
Research Article 
Foundations of Computer Aided Process Design (FOCAPD 2024) 

Breckenridge, Colorado, USA. July 14-18, 2024 
Peer Reviewed Conference Proceeding 

https://doi.org/10.69997/sct.127917 Syst Control Trans 3:853-859 (2024) 853 

Optimal Membrane Cascade Design for Critical Mineral 
Recovery Through Logic-based Superstructure 
Optimization 
Daniel Ovallea, Norman Trana, Carl D. Lairda, and Ignacio E. Grossmanna* 
a Carnegie Mellon University, Department of Chemical Engineering, Pittsburgh, Pennsylvania 15213, United States 
* Corresponding Author: grossmann@cmu.edu.

ABSTRACT 
Critical minerals and rare earth elements play an important role in our climate change initiatives, 
particularly in applications related with energy storage. Here, we use discrete optimization ap-
proaches to design a process for the recovery of Lithium and Cobalt from battery recycling, 
through membrane separation. Our contribution involves proposing a Generalized Disjunctive Pro-
gramming (GDP) model for the optimal design of a multistage diafiltration cascade for Li-Co sep-
aration. By solving the resulting nonconvex mixed-integer nonlinear program model to global op-
timality, we investigated scalability and solution quality variations with changes in the number of 
stages and elements per stage. Results demonstrate the computational tractability of the nonlinear 
GDP formulation for design of membrane separation processes while opening the door for decom-
position strategies for multicomponent separation cascades. Future work aims to extend the GDP 
formulation to account for stage installation and explore various decomposition techniques to en-
hance solution efficiency. 

Keywords: Critical Minerals, Lithium Recovery, Diafiltration Cascade, Superstructure Optimization, Generalized 
Disjunctive Programming, Mixed-Integer Nonlinear Programming. 

INTRODUCTION AND RELATED WORK 
The U.S. relies on the import of rare earth elements 

(REE) and critical minerals (CM) which are central to our 
climate change initiatives, particularly in applications 
such as electric vehicles and energy storage [1]. With an 
increasing demand for REE and CM, restrictions by com-
petitors on exports have disrupted the U.S. supply chain 
and pose a risk to the national economy [2]. Projections 
by the IEA indicate a staggering 60% surge in renewable 
energy power capacity from 2020 to 2026 [3]. As a re-
sult, recycling REE and CM has become one of the main 
objectives of the Department of Energy (DOE) since 2014 
[1]. 

One potential source of Lithium recovery is Lithium-
ion battery recycling [4]. This process addresses the lack 
of domestic CM production [5], as it can recover battery-
grade Lithium and Cobalt for a fraction of the materials 
extracted from either brine or ores [6]. However, con-
cerns arise from improper recycling, which affects human 

health and the environment [7], prompting opportunities 
to employ energy efficient processes with minimal envi-
ronmental impact like membrane separation. 

Diafiltration membranes offer significant ad-
vantages in the efficiency of recycling CM over existing 
battery recycling pathways, reducing energy needs and 
chemical use and cost. In a diafiltration membrane, the 
process employs a dilute solution, called diafiltrate, to re-
duce the solubility limit effect that leads to fouling. This 
approach allows the staging of membrane units into cas-
cades, facilitating the extraction of lithium and cobalt 
from leach liquors.  

There is a growing interest in utilizing membranes 
for the recovery and extraction of CM, as evident in re-
cent literature. A comprehensive review and feasibility 
assessment for membrane-based technology in lithium 
recovery were provided by Li et al. [8]. Similarly, Alvarez 
et al. [9] demonstrated the potential to enhance water 
security by utilizing membranes to filter out metals during 
water treatment. In the realm of lithium recovery 
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methods, Bae et al. [10] conducted a study that investi-
gated and compared various proposed techniques, in-
cluding chemical extraction and selective membrane pro-
cesses, with a focus on quantitative efficiency and purity 
based on existing literature. Razmjou et al. [11] delved 
into the physical construction of a nanofiltration mem-
brane for lithium recovery, proposing design principles to 
enhance selectivity. The prevailing trend in the current 
literature emphasizes a primary understanding and per-
formance evaluation of membrane processes, while rig-
orous mathematical optimization is less commonly ad-
dressed. 

In a prior study conducted by Wamble et al. [12], a 
superstructure formulation was introduced to determine 
the optimal configuration of a membrane cascade. This 
superstructure selects design variables (e.g., flow, con-
centration, stage length) while maximizing Cobalt recov-
ery and adhering to a minimum Lithium recovery fraction, 
employing the epsilon constraint approach. This super-
structure was posed as a nonlinear program (NLP), which 
was solved using IPOPT.  

