IRIS Reimagined: Advancements in Intelligent
Runtime System for Task-Based Programming

Narasinga Rao Miniskar![0000-0001-8259-8891] ' Qeyon o T ee! [0000—0001-8872-4932]
Johnston Beau![0000-0001-5426-1415] ' A 330 Young![0000—0002—5448—4667]
Mohammad Alaul Haque Monil! [0000—0003—3419—4037]

Pedro Valero-Lara! [0000*0002’1479’4310], and
Jeffrey S. Vetter! [0000—0002—2449—6720]

Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
(miniskarnr, lees2, johnstonbe, youngar, monilm, valerolarap,
vetter)Qornl.gov

Abstract. Task-based programming models are gaining traction in sci-
entific computing. IRIS is a portable runtime system that exploits mul-
tiple heterogeneous programming systems and can discover available re-
sources and manage multiple diverse programming systems (e.g., CUDA,
Hexagon, HIP, Level Zero, OpenCL, and OpenMP) simultaneously. It ac-
counts for the constraints of task dependencies and provides customizable
scheduling policies to map those tasks to heterogeneous devices. In this
paper, we present new capabilities added to IRIS to improve its portabil-
ity for heterogeneous programming, build-friendliness, and performance
efficiency. The new additions include vendor-specific kernel support, a
runtime system with a foreign function interface to eliminate writing
wrapper or boilerplate code for heterogeneous kernels, an easy-to-use
and configurable CMake-based build environment, automatic and effi-
cient data transfers and orchestration, and the Hunter and DAGGER
toolchains to evaluate IRIS’s task scheduling algorithms.

Keywords: Heterogeneous Computing - Runtime System - IRIS - DMEM
- CUDA - HIP - Task based programming

This manuscript has been authored by UT-Battelle, LLC under contract DE-AC05-
000R22725 with the US Department of Energy (DOE). The US government retains
and the publisher, by accepting the article for publication, acknowledges that the
US government retains a nonexclusive, paid-up, irrevocable, worldwide license to
publish or reproduce the published form of this manuscript, or allow others to do
so, for US government purposes. DOE will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

2 Miniskar et al.
1 Introduction

The current trend in computer architectures is a transition toward extreme
heterogeneity, with a focus on domain-specific computing. Initially observed in
mobile and embedded markets, this trend is expanding into high-performance
computing (HPC), machine learning, enterprise, and cloud computing[8|. Con-
temporary architectures such as NVIDIA Xavier and Qualcomm Snapdragon are
notable examples that indicate the movement toward systems-on-chip (SOCs)
containing multiple heterogeneous processors for diverse applications. In HPC,
most of the top systems are heterogeneous [17], and this trend is expected to
persist. However, the challenge lies in the lack of programming systems that span
these architectures while ensuring performance portability. Various programming
models exist—from directive-based high-level programming (OpenMP [16], Ope-
nACC [15], etc.) and C++ template metaprogramming (Kokkos [5], RAJA [4],
SYCL [7], etc.) to low-level device-specific programming (CUDA [14], HIP [1],
etc.). However, these models’ implementation and portability are inconsistent.
One common feature among these heterogeneous programming models is the
reliance on runtime systems (RTS), which necessitates efficient management of
resources and data dependencies, as well as dynamic balancing of goals during
execution.

To address the challenges posed by increasingly diverse heterogeneous sys-
tems, IRIS [8] was developed to provide enhanced capabilities in heterogeneous
RTSs. IRIS includes features such as online adaptive scheduling, dynamic re-
source discovery, proactive data movement, support for simultaneous execution
of multiple heterogeneous devices, and an interface for online code generation.
These advancements aim to achieve performance portability by dynamically
adapting to system constraints and dependencies that are often unknown until
execution time, offering a solution to the complex scheduling challenges inher-
ent in heterogeneous architectures. This paper presents work that builds on the
original IRIS framework by adding new, more advanced capabilities to IRIS to
make it more portable, easier to program and build, and more performant. The
summary of enhancements and contributions to IRIS is given below.

