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ABSTRACT

This work presents a general set of equations that can be used to rapidly generate new benchmarks
to verify nuclear data sensitivity calculations. The general multigroup infinite medium 𝑘-eigenvalue
neutron transport equation is used to derive analytic expressions for the infinite medium 𝑘-eigenvalue,
the scalar neutron flux and adjoint flux, and the sensitivity of 𝑘∞ to perturbations in the multigroup
nuclear data of a single species, isotropic and elastic scattering, material. The multigroup nuclear
data for U-235 and U-238 is presented along with their corresponding 𝑘-eigenvalues, forward flux,
adjoint flux, and sensitivity profiles, which include the sensitivity of 𝑘∞ to the total, fission, capture,
and scattering macroscopic cross sections as well as to the group-to-group scattering cross section
matrix, group-wise fission neutron production, and the unconstrained and constrained fission neutron
energy distribution.

Keywords: analytic, sensitivity coefficient, mulitgroup, infinite medium, 𝑘-eigenvalue

1. INTRODUCTION

Analytic benchmarks are used in the nuclear engineering community to verify the numerical results of neutron
transport simulations. The neutron transport equation is intractable to analytic solutions except under certain
stringent conditions. The art of benchmarking is to find a balance between simplifying the mathematics of
the underlying equations representing a nuclear system and remaining true to some description of the real
world, i.e., one does not want to simplify the problem so much that it does not correspond to any physical
system. This paper addresses the limitation of current verification test sets to rapidly verify that nuclear
data sensitivity calculations are correct. A popular approach is to make multiple direct perturbations of the
nuclear data, calculate the resulting 𝑘-eigenvalues, and extract sensitivity coefficients from the perturbed
data set. This method has its own challenges to overcome, e.g., large perturbations can activate non-linear
effects, there is statistical uncertainty associated with the results, and calculating the perturbed data set is
computationally expensive. The work presented in this paper offers a new analytic verification method.
The theory established in a well-known analytical benchmark test set for criticality code verification [1] is
expanded to include analytic nuclear data sensitivity coefficients.

2. THEORY

One can begin by writing down the general multigroup infinite medium 𝑘-eigenvalue problem for a single
species, isotropic and elastic scattering, material as

Σ𝑇 𝜙 = Σ𝑆 𝜙 + 1
𝑘∞

𝜒 𝜈Σ𝐹 𝜙, (1)
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where the derivation leading to this point is available in [1].

In this work, 𝐺 energy groups are considered with 𝐺 being the fastest energy group and one being the
slowest. The notation employed in Equation (1) emphasizes that this is a matrix-vector-scalar equation with
the variables of the equation defined in the list below.

• The total neutron macroscopic cross section, which is a 𝐺 × 𝐺 matrix, is

Σ𝑇 =

©­­­­«
Σ𝐺𝑇 0 0 0

0 Σ(𝐺−1)𝑇 0 0

0 0 . . . 0
0 0 0 Σ1𝑇

ª®®®®¬
. (2)

• The neutron scattering macroscopic cross section, Σ𝑔′𝑔𝑆 , from energy group 𝑔 to energy group 𝑔′,
which is a 𝐺 × 𝐺 matrix, is

Σ𝑆 =

©­­­­«
Σ𝐺𝐺𝑆 0 0 0

Σ(𝐺−1)𝐺𝑆 Σ(𝐺−1) (𝐺−1)𝑆 0 0
...

...
. . . 0

Σ1𝐺𝑆 Σ1(𝐺−1)𝑆 · · · Σ11𝑆

ª®®®®¬
. (3)

Without loss of generality, it is assumed that neutrons do not up-scatter, i.e., they do not gain energy
from scattering, hence, the scattering matrix is lower triangular. It is required that summing over all
outgoing energies, i.e., summing the columns of the scattering matrix, results in a vector of energy
integrated neutron scattering macroscopic cross sections, Σ𝑔𝑆 =

∑𝐺
𝑔′=1 Σ𝑔′𝑔𝑆 .

