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ABSTRACT

The new reality of exascale computing faces many challenges in 
achieving optimal performance on large numbers of nodes. A key
challenge is the efficient utilization of the message-passing inter-
face (MPI), a critical component for process communication. This
paper explores communication optimization strategies to harness 
the GPU-accelerated architectures of these supercomputers. We fo-
cus on MPI applications where processors form a two-dimensional 
process grid, a common arrangement in applications involving
dense matrix operations. This configuration offers a unique oppor-
tunity to implement innovative strategies to improve performance
and maintain effective load distribution. We s tudy two applica-
tions— Dist-FW (Apsp:all-pair-shortest-path) and HPL-MxP (LU
factorization with Mixed precision)—on two accelerated systems: 
Summit (IBM Power and NVIDIA V100) and Frontier (AMD EPYC
and MI250X). These supercomputers are operated by the Oak Ridge
Leadership Computing Facility (OLCF) and are currently ranked 
#1 and #5 on the Top500 list. We show how to scale up both ap-
plications to exascale levels and tackle the MPI challenges related 
to implementation, synchronization, and performance. We also
compare the performance of several communication strategies at 
an unprecedented scale. Accurately predicting application perfor-
mance becomes crucial for cost reduction as the computational 
scale grows. To address this, we suggest a hyperbolic model as a
better alternative to the traditional one-sided asymptotic model for 
predicting future application performance at such large scales.
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1 INTRODUCTION

Exascale computing has opened up new avenues of scientific dis-
covery and innovation. However, it also presents a unique set of
challenges in achieving optimal performance and efficient load bal-
ancing. One of the key aspects is the Message Passing Interface
(MPI) which plays a crucial role in process communication. This
paper focuses on optimizing applications where processors form a
two-dimensional process grid, with communication optimization
as the main target. We delve into two specific applications — the
distributed memory-Floyd Warshall (Dist-FW) algorithm [9] for
computing all-pair shortest paths (Apsp) and the High-performance
Linpack in mixed precision (HPL-MxP) [18] benchmark.

The distributed-memory Floyd Warshall algorithm calculates
the shortest paths between all pairs of vertices in a graph. By using
semi-ring multiplication operations, it can efficiently compute the
shortest paths, particularly for large-scale graphs. These opera-
tions resemble mathematical rings but without the need for addi-
tive inverses. Meanwhile, the High-Performance mixed-precision
LINPACK (HPL-MxP) benchmark measures the performance of
computer systems in solving dense systems of linear equations us-
ing LU decomposition. HPL-MxP is a variant of High-Performance
LINPACK (HPL) that focuses its functionality mainly on mixed pre-
cision. This approximation allows it to emulate the lower precision
typical of AI-like workloads.

For clarity, we refer to the distributed mixed-precision LU solve
as HPL-MxP and the distributed Floyd Warshall algorithm as Dist-
FW. The implementation of HPL-MxP is called OpenMxP [27],
and the application of Dist-FW is called Dsnapshot [32]. Both of
these algorithms, herein referred to as Dist-FW and HPL-MxP, re-
spectively, encounter common communication optimization issues.
They require row and column broadcasts at every iteration, typi-
cally incorporating a look-ahead strategy to overlap computation
with communication. Overcoming the hurdle of optimizing this
communication, alongside efficiently mapping computation within
a two-dimensional grid, is a focal point of this study.

Furthermore, the use of graphics processing unit (GPU) acceler-
ators in systems presents additional challenges. The programming
model of GPUs differs from that of traditional central processing
units (CPUs), adding another layer of complexity when trying to
achieve an efficient overlap of communication with computation.
The OLCF systems have two memory subsystems—one attached to
the CPU and one to a GPU. Data locality tied with communications
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plays an important role in communication performance, which
directly impacts application performance.

Our paper directly addresses these challenges to increase the
efficiency of communication operations for 2D partitioned applica-
tions. We achieve this by combining communication with computa-
tion and aligning the architecture. We thoroughly evaluate various
broadcast algorithms and summarize their performance character-
istics. Our proposed "chunked 2D broadcast" algorithm blends row
and column broadcasts, enhancing inter-process communication
performance and ensuring a balanced distribution of workload.
As demonstrated in OpenMxP and Dsnapshot, this approach sig-
nificantly improves performance. The latter nearly reaches one
exaflop, while the former sets a new record, nearing 10 exaflops.
Additionally, we recommend a hyperbolic model to meet the urgent
need for accurate performance prediction and reduce costs at large
computational scales. This model serves as an alternative to the
traditional one-sided asymptotic model, simplifying the optimiza-
tion process, reducing the need for large-scale runs, and providing
a more efficient way to predict performance at exascale levels.

This study offers more than specific solutions. We pinpoint sev-
eral problems and propose useful MPI features that could make
optimization strategies more effective. We also evaluate and con-
trast various communication strategies at an unparalleled scale,
providing insights beneficial for a broader range of applications.
Therefore, this work is a crucial step in advancing performance
capabilities at the exascale level, implying broader implications for
the future of high-performance computing. Building on this work,
our future research aims to further improve communication opti-
mization and develop a resilient communication library to handle
network failures or delays.

2 BACKGROUND

2.1 System Information

Our study focuses on two different architectures of supercomputers
hosted at OLCF: Frontier and Summit. A brief overview of the key
architectural specifications and software stacks can be found in
Table 1c. The key difference we would like to point out is the loca-
tion of the network interconnect (NICs). In the Frontier system, the
NICs reside on the GPUs, which eliminates the traditional overhead
of copying network data back to the CPU. On the other hand, the
Summit system contains two sockets per node, with each socket
having one NIC. The node architectures are shown in Figures 1a
and 1b. Another significant difference is the ratio of graphics com-
pute dies (GCDs) to GPUs. Summit has one GCD per GPU, while
the Frontier system has two GCDs per GPU. Each GCD is utilized
as a separate accelerator.

2.2 HPL-MxP

The HPL-MxP benchmark was designed to evaluate the mixed
precision capability of the system by finding the unique solution to
a dense system of linear equations 𝐴𝑥 = 𝑏, where 𝐴 ∈ R𝑁×𝑁 is a
full-rank matrix, and 𝑥, 𝑏 ∈ R𝑁 are the solution and right-hand side
vectors, respectively. In contrast to the HPL benchmark, HPL-MxP
allows the input matrix to have an appropriate condition number
for omitting the pivoting step during the LU factorization process

[17, Chapter 9]. More importantly, it permits the use of a mixed
precision solution to obtain lower precision 𝐿̃ and 𝑈̃ factors.

The benchmark requires the solution to be solved with three
specific procedures. Initially, the matrix is transformed into an
estimated triangular form using mixed precision block Gaussian
elimination [35]. Once the estimated LU factorization of 𝐴=̃𝐿̃𝑈̃ has
been obtained, the estimated solution 𝑥 to 𝐴𝑥 = 𝑏 can be efficiently
calculated by solving the two triangular systems of linear equations
(𝐿̃𝑈̃ 𝑥 = 𝑏). Finally, the solution is further refined to attain FP64
precision accuracy (𝑏 −𝐴𝑥 < 𝜖 , where 𝜖 is FP64 machine epsilon)
by applying iterative refinement (IR) [36].