— Vendor-specific kernels: IRIS was extended to allow vendor-specific kernel
calls. These are written with host wrapper kernel functions to enable vendor-
specific libraries (e.g., cuBLAS) to be callable from IRIS instead of having
to write the kernels in their native device languages (e.g., CUDA).

— Foreign function interface: this contribution extends IRIS to use the foreign
function interface (FFI) library [6] to call the device-specific kernels with
parameters. This means that users can avoid writing the explicit boilerplate
code or wrapper code (written in C++) for each IRIS kernel and each of its
parameters.

— Distributed data memory management: IRIS was extended with a new het-
erogeneous and distributed memory handling mechanism (DMEM) to auto-
mate data movement across devices based on the requirements—but without
the need for the programmer to explicitly specify the host-to-device (H2D)

IRIS Reimagined 3

and device-to-host (D2H) data transfer APIs. DMEM reduces the overall
data transfers by 4x and achieves performance gains of 5x when compared
to the performance of manually handled memory management through H2D
and D2H APIs.

— A heterogeneous build environment was added for IRIS-based applications
to ease the development for heterogeneous systems.

— Support for Hunter: a new framework developed for exploration of scheduling
algorithms. It also offers a runtime simulator for heterogeneous platforms.

— Support for DAGGER: another framework developed to create the artificial
task graphs for evaluating the task scheduling policies of IRIS. A brief ex-
ample of its usage is included in this paper to highlight the device-scaling
performance portability of IRIS.

The rest of the paper is organized as follows: Section 2 provides a description
of the IRIS runtime framework. Section 3 discusses the state-of-the-art runtime
systems and a comparison with IRIS. The extensions of IRIS and new capabilities
are described in Section 4. Section 5 provides the results for each of IRIS’s
new capabilities. Finally, we conclude the paper and describe future work in
Section 6.

2 Background: IRIS

IRIS is a task-based programming model for extremely heterogeneous devices in
a system [8,11,10]. It enables application developers to write applications for
diverse heterogeneous programming platforms with native device-specific pro-
gramming models, including CUDA, HIP, Level Zero, OpenCL, and OpenMP.
IRIS orchestrates multiple programming platforms and consolidates them into
a single execution/programming environment by providing portable tasks and
shared virtual device memory. IRIS provides shared virtual device memory across
multiple disparate physical device memories to achieve application portability
and flexible task scheduling with effective data orchestration [12]. It does so
by automatically transferring data across multiple devices to maintain mem-
ory consistency across tasks. This memory-model abstraction allows developers
to prioritize the application’s primary feature set and overall function rather
than worrying about coding for device-specific memory spread across multiple
heterogeneous devices (unscalable and less portable).

A Task is a scheduling unit in IRIS and is mapped to a device by the cus-
tomizable scheduling policy available in IRIS to run on a single device of hetero-
geneous system. A task comprises zero or more commands; these can be either
data transfer commands or kernel execution commands on an accelerator. The
data transfer commands can be H2D, D2H, or device to device (D2D). The
DMEM methodology added to IRIS automatically derives these data transfer
commands for each task based on the data required for the task, data availabil-
ity on other devices, and data dependency on other tasks. IRIS provides APIs
to indicate the dependency of a task on other tasks.

4 Miniskar et al.

3 Related Work

Task-based dynamic runtimes are positioned as part of the solution to some of
the most important challenges in HPC today [2,11], such as programming pro-
ductivity, performance portability, and extreme heterogeneity. However, novel
developments are needed in software abstractions to increase application porta-
bility using fully dynamic runtime systems to schedule and control highly var-
ied resources. Existing standard approaches rely mostly on static mapping and
scheduling, such that the programmer must decide which device to use for each
task, such as OpenMP tasking [18] or others [9]. We can find two dynamic run-
time systems with good support for the aforementioned challenges :StarPU [3]
and IRIS [8]. Although StarPU provides a relatively easy-to-use interface and
has support for heterogeneous architectures, IRIS goes further by supporting
a simpler interface for a greater variety of devices and programming models.
Moreover, IRIS eliminates the need for a wrapper for the codes to be computed
in the tasks and provides highly optimized memory management that can scale
up performance on a high number of disparate accelerators [13].