• The fission neutron energy distribution, which is a 𝐺 × 1 vector, is

𝜒 =

©­­­­«
𝜒𝐺

𝜒(𝐺−1)
...

𝜒1

ª®®®®¬
. (4)

• The average number of neutrons emitted from each fission event is 𝜈̄, and the neutron fission macro-
scopic cross section is Σ𝐹 . When multiplied together they form a 1 × 𝐺 vector,

𝜈Σ𝐹 =
(
𝜈Σ𝐺𝐹 𝜈Σ(𝐺−1)𝐹 · · · 𝜈Σ1𝐹

)
. (5)

• The scalar neutron flux, which is a 𝐺 × 1 vector, is

𝜙 =

©­­­­«
𝜙𝐺

𝜙 (𝐺−1)
...

𝜙1

ª®®®®¬
. (6)

• The infinite medium 𝑘-eigenvalue, which is a scalar, is 𝑘∞.

It is required in the present work that there are no (n, 𝑥n′) reactions, 𝑥 > 1, included in Σ𝑆 and the scattering
cross section includes only isotropic, elastic scattering and no higher order moments. Hence, the neutron
capture cross section, i.e., zero neutrons emitted, is written as Σ𝐶 = Σ𝑇 − Σ𝑆 − Σ𝐹 . Thus, for each energy
group 𝑔, the total neutron macroscopic cross section is the sum over its constituents,

Σ𝑔𝑇 = Σ𝑔𝐶 + Σ𝑔𝐹 +
𝐺∑︁

𝑔′=1
Σ𝑔′𝑔𝑆 . (7)



2.1. Derivation of the Infinite Medium 𝑘-Eigenvalue

Given these definitions, one can derive an analytic expression for 𝑘∞. Start by grouping the total and
scattering macroscopic cross section matrices on the left-hand side of Equation (1),(

Σ𝑇 − Σ𝑆

)
𝜙 =

1
𝑘∞

𝜒 𝜈Σ𝐹 𝜙. (8)

Apply the inverse of the resulting matrix to both sides of the equation to isolate the scalar neutron flux,
notice that this is tantamount to solving the neutron transport equation itself,

𝜙 =
1
𝑘∞

(
Σ𝑇 − Σ𝑆

)−1
𝜒 𝜈Σ𝐹 𝜙. (9)

Left multiply by 𝜈Σ𝐹 to obtain

𝜈Σ𝐹 𝜙 =
1
𝑘∞

𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1
𝜒 𝜈Σ𝐹 𝜙. (10)

Realize that 𝜈Σ𝐹 𝜙 is a scalar and can be cancelled out on both sides of the equation. This leaves an analytic
expression for 𝑘∞ that is independent of the scalar neutron flux,

𝑘∞ = 𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1
𝜒, (11)

which requires only one matrix inversion to calculate. Recall that
(
Σ𝑇 − Σ𝑆

)
is non-singular when every

entry on the diagonal of this lower-triangular matrix is non-zero. Hence, if the nuclear data is non-zero in
every energy group, then it will always be possible to calculate the inverse and compute 𝑘∞.

Equation (11) shows that the 𝑘-eigenvalue of the infinite medium system under scrutiny is expressed solely
as a function of the multigroup nuclear data set. This result immediately indicates that the sensitivity of 𝑘∞
to perturbations in any of the nuclear data on the right-hand side of Equation (11) can also be analytically
determined without appealing to advanced adjoint-based sensitivity methods [2]. In fact, the only reason
the adjoint flux is necessary in these methods is to invert the transport operator,

(
Σ𝑇 − Σ𝑆

)
, and calculate

the indirect effect that perturbing system parameters has on the flux itself. Here, the transport operator is
explicitly inverted instead, and the scalar neutron flux has been cancelled out of the equation.