In the earlier method, the determination of stream 
connectivity was performed continuously, allowing for 
the division of feed, diafiltrate, and refluxed streams. 
However, the authors noted that this continuous ap-
proach failed to consistently generate "physically sensi-
ble cascade designs" [12]. To address this issue, the au-
thors introduced a second optimization step. In our pro-
posed extension of this approach, we suggest modeling 
stream connectivity as a discrete decision, ensuring the 
singular allocation of side streams. As the model incorpo-
rates bilinear mixing and nonlinear performance con-
straints, the proposed method requires solving a noncon-
vex mixed-integer nonlinear programming (MINLP) prob-
lem. Additionally, we propose formulating the MINLP su-
perstructure as a Generalized Disjunctive Program (GDP), 
a widely employed approach in the literature for super-
structure optimization. The motivation behind this is the 
fact that GDP effectively avoids singularities in nonlinear 
expressions, particularly when variables become zero, a 
phenomenon recognized in the literature as zero-flow is-
sues [13]. This approach allows for the identification of 
the globally optimal superstructure and facilitates future 
extensions for the optimal determination of the number 
of separation stages. 

Generalized Disjunctive Programming 
Generalized Disjunctive Programming (GDP) corre-

sponds to a mathematical optimization framework de-
signed for modeling and solving problems characterized 
by embedded logic. Within GDP, the feasible region is 
represented by the intersection of disjunctions of sets, 
employing Boolean variables as indicators for each set. In 
this context, a 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 value for a Boolean variable indicates 
that the solution resides within the corresponding set 

[14]. The general formulation of a GDP is as follows: 

                               min  𝑓𝑓(𝑥𝑥)                        

                               𝑠𝑠. 𝑡𝑡.    𝑔𝑔(𝑥𝑥) ≤ 0 

                                        ⊻
𝑖𝑖∈𝐷𝐷𝑘𝑘

�
𝑌𝑌𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖𝑖𝑖(𝑥𝑥) ≤ 0� , 𝑘𝑘 ∈ 𝐾𝐾 

                                         Ω�𝑌𝑌𝑖𝑖,𝑘𝑘� = True 

                                         𝑥𝑥 ∈ ℝ𝑛𝑛 

                       𝑌𝑌𝑖𝑖𝑖𝑖 ∈ {True, False}, 𝑖𝑖 ∈ 𝐷𝐷𝑘𝑘 , 𝑘𝑘 ∈ 𝐾𝐾 

where, an objective function 𝑓𝑓(𝑥𝑥) is to be minimized over 
a set of continuous real variables 𝑥𝑥 subject to a set of 
global constraints 𝑔𝑔(𝑥𝑥) ≤ 0. Boolean variable 𝑌𝑌𝑖𝑖𝑖𝑖 acts as 
the indicator for the set implied by constraints 𝑟𝑟𝑖𝑖𝑖𝑖 ≤ 0, 
standing for the 𝑖𝑖𝑡𝑡ℎ disjunct set of the 𝑘𝑘𝑡𝑡ℎ disjunction. 
Each of the 𝐾𝐾 disjunctions are related with an exclusive 
OR operator (⊻), which can be interpreted as an exactly-
One operator when |𝐷𝐷𝑘𝑘| > 2. The set of logical proposi-
tions Ω is composed of logical clauses connected with 
logical operators such as AND (∨), OR (∨), XOR (⊻), nega-
tion (¬), implication (⇒), and equivalence (⟺). Here, Ω is 
required to be 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 to indicate that all the propositions 
must be satisfied. 
 GDP offers a dual advantage by providing an intui-
tive means to model the logic inherent in problems and 
presenting a diverse array of solution methods that can 
be broadly categorized in two groups. One major cate-
gory involves reformulating the GDP as a mixed-integer 
(non)linear program through various transformations. 
These transformations translate the logical structure of 
the problem into a mathematical formulation suitable for 
traditional MINLP optimization algorithms. Examples of 
such transformations include Big-M [15], Hull [16], and 
Hybrid Planes [17], among others. The second category 
encompasses logic-based decomposition methods that 
directly operate on the logical structure of the problem. 
Tailored methods within this category include Logic-
based Outer Approximation [18], Logic-based Branch 
and Bound [16], and the Logic-based Discrete-Steepest 
Descent Algorithm [19], providing specialized ap-
proaches to address the unique complexities associated 
with the logic of the problem at hand.  