4 IRIS Re-imagined

This paper presents work done to extend the IRIS framework with new capabili-
ties to further increase its performance, portability, and programming efficiency.

4.1 Vendor-specific kernels

HPC vendor libraries (such as math libraries) face important challenges caused
by the explosion of in-node heterogeneity. Due to this increasing heterogene-
ity, manual computation orchestration across runtimes and devices is becoming
intractable. Historically, vendors and open-source BLAS libraries have mostly
focused on a single architecture. However, recently, some math libraries from
the open-source community have been focusing on supporting heterogeneity in
their software stack (e.g., Chameleon). However, the need to support hetero-
geneity across a diversity of architectures is still a challenge. The IRIS runtime
system was developed to provide the orchestration: it provides functionalities
such as task offloading, whereby, the computation uses vendor-optimized ker-
nels according to the device to which the task is issued. Using this feature,
IRIS facilitates newer abstractions to solve larger math problems by ensuring
that that most appropriate processors for a given task to harness scalability and
performance. Several vendor library abstractions are built on top of IRIS using
these capabilities, such as MatRIS [13], which encapsulates previous efforts such
as IRIS-BLAS [11], and LARIS [12]. Because of this feature support in IRIS,
MatRIS is fully heterogeneous and portable across heterogeneous systems.

4.2 Foreign Function Interface (FFI)

IRIS requires boilerplate (wrapper) code for each kernel implementation for
an OpenMP device. Adding support for vendor-specific kernel calls [11] high-

IRIS Reimagined 5

iris_sgemm iris_sgemm Vendor Specific Kernels iris_sgemm
CUDA Host Wrapper Code
cUDA
sgemm.cl
OpenCL) OpenCL Host Wrapper Code
- [sgemm.cl.cpp (CLBast]]
HIP HIP Host Wrapper Code

OpenMP Host
Wrapper Code
OpenMP Host Wrapper Code

a) IRIS Task with native CUDA / b) IRIS with the support of vendor specific kernels. (c) IRIS with FFI to call kernel functions without wrapper
OpenCL / HIP / OpenMP Run-times code for both native and vendor specific kernel calls

CUDA] |

[__sgemm.cl{OpenCl] |

[sgemm.hip.cpp (hipBLAS] |
[__sgemm.hip (HIP) |

Fig. 1: IRIS with FFI

lighted that for each call, IRIS also needs boilerplate code—often multiple ver-
sions for each type of supported device (such as CUDA, HIP, and OpenMP).
Figure 1(a,b) shows the boilerplate code requirement for IRIS-native kernels
and vendor-specific kernels. The boilerplate code contains an implementation
of method APIs to set the positional kernel arguments as well as a method to
call the actual kernel with positional parameters. The positional parameters are
stored in a temporary run-time memory chunk. It is tedious to write boiler-
plate code for each kernel. A simple SAXPY kernel for OpenMP device requires
~100 lines of boilerplate code to be written, and this effort is required for all
vendor-specific kernels and for all devices. IRIS was extended to use LbFFI so
that programmers need not write boilerplate code for IRIS kernels, as shown in
Figure 1(c).

4.3 Distributed Data Memory Management (DMEM)

Orchestrating memory objects and their copies across heterogeneous devices
during execution plays a vital role in heterogeneous systems. Data movement
between heterogeneous devices often becomes a bottleneck in achieving strong
performance because the data transfer overhead nullifies the impact of greater
parallelism. Moreover, accelerators such as GPUs in contemporary HPC nodes
have faster connections with higher bandwidth to transfer data. Such a connec-
tion requires one D2D transfer as opposed to two transfers (i.e., D2H and H2D).
To orchestrate memory object copies in different devices and efficiently utilize
the data transfer among them, IRIS introduces DMEM, which provides transpar-
ent and efficient data communication (such as invoking faster D2D data transfer
when possible) and managing the set of copies of memory in a heterogeneous
system.