2.2. Derivation of the Analytic Sensitivity Coefficients

The sensitivity coefficients of interest describe the fractional change in 𝑘∞ due to a fractional change in a
system parameter, 𝛼, which is used to represent any one of the multigroup nuclear data,

𝑆𝑘∞,𝛼 =
𝛼

𝑘∞

𝜕𝑘∞
𝜕𝛼

. (12)

This is determined by directly taking the first partial derivative of Equation (11) with respect to 𝛼,

𝜕𝑘∞
𝜕𝛼

=
𝜕𝜈Σ𝐹

𝜕𝛼

(
Σ𝑇 − Σ𝑆

)−1
𝜒 + 𝜈Σ𝐹

𝜕

𝜕𝛼

{(
Σ𝑇 − Σ𝑆

)−1}
𝜒 + 𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝜕𝜒

𝜕𝛼
. (13)

Notice that this expression was found by applying the triple product rule from differential calculus to
Equation (11).



2.2.1. Neutron Emission Sensitivities

Conceptually, the 𝜈̄ and 𝜒 sensitivity coefficients are the easiest to understand. In both cases, Equation (13)
reduces substantially. The sensitivity coefficients for 𝜈̄ and 𝜒 in group 𝑔 are

𝑆𝑘∞,𝜈̄𝑔 =
𝜈̄𝑔

𝑘∞

𝜕𝜈Σ𝐹

𝜕𝜈̄𝑔

(
Σ𝑇 − Σ𝑆

)−1
𝜒 =

1
𝑘∞

[
𝜈Σ𝐹

]
𝑔

(
Σ𝑇 − Σ𝑆

)−1
𝜒 (14)

and

𝑆𝑘∞,𝜒𝑔 =
𝜒𝑔

𝑘∞
𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝜕𝜒

𝜕𝜒𝑔
=

1
𝑘∞

𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1
[𝜒]𝑔 . (15)

Here, [·]𝑔 represents the Kronecker delta function for energy group 𝑔 and is used to denote vectors where
all of the entries have been zeroed out except for the data in the 𝑔th energy group. Hence, these sensitivity
coefficients can be interpreted as the ratio of two 𝑘-eigenvalues, where the 𝑘-eigenvalue in the numerator
corresponds to the system in which all of the entries in the 𝜈̄ or 𝜒 vectors have been zeroed out except
for energy group 𝑔. In other words, this says how much the 𝜈̄ or 𝜒 data in group 𝑔 impacts the overall
𝑘-eigenvalue. This means that both sensitivity profiles should sum to one over all of the energy groups,
i.e.,

∑𝐺
𝑔=1 𝑆𝑘∞,𝜈̄𝑔 = 1 and

∑𝐺
𝑔=1 𝑆𝑘∞,𝜒𝑔 = 1. However, recall that the 𝜒 fission neutron energy distribution is

a discrete probability distribution with the natural constraint that it also sums to one over all of the energy
groups, i.e.,

∑𝐺
𝑔=1 𝜒𝑔 = 1. Thus, the “correct” 𝜒 sensitivity profile will reflect this constraint. This is

accomplished by applying the following formula [3],

𝑆𝑘∞,𝜒𝑔 = 𝑆𝑘∞,𝜒𝑔 − 𝜒𝑔

𝐺∑︁
𝑔′=1

𝑆𝑘∞,𝜒𝑔′ = 𝑆𝑘∞,𝜒𝑔 − 𝜒𝑔 . (16)

This constrained sensitivity profile now has the property that it sums to zero over all of the energy groups,
i.e.,

∑𝐺
𝑔=1 𝑆𝑘∞,𝜒𝑔 = 0.

