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ABSTRACT

Critical minerals and rare earth elements play an important role in our climate change initiatives,
particularly in applications related with energy storage. Here, we use discrete optimization ap-
proaches to design a process for the recovery of Lithium and Cobalt from battery recycling,
through membrane separation. Our contribution involves proposing a Generalized Disjunctive Pro-
gramming (GDP) model for the optimal design of a multistage diafiltration cascade for Li-Co sep-
aration. By solving the resulting nonconvex mixed-integer nonlinear program model to global op-
timality, we investigated scalability and solution quality variations with changes in the number of
stages and elements per stage. Results demonstrate the computational tractability of the nonlinear
GDP formulation for design of membrane separation processes while opening the door for decom-
position strategies for multicomponent separation cascades. Future work aims to extend the GDP
formulation to account for stage installation and explore various decomposition techniques to en-
hance solution efficiency.

Keywords: Critical Minerals, Lithium Recovery, Diafiltration Cascade, Superstructure Optimization, Generalized
Disjunctive Programming, Mixed-Integer Nonlinear Programming.

INTRODUCTION AND RELATED WORK

The U.S. relies on the import of rare earth elements
(REE) and critical minerals (CM) which are central to our
climate change initiatives, particularly in applications
such as electric vehicles and energy storage [1]. With an
increasing demand for REE and CM, restrictions by com-
petitors on exports have disrupted the U.S. supply chain
and pose a risk to the national economy [2]. Projections
by the IEA indicate a staggering 60% surge in renewable
energy power capacity from 2020 to 2026 [3]. As a re-
sult, recycling REE and CM has become one of the main
objectives of the Department of Energy (DOE) since 2014
[11.

One potential source of Lithium recovery is Lithium-
ion battery recycling [4]. This process addresses the lack
of domestic CM production [5], as it can recover battery-
grade Lithium and Cobalt for a fraction of the materials
extracted from either brine or ores [6]. However, con-
cerns arise from improper recycling, which affects human
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health and the environment [7], prompting opportunities
to employ energy efficient processes with minimal envi-
ronmental impact like membrane separation.

Diafiltration membranes offer significant ad-
vantages in the efficiency of recycling CM over existing
battery recycling pathways, reducing energy needs and
chemical use and cost. In a diafiltration membrane, the
process employs a dilute solution, called diafiltrate, to re-
duce the solubility limit effect that leads to fouling. This
approach allows the staging of membrane units into cas-
cades, facilitating the extraction of lithium and cobalt
from leach liquors.

There is a growing interest in utilizing membranes
for the recovery and extraction of CM, as evident in re-
cent literature. A comprehensive review and feasibility
assessment for membrane-based technology in lithium
recovery were provided by Li et al. [8]. Similarly, Alvarez
et al. [9] demonstrated the potential to enhance water
security by utilizing membranes to filter out metals during
water treatment. In the realm of lithium recovery
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methods, Bae et al. [10] conducted a study that investi-
gated and compared various proposed techniques, in-
cluding chemical extraction and selective membrane pro-
cesses, with a focus on quantitative efficiency and purity
based on existing literature. Razmjou et al. [11] delved
into the physical construction of a nanofiltration mem-
brane for lithium recovery, proposing design principles to
enhance selectivity. The prevailing trend in the current
literature emphasizes a primary understanding and per-
formance evaluation of membrane processes, while rig-
orous mathematical optimization is less commonly ad-
dressed.

In a prior study conducted by Wamble et al. [12], a
superstructure formulation was introduced to determine
the optimal configuration of a membrane cascade. This
superstructure selects design variables (e.g., flow, con-
centration, stage length) while maximizing Cobalt recov-
ery and adhering to a minimum Lithium recovery fraction,
employing the epsilon constraint approach. This super-
structure was posed as a nonlinear program (NLP), which
was solved using IPOPT.

In the earlier method, the determination of stream
connectivity was performed continuously, allowing for
the division of feed, diafiltrate, and refluxed streams.
However, the authors noted that this continuous ap-
proach failed to consistently generate "physically sensi-
ble cascade designs" [12]. To address this issue, the au-
thors introduced a second optimization step. In our pro-
posed extension of this approach, we suggest modeling
stream connectivity as a discrete decision, ensuring the
singular allocation of side streams. As the model incorpo-
rates bilinear mixing and nonlinear performance con-
straints, the proposed method requires solving a noncon-
vex mixed-integer nonlinear programming (MINLP) prob-
lem. Additionally, we propose formulating the MINLP su-
perstructure as a Generalized Disjunctive Program (GDP),
a widely employed approach in the literature for super-
structure optimization. The motivation behind this is the
fact that GDP effectively avoids singularities in nonlinear
expressions, particularly when variables become zero, a
phenomenon recognized in the literature as zero-flow is-
sues [13]. This approach allows for the identification of
the globally optimal superstructure and facilitates future
extensions for the optimal determination of the number
of separation stages.