As a logical memory handler, DMEM stores the addresses of an application’s
data objects in host and device memory. By keeping a dirty flag, DMEM keeps
track of which copy of a particular memory object is the most recent. As the
execution progresses, the DMEM logic controller continues updating the flags
when a change occurs in a memory object. Because IRIS dependencies in a
directed acyclic graph (DAG) prevent race conditions, only one device can write
to a particular memory object. As seen in Figure 2, the A00 tile is a shared IRIS—
DMEM memory object for all tasks (X1, X2, ..., XN tiled matriz multiplication

6 Miniskar et al.

DMEM Object Dirty Bit False
W H A0 . DirtyBit True Il

D0 D1 D2
L |

Fig. 2: IRIS DMEM data object example for tiled matrix multiplication. A and B are
input tiled matrices, and PS denotes the partial sum tiled matrix

kernels). Programmers do not need to use H2D and D2H command APIs for
DMEM memory objects because the DMEM controller handles data transfers
at runtime, based on the data requirements of the task kernels.

The DMEM memory handler acts like a write-back cache to prevent unneces-
sary data movement to host memory. The data transfer to output host memory
object is required in two scenarios: (1) when the application accesses it after the
execution of tasks or task graphs and (2) when the device lacks valid data that is
available in another device but a direct D2D data transfer is not possible. DMEM
cannot avoid the second scenario, but it can postpone the first scenario’s D2H
data transfer until the application is really needed. The application programmer
musr call an IRIS API with an explicit DMEM flush-out command and submit
it as a part of the last task or as a standalone task. For more technical details
about the DMEM methodology and data transfer priorities, refer to the HPEC
conference paper [10].

4.4 Heterogeneous Build Environment for IRIS Applications

The CMake build utility was added to IRIS to build applications, along with
heterogeneous kernels. This utility enables the developers to configure the CMake
variables with appropriate sources, and it builds the necessary libraries for each
heterogeneous device. It also supports application sources that developers can
use to build application libraries and executables with the included IRIS library
links for IRIS APIs.

4.5 Hunter

The Hunter Framework is designed to enable the exploration of scheduling al-
gorithms for large-scale heterogeneous architectures. Hunter was developed and
leveraged for this work to model heterogeneous platforms and evaluate the per-
formance of various scheduling algorithms on these platforms. Hunter is tightly
coupled with the IRIS runtime API, which allows task graphs within IRIS to
be exported to Hunter. Likewise, schedules within Hunter can be run using the
IRIS runtime.

Hunter is a Python library with multiple components designed to work to-
gether. Hunter uses an object-oriented programming style; a parent class defines

IRIS Reimagined 7

Task DAG |+ > / Algorithm ﬁ)[Schedulc]
time ai
Task DAG |+ + [S(',hcdulc] (=3 S?;Zl::l; (=3]SDC ifct;]sli

IRIS Detailed
Task DAG + +[Schcdulc] (=3 Runtime (=3 Schedule

Fig. 3: Block diagram highlighting the use flows for the Hunter Framework.

the API and multiple derived classes, which can each have their own implemen-
tation of the API. The main input components of Hunter are a task DAG to
define the application task graph and a platform to define the model of the com-
puter system. Scheduling algorithms implemented in Hunter takes a task DAG
and platform as inputs to provide scheduling decisions (i.e., schedule). The task
DAG and platform, along with a schedule, can then be passed to the Hunter run-
time simulator or the IRIS runtime for evaluation. The output of the evaluation
includes scheduling with additional execution details, more accurate simulated
execution times, and the actual execution times from running on the hardware
using IRIS. These evaluation flows are highlighted in Figure 3.

4.6 DAGGER

The Directed Acyclic Graph Generator to Evaluate Runtimes (DAGGER) is a
tool developed to synthesize payloads, generating task DAGs of arbitrary com-
plexity. It was initially built to test interesting corner cases easily missed when
building a runtime system, and so was used to verify the scheduling decisions
when developing IRIS. This functionality was extended for evaluations of differ-
ent desired DAG characteristics—allowing us to examine and evaluate schedul-
ing policies, and the general performance of IRIS, without having to write an
exhaustive corner cases (on the order of hundreds of diverse applications).