2.2.2. Cross Section Sensitivities

Now, the analytic sensitivity coefficients for the multigroup nuclear cross section data are derived. Only the
first two terms on the right-hand side of Equation (13) are relevant because 𝜒 is not a macroscopic cross
section,

𝜕𝑘∞
𝜕𝛼

=
𝜕𝜈Σ𝐹

𝜕𝛼

(
Σ𝑇 − Σ𝑆

)−1
𝜒 + 𝜈Σ𝐹

𝜕

𝜕𝛼

{(
Σ𝑇 − Σ𝑆

)−1}
𝜒. (17)

Differentiate the inverse matrix with respect to 𝛼,

𝜕𝑘∞
𝜕𝛼

=
𝜕𝜈Σ𝐹

𝜕𝛼

(
Σ𝑇 − Σ𝑆

)−1
𝜒 − 𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1
(
𝜕Σ𝑇

𝜕𝛼
− 𝜕Σ𝑆

𝜕𝛼

) (
Σ𝑇 − Σ𝑆

)−1
𝜒. (18)

Apply the distributive property to the difference of matrices to recover three terms that correspond to the
contributon components of the overall sensitivity, which are often discussed in advanced adjoint-based



sensitivity methods [2],

𝜕𝑘∞
𝜕𝛼

=
𝜕𝜈Σ𝐹

𝜕𝛼

(
Σ𝑇 − Σ𝑆

)−1
𝜒

− 𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝜕Σ𝑇

𝜕𝛼

(
Σ𝑇 − Σ𝑆

)−1
𝜒

+ 𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝜕Σ𝑆

𝜕𝛼

(
Σ𝑇 − Σ𝑆

)−1
𝜒. (19)

The first term on the right-hand side corresponds to the fission source contributon, the second term corre-
sponds to the collisional contributon, and the third term corresponds to the scattering source contributon.
Notice that the collisional contributon is the only mechanism by which negative sensitivity coefficients can
be achieved, i.e., positively perturbing the removal operator of the neutron transport equation will decrease
the 𝑘-eigenvalue, and similarly for the other contributons, positively perturbing the fission and scattering
source operators will increase the 𝑘-eigenvalue. Notice that the cross section sensitivities are also con-
strained quantities. Indeed, Equation (7) provides the constraint, which is the relationship between the total
macroscopic cross section and its constituents. In this case, however, the constraint is implicitly accounted
for when the collisional contributon is calculated for the constituent cross sections and when the fission and
scattering source contributons are calculated for the total cross section. This process is demonstrated first
for the capture cross section sensitivity,

𝑆𝑘∞,Σ𝑔𝐶
= −

Σ𝑔𝐶

𝑘∞
𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝜕Σ𝑇

𝜕Σ𝑔𝐶

(
Σ𝑇 − Σ𝑆

)−1
𝜒

= − 1
𝑘∞

𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 [
Σ𝐶

]
𝑔,𝑔

(
Σ𝑇 − Σ𝑆

)−1
𝜒. (20)

Here, [·]𝑔,𝑔 denotes matrices where all of the entries have been zeroed out except for the data in the (𝑔, 𝑔)th
energy group, i.e., the capture cross section data in the 𝑔th energy group has been put on the (𝑔, 𝑔)th
diagonal entry of the otherwise zero matrix. Notice that the capture cross section sensitivity does not require
calculation of either the fission or scattering source contributon. This will not be true for the other sensitivity
coefficients. The fission cross section sensitivity is

𝑆𝑘∞,Σ𝑔𝐹
=
Σ𝑔𝐹

𝑘∞

[
𝜕𝜈Σ𝐹

𝜕Σ𝑔𝐹

(
Σ𝑇 − Σ𝑆

)−1
𝜒 − 𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝜕Σ𝑇

𝜕Σ𝑔𝐹

(
Σ𝑇 − Σ𝑆

)−1
𝜒

]
=

1
𝑘∞

[ [
𝜈Σ𝐹

]
𝑔

(
Σ𝑇 − Σ𝑆

)−1
𝜒 − 𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 [
Σ𝐹

]
𝑔,𝑔

(
Σ𝑇 − Σ𝑆

)−1
𝜒

]
, (21)

and the scattering cross section sensitivity is

𝑆𝑘∞,Σ𝑔′𝑔𝑆 =
Σ𝑔′𝑔𝑆

𝑘∞

[
−𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝜕Σ𝑇

𝜕Σ𝑔′𝑔𝑆

(
Σ𝑇 − Σ𝑆

)−1
𝜒

+𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝜕Σ𝑆

𝜕Σ𝑔′𝑔𝑆

(
Σ𝑇 − Σ𝑆

)−1
𝜒

]
=

1
𝑘∞

[
−𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 [
Σ𝑔′𝑔𝑆

]
𝑔,𝑔

(
Σ𝑇 − Σ𝑆

)−1
𝜒

+𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 [
Σ𝑆

]
𝑔′ ,𝑔

(
Σ𝑇 − Σ𝑆

)−1
𝜒

]
. (22)



