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Abstract—Power outages caused by extreme weather events,
such as hurricanes, can significantly disrupt essential services and
delay recovery efforts, underscoring the importance of enhancing
our infrastructure’s resilience. This study investigates the spread
of power outages during hurricanes by analyzing the correla-
tion between the network of critical infrastructure and outage
propagation. We leveraged datasets from Hurricanemapping.com,
the North American Energy Resilience Model Interdependency
Analysis (NAERM-IA), and historical power outage data from
the Oak Ridge National Laboratory (ORNL)’s EAGLE-I system.
Our analysis reveals a consistent positive correlation between the
extent of critical infrastructure components accessible within a
certain number of steps (k-hop distance) from initial impact areas
and the occurrence of power outages in broader regions. This
insight suggests that understanding the interconnectedness among
critical infrastructure elements is key to identifying areas indirectly
affected by extreme weather events.

Index Terms—correlation, IAPT, power outage, and infrastruc-
ture

I. INTRODUCTION

Extreme weather events, such as hurricanes, can cause power
outages with far-reaching consequences, highlighting the need
for a deeper understanding of how these outages spread to
strengthen our infrastructure’s resilience. It’s crucial for plan-
ners, emergency responders, and experts to accurately evaluate
the potential impacts of such events and pinpoint the vulnerable
hotspots.

However, assessing the extent of power outages and their
impacts is a complex task. This complexity arises because
power outages can occur unpredictably, affecting areas without
obvious connections to or even far from the main zones of
the weather event. Thus, it’s essential to study the network of
critical infrastructure and its interdependencies to understand
how disruptions to key components can lead to widespread
effects across various regions.

In this study, our analysis utilized datasets from three dis-
tinct sources. The first dataset, from hurricanemapping.com [1],
provides forecasted wind swath data from historical hurricanes,
offering a broad view of different wind speed ranges. The
second dataset, from the NAERM-IA, includes a graph depict-
ing the interdependencies among various critical infrastructure
elements in the U.S., such as electric buses and transmission
lines. This dataset helps us identify energy components affected
by hurricanes and their connections to other infrastructure
elements. The final dataset, historical power outage data from
ORNL’s EAGLE-I system, enables us to determine the number
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of affected customers and the duration of outages in the areas
hit by hurricanes. By leveraging these datasets together, we
conducted a correlation analysis to understand the relationship
between the infrastructure network’s structure and the spread of
power outages during extreme weather events.

For the historical hurricanes analyzed, our research showed
a positive correlation (greater than 0.6) between the extent
of critical infrastructure components accessible within a k-
hop distance from the starting nodes in each county and the
incidence of power outages affecting customers. This result
indicates that leveraging network analysis, which considers the
interdependencies among critical infrastructure elements, can
effectively identify areas without power impacted indirectly by
extreme weather events.

II. DATA AND METHODS

A. Hurricane Data

Hurricanemapping.com provides data from extreme weather
events, such as hurricanes and tropical storms. Specifically, we
used hurricane forecast wind swath data. Each forecast advisory
generates a polygon map file in shapefile format, which forecasts
wind swaths for the upcoming 72 hours. These forecasts include
three levels of wind speeds: 39 miles per hour (mph), 58 mph,
and 74 mph, represented by tiers of polygons. In our research,
we concentrated on advisories for two notable hurricanes: Ida
and Ian, specifically choosing advisory number 14 for Ida
and number 20 for Ian. Hurricane Ida impacted counties in
Louisiana, Alabama, Mississippi, and Arkansas and for Hur-
ricane lan, Florida, Georgia, South Carolina, North Carolina,
and Virginia were under the impact. From the advisories for
these hurricanes, we identified the regions of interest and the
relevant time frames for our study.

B. Historical Power Outage Data

This work leverages the publicly available power outage data
for the United States Obtained from EAGLE-I [2]. The EAGLE-
I data records the total number of customers experiencing
power outages in specific geographical areas at the county
level, alongside data on the utility companies involved, with
updates provided at 15-minute intervals. For our analysis, we
extracted data on the number of affected customers per county
during the 72 hours covered by the hurricane wind swath data.
Although EAGLE-I’s outage data is originally in a time-series
format with 15-minute granularity, we focused on determining
the maximum number of customers impacted during this period
for each county. This maximum figure is significant because
it offers a snapshot of the peak impact within the timeframe,
providing a clear indicator of the hurricane’s effect on local
power distribution.