DAGGER is composed of a generator and a runner program. The generator
accepts a range of parameters used to statistically determine the structure and
shape of the DAG. Additionally, the user provides the kernel names (with ap-
propriate kernel arguments) with the probabilities to which each generated task
will be assigned. The resultant DAG is recorded as an IRIS-readable JSON file.
The DAGGER runner accepts the same arguments and loads the JSON file by
handing it directly to IRIS, but it serves, importantly, as a proxy application by
allocating the correct number of memory objects and other kernel arguments. It
also uses IRIS’s internal profiling information but controls where it is logged—for
recording results.

Users adjust variables that allow varying the width and depth, and the num-
ber of tasks, whereas the shape of the DAG and distribution of tasks are deter-
mined by adjusting the cumulative distribution functions’ mean and standard
deviation variables. Finally, complexity in the generated DAG can be set by in-
creasing the number of skips, which can lead to interesting interactions among
tasks by increasing the potential interactions of tasks between levels. Addition-
ally, it allows each task to be assigned kernel names that are statistically selected

8 Miniskar et al.

by providing the associated probability, the dimensionality of the kernels, and the
memory buffers associated with each kernel task. DAGGER allows the synthetic
generation of DAGs with interesting shapes and interactions.

New features recently added to DAGGER include the ability to specify the
number of concurrent memory buffers allowed for each kernel name and the
sharing of memory objects used between tasks; both allow the user to indicate the
potential concurrency by mitigating data dependencies between tasks. Finally,
both the runner and generator can generate explicit D2H and H2D memory
transfers (to get the memory into IRIS when submitting the task graph) or
using IRIS’s DMEM, which replaces the final tasks in the graph from D2H with
the required DMEM _FLUSH OUT_CMD.

5 Results

The effectiveness of IRIS’s new capabilities was evaluated using a tiled matrix
multiplication benchmark running on a truly heterogeneous system—comprising
four NVIDIA A100 and four AMD MI100 GPUs. The tiled matrix multiplication
algorithm is implemented using vendor-specific kernels support in IRIS and is
part of the MatRIS framework [13,11,12]. We then explored the scaling of IRIS’s
scheduling policies by running an identical DAG on multiple systems, each with
different combinations of GPUs from multiple vendors.

5.1 FFI

Table 1: Matrix multiplication performance with and without FFI. Each exper-
iment is run for 10 times and present the median values.

Matrix Size|Tile Count|Tasks|FFI (GFLOPS)|Boilerplate code(GFLOPS)
4096 2x2 8 5.1 4.2
8192 2x2 8 11.3 9.8
16384 2x2 8 20.8 20.8
16384 4x4 64 19.9 19.2
16384 8x8 512 18.6 17.9
16384 16x16 4096 0.76 0.78

The effectiveness of FFI was measured using a tiled matrix multiplication
benchmark. We varied the matrix and tile size to scale over the number of tasks
and measured the performance of the FFI version versus the traditional IRIS-
based boilerplate code. It has been observed that FFI-based kernel calls have
no additional overhead compared to that of boilerplate code. Moreover, in some
cases, the performance is slightly better than explicit boilerplate code.

5.2 DMEM

The capabilities of distributed memory objects (DMEM) in IRIS are demon-
strated in Table 2. For this experiment, we ran MatRIS [13] LU factorization on
a CADES cloud node with four NVIDIA A100 and four AMD MI100 GPUs. We
considered a ~ 32K x 32K matrix with 16 x 16 tiling, which created around 1500
tasks scheduled to eight GPUs (both NVIDIA and AMD). The first data row of
Table 2 shows H2D and D2H data transfer considering each task-initiated data
transfer from the host, and, after computing, returned the updated data to the

IRIS Reimagined 9

E=JIRIS-MANUAL

@ |RIS-DMEM
5.75

GFLOPS

N W s U e N @
Speedup (x)

Matrix Size N for (N x N)