Block LU factorization Block based Gaussian elimination par-
tition a size 𝑛 matrix 𝐴 into 𝑛𝑏 × 𝑛𝑏 blocks, each with size 𝑏 × 𝑏
(i.e., 𝑛𝑏 = 𝑛

𝑏 ). The block size 𝑏 is chosen to balance communica-
tion and computation. Consequently, transforming 𝐴 into its LU
factorization occurs in blocks, that is, each step of the Gaussian
elimination computes 𝑏 columns of 𝐿 and 𝑏 rows of𝑈 . [13, 33]. The
total number of steps required for a complete LU factorization is
𝑛𝑏 steps. Let 𝐴(𝑘 ) denote the unfinished matrix at step 𝑘 , and 𝑈0
and 𝐿0 denote the finalized part of matrix at step 𝑘 , see part (a) of
Figure 2

To factor the remaining (𝑁 − 𝑘𝐵 + 𝐵) × (𝑁 − 𝑘𝐵 + 𝐵) submatrix
𝐴(𝑘 ) as 𝐿 (𝑘 )𝑈 (𝑘 ) , we represent as

𝐴(𝑘 ) =
[
𝐴1,1 𝐴1,2
𝐴2,1 𝐴2,2

]
,

where 𝐴1,1, 𝐴1,2, 𝐴2,1, and 𝐴2,2 are of sizes 𝐵 × 𝐵, (𝑁 − 𝑘𝐵) × 𝐵,
𝐵 × (𝑁 − 𝑘𝐵), and (𝑁 − 𝑘𝐵) × (𝑁 − 𝑘𝐵), see part (b) of Figure 2.[

𝐴1,1 𝐴1,2
𝐴2,1 𝐴2,2

]
=

[
𝐿1,1 0
𝐿2,1 𝐿2,2

] [
𝑈1,1 𝑈1,2
0 𝑈2,2

]
=

[
𝐿1,1𝑈1,1 𝐿1,1𝑈1,2
𝐿2,1𝑈1,1 𝐿2,1𝑈1,2 + 𝐿2,2𝑈2,2

]
,

Further expanding, LU factorization can be viewed as solving for
𝐿1,1, 𝐿1,2, 𝑈1,1 and 𝑈2,1, then update the 𝐴2,2, see part (c) of Figure
2. The high-level algorithmic steps for block-based LU factorization
at step 𝑘 could be represent as the following:

(1) Gaussian elimination for 𝐴1,1 to find 𝐿1,1 and𝑈1,1.
(2) Compute 𝐿2,1 = 𝐴2,1𝑈 −11,1 .
(3) Compute 𝑈1,2 = 𝐿−11,1𝐴1,2.
(4) Compute 𝐴(𝑘+1) = 𝐿2,2𝑈2,2 = 𝐴2,2 − 𝐿2,1𝑈1,2.
Iterative refinement Even when𝐴 is well-conditioned, comput-

ing its LU factorization suffers from precision limitations of floating
point arithmetic, especially when working in mixed precision. As a
result, the mixed precision LU factorization 𝐴→ 𝐿̃𝑈̃ holds only an
approximation for the real factorization 𝐿 and𝑈 . Performing IR by
repeating the following steps until the required solution accuracy
is reached:

(1) Compute the residual 𝑟 = 𝑏 −𝐴𝑥 in higher precision.
(2) Find an approximation 𝑑 of solution discrepancy 𝑑 = 𝑥 − 𝑥

by solving 𝐿̃𝑈̃𝑑 = 𝑟 .
(3) Refine the approximate solution 𝑥 by assigning 𝑥 ← 𝑥 + 𝑑 .
The estimate solution 𝑥 is refined closer to 𝑥 every iteration,

given the input was designed to converge. For benchmark purposes
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Figure 1: (a) Summit Node architecture: Bandwidth for connection: 64 GB/S CPU to CPU (red), 16 GB/S CPU to NICs (orange), 50

GB/S GPU to CPU (blue). (b) Frontier Node architecture: Bandwidth for connection: 50 GB/S GPU to GPU (green), 50 GB/S GPU

to NICs (blue). (c) Key architectural and software stack specifications for Summit and Frontier.
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<latexit sha1_base64="FDCWrvCu4UPOmFgABLkktMgkvPc=">AAAB/nicbVDPSwJBFH7bT7Msq2OXIRE6yW5EeRSC6GjQqqCLzI6jDs7MLjOzgSxCf0PXOnuLrp37Lzr2nzSrHlL74MHH973He+8LY860cd1vZ2Nza3tnN7eX3z8oHB4Vj08aOkoUoT6JeKRaIdaUM0l9wwynrVhRLEJOm+HoNvObT1RpFslHM45pIPBAsj4j2Fip1QlF6nfdSbdYcivuDGideAtSqhW+kvJdflrvFn86vYgkgkpDONa67bmxCVKsDCOcTvKdRNMYkxEe0LalEguqg3R27wSVrdJD/UjZkgbN1L8TKRZaj0VoOwU2Q73qZeJ/Xjsx/WqQMhknhkoyX9RPODIRyp5HPaYoMXxsCSaK2VsRGWKFibERLW0JRZaJt5rAOmlcVrzrytWDDacKc+TgDM7hAjy4gRrcQx18IMDhBV7hzXl2ps678zFv3XAWM6ewBOfzF0z/mQE=</latexit>

U0

<latexit sha1_base64="WtOPE+NHlkgaYpiS+mW9HW3eMYo=">AAACAXicbVDLSsNAFJ34qLW+qi7dBIvgqiRF1GXBjcsWTFtIQ5lMJ+3QeYSZiVBCVn6BC13qUtyJW//APxBX/omTtgvbeuDC4Zx7ufeeMKZEacf5slZW19YLG8XN0tb2zu5eef+gpUQiEfaQoEJ2QqgwJRx7mmiKO7HEkIUUt8PRVe63b7FURPAbPY5xwOCAk4ggqI3kd0OWer3UrWVZr1xxqs4E9jJxZ6RSLzS/Px/vXxq98k+3L1DCMNeIQqV814l1kEKpCaI4K3UThWOIRnCAfUM5ZFgF6eTkzD4xSt+OhDTFtT1R/06kkCk1ZqHpZFAP1aKXi/95fqKjyyAlPE405mi6KEqorYWd/2/3icRI07EhEElibrXREEqItElpbkvI8kzcxQSWSatWdc+rZ00TTg1MUQRH4BicAhdcgDq4Bg3gAQQEeABP4Nm6s16tN+t92rpizWYOwRysj1+WgJuv</latexit>

U12

<latexit sha1_base64="+UmT6HVQxuwZuLY+crn6T4Zlbgg=">AAACAXicbVC7SgNBFJ2NGmN8RS1tBoNgFXaDqGXAxsIiAfOAzRJmJ7PJkJnZZWZWCMtWfoGFllqKndj6B/6BWPknziYpTOKBC4dz7uXee/yIUaVt+8vKrayu5dcLG8XNre2d3dLefkuFscSkiUMWyo6PFGFUkKammpFOJAniPiNtf3SZ+e1bIhUNxY0eR8TjaCBoQDHSRnK7Pk+ue0m1mqa9Utmu2BPAZeLMSLmWb3x/Pt6/1Huln24/xDEnQmOGlHIdO9JegqSmmJG02I0ViRAeoQFxDRWIE+Ulk5NTeGyUPgxCaUpoOFH/TiSIKzXmvunkSA/VopeJ/3lurIMLL6EiijUReLooiBnUIcz+h30qCdZsbAjCkppbIR4iibA2Kc1t8XmWibOYwDJpVSvOWeW0YcKpgikK4BAcgRPggHNQA1egDpoAgxA8gCfwbN1Zr9ab9T5tzVmzmQMwB+vjF4m1m6c=</latexit>