The notation
[
Σ𝑔′𝑔𝑆

]
𝑔,𝑔

means that the Σ𝑔′𝑔𝑆 group-to-group scattering cross section has been put on

the (𝑔, 𝑔)th diagonal entry of the otherwise zero matrix. On the other hand,
[
Σ𝑆

]
𝑔′ ,𝑔

means that the
scattering cross section matrix has been zeroed out except for the (𝑔′, 𝑔)th entry. This sensitivity matrix can
be collapsed by summing over all of the outgoing neutron energies to find the sensitivity of 𝑘∞ to the energy
integrated neutron scattering macroscopic cross section Σ𝑔𝑆 ,

𝑆𝑘∞,Σ𝑔𝑆
=

𝐺∑︁
𝑔′=1

𝑆𝑘∞,Σ𝑔′𝑔𝑆 . (23)

Finally, the total cross section sensitivity is

𝑆𝑘∞,Σ𝑔𝑇
=
Σ𝑔𝑇

𝑘∞

[
𝜕𝜈Σ𝐹

𝜕Σ𝑔𝑇

(
Σ𝑇 − Σ𝑆

)−1
𝜒

−𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝜕Σ𝑇

𝜕Σ𝑔𝑇

(
Σ𝑇 − Σ𝑆

)−1
𝜒

+𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝜕Σ𝑆

𝜕Σ𝑔𝑇

(
Σ𝑇 − Σ𝑆

)−1
𝜒

]
. (24)

Recognize that Σ𝑇
𝜕Σ𝑋

𝜕Σ𝑇
= Σ𝑋, where Σ𝑋 is a constituent of Σ𝑇 , which reflects the fact that perturbing Σ𝑇

perturbs each of its constituents by the same relative amount,

𝑆𝑘∞,Σ𝑔𝑇
=

1
𝑘∞

[ [
𝜈Σ𝐹

]
𝑔

(
Σ𝑇 − Σ𝑆

)−1
𝜒

−𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 [
Σ𝑇

]
𝑔,𝑔

(
Σ𝑇 − Σ𝑆

)−1
𝜒

+𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝐺∑︁
𝑔′=1

[
Σ𝑆

]
𝑔′ ,𝑔

(
Σ𝑇 − Σ𝑆

)−1
𝜒

 . (25)

Notice that
[
Σ𝑇

]
𝑔,𝑔

is a zero matrix except for the (𝑔, 𝑔)th entry, which is defined by Equation (7). This
means that it can be separated into its constituent parts,[

Σ𝑇

]
𝑔,𝑔

=

[
Σ𝐶

]
𝑔,𝑔

+
[
Σ𝐹

]
𝑔,𝑔

+
𝐺∑︁

𝑔′=1

[
Σ𝑔′𝑔𝑆

]
𝑔,𝑔

. (26)

Insert this expression into the equation above it, match it to the other cross section sensitivities, and realize
that the total cross section sensitivity coefficient is the sum of the constituent cross section sensitivities,

𝑆𝑘∞,Σ𝑔𝑇
= 𝑆𝑘∞,Σ𝑔𝐶

+ 𝑆𝑘∞,Σ𝑔𝐹
+

𝐺∑︁
𝑔′=1

𝑆𝑘∞,Σ𝑔′𝑔𝑆 . (27)

However, examine Equation (11) and realize that perturbing each of the cross sections by the same amount
cancels out and leaves the original unperturbed value for 𝑘∞ as the result. This means that the total cross
section sensitivity is expected to be zero for these infinite medium systems,

