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• Includes transport and balance equations for discretized element of the membrane model.

• Link N total membrane elements using disjunctions resulting in a single membrane stage. 

• Link K total stages forming a membrane cascade system.
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FormulationMotivation

• Critical Minerals (CM) underpin the clean energy technologies that are 

central to our climate change initiatives, particularly in applications such 

as electric vehicles (EVs) and energy storage (ES) [1].

• Recycling of lithium-ion batteries is an important approach to 

address the increased demand for EVs and ES, lack of domestic CM 

production, and import dependency concerns.

• Diafiltration Membranes offer a significant advantage over existing 

battery recycling pathways, reducing energy and chemical cost. 

• Generalized Disjunctive Programming (GDP) allows 

the modeler to embed logic into optimization formulations.

• Exploits existing implementation and solution approach.

• Avoids the zero-flow issue [2].
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Conclusions

• This work demonstrates the applicability of Generalized 

Disjunctive Programming in superstructure design of a 

multi-stage membrane cascade system to separate 

cobalt and lithium. 

• Disjunctions and logic propositions guarantee a single 

feed, diafiltrate, and reflux flow per stage. This allows 

numerical stability and avoids singularity in nonlinear 

expressions, i.e., zero-flow issue.

• Our results show the impact of additional membrane 

stages on recovery and the available trade-off between 

recovery of Co or Li.

Solves to global optimality with 0.001% gap

Fixed 3 stages, vary elements

•   96 binary variables

• 462 continuous variables

• 946 constraints

Fixed 2 elements per stage, vary stages 

• Extend the GDP modeling approach to solvent 

extraction system.

• Apply GDP algorithm and reformulation approach to 

determine stage existence and separation sequence 

for multi-component system.

• Integrate recycling scheme into solvent extraction to 

determine the impact on fresh solvent usage.

Computational Performance– 60% Li Recovery
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Results

Disclaimer

•   160 binary variables

•   750 continuous variables

• 1554 constraints

Future Work

• Varying the discretized element offers minimal increase (~0.2%) in cobalt recovery.

• Increase in number of stages correlates with an increase in cobalt recovery. 

• Potential for trade-off analysis between the focus on cobalt recovery and the cost to install 

additional membrane stages
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