L22

<latexit sha1_base64="Yo0MLuLmlQJhf2HEy1YQuSWYTqo=">AAACAXicbVC7SgNBFJ2NGmN8RS1tBoNgFXaDqGXAxsIiAfOAzRJmJ7PJkJnZZWZWCMtWfoGFllqKndj6B/6BWPknziYpTOKBC4dz7uXee/yIUaVt+8vKrayu5dcLG8XNre2d3dLefkuFscSkiUMWyo6PFGFUkKammpFOJAniPiNtf3SZ+e1bIhUNxY0eR8TjaCBoQDHSRnK7Pk+ue4njpGmvVLYr9gRwmTgzUq7lG9+fj/cv9V7pp9sPccyJ0JghpVzHjrSXIKkpZiQtdmNFIoRHaEBcQwXiRHnJ5OQUHhulD4NQmhIaTtS/EwniSo25bzo50kO16GXif54b6+DCS6iIYk0Eni4KYgZ1CLP/YZ9KgjUbG4KwpOZWiIdIIqxNSnNbfJ5l4iwmsExa1YpzVjltmHCqYIoCOARH4AQ44BzUwBWogybAIAQP4Ak8W3fWq/VmvU9bc9Zs5gDMwfr4BYaKm6U=</latexit>

L11

<latexit sha1_base64="yhsdbwupUHNS2pNDZ+eMVmDJG60=">AAACAXicbVDLSsNAFJ34qLW+qi7dBIvgqiRF1GXBjcsWTFtIQ5lMJ+3QeYSZiVBCVn6BC13qUtyJW//APxBX/omTtgvbeuDC4Zx7ufeeMKZEacf5slZW19YLG8XN0tb2zu5eef+gpUQiEfaQoEJ2QqgwJRx7mmiKO7HEkIUUt8PRVe63b7FURPAbPY5xwOCAk4ggqI3kd0OWer3UdbOsV644VWcCe5m4M1KpF5rfn4/3L41e+afbFyhhmGtEoVK+68Q6SKHUBFGclbqJwjFEIzjAvqEcMqyCdHJyZp8YpW9HQpri2p6ofydSyJQas9B0MqiHatHLxf88P9HRZZASHicaczRdFCXU1sLO/7f7RGKk6dgQiCQxt9poCCVE2qQ0tyVkeSbuYgLLpFWruufVs6YJpwamKIIjcAxOgQsuQB1cgwbwAAICPIAn8GzdWa/Wm/U+bV2xZjOHYA7Wxy+U65uu</latexit>

U11

<latexit sha1_base64="XwzHPrnwweq/1WhVofTj6ztBCp4=">AAACBHicbVDLSgMxFM34rOOr6tJNsAgVocwUUTdixY3LCvYB7bRk0rQNTTJDkhHKMFu/wa26dSfizt8Ql/6JmbYL23rgwuGcezmX44eMKu0439bC4tLyympmzV7f2Nzazu7sVlUQSUwqOGCBrPtIEUYFqWiqGamHkiDuM1LzB9epX7snUtFA3OlhSDyOeoJ2KUbaSK2mz+OrVpwfHLtHSdLO5pyCMwKcJ+6E5C4/7Ivw5csut7M/zU6AI06Exgwp1XCdUHsxkppiRhK7GSkSIjxAPdIwVCBOlBePvk7goVE6sBtIM0LDkfr3IkZcqSH3zSZHuq9mvVT8z2tEunvuxVSEkSYCj4O6EYM6gGkFsEMlwZoNDUFYUvMrxH0kEdamqKkUn6eduLMNzJNqseCeFk5unVypCMbIgH1wAPLABWegBG5AGVQABhI8gifwbD1Yr9ab9T5eXbAmN3tgCtbnL96xm5Q=</latexit>

A(k+1)

(c)

Figure 2: (a) The 𝑘th step of block LU factorization. (b) Parti-

tioning of the trailing matrix. (c) Outcome of the 𝑘th step.

the IR is stopped once the solution discrepancy 𝑑 gets below some
ration of FP64 machine epsilon. The IR procedure does not require
significant run time and will be omitted from this paper.

Related Work In 2006 Kurzak and Dongarra [24] were first
to introduce the use of mixed precision to solve 𝐴𝑥 = 𝑏. In 2010,
Wang et al. offered a GPU-accelerated version of the algorithm
for the first time [25]. Dense linear algebra library ScaLAPACK
[6] which developed in 1992 supported distributed computing. In
2009, MAGMA library [1],[3] enabled the GPU support for BLAS.
In 2017, Haidar et al. added mixed precision variants to MAGMA
[15, 16]. In 2019, a library called SLATE [14] expand the capability
to multiple precision with distributed multi-GPU support. However,
these libraries focused on the portability and usability and did not
attempt to achieve the maximum performance of target system. On
the CPU front, the Fugaku HPL-MxP code [22, 30] is the first to
break the exascale barrier in 2020 with a CPU-only implementation.

The implementation being modified in our paper is from the
OLCF [27] and is called OpenMxP, which is the first code that
obtains almost 8 exaflops on the Frontier system. This work is
heavily influenced by prior efforts and uses OpenMxP as a baseline
but makes further communication and performance optimizations
to achieve almost 10 exaflops.

2.3 Floyd-Warshall

Our second application focuses on the calculation of all pair-shortest
paths (Apsp).

Classical Floyd-Warshall Algorithm: In simpler terms, Apsp
calculation is the process of determining the shortest paths between

all pairs of vertices in a weighted graph, where the graph is denoted
as𝐺 = (𝑉 , 𝐸) with 𝑛 = |𝑉 | vertices and𝑚 = |𝐸 | edges. We can have
negative weights, but we avoid cycles where the total weight is neg-
ative. In cases where the graph is dense—meaning𝑚 = 𝑂 (𝑛2)—we
can employ the Floyd-Warshall algorithm. This algorithm involves
three nested loops, each iterating over all vertices. As a result, its
sequential complexity amounts to 𝑂 (𝑛3) operations.

The Floyd-Warshall algorithmworks by updating amatrix,𝐷𝑖𝑠𝑡𝑖 𝑗 ,
which stores the shortest path length between any two vertices
𝑣𝑖 and 𝑣 𝑗 . If there’s no discovered path, this distance initializes to
∞. The algorithm ensures that 𝐷𝑖𝑠𝑡𝑖 𝑗 is minimum with at most
𝑘 vertices acting as intermediaries at each iteration 𝑘 . Thus, the
Floyd-Warshall algorithm uncovers more paths between vertices,
reducing the number of∞ 𝐷𝑖𝑠𝑡𝑖 𝑗 entries.

Semi-ring Notation: Apsp calculation can also be seen from an
algebraic lens. Apsp may be understood algebraically as computing
the matrix closure of the weight matrix,𝑊 , defined over the tropical
semiring [11]. In more basic terms, let ⊕ and ⊗ denote the two
binary scalar operators:

𝑥 ⊕ 𝑦 := min(𝑥,𝑦)
𝑥 ⊗ 𝑦 := 𝑥 + 𝑦,

where 𝑥 and 𝑦 are real values or ∞. Next, consider two matrices
𝐴 ∈ R𝑚×𝑘 and 𝐵 ∈ R𝑘×𝑛 . The Min-Plus product 𝐶 of 𝐴 and 𝐵 is

𝐶𝑖 𝑗 ←
⊕∑︁
𝑘

𝐴𝑖𝑘 ⊗ 𝐵𝑘 𝑗 = min
𝑘

(
𝐴𝑖𝑘 + 𝐵𝑘 𝑗

)
.