𝑆𝑘∞,Σ𝑔𝑇
= 0. (28)



2.3. Calculating the Scalar Neutron Flux and Adjoint Flux

Expressions for calculating the scalar neutron flux and adjoint flux are presented and used to show that the
equations derived in this paper are equivalent to those from first-order perturbation theory. Keep in mind
that 𝑘∞ is known by Equation (11) and gather all of the terms in Equation (1) on the left-hand side,(

Σ𝑇 − Σ𝑆 − 1
𝑘∞

𝜒 𝜈Σ𝐹

)
𝜙 = 𝐿 𝜙 = 0. (29)

Notice that the kernel of the linear map 𝐿, which is also known as the null space of 𝐿, is the scalar neutron
flux,

ker
(
𝐿

)
=

{
𝜙 ∈ R𝐺 | 𝐿 𝜙 = 0

}
= 𝐿

−1
0. (30)

There are two notes on the practicality of performing this calculation. First, realize that one has to take
the outer product of 𝜒 and 𝜈Σ𝐹 to generate a 𝐺 × 𝐺 matrix that can be combined with the other matrices.
Second, it is easy to compute the kernel of 𝐿 using a scientific numerical code library such as Python’s
“SciPy” package, e.g., flux = scipy.linalg.null space(L), where the sign ambiguity of the resulting
vector may need to be removed if this method is used.

The adjoint flux vector can be calculated in a similar manner. The general multigroup infinite medium
adjoint 𝑘-eigenvalue problem is

Σ𝑇 𝜙
†
= Σ𝑆

⊺ 𝜙
† + 1

𝑘∞
𝜈Σ𝐹

⊺ 𝜒 ⊺ 𝜙
†
, (31)

where (·)⊺ is used to denote the matrix-vector transpose operation. This equation can also be used to find
an analytic expression for 𝑘∞,

𝑘∞ = 𝜒 ⊺
(
Σ𝑇 − Σ𝑆

⊺
)−1

𝜈Σ𝐹
⊺, (32)

which gives the same result for 𝑘∞ as Equation (11). Finally, use Equation (31) to define the linear map, 𝐿
†
,

that is needed to calculate the adjoint flux vector,

ker
(
𝐿
† )

=

{
𝜙
† ∈ R𝐺 | 𝐿

†
𝜙
†
= 0

}
=

(
𝐿
†)−1

0, (33)

where
𝐿
†
= Σ𝑇 − Σ𝑆

⊺ − 1
𝑘∞

𝜈Σ𝐹
⊺ 𝜒 ⊺ . (34)

This method for calculating the scalar neutron flux and adjoint flux highlights the fact that they both live in
the null space of their respective 𝑘-eigenvalue transport matrices. However, there is a simpler approach to
calculating the scalar neutron flux. Realize that 𝑘∞ and 𝜈Σ𝐹 𝜙 in Equation (9) are constants, which means
that the scalar neutron flux can be written as

𝜙 ∝
(
Σ𝑇 − Σ𝑆

)−1
𝜒. (35)

Similarly, Equation (31) can be rearranged to show that

𝜙
† ∝

(
Σ𝑇 − Σ𝑆

⊺
)−1

𝜈Σ𝐹
⊺, (36)



and transposing this expression results in

𝜙
†⊺ ∝ 𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1
. (37)

These expressions for the scalar neutron flux and adjoint flux can be substituted into Equation (24) to recover
the typical adjoint-weighted result found from first-order perturbation theory [2],

𝑆𝑘∞,Σ𝑔𝑇
= Σ𝑔𝑇

𝜙
†⊺

(
1
𝑘∞

𝜒
𝜕𝜈Σ𝐹

𝜕Σ𝑔𝑇
− 𝜕Σ𝑇

𝜕Σ𝑔𝑇
+ 𝜕Σ𝑆

𝜕Σ𝑔𝑇

)
𝜙

1
𝑘∞

𝜙
†⊺

𝜒 𝜈Σ𝐹 𝜙
, (38)

where it has been recognized that

𝑘2
∞ = 𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1
𝜒 𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1
𝜒 ∝ 𝜙

†⊺
𝜒 𝜈Σ𝐹 𝜙. (39)

Thus, it has been shown that the general set of equations derived in this paper are equivalent to their adjoint-
based counterparts and can be used to verify not only the final sensitivity results of a non-analytic solution
but the contributon components of that solution as well.