Generalized Disjunctive Programming

Generalized Disjunctive Programming (GDP) corre-
sponds to a mathematical optimization framework de-
signed for modeling and solving problems characterized
by embedded logic. Within GDP, the feasible region is
represented by the intersection of disjunctions of sets,
employing Boolean variables as indicators for each set. In
this context, a True value for a Boolean variable indicates
that the solution resides within the corresponding set
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[14]. The general formulation of a GDP is as follows:

min f(x)
s.t. g(x)<0

Y

iE_Dk [rik(x) <0J’ leek

Q(Yi’k) = True
x €ER"
Y € {True, False},i € Dy ,k € K

where, an objective function f(x) is to be minimized over
a set of continuous real variables x subject to a set of
global constraints g(x) < 0. Boolean variable Y;;, acts as
the indicator for the set implied by constraints r;; <0,
standing for the it" disjunct set of the k" disjunction.
Each of the K disjunctions are related with an exclusive
OR operator (¥), which can be interpreted as an exactly-
One operator when |D,| > 2. The set of logical proposi-
tions Q is composed of logical clauses connected with
logical operators such as AND (v), OR (v), XOR (¥), nega-
tion (=), implication (=), and equivalence (). Here, Q is
required to be True to indicate that all the propositions
must be satisfied.

GDP offers a dual advantage by providing an intui-
tive means to model the logic inherent in problems and
presenting a diverse array of solution methods that can
be broadly categorized in two groups. One major cate-
gory involves reformulating the GDP as a mixed-integer
(non)linear program through various transformations.
These transformations translate the logical structure of
the problem into a mathematical formulation suitable for
traditional MINLP optimization algorithms. Examples of
such transformations include Big-M [15], Hull [16], and
Hybrid Planes [17], among others. The second category
encompasses logic-based decomposition methods that
directly operate on the logical structure of the problem.
Tailored methods within this category include Logic-
based Outer Approximation [18], Logic-based Branch
and Bound [16], and the Logic-based Discrete-Steepest
Descent Algorithm [19], providing specialized ap-
proaches to address the unique complexities associated
with the logic of the problem at hand.

PROBLEM STATEMENT

Given is the following information for the optimiza-
tion of a multistage diafiltration cascade aimed at sepa-
rating Lithium from Cobalt. The provided parameters in-
clude the predetermined number of separation stages
and the number of discretization elements per stage. Ad-
ditionally, the model involves the flows and concentra-
tions associated with both the feed and diafiltrate
streams. Relevant membrane parameters, such as the
stage width, solvent flux across the membrane, and the
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Figure 1: Superstructure sketch for a three-stage (|K| = 3) diafiltration membrane cascade.
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Figure 2: Skecth of the flow structure of a single discretized element.
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sieving coefficients for both components, are also spec-
ified. Furthermore, the model includes the performance
relationships that govern the system'’s behaviour as pro-
vided in Wable et al. [12].

Design variables that specify the optimal diafiltra-
tion membrane cascade superstructure need to be de-
termined. Firstly, the optimal stream connections within
the superstructure must be established. This involves
identifying the position (in terms of stage and discretized
element) for the feed, the diafiltrate, and the recycle from
upstream stages. Additionally, the length of each stage
in the diafiltration cascade needs to be determined to
achieve an efficient separation process. Moreover, com-
prehensive determination of all flows and concentrations
in regard to both components (Lithium and Cobalt)
throughout the entire system must be determined. This
comprehensive set of determinations forms the basis for
configuring an optimized and well-functioning multistage
diafiltration system for the separation of Lithium and Co-
balt.

The primary objective of the optimization model is
to maximize the recovery of Cobalt within a Cobalt-rich
stream extracted from the retentate flow of the initial
stage in the diafiltration cascade. This goal is set against
the constraint of ensuring a minimum recovery of Lithium
Ovalle et al. / LAPSE:2024.1617
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within a Lithium-rich stream exiting the permeate flow of
the final stage. In essence, the goal is to manage the in-
herit multi-objective nature of recovering both Lithium
and Cobalt. In this work, we consider the system to be
isotropic, meaning that all stages share identical lengths.
The configuration of the superstructure is presented in
Figure 1.