This interpretation of the Min-Plus product helps to understand
the following blocked version of distirbuted Floyd-Warshall algo-
rithm. (Algorithm 2).

Blocked Floyd-Warshall algorithm

The Blocked Floyd-Warshall algorithm, an optimized variant of
the classic Floyd-Warshall algorithm, significantly improves cache
efficiency and performance by subdividing the distance matrix into
smaller blocks. The method takes as input a distance matrix 𝐴 and
a block size 𝑏.

The distance matrix 𝐴 of dimension 𝑛, is divided into 𝑛𝑏 = 𝑛
𝑏

blocks, each of size 𝑏 × 𝑏. These blocks will be the fundamental
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units of operation within the algorithm. The algorithm proceeds
with three core steps, iteratively applied for each block along the
diagonal of the matrix.

• Diagonal Update: traditional Floyd-Warshall algorithm is
applied to the 𝑘𝑡ℎ diagonal block of the matrix. This results
in an updated block, 𝐴(𝑘, 𝑘), which stores the shortest path
lengths between its represented vertices.
• Panel Update: This step updates the 𝑘𝑡ℎ block row and
column. For all blocks in the 𝑘𝑡ℎ block row,𝐴(𝑘, 𝑗), we apply
the in-place Min-Plus multiply with 𝐴(𝑘, 𝑘) from the left.
Similarly, all blocks in the 𝑘𝑡ℎ block column,𝐴(𝑖, 𝑘), undergo
the same operation but from the right. This refreshes the
distances within these blocks with the new distances from
the 𝑘𝑡ℎ diagonal block.
• Min-Plus Outer Product: It involves the outer product of
the 𝑘𝑡ℎ block row and block column and updates each block
𝐴(𝑖, 𝑗) through a Min-Plus operation. The updated value is
the result of the operation between its present value and the
Min-Plus product of block 𝐴(𝑖, 𝑘) and block 𝐴(𝑘, 𝑗).

Through these iterative steps, the Blocked Floyd-Warshall algo-
rithm efficiently discovers the shortest paths in a blocked fashion,
leveraging the locality of reference to improve cache efficiency and
overall computational performance.

Related Work. In 1987, Jenq and Sahni [19] developed the first
2D distributed memory algorithm for the Apsp. In 1991, Kumar &
Singh [23] analyzed the different Apsp algorithms that developed
the compute-communication overlapping scheme without blocking.
Besides overlapping, Solomonik et al. proposed a communication-
avoiding parallel Apsp which uses 2.5D process grid [34]. The first
distributed GPU Apsp showed good performance for smaller clus-
ters [9], but the centralized communication scheme limits the scal-
ability beyond 64GPUs. In 2020, Sao et al. [31] first used optimized
semi-ring matrix multiplication as a building block for computing
the Floyd-Warshall algorithm. In 2021, Sao et al. [32] demonstrated
the first scalable GPU Dist-FW. This algorithm was used in Dsnap-
shot [20] and Coast [21].

Besides Dist-FW, a different effort to define graph algorithms
in terms of linear algebra was initiated by the GraphBlas Forum
[12]. This development motivates approaches combining graph
algorithms with the MPI runtime, such as CombBLAS [4] and
SuiteSparse [7]. However, these libraries mainly focus operations
on sparse data set and portability. There has not been an effort
focused on performance on massive data sets.

2.4 2D Block-cyclic data distribution

The 2D block-cyclic data distribution scheme splits a matrix 𝐴 into
blocks, (𝑖, 𝑗). Each block stands for a submatrix 𝐴[𝑖𝑏 : (𝑖+1)𝑏, 𝑗𝑏 :
( 𝑗+1)𝑏] with a block size 𝑏. In some applications such as, Sparse
direct solvers, the block size can beuneven. Specific processes re-
ceive block assignments (𝑖, 𝑗) based on row and column indices
𝑃𝑟 (𝑖) and 𝑃𝑐 ( 𝑗).

This scheme presents numerous benefits. It guarantees data own-
ership, meaning it is always clear which process is responsible for
which submatrix. Consequently, the location of the data is always

known. Additionally, it establishes the owner update policy, mean-
ing that only the owner process updates a block, thereby eliminating
coordination among multiple processes. The scheme achieves load
balancing via fine-grained blocked partitioning, which prevents im-
balances when updating parts of the matrix. Random submatrices of
𝐴 usually distribute evenly among processes, supporting arbitrary
grid dimensions and efficient computations across the distributed
system. Communication within process rows and columns is vital
in this scheme. Most communication occurs between processes
in the same row or column, minimizing overhead and promoting
efficient data exchanges.

While block-cyclic distribution offers significant benefits, it is im-
portant to mention alternative data distribution strategies and their
development. These include 2D data distribution without block-
cyclic characteristics, Partitioned Global Address Space [8], and
tiled block-cyclic distribution [14]. In contrast to 2D data distribu-
tion, the PGAS (Partitioned Global Address Space) model provides
a shared memory-like programming model while leveraging the
distributed memory architecture. This approach is supported by
languages such as Unified Parallel C (UPC) [10], Co-Array Fortran
(CAF) [28], and Chapel [5]. PGAS is particularly useful when dy-
namic load balancing is required [26]. Each alternative differs in
how the local submatrix is stored locally and frameworks such as
Slate support various options. Many of the optimizations readily
apply to when the local storage is in a different format.

2.5 Distributed Implementation

For the distributed version of HPL-MxP and Dist-FW algorithms,
we partition the global matrix 𝐴 into 2D Block-cyclic data distri-
bution described in section 2.4 and implemented the numerical
steps in section 2.2 and 2.3. For HPL-MxP, we used accelerator-
specific BLAS (Basic Linear Subprograms) and additional native-
implemented casting kernels for precision conversion. The ker-
nels we used are SGETRF_nopivot (single precision LU factoriza-
tion), STRSM (single precision triangular solve) and GEMM_ex
(mixed precision general matrix matrix multiplication) from AMD
rocBLAS [2] and Nivida cuBLAS [29], For Dist-FW, we imple-
mented the required SEMIRING-GEMM kernel. Pseudo code is pro-
vided in Algorithm 1 and Algorithm 2. The two implementations
are called OpenMxP and Dsnapshot.
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Algorithm 1 Distributed mixed Precision LU on 2D process grid
1: Input: 𝑁, 𝐵, 𝑃𝑟 , 𝑃𝑐
2: Fill global matrix 𝐴 with random numbers.
3: On each MPI process 𝑝𝑖𝑑 do in parallel:

4: for 𝑘 = 1, 2, 3 . . . 𝑛𝑏 do

5: 𝑃𝑖𝑟 , 𝑃𝑖𝑐 ← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑚𝑎𝑝𝑝𝑖𝑛𝑔 (𝑘 ) // 𝐴𝑘,𝑘 owner process index
6: if 𝑝𝑖𝑑 == 𝑃 (𝑃𝑖𝑟 , 𝑃𝑖𝑐 ) then

7: 𝐴(𝑘, 𝑘 ) ← GETRF (𝐴(𝑘, 𝑘 ) )
8: Broadcast 𝐴(𝑘, 𝑘 ) to 𝑃 (𝑃𝑖𝑟 , :) and 𝑃 (:, 𝑃𝑖𝑐 )
9: if 𝑝𝑖𝑑 ∈ 𝑃 (𝑃𝑖𝑟 , :) then
10: Receive 𝐴(𝑘, 𝑘 )
11: 𝐴(𝑘, 𝑘 + 1 : 𝑛) ←
12: TRSM_L_LOW (𝐴(𝑘, 𝑘 ), 𝐴(𝑘, 𝑘 + 1 : 𝑛))
13: 𝑈 ← TRANS_CAST (𝐴(𝑘, 𝑘 + 1 : 𝑛) )
14: Broadcast𝑈 to processes in 𝑃 (:, 𝑝𝑖𝑐 )
15: else