PROBLEM STATEMENT 
Given is the following information for the optimiza-

tion of a multistage diafiltration cascade aimed at sepa-
rating Lithium from Cobalt. The provided parameters in-
clude the predetermined number of separation stages 
and the number of discretization elements per stage. Ad-
ditionally, the model involves the flows and concentra-
tions associated with both the feed and diafiltrate 
streams. Relevant membrane parameters, such as the 
stage width, solvent flux across the membrane, and the 
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sieving coefficients for both components, are also spec-
ified. Furthermore, the model includes the performance 
relationships that govern the system’s behaviour as pro-
vided in Wable et al. [12].  

Design variables that specify the optimal diafiltra-
tion membrane cascade superstructure need to be de-
termined. Firstly, the optimal stream connections within 
the superstructure must be established. This involves 
identifying the position (in terms of stage and discretized 
element) for the feed, the diafiltrate, and the recycle from 
upstream stages. Additionally, the length of each stage 
in the diafiltration cascade needs to be determined to 
achieve an efficient separation process. Moreover, com-
prehensive determination of all flows and concentrations 
in regard to both components (Lithium and Cobalt) 
throughout the entire system must be determined. This 
comprehensive set of determinations forms the basis for 
configuring an optimized and well-functioning multistage 
diafiltration system for the separation of Lithium and Co-
balt. 

The primary objective of the optimization model is 
to maximize the recovery of Cobalt within a Cobalt-rich 
stream extracted from the retentate flow of the initial 
stage in the diafiltration cascade. This goal is set against 
the constraint of ensuring a minimum recovery of Lithium 

within a Lithium-rich stream exiting the permeate flow of 
the final stage. In essence, the goal is to manage the in-
herit multi-objective nature of recovering both Lithium 
and Cobalt. In this work, we consider the system to be 
isotropic, meaning that all stages share identical lengths. 
The configuration of the superstructure is presented in 
Figure 1.   

PROPOSED GDP SUPERSTRUCTURE 
 In this section, we illustrate the modifications made 
to the original model, primarily focusing on incorporating 
the necessary logic into the GDP framework to represent 
installing a singular position for the feed (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹), diafil-
trate (𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷), and reflux per stage (𝐹𝐹𝑛𝑛

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅). To accomplish 
this objective, we model each discrete element individu-
ally, as illustrated in Figure 2, wherein the incoming side 
flows are handled in a disaggregated manner. Through 
this approach, the following disjunctions are imple-
mented, allowing for the activation or deactivation of in-
coming streams, thereby determining the existence of an 
incoming side stream. Here, the Boolean variables 𝑌𝑌𝑛𝑛𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, 
𝑌𝑌𝑛𝑛𝑛𝑛
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, and 𝑌𝑌𝑛𝑛𝑛𝑛

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 indicate the existence of a feed, diafil-
trate or reflux in a particular position respectively.  

 
Figure 1: Superstructure sketch for a three-stage (|𝐾𝐾| = 3) diafiltration membrane cascade. 

 
 

 
Figure 2: Skecth of the flow structure of a single discretized element. 
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�
𝑌𝑌𝑛𝑛𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝐹𝐹𝑛𝑛𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹�𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑥𝑥�𝑐𝑐
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  ∀𝑐𝑐 ∈ 𝐶𝐶

� ⊻ �
¬𝑌𝑌𝑛𝑛𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝐹𝐹𝑛𝑛𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0
𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0  ∀𝑐𝑐 ∈ 𝐶𝐶

�,   

∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾                                                      
(1) 

�
𝑌𝑌𝑛𝑛𝑛𝑛
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐹𝐹𝑛𝑛𝑛𝑛
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐹𝐹�𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑥𝑥�𝑐𝑐

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷   ∀𝑐𝑐 ∈ 𝐶𝐶

� ⊻ �
¬𝑌𝑌𝑛𝑛𝑛𝑛

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐹𝐹𝑛𝑛𝑛𝑛
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 0

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 0  ∀𝑐𝑐 ∈ 𝐶𝐶

�,   

∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾                                                      
(2) 

⎣
⎢
⎢
⎡ 𝑌𝑌𝑛𝑛𝑛𝑛

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝐹𝐹𝑛𝑛𝑛𝑛
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐹𝐹|𝑁𝑁|,{𝑘𝑘+1}

𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑥𝑥𝑐𝑐,|𝑁𝑁|,{𝑘𝑘+1}

𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜   ∀𝑐𝑐 ∈ 𝐶𝐶⎦
⎥
⎥
⎤
⊻ �

¬𝑌𝑌𝑛𝑛𝑛𝑛
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝐹𝐹𝑛𝑛𝑛𝑛
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 0

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 0  ∀𝑐𝑐 ∈ 𝐶𝐶

�,   

∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾\{|𝐾𝐾|}                                                      
(3) 

where 𝐹𝐹�𝑗𝑗 and 𝑥𝑥�𝑗𝑗 represent the known flow and composi-
tion of the incoming side stream 𝑗𝑗 ∈ {𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷}. The first 
two disjunctions establish connections between the in-
coming stream and known parameter values. In contrast, 
the third disjunction, which models the recycle, links a 
discretized element to the stream coming from the reten-
tate of the subsequent stage. While these disjunctions 
exclusively represent the presence of a stream at a given 
position, we also ensure a singular feed and diafiltrate 
throughout the entire structure, as well as a singular re-
cycle per stage. To account for this logic, the following 
cardinality clauses are introduced. 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒��𝑌𝑌𝑛𝑛𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾 ��  (4) 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒��𝑌𝑌𝑛𝑛𝑛𝑛
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  ∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾 ��  (5) 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒��𝑌𝑌𝑛𝑛𝑛𝑛
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∀ 𝑛𝑛 ∈ 𝑁𝑁��,    𝑘𝑘 ∈ 𝐾𝐾\{|𝐾𝐾|}  (6) 

 Equations (1-6) represent the modeling logic of the 
superstructure. Next, with the introduced side stream 
disaggregation, the per-element mass balances are out-
lined as follows: 

𝐹𝐹𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼 + 𝐹𝐹𝑛𝑛𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐹𝐹𝑛𝑛𝑛𝑛
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐹𝐹𝑛𝑛𝑛𝑛

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐹𝐹𝑛𝑛𝑛𝑛
𝑟𝑟𝑖𝑖𝑖𝑖 , ∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈

𝐾𝐾    (7) 

𝐹𝐹𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼 + 𝐹𝐹𝑛𝑛𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐹𝐹𝑛𝑛𝑛𝑛
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐹𝐹𝑛𝑛𝑛𝑛
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
          𝐹𝐹𝑛𝑛𝑛𝑛

𝑟𝑟𝑖𝑖𝑖𝑖𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐
𝑟𝑟𝑖𝑖𝑖𝑖 , ∀ 𝑐𝑐 ∈ 𝐶𝐶, 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾                                                        

(8) 

𝐹𝐹𝑛𝑛𝑛𝑛
𝑟𝑟𝑖𝑖𝑖𝑖 + 𝐹𝐹𝑛𝑛𝑛𝑛

𝑝𝑝𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑛𝑛𝑛𝑛
𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐹𝐹𝑛𝑛𝑛𝑛

𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 , ∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾        
(9) 

𝐹𝐹𝑛𝑛𝑛𝑛
𝑟𝑟𝑖𝑖𝑖𝑖𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐

𝑟𝑟𝑖𝑖𝑖𝑖 + 𝐹𝐹𝑛𝑛𝑛𝑛
𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐

𝑝𝑝𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑛𝑛𝑛𝑛
𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐

𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐹𝐹𝑛𝑛𝑛𝑛
𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐

𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 ,   ∀ 𝑐𝑐 ∈ 𝐶𝐶,         
𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾                                                                              (10) 

The permeate mass balance is a function of the mem-
brane flux (𝐽𝐽), the width of the stage (𝑤𝑤) and the element 

length (𝐿𝐿�) as:  

𝐹𝐹𝑛𝑛𝑛𝑛
𝑝𝑝𝑖𝑖𝑖𝑖 + 𝐽𝐽𝐽𝐽𝐿𝐿�𝑛𝑛𝑛𝑛 = 𝐹𝐹𝑛𝑛𝑛𝑛

𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 , ∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾                       
(11) 

 In the previous study, the performance equation 
was examined in terms of a log transform. However, we 
suggest maintaining the equation in its exponential form 
and rearrange the expression to remove the fraction. This 
reformulation ensures a well-defined expression within 
the domain of our variables, mitigating the risk of evalu-
ation errors and contributing to the overall stability and 
well-behaved nature of the NLP formulation. The result-
ing expression where, 𝑆𝑆 is the sieving coefficient per 
component is as follows: 

 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐
𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐

𝑟𝑟𝑖𝑖𝑖𝑖  �𝐹𝐹𝑛𝑛𝑛𝑛
𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜

𝐹𝐹𝑛𝑛𝑛𝑛
𝑟𝑟𝑖𝑖𝑖𝑖 �

𝑆𝑆𝑐𝑐−1
,∀ 𝑐𝑐 ∈ 𝐶𝐶, 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾    (12) 

The elements can now be interconnected to create 
stages, where the key concept is to establish connec-
tions between the flow and composition exiting the per-
meate of one stage with the retentate entering the sub-
sequent stage. These connections can be expressed as: 

𝐹𝐹𝑛𝑛{𝑘𝑘−1}
𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 =  𝐹𝐹𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼  ,        ∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾\{1}  (13) 

𝑥𝑥𝑐𝑐𝑐𝑐{𝑘𝑘−1}
𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼 ,     ∀ c ∈ C, 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾\{1} (14) 

Moreover, the permeate and the flow-in entering 
the first element of each membrane are both assigned a 
value of zero. Similarly, in the last stage, there is no re-
cycle entering. 

𝐹𝐹1𝑘𝑘
𝑝𝑝𝑖𝑖𝑖𝑖 =  𝐹𝐹1,1

𝐼𝐼𝐼𝐼 = 0 ,       ∀ 𝑘𝑘 ∈ 𝐾𝐾                    
(15) 

𝑥𝑥𝑐𝑐1𝑘𝑘
𝑝𝑝𝑖𝑖𝑖𝑖 =  𝑥𝑥𝑐𝑐1𝑘𝑘𝐼𝐼𝐼𝐼 = 0 ,      ∀ c ∈ C, 𝑘𝑘 ∈ 𝐾𝐾                              

(16) 

𝐹𝐹𝑛𝑛|𝐾𝐾|
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 0 ,                   ∀ 𝑛𝑛 ∈ 𝑁𝑁                     

(17) 

𝑥𝑥𝑐𝑐𝑐𝑐|𝐾𝐾|
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 0 ,                  ∀ c ∈ C, 𝑘𝑘 ∈ 𝐾𝐾                    

(18) 

 A minimum Lithium recovery (𝑅𝑅min  
𝐿𝐿𝐿𝐿 ) from the lith-

ium-rich stream in the permeate exiting the last stage 
must be satisfied.  

𝐹𝐹|𝑁𝑁||𝐾𝐾|
𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 𝑥𝑥𝐿𝐿𝐿𝐿,|𝑁𝑁||𝐾𝐾|

𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 ≥ 𝑅𝑅min  
𝐿𝐿𝐿𝐿 �𝐹𝐹�𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑥𝑥�𝐿𝐿𝐿𝐿

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐹𝐹�𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥�𝐿𝐿𝐿𝐿
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷� 

(19) 

 The objective function is to maximize the recovery 
of Cobalt in the Cobalt-rich stream exiting the permeate 
of the first stage. Considering that the cobalt entering 
the system remains constant, it suffices to maximize the 
following expression: 

max  𝐹𝐹|𝑁𝑁|,1
𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 𝑥𝑥𝐶𝐶𝐶𝐶,|𝑁𝑁|,1

𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜     (20) 



 

Ovalle et al. / LAPSE:2024.1617 Syst Control Trans 3:853-859 (2024) 857 

 For the remaining aspects of the model formulation 
and parameter values along with a deeper understand-
ing of the system's physical intuition, we direct the read-
ers to Wamble et al. [12]. 

RESULTS  
The proposed GDP superstructure model was trans-

formed into a nonconvex MINLP problem via a Big-M 
transformation.  To solve this MINLP, the solver SCIP v8.0 
was used, implemented through GAMS 40.4.0. The com-
putation was performed on a Linux machine featuring 8 
Intel Xeon Gold 6234 CPUs operating at 3.30 GHz, with a 
single hardware thread, and equipped with 1 TB of RAM, 
all within the Ubuntu environment. It is worth mentioning 
that we attempted solving the same problem using 
BARON v22.7.23 but the solver, incorrectly, found the 
problem to be infeasible. 

We conducted a study of the scalability and solution 
quality of the proposed superstructure. For this, we 
opted for a three-stage (|𝐾𝐾| = 3) membrane cascade su-
perstructure, varying the number of discretized ele-
ments. All superstructures were solved to global optimal-
ity (up to 0.001% gap). Figure 3 encapsulates the out-
comes, specifically summarizing the results for the case 
where a minimum Lithium recovery (𝑅𝑅min  

𝐿𝐿𝐿𝐿 ) of 60% was re-
quired. 

