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in the Realm of ADIOS

Abstract—In HPC I/O middleware like the Adaptable I/O Sys-
tem (ADIOS) often mediates data transfers between applications.
The metadata I/O generated by such systems often presents
significant scaling and performance limitations. This work seeks
improvement opportunities for metadata I/O by leveraging the
DAOS storage systems, a recent storage system solution deployed
on high-end systems such as the Aurora supercomputer. We
investigate the tradeoffs and the design space for integrating I/O
engines for the ADIOS middleware based on the different storage
mechanisms supported by DAOS. We present a new DAOS-
Array-ChunkSize-aligned engine which provides up to 2.3× im-
proved performance than when using the existing DAOS-POSIX
interface, without requiring any applications modifications.

I. INTRODUCTION

With the exponential increase in data volume in HPC,
I/O overheads have emerged as a critical bottleneck. Several
endeavors have been made to mitigate this, aiming both to
enhance I/O bandwidth and foster higher concurrency [1],
[2]. Nevertheless, the role of metadata management in HPC,
often underemphasized, is vital [3]. The scale and intricacy of
applications have simultaneously elevated both the volume and
complexity of metadata. Recent research indicates that meta-
data can profoundly influence the entire HPC I/O efficiency
[4]. Importantly, merely scaling up hardware resources is not a
panacea for the metadata conundrum. We foresee this pattern
continuing, especially as we transition into the exascale epoch,
marked by the rise of machines like the Aurora supercomputer
[5].

To address more generally I/O bottlenecks in HPC and
datacenter systems, and to better leverage the performance
capabilities of emergine storage devices, the storage com-
puting recently introduced a software storage stack, Intel
DAOS (Distributed Asynchronous Object Storage) [6]. DAOS
has been designed to simplify the integration of software
stacks with new memory and storage technologies, including
persistent memory (PMEM) and NVMe devices [7]. DAOS
minimizes software overhead when interfacing with PMEM,
thus capitalizing on the performance benefits these technolo-
gies offer over conventional storage devices like HDD/SSD
[8]. The system endorses zero-copy and asynchronous I/O
operations. Fundamentally, DAOS introduces an object in-
terface that inherently supports key-value and array formats.
Moreover, to ensure compatibility with pre-existing systems, it
incorporates a POSIX emulation layered atop its native DAOS
array object interface.

While substantial emphasis has been placed on delivering
the benefits of DAOS for HPC I/O [9], less attention has
been placed on the unique requirements of HPC metadata I/O.

“Metadata” is a term with specific meanings at virtually every
layer of a software stack, but in this context we are specifically
talking about metadata produced by I/O systems such as
ADIOS[10], MPI-IO, HDF5 and NetCDF which support the
execution of complex HPC workflows. In the context of these
I/O middleware systems, metadata is produced during the
course of writing specific data that is later to be used by
the downstream workflow components (i.e., readers) to locate
that data. Given the growing performance challenges related
to metadata I/O, in this work we focus on investigating the
implications of using DAOS for metadata I/O.

Specifically, we focus on the ADIOS high-performance I/O
system. ADIOS is widely used at Oak Ridge National Labora-
tory and several other national labs for its ability to efficiently
manage large-scale data, especially in environments where
performance and scalability are critical. Its flexible framework
and support for various data formats make it an essential tool
in advancing complex scientific research, including real-time
data processing and large-scale simulations in domains like
climate modeling and astrophysics. Most recently, ADIOS was
the driving force behind the I/O stack in the Gordon Bell Prize-
winning(2023) E3SM, a climate simulation application [11].

In ADIOS, each writer rank produces metadata that is
archived in stable storage. In order to fulfill ADIOS reader-
side semantics generally every reader rank must have access
to all the metadata produced by each writer rank. Thus the
access pattern for metadata tends to be different than that of
the application data that it describes, because in a multi-rank
application each reader tends to access only a subset of the
whole data, while requiring access to the whole of the meta-
data in order to locate that data. This further raises the need
for metadata-specific study on the performance implications of
new storage technologies, with DAOS being the focus of our
work. Prior implementations of ADIOS metadata storage and
access employ POSIX files and are bound by the constraints
inherent to POSIX design. Even though DAOS is equipped
with key-value and array object interfaces, and has showcased
its efficacy in recent performance evaluations [9], discerning
the optimal strategy to employ these interfaces concerning
ADIOS metadata transfer remains a complex challenge.
This paper presents the following significant contributions:

• In section II, we demonstrate the difficulties of ADIOS
metadata handling, structured around POSIX semantics,
and their substantial impact on the metadata end-to-
end transfer time in large-scale settings with the E3SM
application.
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Fig. 1: Writing data from every rank in unmodified E3SM vs. a
modified E3SM which pre-aggregated data to write from fewer
ranks. The performance differences were traced to overheads
in handling ADIOS-level metadata.