3. URANIUM EXAMPLES

All of the analytic expressions derived in Section 2 are general and exact given that the assumptions of
the paper are met. It is beneficial to understand the mathematical structure of these simple 𝑘-eigenvalue
sensitivity coefficients, because it fosters the engineering intuition that is required to analyze more realistic
systems. However, examples are presented to reinforce the reader’s understanding of the mathematics. To
that end, consider the multigroup nuclear data and corresponding 𝑘-eigenvalues, forward flux, adjoint flux,
and sensitivity profiles for two infinite medium systems consisting of U-235 and U-238.

The multigroup nuclear data presented in Figure 2 was generated using the multigroup tally options in
MCNP6.3 [4, 5]. Two infinite medium 𝑘-eigenvalue problems consisting purely of U-235 and U-238 were
set up and energy dependent track-length flux tallies were specified (F4:n CELL). The following special
treatments were specified to generate the multigroup nuclear data: (FT4 MGC 1) calculates the multigroup
cross sections; (FT4 SPM 0) calculates the angle integrated scattering probability matrix; and (FT4 FNS 0)
calculates the prompt fission neutron energy distribution.

The continuous energy 𝑘-eigenvalues calculated with MCNP6.3 are compared to the multigroup 𝑘-eigenvalues
calculated with Equation (11) in Table I. Notice that the physics not accounted for in Equation (1) makes
a relatively small but important impact on the 𝑘-eigenvalue. This result highlights the importance of in-
cluding all relevant physics in neutron transport simulations, because, in both cases, the 𝑘-eigenvalue is
underestimated.

Table I. Continuous energy 𝑘-eigenvalues produced by MCNP6.3 [4] and analytic multigroup 𝑘-
eigenvalues for two infinite medium systems consisting of U-235 and U-238

Isotope Continuous MCNP Analytic Multigroup Multigroup / Continuous
U-235 2.28014 ± 0.00004 2.26898 0.99511
U-238 0.31019 ± 0.00006 0.30327 0.97769

The energy integrated macroscopic cross section sensitivities calculated with the KSEN card in MCNP6.3
are compared to the analytic results calculated with the expressions developed in Section 2.2.2 in Table II.



The results agree within statistics, which is evidenced by the ratios of the two values being near unity and
the z-scores being less than one in all but one case. This is a simple example of how the analytic expressions
developed in this paper can be used to generate benchmark test sets. A full test set would include verification
of the 𝑘-eigenvalue, scalar neutron flux, adjoint flux, and the energy dependent sensitivity profiles.

Table II. MCNP6.3 [4] KSEN results and analytic energy integrated cross section sensitivities for two
infinite medium systems consisting of U-235 and U-238 (N/A = not applicable)

Isotope Cross Section KSEN Analytic Analytic / KSEN Z-Score
U-235 Total −0.00015 ± 0.00144 0.00000 N/A 0.10078

Fission 0.16022 ± 0.00038 0.16067 1.00284 1.18638
Capture −0.10363 ± 0.00007 −0.10358 0.99950 0.72832
Scatter −0.05673 ± 0.00123 −0.05710 1.00638 −0.29495

U-238 Total −0.00045 ± 0.00103 0.00000 N/A 0.43625
Fission 0.81334 ± 0.00012 0.81339 1.00006 0.42523
Capture −0.01471 ± 0.00004 −0.01472 1.00013 −0.04882
Scatter −0.79908 ± 0.00099 −0.79867 0.99950 0.40612