16: Receive𝑈
17: if 𝑝𝑖𝑑 ∈ 𝑃 (:, 𝑃𝑖𝑐 ) then
18: Receive 𝐴(𝑘, 𝑘 )
19: 𝐴(𝑘 + 1 : 𝑛,𝑘 ) ←
20: TRSM_R_UP (𝐴(𝑘, 𝑘 ), 𝐴(𝑘 + 1 : 𝑛,𝑘 ))
21: 𝐿 ← CAST (𝐴(𝑘 + 1 : 𝑛,𝑘 ) )
22: Broadcast 𝐿 to processes in 𝑃 (𝑝𝑖𝑟 , :)
23: else

24: Receive 𝐿
25: 𝐴(𝑘 + 1 : 𝑛,𝑘 + 1 : 𝑛) ← GEMM (𝐿,𝑈 ,𝐴(𝑘 + 1 : 𝑛,𝑘 + 1 : 𝑛) )
26: IR omitted

Algorithm 2 Parallel Floyd-Warshall algorithm on 2D process grid

1: function ParallelFW(𝐴, 𝑃 = 𝑃𝑟 × 𝑃𝑐 ) ⊲ 𝐴 is distributed in
block-cyclic fashion ⊲ my process Id is 𝑝𝑖𝑑

2: for all MPI process 𝑝𝑖𝑑 in parallel do
3: for 𝑘 ∈ {1, 2, . . . , 𝑛𝑏 } do
4: if 𝑝𝑖𝑑 = 𝑝𝑘,𝑘 then

5: 𝐴(𝑘, 𝑘) ← Floyd-Warshall(𝐴(𝑘, 𝑘))
6: Broadcast(𝐴(𝑘, 𝑘), 𝑃𝑟 (𝑘))
7: Broadcast(𝐴(𝑘, 𝑘), 𝑃𝑐 (𝑘))
8: if 𝑝𝑖𝑑 ∈ 𝑃𝑟 (𝑘) then
9: Receive(𝐴(𝑘, 𝑘), 𝑝𝑘,𝑘 )
10: 𝐴(𝑘, :) ← 𝐴(𝑘, :) ⊕ 𝐴(𝑘, 𝑘) ⊗ 𝐴(𝑘, :)
11: Broadcast(𝐴(𝑘, :), 𝑃𝑐 (𝑝𝑖𝑑))
12: else

13: Receive(𝐴(𝑘, :))
14: if 𝑝𝑖𝑑 ∈ 𝑃𝑐 (𝑐) then
15: Receive(𝐴(𝑘, 𝑘), 𝑝𝑘,𝑘 )
16: 𝐴(:, 𝑘) ← 𝐴(:, 𝑘) ⊕ 𝐴(:, 𝑘) ⊗ 𝐴(𝑘, 𝑘)
17: Broadcast(𝐴(:, 𝑘), 𝑃𝑟 (𝑝𝑖𝑑))
18: else

19: Receive(𝐴(𝑘, :))
20: for 𝑖 ∈ {1, 2, . . . , 𝑛𝑏 } do
21: for 𝑗 ∈ {1, 2, . . . , 𝑛𝑏 } do
22: if 𝑝𝑖𝑑 owns 𝐴(𝑖, 𝑗) then
23: 𝐴(𝑖, 𝑗) ← 𝐴(𝑖, 𝑗) ⊕ 𝐴(𝑖, 𝑘) ⊗ 𝐴(𝑘, 𝑗)

3 OPTIMIZATION

3.1 Overlapping Communication with

Computation

One crucial strategy to enhance performance in distributed com-
puting systems is to overlap communication with computation.
This is achieved by the HPL-MxP and Dist-FW algorithms using
a look-ahead optimization. This method breaks down operations
into smaller, manageable components. It allows the system to rank
computation and communication tasks based on cost, facilitating
simultaneous execution of computations even while waiting for
data from other nodes. Unlike the traditional bulk-synchronous
structure, look-ahead optimization doesn’t force processes to stall
until each node finishes its current task. Instead, it allows the next
computation or communication step to proceed. This technique,
known as pipelining, enables overlapping communications between
different stages of a calculation without requiring each process to
wait for others.

This approach reduces idle time, where no work is done, and
boosts efficiency by using resources more effectively. In summary,
overlapping communication with computation via look-ahead opti-
mization minimizes delays and maximizes resource use, leading to
improved performance in distributed computing systems. In Fig 3,
we show the effect of look-ahead using weak scaling of Dsnap-
shot on Summit as an example. We will consider the look-ahead is
applied to all runs for the following paper.

3.2 Mapping 2D Partitioned Algorithm to

Architecture

To enhance performance in distributed computing systems, wemust
effectively adapt the computation to the architecture. We achieve
this optimization through two strategies: increasing bandwidth
and reducing latency. Increasing bandwidth boosts the rate of data
transfer between nodes over time. This strategy necessitates a solid
understanding of constraints like network topology, communica-
tion protocols, and hardware limitations specific to the application.
Similarly, reducing latency, or the time data takes to travel between
nodes, requires the same depth of knowledge regarding network
topology and hardware constraints.

Choosing Grid dimensions. Contrary to popular belief, a square
process grid (i.e., 𝑃𝑟 = 𝑃𝑐 ) doesn’t necessarily minimize commu-
nication costs as it often overlooks the network architecture. For
instance, while 𝑃𝑟 = 𝑃𝑐 reduces total communication for each pro-
cess, it fails to distinguish between data transferred to a different
node, and data exchanged within the same node, neglecting the
significant differences in bandwidth and latency.

To decrease communication time, we should focus on the slowest
link used by the application, often the network interface card (NIC),
when not using IO or NVME. By mapping computation to archi-
tecture, we can optimize the NIC usage and maximize bandwidth.
This involves identifying the data sent via each NIC and optimizing
its transmission.

Consider MPI processes arranged in a 2D grid of dimension
𝑃𝑟 × 𝑃𝑐 . If a subset of processes 𝑄 share a single NIC, we can ar-
range them in a logical grid 𝑄𝑟 ×𝑄𝑐 , resulting in a logical 2D grid
arrangement of NICs with dimensions 𝐾𝑟 × 𝐾𝑐 where 𝐾𝑟 = 𝑃𝑟 /𝑄𝑟
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and 𝐾𝑐 = 𝑃𝑐/𝑄𝑐 . We aim for 𝐾𝑟 ≈ 𝐾𝑐 to minimize data transfer
through the NIC. In practice, we usually assign ranks in a spe-
cific manner to achieve this configuration. For example, we use
an explicit resource file on the Summit supercomputer to deter-
mine where each rank resides. The default method of assigning
rank can lead to poor performance as all the ranks on the node are
consecutive in one direction, often resulting in an unbalanced grid
structure when partitioning into a 2D grid. In Figure 4a, we present
a logical representation of 𝑄𝑟 (𝑃) and 𝑄𝑐 (𝑄) for six nodes in both
the default and optimized configurations. In the default scenario,
each NIC transfers data at a cost of 2𝑛2, indicating high commu-
nication overhead. However, in the optimized scenario with more
effective node arrangements, the communication cost decreases to
5𝑛2/3. This demonstrates that adjusting the grid structure and rank
distribution can significantly reduce communication overhead and
improve NIC bandwidth utilization.