• In section IV, we present the complex design space in
using DAOS Key-Value and Array objects for the transfer
of ADIOS metadata.

• In section VI, we evaluate DAOS metadata engines in
ADIOS to measure the impact of metadata size, number
of ranks, and a large number of ADIOS timesteps.
Further, we analyze the trade-offs in committing and
acquiring metadata on end-to-end metadata transfer time.

• Our new DAOS array-based engine provides 2.3X faster
ADIOS metadata end-to-end transfer time than POSIX at
scale.

II. MOTIVATION

As noted above, most prior work in HPC I/O has focused
specifically on maximizing the rate at which large volumes of
data can be moved to storage, while largely neglecting issues
surrounding the metadata that systems like ADIOS produce
in order to identify and provide access to individual data
blocks. Generally metadata is presumed to be relatively small
as compared with the data and therefore not of particular
interest in HPC I/O.

In order to challenge this view we present the set of
application timings shown in Figure 1, which depicts different
runs of the Energy Exascale Earth System Model (E3SM).
E3SM, a state-of-the-art, fully-integrated model of Earth’s
climate, encompassing key biogeochemical and cryospheric
processes [12]. The figure depicts the performance curves for
two slightly different implementations of E3SM. The blue
bars represent a “original” ADIOS implementation of E3SM
I/O, where each application rank performs an ADIOS Put()
operation of the data in its possession. Note that the wallclock
time for a 960 timestep run is rising exponentially as we
increase the number of MPI ranks (weak scaling), to the
point where run at 21504 ranks couldn’t be completed. In
comparision, the orange bars represent a modified version

of E3SM in which that same application data is aggregated
so that only 1/6 of ranks perform a Put(), but now with a
block 6x larger (this is called “block merge” in the figure).
The principal difference between the original and the block
merge versions of E3SM are in the amount of ADIOS-level
metadata created and processed. The amount of actual data
is essentially the same, yet the overall performance is signifi-
cantly better solely because the amount of metadata has been
reduced. This supports the assertion that in situations where
both complexity of the metadata and the number of writing
ranks are large, middleware-level metadata handling can have
a significant performance impact on HPC I/O. And while
E3SM developers were able to sidestep scalability problems
with application changes, an application shouldn’t have to
be rewritten to perform its own data aggregation simply to
minimize middleware metadata overheads.

Performance graphs Figure 1 are often the result of fo-
cusing on data-to-storage bandwidth and ignoring metadata
processing as inconsequential. The data in this figure dates
from an early stage in this project and some of of the
metadata overheads that caused the exponential overheads in
the graph were due to ADIOS metadata handling practices
that have since been changed. However one significant issue
that remains is that in the ADIOS POSIX-based implemen-
tation, all writer metadata is gathered via MPI to a single
rank and written into a POSIX file, an operation that isn’t
required by ADIOS semantics and which seemed ripe for
reconsideration. Specifically, we hoped to use DAOS object
interfaces to produce a performance curve for metadata-heavy
applications like E3SM while employing ADIOS in the way
it was designed, writing from each rank with data without
requiring application-level changes and data aggregation to
avoid metadata overheads.

III. BACKGROUND

A. ADIOS

ADIOS [13] is a middleware library tailored for HPC
I/O, offering applications a high-level data abstraction and
concealing the intricacies of data transport/storage/retrieval
between application memory and various HPC mediums like
networks, files, wide-area-networks, or direct memory access
channels. Its primary aim is to equip exascale applications
with optimal storage/network bandwidth on premier HPC
computing assets. Although ADIOS can facilitate online code-
coupling (for instance, a direct link between running data
sources and sinks), this research primarily delves into I/O
directed to and from stable storage. In ADIOS, stable storage
is used as an endpoint for large scientific campaigns for
checkpointing and also for post-processing simulation data.

