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Abstract—Graph data has emerged in numerous scientific
domains and machine learning techniques have been widely
used for analysis and learning of diverse data for prediction
and decision. Machine learning techniques can readily address
complex problems by leveraging their structural information. But
graphs cannot be directly used for existing machine learning
algorithms unless encoded as vectors. The problem of efficient
representation of graphs is a substantial challenge in graph
machine learning. In this paper, we propose a novel two-stage
framework for the representation of chemical molecule graphs
based on the strengths of Graph Isomorphism Networks (GINs)
and Siamese autoencoders. In the first stage, the GIN model
is constructed and trained using the structural information of
chemical molecule graphs. Node attributes, edge attributes, and
edge indices are used as input data, while graph attributes
are used as labels. The GIN model effectively captures the
structural characteristics of graphs and can accurately predict
graph attributes, i.e., molecular properties. It also generates
Graph Embeddings, represented as vectors that encode the
structural information of graphs. In the second stage, Graph Em-
bedding vectors are further optimized for downstream similarity
tasks while preserving the graph structural information. The
Siamese autoencoder is constructed and trained, which reduces
the dimensionality of the Graph Embedding vectors, while
maximizing the preservation of structural information in the
original high-dimensional vectors. The resulting low-dimensional
Graph Embeddings can be effectively utilized for tasks such as
approximate nearest neighbor search. The experimental results
demonstrate the effectiveness of our proposed framework in
accurately predicting graph similarity.

Index Terms—Graph representation learning, Autoencoder,
Similarity Learning, Graph Neural Network

I. INTRODUCTION

In recent years, machine learning methodologies have
gained remarkable success in various domains, particularly
when applied to text and image data. There have been sig-
nificant advancements in fields such as computer vision and
natural language processing, fueled by the power of machine
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learning techniques [1], [2]. However, as the complexity and
diversity of real-world data continue to expand, a growing real-
ization has emerged that graphs, as a versatile and expressive
data structure, have tremendous potential for capturing and
understanding intricate relationships among entities [3].

Graphs have proven to be highly effective structures for
representing and analyzing real-world data in numerous do-
mains, such as social networks and biological networks. The
effectiveness of graphs in these domains can be attributed to
their ability to encode both structural and semantic informa-
tion. By representing entities as nodes and relationships as
edges, graphs provide a powerful framework for capturing
the underlying patterns, dependencies, and inter-dependencies
within complex systems. This flexibility and ability to capture
and model arbitrary relationships between arbitrary entities
allow graphs to go beyond the limitations of traditional data
structures, providing a more comprehensive and holistic un-
derstanding of complex systems and real-world data.

One of the fundamental problems is retrieving a set of
similar graphs from a database given a query [4]. Many
different similarity metrics have been proposed, such as the
Graph Edit Distance [5] and Maximum Common Subgraph
[6] that are based only on the graph structure without any real-
world context. Models have been proposed to approximate the
true values of these NP-complete problems [4]. But in many
fields, it is hard to adapt these methods to new tasks since these
metrics do not necessarily have any meaningful interpretations.

Efficient graph representation is particularly valuable in
real-world applications. Such as virtual screening chemical
compounds for drug discovery, which is an in silico method
that enables researchers to avoid the time and cost of ex-
perimentally testing infinite possibilities of compounds and
reduces the number of candidate molecules [7]. The ability
to find similar molecules to a given compound allows for the
exploration of the chemical space and aids in the identification
of potential drug candidates with desirable properties [8].
Similarity-based approaches enable the transfer of knowledge
from known molecules to new or unexplored molecules,
facilitating the discovery of novel chemical entities [9]. They
also enable the exploration of alternative chemical scaffolds
that may exhibit improved drug-like properties or reduced side
effects. By efficiently representing molecular graph structures



as vectors, we can employ various similarity search algorithms
to identify similar molecules.