PROPOSED GDP SUPERSTRUCTURE

In this section, we illustrate the modifications made
to the original model, primarily focusing on incorporating
the necessary logic into the GDP framework to represent
installing a singular position for the feed (FFee?), diafil-
trate (FPiaf), and reflux per stage (F*’'). To accomplish
this objective, we model each discrete element individu-
ally, as illustrated in Figure 2, wherein the incoming side
flows are handled in a disaggregated manner. Through
this approach, the following disjunctions are imple-
mented, allowing for the activation or deactivation of in-
coming streams, thereby determining the existence of an
incoming side stream. Here, the Boolean variables Y,5¢¢¢,
Yo and v indicate the existence of a feed, diafil-
trate or reflux in a particular position respectively.
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where F/ and %/ represent the known flow and composi-
tion of the incoming side stream j € {Feed, Diaf}. The first
two disjunctions establish connections between the in-
coming stream and known parameter values. In contrast,
the third disjunction, which models the recycle, links a
discretized element to the stream coming from the reten-
tate of the subsequent stage. While these disjunctions
exclusively represent the presence of a stream at a given
position, we also ensure a singular feed and diafiltrate
throughout the entire structure, as well as a singular re-
cycle per stage. To account for this logic, the following
cardinality clauses are introduced.

X VceC X

exactlyOne([Yfe¢‘vneN, k€K ) (4)
exactlyOne([Yrﬁciaf VneN, kek ]) (5)
exactlyOne([Y::ﬂ vneN]), keK\{K|} (6)

Equations (1-6) represent the modeling logic of the
superstructure. Next, with the introduced side stream
disaggregation, the per-element mass balances are out-
lined as follows:

Flt 4 Fieed 4 RIS 4 FRIV = Flin wneN, ke

nk ’
K (7)
Flixln, + FEeedyFeed 4 phiafyDiaf | pReflyRefl
Fynx[m, Vc€C, neEN, keK
(8)
Fym+ Fyim = Fyevt + Fhevt, vneN, k €K
(9)
ot Xeme + Fyd" Xome = FygXcqié + Fdxlat, ¥ e €C,
neNn, ke K (10)

The permeate mass balance is a function of the mem-
brane flux (J), the width of the stage (w) and the element
Ovalle et al. / LAPSE:2024.1617

length (L) as:

EYim 4 JwLly, = Fie™, VneN, k€K
(1)

In the previous study, the performance equation
was examined in terms of a log transform. However, we
suggest maintaining the equation in its exponential form
and rearrange the expression to remove the fraction. This
reformulation ensures a well-defined expression within
the domain of our variables, mitigating the risk of evalu-
ation errors and contributing to the overall stability and
well-behaved nature of the NLP formulation. The result-
ing expression where, S is the sieving coefficient per
component is as follows:

Flout Se—
xrout — xrin nk
cnk cnk F"}icn

n

1
,Vc€EC, neEN, keK (12)

The elements can now be interconnected to create
stages, where the key concept is to establish connec-
tions between the flow and composition exiting the per-
meate of one stage with the retentate entering the sub-
sequent stage. These connections can be expressed as:

Fhow = Fi&, VneN, keK\{1} (13)
xbo )= X VCEC neN, kek\{1} (14)

Moreover, the permeate and the flow-in entering
the first element of each membrane are both assigned a
value of zero. Similarly, in the last stage, there is no re-
cycle entering.

Fim=Ft=0, Vkek

(15)
xPm = xM, =0, VceC keK

(16)

Refl

Fag) =0, VneN
(17)

Xl =0 VceC kek
(18)

A minimum Lithium recovery (R%,, ) from the lith-
ium-rich stream in the permeate exiting the last stage
must be satisfied.

Pout pout > i
Fiitic i) = Rain

(19)

~iFeed ~ Feed gDiaf o Diaf
(F Xri + F foi )

The objective function is to maximize the recovery
of Cobalt in the Cobalt-rich stream exiting the permeate
of the first stage. Considering that the cobalt entering
the system remains constant, it suffices to maximize the
following expression:

out rout
max F|N|1 Co,IN|1 (20)
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For the remaining aspects of the model formulation
and parameter values along with a deeper understand-
ing of the system's physical intuition, we direct the read-
ers to Wamble et al. [12].

RESULTS

The proposed GDP superstructure model was trans-
formed into a nonconvex MINLP problem via a Big-M
transformation. To solve this MINLP, the solver SCIP v8.0
was used, implemented through GAMS 40.4.0. The com-
putation was performed on a Linux machine featuring 8
Intel Xeon Gold 6234 CPUs operating at 3.30 GHz, with a
single hardware thread, and equipped with 1 TB of RAM,
all within the Ubuntu environment. It is worth mentioning
that we attempted solving the same problem using
BARON v22.7.23 but the solver, incorrectly, found the
problem to be infeasible.

We conducted a study of the scalability and solution
quality of the proposed superstructure. For this, we
opted for a three-stage (|K| = 3) membrane cascade su-
perstructure, varying the number of discretized ele-
ments. All superstructures were solved to global optimal-
ity (up to 0.001% gap). Figure 3 encapsulates the out-
comes, specifically summarizing the results for the case
where a minimum Lithium recovery (RL,, ) of 60% was re-
quired.