In ADIOS, the I/O abstraction adopts a collective and
timestep-based method, where synchronization occurs sepa-
rately within the groups of reader ranks and writer ranks.
This is managed through the use of Begin/EndStep() calls
within each group. Within every I/O timestep, applications
have the ability to Put()/Get() data to or from storage, with
each action targeting a predefined ADIOS variable. These
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variables can represent various ADIOS data structures, ranging
from individual named values to expansive multi-dimensional
arrays that can be split across the ranks in an MPI-driven
application.
ADIOS metadata. In ADIOS, the reader-side semantics
facilitate data discovery. Consequently, whenever an ADIOS
operation writes data, it concurrently generates metadata. This
metadata encapsulates details such as the variable’s name that
has been outputted, its type, dimensionality, the virtual location
(both start and count) within the ADIOS global array space,
and the precise location and size of the data block in storage.
Generally, to fulfill Get() requests in ADIOS, every reader rank
should possess access to the complete metadata set produced
by each writer rank for that specific timestep. This implies
that while the actual data read patterns may vary based on the
application’s requirements, the metadata exchange typically
follows a more uniform all-gather transfer mechanism.
Metadata Transfer in ADIOS. In the current ADIOS POSIX
engine, shown in Figure 2, metadata created by all writer ranks
is aggregated on rank 0 for each timestep, and then recorded
to a specialized metadata file. On the reader’s end, rank 0
acquires the writer’s metadata and distributes it to other reader
ranks using an MPI broadcast.

For evaluating the performance and design trade-offs in a
DAOS-based metadata engine, we define metrics that track
the movement of metadata from writers to readers. We use
inclusive terminology since the ”write” and ”read” phases
involve may non-I/O operations, such as MPI_Gather() and
MPI_Bcast().
• Metadata Stabilization Time: This duration encompasses

all steps from the initial creation of metadata to the point
where a writer has securely stored it in stable storage,
confirming its durability and accessibility.
• Metadata Acquisition Time: This refers to the process
of fetching the metadata from stable storage and making it
available to all reader ranks, enabling their access and use
of the data.
• Metadata End-to-End Transfer Time: The total of sta-
bilization and acquisition times.
Given that our emphasis is on large-scale data, our analysis

is primarily on the continual metadata transfer expense in each
timestep, sidelining any singular costs.

B. DAOS

Distributed Asynchronous Object Storage (DAOS) is an
open-source object store tailored for byte-addressable storage
[7]. Designed to offer low latency and high bandwidth ac-
cess to storage, DAOS caters to various use cases, including
for data centers, traditional HPC, and AI/ML tasks. DAOS
is designed to harness Storage Class Memory (SCM) and
NVMe (Non-Volatile Memory Express) for improved perfor-
mance and efficiency. Originally DAOS employed SCM for
efficient handling of small, latency-sensitive I/O operations
and metadata. Beyond this, NVMe drives supplement with
added capacity and sheer bandwidth, while Open Fabrics
Interfaces ensure low latency access. DAOS’s data path is
entirely in userspace, facilitating zero copy through Remote
Direct Memory Access (RDMA). Furthermore, it intrinsically
presents an object interface, atop which middleware layers like
POSIX, MPI-IO, and HDF5 are provided.
DAOS Targets. Each DAOS server node segments its PMEM
and NVMe storage into multiple DAOS targets. A distinct
DAOS engine daemon associated with every DAOS socket
facilitates I/O processes for these targets. For optimized per-
formance and robustness, DAOS objects are distributed across
these targets.
DAOS Containers and Snapshots. DAOS containers func-
tion as object address spaces, each distinguished by a unique
container ID. Snapshots in DAOS are lightweight and are
marked with the epoch corresponding to their creation time.
After creation, a snapshot remains accessible for reading until
it is deliberately removed. Additionally, the contents of a
container can be reverted to the state captured in a specific
snapshot.
DAOS Object. DAOS introduces Key-Value and Array
objects.

Key-Value object offers put and get functions, with the
value being a variable-length data block. A single Key-Value
object can house numerous key-value pairs. The keys are
hashed to determine the DAOS target for storage.

Array provides a logical one-dimensional array. Each
DAOS array is defined by its cell size and chunk size,
determined during its creation. The chunk size refers to a
continuous sequence of elements stored in a target before
transitioning to another target. The cell size specifies the size
of a single element. All elements within a chunk reside in the
same DAOS target. The DAOS array facilitates vectored I/O,
allowing for read and write operations across multiple distinct
extents within a single daos_array_write/read() call.