System Specific Features. Communication optimization depends
on several factors, including available resources such as network
adapters, the employed communication protocols (TCP/IP or RDMA),
and network topology constraints (fat-tree, torus, dragonfly, etc.).
These factors demand careful thought when designing an efficient
distributed computing system.

A Summit node contains two NICs that are each connected to a
socket. One of the key features it provides is to bind the two NICs
to serve one send/recv by stripping and relaying data through the
CPU-CPU connection. This binding feature increase the effective
bandwidth for most bandwidth bound problems. Given HPL-MxP
andDist-FW are both densematrix operations with 2D Block-cyclic
data distribution, which consist of bandwidth bounded communica-
tion, binding features would significantly improve the application
performance.

Different from Summit, Frontier NICs are directly connecting to
GPU instead of CPU. GPU-aware MPI is highly suggested to be used
to remove data transfer overhead for distributed GPU applications.
This prompted to select the residency of input matrix 𝐴 on GPU
and use GPU-aware MPI to achieve maximum performance.

We highlight the advantage of different combinations of 𝑄𝑟 and
𝑄𝑐 with architecture specific features in Figure 5. The performance
was measured using OpenMxP and the percentage improvement
of floating points operations per second (FLOPS) over the default
setting. It provides insights into how adjusting these parameters
affects the effective bandwidth and allows us to identify the optimal
configuration for maximizing this metric. This figure emphasizes
the importance of carefully mapping computation to architecture
through rank distribution/grid arrangement, leading to substantial
improvements in communication efficiency.

3.3 Optimizing Broadcast Operations

In the HPL-MxP and Dist-FW algorithms, we need to perform
broadcasts across process rows and columns in each iteration. The
broadcast source shifts one step per iteration to ensure all processes
have updated data. For example, process 𝑃𝑟 (𝑘) handles the broad-
cast in the 𝑘-th iteration, and in the subsequent iteration (𝑘+1),
process 𝑃𝑟 (𝑘 + 1) takes over this task. The same pattern applies to
column communication operations.
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Figure 4: (a) Example of different node local grid, and the

metric that impact the communication time. (b) Different

Variant of Ring Broadcast used in our experimentation

None Binding
Qr=6  Qc=1 Qr=6  Qc=1 Qr=3  Qc=2 Qr=2  Qc=3

lBcast 25.67% 46.15% 49.92% 49.48%
Bcast 100.00% 135.79% 155.00% 141.79%

1r 81.68% 131.15% 135.69% 132.66%
2rM 81.37% 131.18% 135.93% 132.61%

No GPU-aware

Qr=8  Qc=1 Qr=8 Qc=1 Qr=4  Qc=2 Qr=2  Qc=4
Bcast 100.00% 156.61% 163.81% 163.29%

1r 128.07% 182.28% 192.39% 193.59%
2rM 134.42% 189.58% 194.61% 194.45%

Frontier P=1024
GPU-aware MPI

Summit P=2916
Binding 

Figure 5: OpenMxP performance improvement over the base-

line for different grid and platform specific features. Baseline

are marked in green, best improvement are marked in red.

1r/2rM stand for 1-ring /2-rings-Modified broadcast.

Tree-based broadcast algorithms, such as binary trees and Fi-
bonacci trees, are commonly used in distributed computing systems
to achieve efficient data communication among nodes. However,
for 2D partitioned matrix applications like HPL-MxP and Dist-FW
algorithms, the Ring family of broadcasts may outperform tree-
based broadcasts as it aligns well with the communication pattern.
The Ring family of broadcast algorithms offers various variants,
including modified and different number of rings (see Fig. 4b). The
number indicate the number of rings that execute concurrently. The
selection of the appropriate broadcasting algorithm depends on the
constraints of the network topology and performance requirements.

Chunked 2D broadcast. Our proposed algorithm, Chunked Ring
Broadcast(Alg 3), adapts Ring broadcast to mitigate latency costs
linked with large message transmissions. This algorithm divides
the original message into approximately equal parts, or ’chunks’ of
a size termed 𝐶𝑆𝑖𝑧𝑒 . It conducts two simultaneous broadcasts, one
each along the process row and column.

If a process belongs to the root row or column, it initiates the
relaying of message chunks via the ‘relay’ function. The ‘relay’
function receives a chunk and passes it to the succeeding process in
the ring. This procedure continues, with the algorithm monitoring
the relayed chunks for both row and column broadcasts, denoted
by variables 𝑖𝑟 and 𝑗𝑐 .

Subsequently, the algorithm enters a loop to check for the com-
plete relay of all chunks. If chunks are pending for relay, it confirms
their receipt. Upon receiving a chunk, the ‘relay‘ function triggers
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Algorithm 3 Chunked Broadcast Algorithm

1: procedure Chunked2DBroadcast
Require: 𝐶𝑆𝑖𝑧𝑒 , 𝑃𝑟 , 𝑃𝑐 , 𝑅𝑟 , 𝑅𝑐 , 𝑁𝑟 , 𝑁𝑐 , 𝐵𝑢𝑓𝑟 , 𝐵𝑢𝑓𝑐
2: Variables: Chunk Size, Process row/column communicator,

Row/Column root, Number of chunks for row/column broad-
cast, Buffer for row/column broadcast

3: 𝑖𝑟 = 0, 𝑗𝑐 = 0
4: for each process (𝑝𝑥, 𝑝𝑦) in parallel do
5: if I am in the root row then

6: for 𝑖 ← 0 to 𝑁𝑟 − 1 do
7: relay(𝑃𝑟 , 𝑅𝑟 , 𝐵𝑢𝑓𝑟 [𝑖])
8: 𝑖𝑟 ← 𝑁𝑟

9: if I am in the root column then

10: for 𝑗 ← 0 to 𝑁𝑐 − 1 do
11: relay(𝑃𝑐 , 𝑅𝑐 , 𝐵𝑢𝑓𝑐 [ 𝑗])
12: 𝑗𝑐 ← 𝑁𝑐
13: while 𝑖𝑟 ≠ 𝑁𝑟 or 𝑗𝑐 ≠ 𝑁𝑐 do
14: if 𝑖𝑟 ≠ 𝑁𝑟 then

15: check receive(𝑖𝑟 )
16: if received then

17: relay(𝑖𝑟 )
18: 𝑖𝑟 ← 𝑖𝑟 + 1
19: if 𝑗𝑐 ≠ 𝑁𝑐 then
20: check receive( 𝑗𝑐 )
21: if received then

22: relay( 𝑗𝑐 )
23: 𝑗𝑐 ← 𝑗𝑐 + 1
24: end procedure

to advance it to the following process in the ring, and the corre-
sponding counter (𝑖𝑟 or 𝑗𝑐 ) increments.

The chunking mechanism actively pipelines broadcasts for row
and column communicators, reducing Ring broadcast latency and
tolerating network fluctuations. The granularity of chunked trans-
mission lets chunks fail and recover independently, minimizing
the influence of network issues on overall message transmission.
Empirical evidence shows that this chunked broadcast implemen-
tation outperforms others (Fig. 7b), providing greater resilience
against unexpected network behaviors. It smoothly manages net-
work faults, but further research must identify the origins of these
faults and the reasons for this algorithm’s increased resilience.