Fig. 4: Performance improvement by DMEM for a tiled matrix multiplication bench-
mark. Platform: four NVIDIA A100 CUDA GPUs and four AMD MI100 GPUs. The
y-axis is on a log scale. Each experiment was run 10 times, and median values are
presented.

host: it shows around 5000 data transfers in total. However, the use of DMEM
(second row of the table) significantly reduced both H2D and D2H transfers be-
cause DMEM can find the last location of the data and initiate the appropriate
transfer when required. Also, DMEM uses D2D transfers when possible, which
provides an additional performance boost. When data needs to be transferred
from an AMD GPU to an NVIDIA GPU, DMEM orchestrates the correspond-
ing D2H and H2D transfer. Because of these strategies employed by DMEM,
IRIS yields an order of magnitude lower number of total data transfers, which
enables superior performance. We also observed nearly 5x gains on matrix mul-
tiplication using our intelligent DMEM memory handling technology, as shown
in Figure 4. The gains are due to a reduced number of data transfers and using
optimal data transfer APIs.

Table 2: Count of data transfers and their type for DMEM and without
DMEM on the 8x GPUs (NVIDIA and AMD). Benchmark: LU factorization
on 32,678 x 32,768 dense matrix

System CADES
Transfer H2D | D2H |D2D| total
‘Without DMEM |4,219(1,497| 0 [5,716
With DMEM | 567 | 395 | 426 |1,388

5.3 DAGGER

In this experiment, an identical DAGGER-generated DAG was run on several
systems to highlight the scaling of IRIS’s dynamic scheduling policies. Each
system is different, featuring unique combinations of the number of GPUs, from
both NVIDIA and AMD, in different generations, as shown in Table 3. For
brevity, we excluded OpenMP and OpenCL runtimes from the evaluation. IRIS
provides the abstract task view given by the DAG; it can automatically link
and resolve the appropriate kernel to the underlying backend/runtime on the
system—so no code changes are needed. Additionally, IRIS honors data locality,
internally tracking ownership/modification of memory buffers of devices; thus,
we can change the scheduling policy to affect performance, and it will add the
required memory movement to ensure correctness.

10 Miniskar et al.

Systems
. oswaldoo
125 e radeon
B zenith
100 m explorer
- equinox

75 leconte
50
) I I I I I

U L1

depend | fif | profle | random | roundrobin | sdq
scheduler

Time (sec)

Fig. 5: Execution times of DAG on systems with varying dynamic scheduling policies.

The generated task DAG used for this experiment contains 240 bigk ker-
nel tasks with 6 concurrent duplicates of memory objects at each level; the in-
stance of each memory object used by each task is stochastic, resulting in a large
workload of complex dependencies. This synthetic workload is largely compute-
bound, featuring a double-nested for loop to compute a sum. The width of the
DAG is 6 at each level and is thus 40 levels deep. Each kernel invocation was
run at a size of 1024 (i.e., the largest possible number of work items on AMD
GPU-based systems).

Table 3: The GPU configuration of systems used in the evaluation.

System | Vendor |Generation|Card Name|# of GPUs|Runtimes
Oswald |[NVIDIA| Pascal P100 1 CUDA
Radeon | AMD | Vega II Vega 20 1 HIP
Zenith |[NVIDIA| Ampere GA102 1 CUDA
AMD Navi IT Navi 21 1 HIP
Explorer| AMD Vega 11 MI60 2 HIP
Equinox [NVIDIA| Volta V100 4 CUDA
Leconte [NVIDIA| Volta V100 6 CUDA

The results are shown in Figure 5. Typically, we see systems with fewer GPUs
benefit less from scheduling policy selection, whereas systems with more devices
benefit from dynamic policy selection. A good example of this effect can be seen
by focusing on the 2x speedup achieved by the Ezplorer system when using
ftf, random, roundrobin, or sdq over the depend or profile policies. By
experimental design, we assigned all memory to one device at the start of the
graph submission, and both depend and profile policies aim to avoid unneces-
sary memory movement, yielding a sequential baseline for our comparison. In
contrast, the speedups gained by the First-to-Finish ftf (only assigns the next
task to an idle device, effectively work-stealing), Shortest-Device-Queue sdq (as-
signs each task to the device with the fewest tasks in its queue), roundrobin,
and random ignore the cost of memory transfers and thus can fully saturate
the devices—provided the DAG has enough parallelism, which our experiment
ensures. Systems with more devices further highlight this trend, achieving a 3x
speedup on Equinox and Leconte: there are memory movement costs that pre-
vent this workload from reaching the theoretical limit of 4 and 6%, respectively.