Figure 3 illustrates dense and sparse arrays written by three
ranks with extents shorter than the chunk size. This is par-
ticularly relevant because the ADIOS metadata of individual
writer ranks is typically smaller than the chunk size. In the
dense array scenario, the ranks write contiguous extents, all
on the same DAOS target. In contrast, in the sparse array
scenario, the ranks write at chunk boundaries, and hence the
extents are placed on three distinct targets. Given that DAOS
targets are bound to limited compute resources, the layout of
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the DAOS array influences performance, as will be discussed
subsequently.
DAOS POSIX Emulation over DAOS Filesystem (DFS).
DFS offers a structured POSIX namespace, supporting file and
directory constructs. Essentially, DFS files are conceptualized
using a DAOS array, with a chunk size of 1MB and a
cell size of a single byte. Applications access the emulated
POSIX namespace through a FUSE daemon. Additionally, an
interception library using LD PRELOAD ensures a complete
OS bypass for POSIX read/write operations.

IV. DESIGN OPTIONS WITH DAOS OBJECTS

To investigate the effect of DAOS’s object APIs on ADIOS
metadata I/O performance, we aimed to develop ADIOS
metadata engines based on DAOS objects. The current ADIOS
POSIX engine readily aligns with the DAOS POSIX emulation
layer. However, leveraging DAOS’s KV or Array-based inter-
faces requires careful consideration of several vital questions.

How to map metadata of writer ranks to DAOS objects?
In the case of DAOS KV, each writer rank uniquely iden-

tifies its metadata with a key string for every timestamp.
This allows all writer ranks to execute Put() operations in
parallel.

Conversely, for DAOS arrays, the metadata associated with
each writer rank per timestamp is placed as an array extent.
If a single DAOS array is employed across all ranks, syn-
chronization between writer ranks becomes necessary to agree
upon offsets. An alternative approach is to create separate a
DAOS array object for each writer rank. However, this method
could lead to the creation of a multitude of DAOS array
objects as the number of writer ranks scales. Additionally, the
DAOS array Object IDs must also be transferred to the reader
ranks. Further, each of these objects must be opened creating
additional overhead and state. Hence, we opted for a design
that involves shared usage of a single DAOS array object.

How to provide ADIOS timesteps with DAOS Objects?
Given that ADIOS operates on a timestep basis, readers

must be able to access all ADIOS metadata related to a

specific timestep simultaneously. This can be accomplished
in two ways. The first method involves extending the current
DAOS objects. In the case of the DAOS array, this means
writing new extents, and with KV, it’s adding new entries
with keys that identify the rank and the timestep. The second
method leverages the reuse of DAOS objects in conjunction
with the DAOS container snapshot mechanism. This involves
overwriting previous extents or key-value entries by a rank in
subsequent timesteps. The snapshot creation is delegated to
writer rank 0. The metadata of a given ADIOS timestep is
accessed by opening the associated snapshot.

How does the difference in I/O semantics of DAOS Array
and Key Value impact acquisition time?

Each DAOS KV Get() operation necessitates the registration
of an RDMA buffer to receive the metadata. As the number
of writer ranks increases, so does the registration overhead
in relation to the cost of reading the metadata. However,
the DAOS array supports vectored I/O. On the reader side,
this enables the reading of metadata from all writers from
multiple extents at once into a single contiguous memory
block, requiring only a single RDMA memory registration

Metadata acquisition - What is the tradeoff between
speedup with concurrency and slowdown due to con-
tention?

In ADIOS, every reader requires metadata from every
writer. We considered two approaches, both using asyn-
chronous Get(). The first approach is concurrent, where every
reader rank accesses the metadata simultaneously. In the
second approach, the task is delegated to reader rank 0, which
then broadcasts the metadata to all other reader ranks. When
using the concurrent approach and having M writers and
N readers, the metadata acquisition entails M × N sets of
complete ADIOS metadata reads. Figure 4 shows metadata
acquisition time with 224 writers and increasing number of
readers using DAOS KV object. The concurrent approach is
clearly not scalable. The cost increase of MPI Bcast with the
number of readers, when using delegation, is significantly less
than the slowdown caused by concurrent access. Hence, in
our design and implementation of DAOS metadata engines,
reader-side delegation has been incorporated.

V. IMPLEMENTATION

A. ADIOS DAOS-KV engine

In the engine’s initialization phase, writer rank 0 creates
a DAOS KV object and broadcasts its object ID to all
other ranks, a process conducted only once. Each writer, at
the conclusion of every timestep, stores its metadata as a
distinct key-value entry using daos_kv_put(). The key is
formatted as ”StepN-RankID”, and the associated value is the
metadata buffer.