The integration of graph-based methodologies with ma-
chine learning techniques for graph representation learning has
gained significant attention [10]. There have been methods
developed for graph isomorphism testing without mapping
functions [11] and thus cannot be applied for general sim-
ilarity learning. For similarity learning models to be useful
for querying in downstream tasks, the graphs have to be
encoded into vector representations. Graph embeddings enable
the transformation of graph data into vector representations,
thereby bridging the gap between graph structures and tra-
ditional vector-based machine learning models [12], [13].
Using graph embeddings, a wide array of established machine
learning techniques can be employed to tackle diverse tasks,
extending beyond the limited applications of graph data in
its original form. This enhanced flexibility allows for more
comprehensive analysis, prediction, and decision-making in
real-world scenarios. With the emergence of deep learning
on graph data, Graph Neural Networks (GNNs) have become
a powerful tool to encode graphs into embedding vectors
[14]-[17]. Compared to traditional graph embedding methods,
GNNs address tasks in an end-to-end manner [18] and can
better leverage graph features for specific learning tasks. GNN
models have been proposed to solve problems in multiple
domains, such as brain networks [19] and computer security
[20].

In the field of biomedicine, due to the nature of the graph
data as chemical molecules, there have been cheminformatics
tools for mapping the chemical space long before machine
learning, called molecular fingerprinting. Specifically, Morgan
fingerprinting [21] is one of the most widely used featurization
methods for chemical molecules. The algorithm iteratively
encodes circular substructures of a molecule as identifiers,
hashes them, and folds them to bit positions to generate a bit
string. Since fingerprinting methods are optimized specifically
for chemical molecules, fingerprinting has achieved good
performance when used as input representations in deep neural
networks [22], but in many cases fingerprinting methods are
not able to offer ideal performance due to the length of the
resulting embedding vectors.

In this paper we propose a two-stage framework to generate
efficient vector representations for molecular graphs, which
combines the power of the Graph Isomorphism Network and
the Siamese autoencoder. We aim to enhance the accuracy and
efficiency of similarity search for chemical molecules. Our
framework provides a robust representation of molecules as
graphs that capture essential structural and chemical informa-
tion. Using machine learning techniques, we can effectively
compare and rank molecules on their similarity, enabling more
targeted and efficient drug discovery processes. Our research
aims to advance the field of graph representation for similarity
search, providing a powerful tool for the exploration and
discovery of new compounds with desired properties. Our
results demonstrate the effectiveness of the proposed frame-
work in accurately predicting graph similarity while preserving

the essential structural information of the graphs in Graph
Embeddings. Our findings provide valuable insights into the
application of machine learning to graph data, specifically
chemical molecule analysis.

The rest of this paper is organized as follows. Section
2 introduces the methodology and technical details of our
framework. Section 3 presents the experimental results. Sec-
tion 4 summarizes this paper and discusses possible research
directions.

II. METHODOLOGY

In this section, we introduce the overall framework to pro-
duce an efficient vector representation for any given chemical
molecule, as illustrated in Figure 1. The overall pipeline in our
proposed framework consists of two stages. In the first stage,
we use the structural information of molecule graphs to train
Graph Neural Network models for predicting individual graph
attributes. Then we use these trained models to calculate the
embeddings of the molecules for each graph attribute. In the
second stage, we use the output vectors from the first stage to
train Siamese autoencoders for preserving the information in
the vectors and the relative similarity between vectors. Then
we use the trained autoencoders to obtain the corresponding
low-dimensional Graph Embedding vectors from the high-
dimensional embedding vectors from the previous stage.

A. Graph Isomorphism Network (GIN)

Each chemical molecule can be represented as an undirected
weighted graph denoted as G = (V, E). The set of nodes in the
graph, V, corresponds to the atoms present in the molecule.
The set of edges, E, represents the bonds between the
atoms, capturing the connectivity information of the molecular
structure. The graph includes intrinsic properties associated
with the molecule itself in nodes, edges, and the overall
graph, providing valuable data for analysis. Specifically, each
node (atom) in the graph is associated with 11 attributes
that characterize various atomic properties. Similarly, each
edge (bond) carries 4 attributes that describe bond-specific
properties. At the graph level, 19 attributes are provided that
represent different molecular properties as shown in Table I.
These descriptors encompass a diverse set of features, and
provide relevant information that captures global aspects of
the chemical molecules.

By leveraging the properties encoded within the dataset, our
GIN exploits the rich information present in the graphs. This
comprehensive representation enables the model to effectively
capture the intricate relationships and interactions between
atoms, bonds, and the overall molecular structure.