Figure 1 compares the scalar neutron flux and adjoint flux for both systems. These are non-self adjoint
systems with U-238 only having a non-negligible adjoint flux beyond the classic fission energy threshold.
Figure 3 compares the sensitivity profiles for each uranium isotope. There is common behavior between
the two sets of profiles, e.g., the constituent cross section sensitivities both sum to zero, which is what
was expected from theory. However, the scattering cross section sensitivity matrices deserve some special
attention. The results agree with intuition, i.e., 𝑘∞ is not sensitive to in-group scattering. This means that
the energy integrated scattering sensitivity profile is solely a function of out-group scattering. Notice that
the infinite medium 𝑘-eigenvalue is particularly sensitive to certain scattering pathways. This could be
a result of neutrons avoiding fission resonances or neutrons heading towards capture resonances. Hence,
it is important to have accurate knowledge of the nuclear data cross section resonances when performing
the sensitivity analysis of a nuclear system. This means that the analytic multipole-multigroup sensitivity
coefficients should be investigated to further understand the dominant sensitivity mechanisms of the 𝑘-
eigenvalue problems at hand.
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Figure 1. Analytic scalar neutron flux and adjoint flux for two infinite medium systems consisting of
U-235 and U-238



4. CONCLUSIONS

In this paper, the analytic sensitivity coefficients for general multigroup infinite medium 𝑘-eigenvalue
problems were derived. The work presented here is entirely self-contained in that all of the assumptions
and notation have been clearly stated and each step of the mathematical derivations have been meticulously
recorded. The reader can apply these equations to a set of multigroup nuclear data cross sections that satisfy
the assumptions given in this paper and use the results to verify that their numerical sensitivity calculations
are correct. The objective of this work is to give the nuclear engineering community a new method to
rapidly verify that sensitivity calculations agree with theory. In the future, these equations can be extended
to account for multiple isotopic species, more reactions, and higher order sensitivity coefficients.
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Figure 2. Multigroup nuclear data produced by MCNP6.3 [4] for two infinite medium systems
consisting of U-235 and U-238



10−3 10−2 10−1 100 101

Incoming Energy [MeV]

0.00

0.01

0.02

0.03
ν̄

Se
ns

iti
vi

ty
[%
/

%
]

10−3 10−2 10−1 100 101

Outgoing Energy [MeV]

0.00

0.02

0.04

Pr
om

pt
χ

Se
ns

iti
vi

ty
[%
/

%
] Unconstrained

Constrained

10−3 10−2 10−1 100 101

Incoming Energy [MeV]

−0.004

−0.002

0.000

0.002

0.004

C
ro

ss
Se

ct
io

n
Se

ns
iti

vi
tie

s
[%
/

%
]

Total
Fission
Capture
Scatter

110192837465564738291100
Incoming Energy Group g

1
10
19
28
37
46
55
64
73
82
91

100

O
ut

go
in

g
E

ne
rg

y
G

ro
up

g′

−0.00010

−0.00005

0.00000

0.00005

0.00010

(a) U-235

10−3 10−2 10−1 100 101

Incoming Energy [MeV]

0.00

0.02

0.04

0.06

0.08

ν̄
Se

ns
iti

vi
ty

[%
/

%
]

10−3 10−2 10−1 100 101

Outgoing Energy [MeV]

0.00

0.05

0.10

Pr
om

pt
χ

Se
ns

iti
vi

ty
[%
/

%
] Unconstrained

Constrained

10−3 10−2 10−1 100 101

Incoming Energy [MeV]

−0.05

0.00

0.05

C
ro

ss
Se

ct
io

n
Se

ns
iti

vi
tie

s
[%
/

%
]

Total
Fission
Capture
Scatter

110192837465564738291100
Incoming Energy Group g

1
10
19
28
37
46
55
64
73
82
91

100

O
ut

go
in

g
E

ne
rg

y
G

ro
up

g′

−0.005

0.000

0.005

(b) U-238

Figure 3. Analytic multigroup nuclear data sensitivity coefficients for two infinite medium systems
consisting of U-235 and U-238
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