On the reading side, reader rank 0 gathers all metadata in
a two-step process. Initially, it employs daos_kv_get()
with the key ”StepN-RankID” and a NULL value buffer
to ascertain the size of each writer rank’s metadata.
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Once the total metadata size is known, rank 0 allo-
cates the necessary memory. Then, it retrieves the ac-
tual metadata using daos_kv_get("StepN-RankID",
metadata_buffer). This metadata is subsequently broad-
cast to all other reader ranks.

B. ADIOS DAOS-Array engine

Writer
Rank 0

DAOS Array
Metadata

DAOS KV  
Metadata Sizes

Writer
Rank 1

Writer
Rank N

Reader
Rank 0

Reader
Rank 1

MPI_Broadcast

Reader
Rank M

MPI_Broadcast

Fig. 6: ADIOS DAOS-Array engine

During the engine’s initialization, writer rank 0 creates a
DAOS array object and broadcasts its ID to all other ranks. The

chunk and cell sizes are set at 1MB and 1 byte, respectively,
akin to DFS. A chunk size of 1MB is sufficiently large for
current workloads. However, it can be configured to a larger
size as required. Additionally, a DAOS KV object is created
for storing metadata sizes.

At each timestep, every writer rank shares their metadata
sizes using MPI_Allgather(). Writers then compute their
unique offsets in the DAOS array in rank order and proceed to
write their metadata with daos_array_write(). Writer
rank 0 records the metadata sizes in the KV object with
daos_kv_put("StepN", list_metadata_sizes).

On the reader side, rank 0 retrieves the
list_metadata_sizes from the KV object to calculate
the total metadata size. After allocating the required memory,
it reads the metadata of all writers from the DAOS array, using
daos_array_read(). The metadata is then broadcast to
all other reader ranks.

VI. EVALUATION

A. Goals

The expermental evaluation aims to answer the follow-
ing questions regarding the implications of using DAOS for
ADIOS metadata I/O:
• What is the impact of the DAOS-KV and DAOS-Array

engines on the stabilization and aquisition time for different
ADIOS metadata sizes?
• What is the impact of concurrency on the performance of

the DAOS-based engines?
• What are the implications on overall end-to-end metadata

transfer time at scale for the different DAOS engines?
• What is the impact of the different DAOS-engines for

long running computations with large number of ADIOS
timestamps?
• Finally, which DAOS engine is most efficient for metadata

transmission?

B. Setup

The experiments were performed on the Cambridge Service
for Data Driven Discovery (CSD3) Ice Lake cluster. Each com-
pute node is a dual-socket, 38-core Intel® Xeon® Platinum
server, with a 2.60GHz 8368Q CPU, with 512GB of DRAM.
The system includes DAOS v2.2, configured in pooled mode
across ten dual-socket 32-core Intel(R) Xeon(R) Platinum
servers based on 2.2GH 8352Y CPUs. Each server has 4.2
TB of PMEM storage, segmented into 256GB Optane DIMMs,
and 16 3.8TB NVMe drives. All servers are connected via dual
HDR200 InfiniBand network.

C. Methodology

Design of the Experiment: For our tests, we separately ran
the ADIOS writer vs. reader ranks, for 1000 timesteps each.
The rank count was varied from 64 to 1024, distributed across
a maximum of 56 compute nodes. The number of readers is
the same as number of writers.
Setting Up Metadata Size: We experimented with metadata
size ranging from 5K to 56KB per rank per timestamp. 56KB



corresponds to the metadata sizes for E3SM. To configure the
metadata size we changed the number of ADIOS variables and
corresponding arrays. The per-rank metadata size is constant,
thus the total metadata size grows proportionally with the rank
cound.
Measurements: To gather timing data within ADIOS we
used Caliper, a tool designed for performance measurement
and code instrumentation in high-performance computing,
[14]. Specifically, Caliper was utilized at the EndStep() and
BeginStep() points of the DAOS engines to record metadata
stabilization and acquisition times. Since ADIOS writers gen-
erate similar metadata across timesteps, the reported times
represent the average per rank over 1000 timesteps.

D. Results

1) E3SM - 56KB
In Figure 7, with a metadata size of 56KB, both the DAOS-

KV and DAOS-Array show stabilization times that are up
to an order of magnitude faster than DAOS-POSIX. The
stabilization time of POSIX is not sustainable with the growing
number of ranks as it serializes metadata stabilization through
rank 0. On the other hand, both DAOS-KV and DAOS-Array
write metadata in parallel.