87.9504 . L R ... 0
P . e
o . . L 10*
87.925 - :
K
. 87.900 | :
E : R4 =
z H 0%
G 87.875 i . g
o : o S
3 . =
= 87.850 1 =
2 2 8
2 . L 10
< 87.825 |
878004 | &
k107
877751 &
2 3 4 5 6 7 8 9 10

No. of elements per stage (|N|)

Figure 3: Cobalt recovery and solution time of a three-
stage superstructure with a minumum Lithium recovery
of 60% for different number of discretized elements per
stage.

As anticipated, the solution time exhibits rapid
growth with the increasing size of the superstructure, as
a larger number of elements results in a larger model.
This poses a significant limitation when compared to the
previous methodology that could solve large superstruc-
tures within seconds. The challenge arises from the fact
that achieving global optimality in solving a nonconvex

Ovalle et al. / LAPSE:2024.1617

MINLP is computationally much more demanding than
solving an NLP to local optimality. However, despite this
computational complexity, the proposed approach
demonstrates a slightly better solution compared to the
previous methods. Figure 4 shows the resulting three-
stage superstructure (with [N| = 10) for a lithium recov-
ery of 60%. It is noteworthy that the locally optimal su-
perstructure obtained by Wamble et al. [12] exhibits the
feed stream split at two different locations, while our su-
perstructure is characterized by a single side stream al-
location. Nevertheless, our approach yields a similar Co-
balt recovery (0.25% increase) while also ensuring the
construction of a physically sensible membrane cascade.
Considering that we are dealing with a membrane design
problem that requires a one-time solution, it may be pref-
erable to tackle the problem to achieve global optimality.
Furthermore, we want to extend this approach to use
GDP methods for multicomponent cascade recycling.

We proceed to assess the scalability of the number
of stages, opting for a discretization of only two elements
per stage. This choice was informed by the examination
of objective values presented in Figure 3, revealing a rel-
atively stable Cobalt recovery. Notably, this value does
not exhibit a monotonic trend in relation to the number of
discretized elements. Therefore, for this specific mem-
brane system and its performance equations, the resolu-
tion achieved by increasing the number of discretization
elements does not substantially impact the objective.
Consequently, a coarser discretization can be employed.
The outcomes of this scalability analysis can be found in
Figure 5.

As expected, the Cobalt recovery rises as we in-
clude more stages. Interestingly, and in contrast to the
scenario where discrete elements were added, an in-
crease in the number of stages leads to a substantial rise
in the recovery. It can be appreciated that the recovery
values almost double when progressing from 2 stages to
12. This captures the trade-off between the profit of re-
covering Cobalt in kg/hr and the expense associated with
installing an additional membrane stage. Although cur-
rent solution approaches cannot easily address this
problem, within the GDP framework, tackling this trade-
off is straightforward. To achieve this, a Boolean variable
can be introduced to represent the presence or absence
of a stage. When the Boolean variable is True, the perfor-
mance equations for the stage are considered. Con-
versely, when the Boolean variable is False, the stage op-
erates as a bypass, and no side streams can be installed.

Regarding the solution time, it is evident that reduc-
ing the number of discretized elements has diminished
the model's size, enabling the solution of larger struc-
tures. Although this reduction may lead to a loss in reso-
lution, potentially impacting the quality of the solution, as
discussed earlier, we anticipate the recovery values to
remain within a similar order for a higher discretization.
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Furthermore, the application of decomposition strategies
will be investigated to tackle large-scale conceptual de-
sign problems.
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Figure 5: Cobalt recovery and solution time for a
superstructure with a minumum Lithium recovery of 95%
for different number of stages.

CONCLUSIONS

This study introduces a Generalized Disjunctive Pro-
gramming formulation for optimizing the superstructure
design of a multi-stage diafiltration cascade aimed at
separating Lithium and Cobalt. The proposed superstruc-
ture ensures a unique side stream allocation for the feed,
fresh diafiltrate, and recycle streams. We successfully
solved the model to global optimality and investigated
how the solution time and Cobalt recovery varied with
different numbers of stages and discretized elements per
stage. The results demonstrate the value of pursuing so-
lutions with global optimality and highlight a trade-off be-
tween capitalizing on recovered Cobalt and the installa-
tion of additional membranes. Future research directions
include expanding the GDP formulation to account for
stage existence, addressing the aforementioned trade-
Ovalle et al. / LAPSE:2024.1617
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off. Moreover, given the computational expense of solv-
ing the superstructure directly, exploration of decompo-
sition techniques to improve solution time is warranted.
In this context, the Logic-based Steepest-Descent Algo-
rithm (LD-SDA) [19] emerges as a promising alternative,
particularly due to its suitability for handling spatially or-
dered Boolean decisions inherent in the membrane su-
perstructure.
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