Discussion of various experiments. The results and data pre-
sented bring into focus the varying efficiencies of different broadcast
algorithms in the context of the HPL-MxP and Dist-FW algorithms.
A broad range of communication patterns and their effects on work-
loads were studied on Frontier. We denote 1-ring as 1r, 2-rings as
2r, modified Ring as rM and chunked version with C at the end.

We focus on only the first 1200 iterations for the Dist-FW work-
load because its communication workload stays constant through-
out the run. In Figure 6a the 2-rings-Modified-chunked version of
the Ring broadcast surpasses most other communication methods
for Dist-FW. It does not produce the lowest per iteration runtime
but produce the highest overall performance. This suggests that
using the chunked technique can effectively reduce the high latency
costs commonly linked to broadcasts.

On the other hand, 1-ring-Chunked method shone promise in
the HPL-MxP context, as Figure 6b shows. This variant seemed
to align well with the decreasing workload of HPL-MxP over the
iterations and performed better than other Ring implementations.

Process 0 provided the perspective for the reported runtimes
measurements. We noted a consistent rise and fall in both work-
loads in the runtime. Process 0’s position at the ring’s tail caused the
increase, while its location at the source resulted in the fall. The fig-
ure illustrates that the rise halves from a 1-ring to a 2-rings due to
the ring’s shorter length. Additionally, the integration of OpenMP
had a notable impact. We modified Algorithm 3 to utilize separate
OpenMP threads for each communication direction (Row/Column).
This modification substantially alleviated congestion during 2D
grid communication, especially when two messages arrived simul-
taneously (Fig 6c). By effectively managing this common scenario,
we reduced communication time considerably. Therefore, incorpo-
rating OpenMP proved beneficial by decreasing communication
time and enhancing the broadcast algorithm’s performance.

The effect of different chunk sizes on the communication was
also investigated (Fig 7a). Surprisingly, a chunk size of 2 MB ap-
peared to outperform other sizes on the Frontier fabric. This pro-
vides valuable insights for future broadcast implementations on this
system, suggesting an optimal chunk size for minimizing latency
and maximizing efficiency. We measured the bandwidth usage for
a full HPL-MxP workload (Fig 7b). Notably, 1-ring-Chunked with
OpenMP shows superior performance as the message size increases.
An interesting trend appeared in the average bandwidth across vary-
ing data sizes during an HPL-MxP workload run (Fig 7c). Even as
the number of nodes doubled, the average bandwidth consistently
stayed between 95-98%. This suggests that the Ring broadcast algo-
rithms, particularly the chunked versions, efficiently reduce latency
and preserve bandwidth.

In summary, our findings emphasize the promise of the Ring
broadcast algorithms, particularly their chunked version, for 2D par-
titioned matrix applications like HPL-MxP and Dist-FW. Utilizing
pipelining and chunking techniques and multi-threading solutions
like OpenMP are powerful methods for enhancing communication
efficiency in distributed computing systems. Further exploration
of these advanced broadcasts’ resilient behavior, especially against
unpredictable network conditions, is a valuable focus for future
research.

4 APPLICATION PERFORMANCE

To evaluate the use of the optimization from section 3, we attempted
the close-to-full scale runs on Frontier to evaluate the improvement.

The full scale Dist-FW adding chunked communication was
run on Frontier. In Fig 8a, we observe only a slight improvement
in application performance on chunked and the original 2-rings
broadcast, as Dist-FW is primarily a computed bound problem at
this scale. However, the new broadcast suffers significantly less
from frequent network jitters than the original.

The comprehensive OpenMxP program runs on Frontier and
includes LU factorization and iterative refinement (IR). However,
because IR only accounts for 1-2% of the total execution time,
we will mainly focus on the LU factorization results. As shown
in Fig 8b, we compared the OpenMxP’s runtime per iteration
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Figure 6: (a) Per iteration broadcast time of Dist-FW communication on 2,809 Frontier nodes (𝑃𝑟 = 𝑃𝑐 = 212) and N = 6,946,816
for different broadcasts. (b) Per iteration broadcast time of HPL-MxP communication on 2,048 Frontier nodes (𝑃𝑟 = 𝑃𝑐 = 128)

and N = 16.05M for different Ring broadcast. (c) Per iteration broadcast time of (b) with openMP. We color the broadcast based
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Figure 7: (a) Per iteration broadcast time of Dist-FW communication on 2,809 Frontier nodes (𝑃𝑟 = 𝑃𝑐 = 212) and N = 6,946,816
for different chunk size. (b) Average bandwidth of various HPL-MxP communication size on 2,048 Frontier nodes. (c) Average
bandwidth of HPL-MxP communication on 2,048 and 4,232 Frontier nodes (𝑃𝑟 = 𝑃𝑐 = 128 and 184) for different Ring and size.
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Figure 8: (a) Sustained Flops of Dsnapshot on 9,025 nodes (𝑃𝑟 = 𝑃𝑐 = 380) and N = 7.5M. (b) Per iteration runtime of OpenMxP

on 9,248 nodes (𝑃𝑟 = 𝑃𝑐 = 272) and N = 34.24M for Ring broadcasts. (c) Sustained Flops of (b). Omitting IR.
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with the previous Frontier HPL-MxP ranking. We performed these
runs using ROCM/5.4.3 and replaced device_synchronization with
hipEvent_synchronization in the new 1-ring-Chunked setup. This
change resulted in the shortest per iteration runtime. Fig 8c reports
the sustained exaFlops performance of all three runs. We found that
the 2-rings-Modified model failed to maintain the ROCM improve-
ments at scale due to its high communication overhead. However,
with the use of 1-ring-Chunked communication, OpenMxP man-
aged to achieve nearly 10 ExaFlops in the mixed precision LU
solution - marking a first in this field. Both Dist-FW and OpenMxP
demonstrated that chunked variants experienced fewer disruptions
from unexpected network timeouts than their non-chunked coun-
terparts, a factor that was crucial for reaching these performance
benchmarks.

5 PERFORMANCE MODEL

5.1 Motivation

Optimizing high-performance computing (HPC) applications relies
heavily on effective performancemodeling. This approach allows us
to set realistic performance goals, identify and resolve performance
issues, and steer optimization strategies. Yet, performance modeling
presents several obstacles:
• The performance of different implementations for various
routines depends on operand sizes.
• Fluctuations in operand sizes, such as those in HPL, compli-
cate performance prediction.
• As problem scale changes, so do operand sizes across scales,
adding difficulty to performance prediction.
• Developing analytical models for opaque components, like
closed-source libraries, is challenging.
• Analytical models, while useful, often display a discrepancy
between theoretical and observed performance due to the
abstraction of hardware architecture details.

Addressing these challenges, we aim to create composable perfor-
mance models. These models will maintain accuracy across various
operations and accommodate the limitations as mentioned earlier.
Our proposed solution centers on the use of hyperbolic performance
models. This approach will provide a more accurate, generalizable
HPC application performance modeling method.
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Figure 9: (a) Predicted vs observed performance of GEMM_ex.

(b) OpenMxP performance prediction with combinedmodels

5.2 Hyper Model

Predicting performance accurately in parallel applications is a sig-
nificant challenge. We need a versatile model that can handle a

variety of situations, not just those with large problem parame-
ters. “Asymptotic models”, the traditional models, often fail when
problem sizes per process decrease while the number of processes
increases. Due to their single asymptote (𝑥 →∞), this limitation
calls for a more flexible approach. We propose hyperbolic perfor-
mance models as a solution. They provide two linear asymptotes
(𝑥 →∞ and 𝑥 → 0), making them simple yet effective.