64 256 1024
Ranks

0

20

40

60

80

Se
co

nd
s

e3sm-1000:stabilization

Engines
daos-posix
daos-kv
daos-array

Fig. 7: E3SM(56KB) - Stabilization Time

Figure 8 shows the acquisition time for E3SM. The ac-
quisition time consists of the shaded MPI Bcast time and
the unshaded region, which represents the I/O read time. The
MPI Bcast time depends on the number of readers, while the
I/O time is affected by the number of writers. The choice
of the DAOS engine influences only the I/O read time. The
DAOS-KV-async-get acquisition time is 1.2X slower than
DAOS-Array at 1024 ranks. In case of DAOS-KV-async-get
issuing 1024 daos_kv_get() at each timestep proves to
be expensive. Each invocation of daos_kv_get() requires
a separate RDMA buffer registration. As the number of KV
entries increases with increasing writer ranks, this overhead
becomes significant. However, daos_array_read() per-
forms vectored I/O for many extents into a single contiguous
buffer, requiring only one RDMA buffer registration.
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Fig. 8: E3SM(56KB) - Acquisition Time

E. Small Metadata - 5KB

Figure 9 depicts the metadata stabilization time for a small
metadata size of 5KB. Unlike in E3SM, which has a 56KB
metadata size as shown in Figure 7, the stabilization time
for DAOS-Array here is 25X slower than for DAOS-KV. In
the DAOS-Array engine, writer ranks write their respective
metadata in rank order contiguously into the array. This results
in a dense array, as illustrated earlier in Figure 3, reducing
the number of targets where the metadata is stored. Each
target has a limited number of RDMA buffers. The numerous
concurrent daos_array_write() operations contend for
these, causing the significant slowdown.

64 256 1024
Ranks

0

20

40

60

80

100

120

Se
co

nd
s

5k-1000:stabilization

Engines
daos-posix
daos-kv
daos-array
daos-array-1mb-aligned

Fig. 9: 5KB - Stabilization Time

To further illustrate this DAOS-Array behavior, we created
a custom benchmark with 5KB and 56KB metadata sizes,
using 200 and 20 writer ranks, respectively. The number of
timesteps are 100. The total data written in a timestep for
both scenarios is approximately 1MB. However, 5KB writes
this time are explicitly aligned to 56KB boundaries in the
DAOS-Array. This alignment ensures a more sparse layout
and distribution of data across more targets. For reference,



we present the 5KB results with 200 writers without the
alignment. Figure 10 shows similar daos_array_write()
times for 5KB with alignment and 56KB, unlike the distinct
difference observed between 56KB and 5KB in figures 7 and
9.
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Fig. 10: Comparison of daos_array_write() times for
Aligned 5KB and 56KB Metadata Sizes

Going back to Figure 9 the DAOS-Array-ChunkSize-
aligned engine effectively addresses this issue. This ensures
better metadata distribution across targets, thus reducing con-
tention. As a result, the stabilization time for DAOS-Array-
ChunkSize-aligned is significantly improved, being 25X faster
than DAOS-Array and on par with DAOS-KV.
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Fig. 11: 5KB - Acquisition Time

Figure 11 shows the acquisition times for 5KB meta-
data. In DAOS-KV, for daos_kv_get(), values smaller
than 20KB are returned inline after the RPC call, without
requiring RDMA transfers. However, the numerous inline
executions are not as efficient compared to the vectored I/O
provided by daos_array_read(). At 1024 ranks, DAOS-
KV-async-get is 1.33X and 3.35X slower than DAOS-Array
and DAOS-Array-ChunkSize-aligned, respectively. Although

DAOS-Array-ChunkSize-aligned has a clear advantage on the
writer side compared to DAOS-Array, on the reader side, it
is 2.5X slower than DAOS-Array. This is because in DAOS-
Array, the metadata is laid out contiguously, resulting in larger
chunk size(1MB) reads from individual targets, as opposed to
numerous small 5KB reads from many targets.