We designed our framework for similarity tasks, but cur-
rently, for how similar any two given chemical molecule
graphs are, there is no canonical definition and no standard
way for measuring or calculating the ground truth. So, based
on a central premise of medicinal chemistry that structurally
similar molecules tend to exhibit similar properties [23], we
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Fig. 1. Sequence diagram of overall 2-stage framework

TABLE I

GRAPH ATTRIBUTES IN QM9 DATASET
Attribute index Molecular property Unit
0 Dipole moment x D
1 Isotropic polarizability o ag®

Highest occupied molecular
2 . eV
orbital energy egomo

Lowest unoccupied molecular

3 . eV
orbital energy e ymo

4 Gap between egomo and € ymo eV

5 Electronic spatial extent (R?)
6 Zero point vibrational energy ZPVE eV
7 Internal energy at OK Ug eV
8 Internal energy at 298.15K U eV
9 Enthalpy at 298.15K H eV
10 Free energy at 298.15K G eV
11 Heat capavity at 298.15K ¢y mfﬁlk
12 Atomization energy at 0K U{)\TOM eV
13 Atomization energy at 298.15K UATOM eV
14 Atomization enthalpy at 298.15K HATOM eV
15 Atomization free energy at 298.15K GATOM eV
16 Rotational constant A GHz
17 Rotational constant B GHz
18 Rotational constant C GHz

use the graph attributes, which represent molecular properties,
as the labels for each graph.

Our GIN model has the following stages: (1) Node em-
bedding, which encodes the features and structural properties
of each node into a vector; (2) Graph embedding, during
which graph level representations are obtained from each set
of node embeddings using global pooling, then graph level
embeddings from each level of abstraction is concatenated
to form a single high-dimensional embedding vector; and
(3) the graph attribute computation stage, which reduces the
high-dimensional vectors into one final attribute value, which
is compared with the ground-truth value to update model
parameters.

The model formulated as a sequence of graph convolution
operations can be represented as the following expression.

R = o (AR'W! 4+ b)) (1)

Where h' represents the node embeddings in layer 1, A
denotes the graph adjacency matrix, W' is the weight matrix
for layer 1, and b represents the bias vector at layer 1. The
activation function o is applied element-wise, introducing non-
linearity to the model.

1) Stage 1: Node embedding: We choose GINE [24] as the
convolutional layer, which is based on the Graph Isomorphism
Network aggregation method and has the following aggrega-
tion function:

X;=he [ (1+€ x;+ Y ReLU(x;+e;;) 2)
JEN(3)

Where x; is the input representation of node i, X is
the updated representation of node i, N (i) is the set of
neighboring nodes of node 7, e;; is the edge feature vector
between nodes ¢ and j, ReLU is the rectified linear unit
activation function, € is a learnable parameter that controls
the scaling of the input representation, and hg is a non-linear
activation function applied to the aggregated representation.

At the core of obtaining node embeddings is the aggregation
function, which computes the updated representation of each
node by combining its own input representation with the
representations of its neighboring nodes and edges [25]. No-
tably, the edge level attributes are incorporated into the update
process, the input representation of each neighboring node j
is first transformed by adding the corresponding edge feature
vector e;; and applying the rectified linear unit activation
function. The resulting representations are then summed and
scaled by a learnable parameter e, before being added to
the scaled input representation of the node ¢. The aggregated
representation is then passed through a non-linear activation
function hg to obtain the final updated representation. This
function is learned during training and is representation-
invariant, which improves its ability to generalize to unseen
data.



Our model consists of five GINE convolutional layers to up-
date node embeddings, with each layer capturing the essential
structural and semantic information at a different level of ab-
straction through a nonlinear activation function. The forward
pass involves successive updates of node embeddings through
each convolutional layer, this results in five sets of node
embeddings, corresponding to different levels of neighborhood
information, ranging from local neighborhood to global graph
characteristics. The convolutional layers allow the model to
aggregate and propagate information from neighboring nodes,
allowing it to discern local structural patterns and capture local
context.

To further enhance the expressiveness and discriminative
capabilities of our model, we include a bias term in the forward
pass. The bias term is a learnable parameter that is added to
each layer’s aggregated representations of neighboring nodes
and edges after passing them through a neural network. The
neural network then applies a nonlinear activation function to
the sum of the aggregated representations and the bias term.
This allows the model to learn a shift in the activation function,
which can be useful for capturing complex nonlinearities in
the data. By customizing the influence of each layer, we can
improve the model’s ability to capture the local structure
of the graph and learn more expressive node embeddings,
since the model can selectively emphasize or attenuate specific
graph features during the aggregation process. This adaptabil-
ity allows the model to focus on the most relevant graph
properties, leading to improved predictive performance and
better generalization.