C. NAERM-IA Network Data

The North American Energy Resilience Model (NAERM)
is a U.S. Department of Energy (DOE) initiative designed to
enhance the reliability and resilience of energy delivery across
multiple sectors. A key component of this initiative, developed
by ORNL, is the Interdependency Analysis (IA). This tool
is designed to assess the cascading effects of damage within
the power system across an interconnected network. For our
study, we utilized the back-end graph data from NAERM-IA.
This comprehensive graph incorporates 31 different types of
critical infrastructure components, including energy-related ele-
ments (such as generators, transmission line branches, and load
buses) and non-energy-related elements (such as fire stations,
police stations, and banks). In the graph, nodes represent these
components, and edges denote the potential interdependencies
between them. For example, an edge connecting two transmis-
sion lines indicates that a disruption in one could affect the
other. Likewise, an edge from a load bus to a police station
illustrates that a power disruption could lead to outages at the
police station.

Each vertex in the graph is assigned geographical coordinates.
By selecting wind swath data corresponding to a hurricane
event, we can identify energy-related critical infrastructure
components within the hurricane’s impact zone. Following
this identification, we conduct a k-hop neighborhood search
with k values from 1 to 5 to determine components that
are directly or indirectly dependent on the network. These
identified nodes are then considered to be potentially impacted
by the hurricane. Subsequently, we tally the number of impacted
components within each county and correlate these figures with
the maximum number of customer outages recorded during the
hurricane’s impact, obtained from the EAGLE-I data. A higher
correlation value indicates a significant relationship between the
topology of the interdependency network and the actual spread
of power outages, highlighting the value of interdependency
analysis in predicting the effects of such disruptive events on
critical infrastructure.

III. RESULTS

Table 1 presents the Pearson Correlation Coefficients for
different configurations in the context of Hurricanes Ida and
Ian. Notably, correlations consistently exceed 0.5 for IDA-14
and IAN-20 advisories (extreme weather conditions), indicating
a positive relationship. A detailed analysis from Hop-1 to Hop-
5 shows stable correlations, albeit with minor fluctuations.
Remarkably, correlations for k values greater than 1 occasionally
surpass those for direct connections, highlighting the signif-
icance of indirectly connected components in understanding
the full extent of power outage propagation. Furthermore, an
increasing trend in correlation values with more intense wind
speeds at higher k values suggests that stronger winds amplify
indirect impacts within the network. It is also evident from the
rows for advisory number 18 of IDA and 27 of IAN that when
wind speed becomes low the correlation values decrease but
remain almost stable across hop numbers (indirectly connected
components) indicating NAERM-IA importance on power out-
age propagation. Figure 1 (due to the page limitation only two
wind speed forecasts 39 mph, and 74 mph areas are displayed
for hopl, hop3, and hop5) illustrates the power outage spread
during IDA-14 advisory with TA tool neighborhood search up

to 5 hops from the wind speed forecast area. Areas seemingly
located far and undisturbed that are marked by red circles (one
zoomed in subfigure 1(c) ) are likely to be impacted very soon.
This finding is pivotal, as it reveals that high wind speeds
inflict not only immediate damage but also trigger broader,
more intricate cascading effects across the interlinked power

infrastructure.

TABLE I
CORRELATION ANALYSIS RESULT

Hurricane IDA 2021 (Eagle-I outage data selected for a time
period ranging from 2021-08-28 to 2021-09-05)
Hurricane F0.r ce
Advisory ngd Hop-1 | Hop-2 | Hop-3 | Hop-4 | Hop-5
peed
39mph | 0.6077 | 0.6022 | 0.6091 | 0.6185 | 0.6221
IDA-14 58mph | 0.7773 | 0.7696 | 0.7677 | 0.7761 | 0.7870
74mph | 0.7708 | 0.7497 | 0.7463 | 0.7597 | 0.7776
IDA-18 39mph | 0.2749 | 0.2745 | 0.2741 | 0.2804 | 0.2896
39mph | 0.5763 | 0.5580 | 0.5480 | 0.5473 | 0.5531
IAN-20 58mph | 0.7412 | 0.7254 | 0.7159 | 0.7130 | 0.7106
74mph | 0.7180 | 0.7199 | 0.7306 | 0.7421 | 0.7537
IAN-27 39mph | 0.5421 | 0.5146 | 0.4970 | 0.4846 | 0.4820
58mph | 0.4593 | 0.4535 | 0.4584 | 0.4665 | 0.4779

windspeed 39 mph

windspeed 74 mph

1(d) Hop 1 1(e) Hop 3

1(f) Hop 5

Fig. 1. Power outage map (next 72 hours) of affected counties with impacted
infrastructures from NAERM-IA tool for hop-1, hop-2, and hop-3, for two wind
speed levels of IDA 14 advisory

IV. CONCLUSION AND FUTURE WORK

In conclusion, these results emphasize the necessity of a
holistic approach that includes both directly and indirectly
affected areas when analyzing the impact of power outages
caused by extreme weather. For future work, we plan to expand
our correlation analysis to include a wider range of hurricane
events and advisories and will implement various normalization
techniques to address any potential biases in our findings. We
also plan to investigate the reasons for high and low correlation
values in different cases when the NAERM-IA tool is used,
and whether and to what extent the variations in the network
structure of the IA tool affect these correlation values.
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