1) End-to-End Transfer Time
The end-to-end transfer times for E3SM and 5KB metadata

are shown in Figures 12a and 12b, respectively. We evaluated
E3SM with DAOS-Array-ChunkSize-aligned and its end-to-
end transfer time is almost equal to DAOS-Array, while being
2.3X faster than DAOS-POSIX and showing a 23% speed-up
over DAOS-KV-async-get. The stabilization time of DAOS-
POSIX dominates its metadata end-to-end transfer time. For
the 5KB metadata, DAOS-Array-ChunkSize-aligned again has
the best metadata end-to-end transfer time, being 2.1X faster
than DAOS-POSIX. The end-to-end time of DAOS-Array
suffers due to poor stabilization time and is hence not shown
in Figure 12a for readability. Although the acquisition time
of DAOS-Array-ChunkSize-aligned is slower than that of
DAOS-Array, the gains in stabilization time provide a 20%
speed-up in end-to-end transfer over DAOS-KV-async-get.

F. Stabilization and Acquisition Times at large number of
ADIOS timesteps

Slow Stabilization - Overwrite DAOS Array + Snapshots
The DAOS container snapshot mechanism aligns well with

the need for consistent ADIOS metadata of a given timestep. In
this method, all writer ranks are programmed to write metadata
at predetermined offsets determined by their rank order. At
the end of each timestep, rank 0 captures a snapshot of the
container. Figure 13 illustrates the comparison of stabilization
times using DAOS array with and without snapshots across
an increasing number of ADIOS timesteps, using only 66
writer ranks. With snapshots, writers overwrite their metadata
at the same offsets, whereas without snapshots, metadata is
written at new offsets for each timestep. The performance
of the snapshot-based approach degrades with an increasing
number of timesteps. In the DAOS array, overwritten extents
are flagged for subsequent garbage collection. While snap-
shots prevent storage space reclamation, triggering garbage
collection later necessitates a costly traversal of DAOS’s
internal structures. The cost of this overhead increases with the
number of overwritten extents. Conversely, the non-snapshot
approach avoids overwrites, eliminating performance declines
due to garbage collection and consistently achieving optimal
stabilization times, even at large number of ADIOS timesteps.
Revisiting E3SM at large number of ADIOS timesteps

The snapshot-based engine did not perform optimally be-
yond 1000 steps. To understand the performance of DAOS-
Array-ChunkSize-aligned and DAOS-KV-async-get engines
with long-running applications that produce a large number of
ADIOS timesteps, we calculated the stabilization and acquisi-
tion times per ADIOS timestep. Our earlier results with E3SM-
based benchmarks were limited to 1000 timesteps. We reran
the experiment, extending it up to 10,000 timesteps. Figure 16
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Fig. 13: Comparison of Stabilization Time with and without
DAOS Snapshots using 66 Writer Ranks

displays the per-timestep stabilization time, which decreases
fivefold when moving from 1,000 to 10,000 timesteps. This
decrease occurs because the initial setup costs are amortized
as the number of timesteps increases. These costs include
initial I/O tasks, such as connection setup and queue pair
creation with the verbs provider. In Figure 17, the per-timestep
acquisition time remains relatively constant from 1,000 to
10,000 timesteps. This is due to the fact that, although the
same initial costs are encountered, they are amortized much
faster since the amount of metadata consumed per reader rank
is significantly larger than the metadata generated per writer
rank. However, the key point here is that, unlike the container
snapshot, DAOS-Array-ChunkSize-aligned is well-suited for
extended ADIOS applications.

In addition to measuring the impact of a large number
of ADIOS timesteps on metadata transfer performance, it is
also important to measure the scaling cost associated with the
number of ranks. Therefore, we measured the stabilization and
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acquisition time per byte. The Per Byte Time is calculated for
each rank as the total data stabilized or acquired, divided by
the time. Figures 16 and 17 show that the Per Byte Time
increases marginally with an increasing number of ranks, and
the total metadata quadrupled.

G. Storage overheads of using parse DAOS array

The DAOS array chunk size serves as a unit of storage
distribution, not allocation. It ensures that all array elements
from one chunk boundary to the next are guaranteed placement
on the target. However, when writing extents of sub-chunk
size, the entire chunk size is not allocated. Although additional
DAOS object metadata storage overhead could occur, there is
no measurable difference in free space available on DAOS
after DAOS-Array and DAOS-Array-ChunkSize-aligned exe-
cutions completed. We reran the E3SM benchmark with 56 KB
metadata per rank per timestep using 1024 ranks increasing
the timesteps to 20,000, creating an aggregate metadata of
1.14 TB. If DAOS-Array-ChunkSize-aligned allocated 1 MB

chunks, this would require 20 TB of storage. However, the
DAOS storage free space query reported that both DAOS-
Array and DAOS-Array-ChunkSize-aligned had the same
amount of free space.