IRIS Reimagined 11

The only system that was observed to go against this trend is Zenith, which,
unfortunately, is the only truly heterogeneous machine in this study. The penalty
here is in moving memory between two different runtimes: (D2D) memory move-
ment in this case defaults to moving memory through the host (as separate H2D
and subsequent D2H calls), which both have their own synchronization points.
Performance is worsened here when we consider the hardware. Each stage of this
communication must occur over the PCI-E interconnect, whereas this cost is
notapplicable for single runtime systems that have vendor-specific interconnects
(NVLink and Infinity Fabric) for fast D2D memory transfers. This results in more
reckless policies (in terms of ignoring memory locality) such as roundrobin and
random suffering by taking 3-4x longer than the memory-aware scheduling de-
cisions (depend or profile), whereas ftf and sdq performance falls in between
because these policies do not consider memory locality but do rely on feedback
from the device queues.

The older generation and single-card systems (Oswald and Radeon) were
not affected by the choice of scheduling policy since they do not have enough
hardware to exploit the concurrency in DAG. Here, the discrepancy in absolute
performance is attributed to hardware differences in the P100 and Vega IT GPUs.

6 Conclusion

This paper presents the new capabilities added to IRIS to achieve better per-
formance efficiency, higher portability, improved programmability, and a more
convenient build environment. The IRIS DMEM memory handler has achieved
2.5x to 5.7x improvement in performance when compared to manually intro-
duced data transfer calls. Features such as FFI in IRIS allow programmers to
avoid writing boilerplate code for each kernel, which is usually 70 to 100 extra
lines of code per kernel. Moreover, the addition of the DAGGER and Hunter
frameworks enhanced IRIS capabilities for verification and scalability by pro-
viding an unbounded range of task and device experiments. This paper shows
the scaling performance of IRIS using dynamic scheduling policies on a fixed
DAGGER workload. In the future, we will present the performance of static
scheduling policies—leaning heavily on the Hunter framework.

References

1. AMD: HIP: C++ heterogeneous-compute interface for portability (2020)

2. Ang, J., Chien, A.A., Hammond, S.D., Hoisie, A., Karlin, I., Pakin, S., Shalf,
J., Vetter, J.: Reimagining Codesign for Advanced Scientific Computing: Report
for the ASCR Workshop on Reimaging Codesign (2022), https://www.osti.gov/
biblio/1822199, [Online; accessed 6-July-2022]

3. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.: Starpu: A unified platform
for task scheduling on heterogeneous multicore architectures. In: Sips, H.J., Epema,
D.H.J., Lin, H. (eds.) Euro-Par 2009 Parallel Processing, 15th International Euro-
Par Conference, Delft, The Netherlands, August 25-28, 2009. Proceedings. Lecture
Notes in Computer Science, vol. 5704, pp. 863-874. Springer (2009)

https://www.osti.gov/biblio/1822199
https://www.osti.gov/biblio/1822199

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

Miniskar et al.

