optimal results, the model was trained for 100 episodes using
the dataset from the first hour of MLK Smart Corridor on
Thursday, December 15, 2022. Each episode’s simulation step
was 3600 seconds, and the model learned from 240 batch sizes
of experience replay in each episode for 3240 steps.

D. Experiment Results

The developed DGMARL signal timing plan was tested on
MLK Smart Corridor for 24-hour and PM-peak hour scenarios
of December 15, 2022. The performance of DGMARL signal
timing plan was compared with the baseline actuated MLK
Smart Corridor vehicle actuated signal timing plan.

24-hour scenarios: Figure 6 shows the comparison of
Eco_PI index observed from DGMARL and baseline vehicle
actuated signal timing plans. The overall Eco_PI improved by
44.27%, with improvements ranging from 11.23% to 81.47%
over the 11 intersections. Due to the time limit, one trial was
performed with a 24-hour scenario.

24-hour Eco_Pi
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Fig. 6: 24-hour in MLK Smart Corridor: Overall Eco_PI improved by 44.27%
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Fig. 7: PM-peak hour scenarios in the MLK Smart Corridor: an average Eco_PI of 29.88%
observed from 10 tests using 10 random seeds

PM-peak hour scenarios: Results from ten replicate trials
with different random seeds for PM-peak hour were compared
from DGMARL and vehicle actuated signal timing plan im-
plementation. Figure 7 shows that the average Eco_PI over
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Fig. 8: PM-peak hour scenarios in the MLK Smart Corridor: an average of 10.48% stops
reduced and 49.68% of stop delay reduced from 10 tests using 10 random seeds.
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Fig. 9: PM-peak hour scenarios: best performing intersection Carter, with an average stop
delay reduced by 65.01%, and at the Pine intersection, the average stop delay reduced
by 5.96%

ten replicate trials, improved by 29.88%, with improvements
ranging from 6.07% to 43.90% over the 11 intersections.

PM-peak hour scenarios shows an average reduction in
stops by 10.48% and in stop delay by 49.68% compared
to the baseline actuated signal timing scenario from the ten
random seed replicate trials, as shown in Figure 8. Among all
intersections, the stop delay at Carter intersection has larger
improvement of 65.01%, while the least improvement of 5.96%
is observed at Pine intersection, as shown in Figure 9.

CONCLUSIONS

This paper presents the use of a Digital Twin assisted
graph-based, decentralized multi-agent reinforcement learning
algorithm for optimizing traffic signal timing by observing
traffic state in real time. By enabling multiple agents to ex-
change knowledge with the environment, this approach shows
improvements in learning efficiency, enables performance with
lower latency, and demonstrates its’ ability to optimize signal
timing for reduced Eco_PI and average stop delays.

In future, further development of this algorithm for varying
optimization frequencies, large-scale networks, and its deploy-
ment in real-world environments will be investigated.
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