2) Graph Representation: To obtain the graph-level rep-
resentation, we perform global add pooling operations. They
compute the sum of the node embeddings across the set of
nodes, to obtain a single vector representation that captures the
aggregate features of the graph for each level of abstraction.
This operation is applied independently to each feature dimen-
sion, resulting in sets of feature vectors that capture different
aspects of the graph. These pooled representations provide
a concise summary of the graph’s structural and semantic
properties, enabling higher-level analysis and inference.

The global add pooling mechanism is a powerful tool for
capturing the aggregate features of the graph, which helps
effectively capture the overall characteristics and patterns
exhibited by the graph as a whole, facilitating the capture of
more holistic and higher-level graph properties. Notably, it is
permutation invariant, meaning that the order of the nodes does
not affect the resulting pooled representation. This property
makes the pooling operation robust to variations in graph
structure and node ordering, leading to more consistent and
reliable graph-level representations. And it offers flexibility
when graphs in the dataset have varying sizes since the
representation it produces has a fixed size.

To combine and integrate graph embeddings from different
levels, the resulting set of feature vectors is concatenated into
a single high-dimensional vector with a length of 64, which
captures the structure of the graph and encapsulates a rich
and expressive representation of the global context of the

entire graph, consolidating information from various levels of
abstraction.

3) Graph attribute computation: The final stage of our
model involves computing the graph attributes based on the
concatenated graph embedding. To achieve this, we employ
a series of fully connected layers, each consisting of a linear
layer and with rectified linear unit (ReLU) activations. These
layers enable the model to learn complex mappings from the
high-dimensional concatenated embedding space to the desired
attribute space. We use three linear layers to gradually re-
duce the dimensionality of the concatenated graph embedding
while capturing relevant features. The activation function after
each linear layer introduces non-linearity into the attribute
computation process and allows the model to learn complex
relationships between the graph embeddings and the target
attributes. Finally, we employ a fourth linear layer to map
the reduced-dimensional embedding to a single attribute value.
The output of this layer represents the predicted value for the
target attribute. By comparing this predicted value with the
ground truth value, we can calculate the loss and update the
model parameters during the training process. During training,
we employ the Adam optimizer with a learning rate of 0.01
and weight decay of 0.01. The loss function used is the L1 loss,
which measures the absolute difference between the predicted
and ground truth attribute values. The model is trained for
100 epochs, and in each epoch, the training loss and error
rate, as well as the validation loss and error rate are computed
and monitored. The model with the lowest validation loss is
selected as the final model. After training, we evaluate the
performance of the trained model using the test dataset. We
compute the L1 loss and error rate on the test data to assess
the model’s predictive accuracy and generalization ability.

B. Siamese Autoencoder

After obtaining the complete, high-dimensional Graph Em-
bedding vectors from our GIN model, optimizing them to
be more suitable to use for downstream tasks is an impor-
tant issue. Since superficially high-dimensional and complex
phenomena can actually be dominated by a small amount of
simple variables in most situations [26], this can be done using
some learned projection method that maps the vectors in high-
dimensional feature space to low-dimensional feature space.
We choose Siamese autoencoders to be our dimensionality
reduction technique, to maximize preservation of information
in the original high-dimensional embedding vectors while
reducing the dimensionality of the vectors, which optimizes
them for tasks requiring vector input.

1) Autoencoders: Autoencoders serve as the foundational
component of the Siamese autoencoder stage of our frame-
work. They are neural network architectures designed for
unsupervised representation learning. An autoencoder consists
of three layers, separated by an encoder and a decoder,
which work together to learn compressed and meaningful
representations of the input data, through the minimization
of reconstruction error by adjusting model parameters.



The encoder takes an input sample and maps it to a lower-
dimensional latent space representation with length 10, this
is also known as a bottleneck layer or code, and is followed
by a Rectified Linear Unit (ReLU) activation function, which
introduces non-linearity and captures complex patterns in the
data. The latent representation aims to capture the most salient
features and patterns in the data. The decoder, on the other
hand, reconstructs the original input sample from the latent
representation, aiming to minimize the reconstruction error.