VII. SUMMARY OF CONTRIBUTIONS

In our evaluations, we have shown that POSIX-based meta-
data handling in ADIOS incurs a significant cost in real-
world applications such as E3SM. The DAOS Array and KV
APIs provide an opportunity to overcome the metadata transfer
problem. However, implementing DAOS in the ADIOS context
was not straightforward. We presented different design options
concerning data layout and concurrency, and evaluated their
trade-offs on the writer and reader sides.

The new DAOS-Array-ChunkSize-aligned engine provides
optimal end-to-end transfer time for varying metadata sizes
with large number of ADIOS timesteps. We comapred the
performance of the DAOS-Array-ChunkSize-aligned engine
with the DAOS-KV-async-get and the DAOS-POSIX en-
gines. The stabilization times of both DAOS-KV-async-get
and DAOS-Array-ChunkSize-aligned methods are an order of
magnitude faster than DAOS-POSIX. Although DAOS-KV-
async-get and DAOS-Array-ChunkSize-aligned have similar
stabilization times, the acquisition time of DAOS-Array-
ChunkSize-aligned is upto 23% faster than DAOS-KV-async-
get. The end to end transfer time of DAOS-Array-ChunkSize-
aligned is up to 2.3× faster than DAOS-POSIX. This new
engine will be open sourced and integrated into ADIOS2
codebase. With this, applications like E3SM can run over
DAOS without any code modifications, thus circumventing the
need for application level data merge and thereby eliminating
programmer effort to reduce metadata overhead.

VIII. RELATED WORK

Jialin Liu et.al [15] undertook an assessment of object
stores in the context of HPC I/O. Their findings underscored
the superior scalability of object stores compared to POSIX.
The study employed three HDF5 Virtual Object Layer plu-
gins specifically designed for Ceph/RADOS [16], Openstack
Swift, and Intel DAOS. It is observed that the predominant
I/O granularity in most object stores is the entire object,
contrasting the more refined granularity observed in POSIX.
Nevertheless, the DAOS array API offers I/O descriptors that
allow for selective access to sections of the object. In terms of
both I/O bandwidth and associated costs, DAOS outperformed
RADOS and Swift. Liu et al. highlighted the necessity for
supplementary tools to map the hierarchical data model of
HDF5 onto the flat namespace inherent to objects. While
ADIOS may not support a hierarchical data model, it does
accommodate multidimensional arrays, implying the presence
of analogous requirements in ADIOS. Another study [17]
delves into the optimal utilization of Optane for transporting
data within HPC workflows.

A recent study [18] explored the performance of HDF5
over the DAOS object interface. This object-centric design



enabled HDF5 to transition away from traditional block-
based storage, thereby circumventing the constraints posed by
POSIX. Within the realm of file-based storage, HDF5 object
instantiation necessitated coordination amongst ranks, leading
to resource-intensive I/O collectives. Yet, when integrated with
DAOS, the time taken for HDF5 object creation witnessed
a significant reduction. Additionally, the integration with the
DAOS Key-Value interface paved the way for a novel HDF5
map feature. The DAOS HDF5 VOL also exhibited support for
asynchronous I/O, which in turn amplified storage bandwidth
utilization.

IX. CONCLUSIONS

In this paper, we have examined several approaches to
storing ADIOS-level metadata in DAOS, examining both the
KV and Array interfaces and comparing the performance of
these approaches to the current POSIX-based metadata storage
mechanism in ADIOS. Our measurements have shown that an
Array-based approach with each ADIOS rank writing their
metadata contribution at increasing offsets corresponding to
the DAOS chunk size is the best of the approaches we studied
and in fact is up to 2.3x faster than storing metadata in a
POSIX file. While some of our experiments were carried out
in a simulation environment that mimicked the activities of an
ADIOS engine storing metadata, we have produced a usable
DAOS engine in ADIOS that uses the Array interface to store
ADIOS metadata in DAOS. At this time the DAOS engine,
derived from the ADIOS BP5 engine, still uses POSIX files
(via DAOS POSIX support) to store data, but we hope that the
insights we have gained in this work will guide future work
which will result in an all-DAOS object engine with improved
data storage behaviour as well.

This paper also adds to the body of work exploring the
performance impact of middleware-level metadata in HPC
I/O. As noted in Section II, metadata-heavy applications like
E3SM can devote 60-70% of data writing time is allocated
to metadata overheads. We hope that this work enables fu-
ture research, both in middlware-level metadata handling and
generally in the use of DAOS in exascale HPC scenarios.
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