 
Figure 3: Cobalt recovery and solution time of a three-
stage superstructure with a minumum Lithium recovery 
of 60% for different number of discretized elements per 
stage. 

 As anticipated, the solution time exhibits rapid 
growth with the increasing size of the superstructure, as 
a larger number of elements results in a larger model. 
This poses a significant limitation when compared to the 
previous methodology that could solve large superstruc-
tures within seconds. The challenge arises from the fact 
that achieving global optimality in solving a nonconvex 

MINLP is computationally much more demanding than 
solving an NLP to local optimality. However, despite this 
computational complexity, the proposed approach 
demonstrates a slightly better solution compared to the 
previous methods. Figure 4 shows the resulting three-
stage superstructure (with |𝑁𝑁| = 10) for a lithium recov-
ery of 60%. It is noteworthy that the locally optimal su-
perstructure obtained by Wamble et al.  [12] exhibits the 
feed stream split at two different locations, while our su-
perstructure is characterized by a single side stream al-
location. Nevertheless, our approach yields a similar Co-
balt recovery (0.25% increase) while also ensuring the 
construction of a physically sensible membrane cascade. 
Considering that we are dealing with a membrane design 
problem that requires a one-time solution, it may be pref-
erable to tackle the problem to achieve global optimality. 
Furthermore, we want to extend this approach to use 
GDP methods for multicomponent cascade recycling.  
 We proceed to assess the scalability of the number 
of stages, opting for a discretization of only two elements 
per stage. This choice was informed by the examination 
of objective values presented in Figure 3, revealing a rel-
atively stable Cobalt recovery. Notably, this value does 
not exhibit a monotonic trend in relation to the number of 
discretized elements. Therefore, for this specific mem-
brane system and its performance equations, the resolu-
tion achieved by increasing the number of discretization 
elements does not substantially impact the objective. 
Consequently, a coarser discretization can be employed. 
The outcomes of this scalability analysis can be found in 
Figure 5.  
 As expected, the Cobalt recovery rises as we in-
clude more stages. Interestingly, and in contrast to the 
scenario where discrete elements were added, an in-
crease in the number of stages leads to a substantial rise 
in the recovery. It can be appreciated that the recovery 
values almost double when progressing from 2 stages to 
12. This captures the trade-off between the profit of re-
covering Cobalt in kg/hr and the expense associated with 
installing an additional membrane stage. Although cur-
rent solution approaches cannot easily address this 
problem, within the GDP framework, tackling this trade-
off is straightforward. To achieve this, a Boolean variable 
can be introduced to represent the presence or absence 
of a stage. When the Boolean variable is 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, the perfor-
mance equations for the stage are considered. Con-
versely, when the Boolean variable is False, the stage op-
erates as a bypass, and no side streams can be installed.  

Regarding the solution time, it is evident that reduc-
ing the number of discretized elements has diminished 
the model's size, enabling the solution of larger struc-
tures. Although this reduction may lead to a loss in reso-
lution, potentially impacting the quality of the solution, as 
discussed earlier, we anticipate the recovery values to 
remain within a similar order for a higher discretization. 
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Furthermore, the application of decomposition strategies 
will be investigated to tackle large-scale conceptual de-
sign problems. 

 

Figure 5: Cobalt recovery and solution time for a 
superstructure with a minumum Lithium recovery of 95% 
for different number of stages. 

CONCLUSIONS 
 This study introduces a Generalized Disjunctive Pro-
gramming formulation for optimizing the superstructure 
design of a multi-stage diafiltration cascade aimed at 
separating Lithium and Cobalt. The proposed superstruc-
ture ensures a unique side stream allocation for the feed, 
fresh diafiltrate, and recycle streams. We successfully 
solved the model to global optimality and investigated 
how the solution time and Cobalt recovery varied with 
different numbers of stages and discretized elements per 
stage. The results demonstrate the value of pursuing so-
lutions with global optimality and highlight a trade-off be-
tween capitalizing on recovered Cobalt and the installa-
tion of additional membranes. Future research directions 
include expanding the GDP formulation to account for 
stage existence, addressing the aforementioned trade-

off. Moreover, given the computational expense of solv-
ing the superstructure directly, exploration of decompo-
sition techniques to improve solution time is warranted. 
In this context, the Logic-based Steepest-Descent Algo-
rithm (LD-SDA) [19] emerges as a promising alternative, 
particularly due to its suitability for handling spatially or-
dered Boolean decisions inherent in the membrane su-
perstructure. 
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