A hyperbolic performance model is a function 𝑦 = 𝑓 (𝑥) that out-
lines a hyperbola on an 𝑥𝑦-plane. Here, 𝑦 represents performance,
a throughput-oriented metric like FLOP/sec to be predicted, and 𝑥
stands for the problem parameter. We describe this function as:

𝑦 := 𝑓 (𝜂) = 𝑎𝜂

𝜂 + 𝑑 𝑎, 𝑎𝑑 ≠ 0.

In this function, 𝜂 is a performance parameter, while 𝑎 and 𝑑
are constants to be determined. Roughly, ’a’ corresponds to peak
throughput, and ’d’ connects to latency (not necessarily the MPI
communication latency). As an empirical model, it doesn’t show
an obvious analytical relationship, so we need some measurements.
The traditional ’least-squares fit’ method may not be sufficient to
estimate the values of 𝑎 and 𝑑 that best match our observed data,
as it heavily favors larger operand sizes. Instead, we identify the
values of 𝑎 and 𝑑 that minimize the difference between the observed
performance, 𝑔(𝜂𝑖 ), and the model’s prediction, 𝑓 (𝜂𝑖 ), for a specific
problem parameter 𝜂𝑖 :

𝑎𝑟𝑔 min
𝑎,𝑑

∑︁ 1
𝜂𝑖
·
(
log

𝑓 (𝜂𝑖 )
𝑔 (𝜂𝑖 )

)2
.

We utilize a simple method to get approximate values of 𝑎 and 𝑑 .
Here, we take ’a’ as the maximum observed performance value and
choose ’d’ as the value of 𝜂𝑖 that makes 𝑔(𝜂𝑖 ) closest to 𝑎/2.

Hyperbolic performance models show remarkable flexibility in
accommodating changes in operand sizes and problem scales. They
effectively handle the theoretical and observed performance gap
by using observed performance data to determine model constants.
As a result, they serve as an efficient and versatile tool for the
performance modeling of HPC applications. Their simplicity and
rational function form allow for faster approximations, even in
quick, rough calculations.

5.3 Application Performance Modeling

We follow a structured approach when modeling performance. First,
we model each component without assumptions or approximations.
At this phase, the performance of some operations might depend
on multiple variables.

Our model enables us to calculate iteration times accurately, con-
sidering variations in operand size. This feature proves beneficial
when handling diverse workloads and computational tasks. For
instance, operand sizes in OpenMxP, including the trailing matrix
and panel size, vary with each iteration.

Unlike traditional asymptotic models, our hyperbolic model cap-
tures these changes effectively, thus predicting performance more
accurately. As shown in Figures 9a, our model accurately tracks
most mixed precision GEMM behavior with various local matrix
sizes. However, we notice some differences between predicted and
observed performance. To our knowledge, the mixed precision
GEMM performance in rocBLAS primarily relies on the underlying
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auto-tuning library (Tensile). Therefore, reducing the performance
fluctuation for various sizes remains a work in progress. We also
use our model to predict scaling performance by integrating it with
the model designed for broadcast. We applied this model to fore-
cast the scaling performance of OpenMxP with 1-ring-Chunked
broadcast, as depicted in Figure 9b. The prediction was within 5% of
the actual run. Beyond the above use case, we can utilize this model
to establish a more accurate analytical expression for application
performance. The structure of our hyperbolic model often reflects
in these analytical expressions of iteration times, indicating the
model’s accuracy. We aim to employ these models for dynamic
algorithm selection during runtime.

6 DISCUSSION

In this section, we elaborate on several challenges we faced during
the optimization and note possible future work.

6.1 Compute and Communication Overlapping

In the implementation of the look-ahead optimization, we designed
three approaches to overlap computation and communication for
the diagonal process in HPL-MxP, as illustrated in Figure 10a. No-
tably, the size of the GEMM update varies throughout the run.

Initially, we employed a straightforward method: utilizing a
non-blocking broadcast. This allowed kernels with separate data
to proceed without communication delays. However, we encoun-
tered a challenge on Summit, which is detailed in the subsequent
subsection. The second approach involved a non-blocking GEMM
kernel with GPU_Device_synchronized to manage dependencies.
Yet, this method required restricting the overlap of two broadcasts
to only one part of the computation synchronization chunk. To op-
timize this second approach, we synchronized the communication
with the GEMM_Update. Ultimately, we adopted event-based syn-
chronization to strike a balance between programming simplicity
and maximizing the overlap of computation and communication,
ensuring the most efficient control over dependencies.

This enhancement process was complex due to the absence of a
stream parameter in MPI. Many current accelerators use the stream
parameter to handle data dependencies. It might be beneficial for
the MPI interface to incorporate the stream parameter to manage
data dependency on accelerators, creating something like a stream
triggered MPI implementation.

6.2 Underlying MPI Implementation

During the optimization of the cross platform Dsnapshot and
OpenMxP, we encountered two different implementations of the
MPI library, namely Spectrum-MPI (developed by IBM) and Cray-
mpich (developed by HPE). Our application’s performance was
significantly impacted by the divergent behavior of each of MPI
library. When employing non-blocking communication on Summit
(MPI_Icast, MPI_Isend, MPI_Irecv), we observed a considerable
reduction in bandwidth, as shown in Figure 5.

Additionally, when activating GPU-awareness for Spectrum-MPI
to grant NICs direct access to GPU memory, we noticed an unex-
pected behaviorwith Spetrum_MPI_Bcast and Spetrum_MPI_Ibcast.
The library broadcast appears to synchronize the device prior to
initiating the broadcast, causing our overlapping strategies that

depend on non-blocking GPU kernels to fail. This reinforces our
suggestion, the need for an accelerator synchronization mechanism
within the MPI standard.

6.3 Variation in runs

While collecting data for the Frontier system network, we encoun-
tered random communication hangs or delays. These irregular
delays or hangs could occur anywhere from 10 seconds up to 60
seconds, as shown in Figure 10b. At the user level, MPI would de-
tect a timeout, but the root cause of these spikes remained elusive.
We suspect this behavior could be linked to redistribution of a
new dynamic routing table or dynamic routing itself. In reference
to Algorithm 3, chunked communication seems to exhibit greater
resilience to this issue. In the future, we plan to design a broad-
cast algorithm that is topology-aware for large networks and more
resilience in the face of transient issues.
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Figure 10: (a) Communication Computation Overlap Mecha-

nism. (b) Network hang observed in DSNAPSHOT run.

7 CONCLUSION

In conclusion, this study highlights the complexity involved in
improving communication between processes in 2D partitioned
MPI applications. To improve inter-process communication per-
formance, numerous factors, including algorithms, system design,
and architecture, need to be considered. We design a new “chunked
2D broadcast” algorithm that cleverly combines row and column
broadcasts. The implementation of this algorithm, alongside other
optimized broadcasts for OpenMxP and Dsnapshot applications,
led to significant performance improvements. Specifically, Dsnap-
shot reached nearly one exaflop, while OpenMxP set a new record,
nearing 10 exaflops.

We studied communication and computation overlaps across
different scales and machines, gaining valuable insights. In addi-
tion, we presented a predictive model to simplify the optimization
process and reduce the necessity for a large number of large-scale
runs. As a practical contribution, we identified several issues and
suggested useful MPI features to improve optimization strategies.
This effort ultimately strives to push the boundaries of performance
at the exascale level.

Future research will focus on expanding these techniques to a
broader array of applications and further enhancing communication
optimization using techniques such as communication-avoiding 3D
algorithms. Moreover, designing a resilient communication library
capable of mitigating transitive network failures or delays is another
crucial area for future exploration.
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