Beckingsale, D.A., Burmark, J., Hornung, R., Jones, H., Killian, W., Kunen, A.J.,
Pearce, O., Robinson, P., Ryujin, B.S., Scogland, T.R.: Raja: Portable performance
for large-scale scientific applications. In: 2019 IEEE/ACM International Workshop
on Performance, Portability and Productivity in HPC (P3HPC). pp. 71-81 (2019)
Edwards, H.C., Sunderland, D.: Kokkos array performance-portable manycore pro-
gramming model. In: Guo, M., Huang, Z. (eds.) Proceedings of the 2012 PPOPP
International Workshop on Programming Models and Applications for Multicores
and Manycores, PMAM 2012, New Orleans, LA, USA, February 26, 2012. pp. 1-10.
ACM (2012). https://doi.org/10.1145/2141702.2141703

Group, F.W.: libffi: A Portable Foreign Function Interface Library. GNU Project
(Year of the latest version), https://sourceware.org/libffi/

Group, K.: SYCL: C++ single-source heterogeneous programming for openCL
(2019)

Kim, J., Lee, S., Johnston, B., Vetter, J.S.: IRIS: A portable runtime system ex-
ploiting multiple heterogeneous programming systems. In: 2021 IEEE High Perfor-
mance Extreme Computing Conference, HPEC 2021, Waltham, MA, USA, Septem-
ber 20-24, 2021. pp. 1-8. IEEE (2021)

Korakitis, O., Gonzalo, S.G.D., Guidotti, N., Barreto, J.P., Monteiro, J.C., Pena,
A.J.: Towards ompss-2 and openacc interoperation. In: Lee, J., Agrawal, K., Spear,
M.F. (eds.) PPoPP ’22: 27th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, Seoul, Republic of Korea, April 2 - 6, 2022
Miniskar, N.R., Haque Monil, M.A., Valero-Lara, P., Liu, F.Y., Vetter, J.S.: Iris-
dmem: Efficient memory management for heterogeneous computing. In: 2023 IEEE
High Performance Extreme Computing Conference (HPEC). pp. 1-7 (2023)
Miniskar, N.R., Mohammad, A.H.M., Pedro, V.L., Liu, F., Vetter, J.S.: Iris-blas:
Towards a performance portable and heterogeneous blas library. In: 29th IEEE
International Conference on High Performance Computing, Data, and Analytics,
HiPC 2022, Bengaluru, India, December 18-21, 2022. pp. 1-10. IEEE (2022)
Monil, M.A.H., Miniskar, N.R., Liu, F., Vetter, J.S., Valero-Lara, P.: LaRIS: Tar-
geting Portability and Productivity for LaPACK Codes on Extreme Heterogeneous
Systems using IRIS. In: IEEE/ACM Redefining Scalability for Diversely Hetero-
geneous Architectures Workshop, Dallas, TX, USA, November 13-18, 2022. IEEE
Monil, M.A.H., Miniskar, N.R., Teranishi, K., Vetter, J.S., Valero-Lara, P.: Matris:
Multi-level math library abstraction for heterogeneity and performance portability
using iris runtime. In: Proceedings of the SC’23 Workshops of The International
Conference on High Performance Computing, Network, Storage, and Analysis. pp.
1081-1092 (2023)

Nickolls, J., Buck, I.: NVIDIA CUDA software and GPU parallel computing ar-
chitecture. In: Microprocessor Forum (2007)

OpenACC: OpenACC Application Programming Interface (2024), https://www.
openacc.org, [Online; accessed 24-January-2024]

OpenMP: OpenMP Application Programming Interface (2024), https://www.
openmp.org/specifications/, [Online; accessed 24-January-2024]

TOP500.0org: November 2023 TOP500 (2023), https://www.top500.0rg/lists/
top500/2023/11/, [Online; accessed 24-January-2024]

Valero-Lara, P., Kim, J., Hernandez, O., Vetter, J.S.: Openmp target task: Task-
ing and target offloading on heterogeneous systems. In: Euro-Par 2021: Parallel
Processing Workshops - International Workshops, Lisbon, Portugal, August 30-31,
2021. Lecture Notes in Computer Science, vol. 13098. Springer (2021)

https://doi.org/10.1145/2141702.2141703
https://doi.org/10.1145/2141702.2141703
https://sourceware.org/libffi/
https://www.openacc.org
https://www.openacc.org
https://www.openmp.org/specifications/
https://www.openmp.org/specifications/
https://www.top500.org/lists/top500/2023/11/
https://www.top500.org/lists/top500/2023/11/

	IRIS Reimagined: Advancements in Intelligent Runtime System for Task-Based Programming