In the process of dimensionality reduction, discarding and
simplifying some dimensions inevitably leads to loss of infor-
mation, so the autoencoder is trained to keep the most impor-
tant characteristics as much as possible. During training, the
autoencoder learns to minimize the discrepancy between the
reconstructed output and the original input by optimizing a L1
loss function, which measures the difference between the input
and its reconstruction. By iteratively adjusting the weights and
biases of the encoder and decoder, the autoencoder gradually
improves its ability to compress and reconstruct the input data.

2) Siamese structure: Siamese networks consist of two
identical neural networks with shared weights that take sep-
arate inputs. The neural networks are eventually merged into
a single layer by applying a discriminative function to the
outputs of individual neural networks [27]. This makes them
ideal for similarity-related tasks, as they are designed to
compare two inputs.

We design a Siamese autoencoder architecture, as an exten-
sion of the traditional autoencoder, specifically designed for
similarity tasks, as it includes a pair of identical autoencoders
sharing weights. Each autoencoder consists of an encoder and
a decoder, which utilize fully connected layers to process the
input vectors. During the forward pass, two input vectors are
fed into autoencoders separately, resulting in two sets of en-
coded representations. These encoded representations capture
the essential molecular features in a lower-dimensional space.
The decoder then reconstructs the original molecules from
the encoded representations, producing two sets of decoded
molecules.

By utilizing this Siamese architecture, we leverage the
shared weights to learn representations that effectively capture
the similarity relationships between the input samples. During
training, the Siamese autoencoder optimizes two main objec-
tives simultaneously: accurate reconstruction and preservation
of similarity. To achieve this, the Siamese autoencoder com-
bines the autoencoder loss, which quantifies the discrepancy
between the input samples and their reconstructions, with a
similarity preservation loss. The similarity preservation loss
compares the pairwise distances or similarities between the
original input samples with those derived from the decoder
outputs. By minimizing the difference between the original
distances and the distances computed from the decoder out-
puts, the Siamese autoencoder ensures that the latent space
representations maintain not only the high-dimensional vector
information, but also the inherent pairwise relationships.

In our training process, we use the Adam optimizer with
a learning rate of 0.01 and a weight decay of 0.1. The L1
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loss function is applied for both the autoencoder and the
Siamese loss components. The model is trained over 100
epochs using mini batches of data to update the parameters
and optimize its performance. The Siamese autoencoder’s ar-
chitecture leverages the power of unsupervised representation
learning while incorporating similarity preservation, which
enables more effective and accurate handling of similarity-
related tasks.

III. RESULTS
A. Dataset

The chemical molecule dataset QM9 [28] is used for the ex-
periments. It is a subset collection from the GDB-17 database
[29] and consists of 130,831 stable organic molecules. All the
molecules are made up of H, C, N, O, F elements, have up to
nine non-hydrogen heavy atoms and are modeled using density
functional theory. It has been used in several existing works on
graph machine learning [30]-[32]. We randomly select 1000
graphs from the dataset and randomly split 60%, 20% and
20% as the training set, validation set, and testing set.

As illustrated in Figures 2, 3, and 4, the graph sizes are
close to normally distributed, while most graph attributes have
distributions without much discernible pattern, and for some
attributes, there are some obvious outliers that deviate a lot
from other values.

B. Baseline method

Our baseline approach is molecular fingerprinting, in which
a kernel is applied that extracts features from the molecule.
The features are hashed and then used to calculate a bit
vector. Specifically, we chose one of the most widely used
methods, the Morgan fingerprint [21], also known as the
extended-connectivity fingerprint ECFP4, which is optimized
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to compare the similarity between molecules. It takes into
account the neighborhood of each atom and perceive the
presence of specific circular substructures around each atom in
a molecule, which are predictive of the biological activities. It
is one of the best performing molecular fingerprinting methods
for target prediction tasks. By default, it produces vectors of
length 2048.

C. Evaluation metrics

For both the baseline method and after each stage of our
framework, we run three different benchmarks to evaluate
different aspects of the performance of our models. First,
we use the Graph Embedding vectors as input to a simple
Forward Feeding Neural Network that is trained to predict the
original graph attribute; this measures how well the structural
information (which was used to obtain the embeddings) is
preserved. Second, we use Uniform Manifold Approximation
and Projection (UMAP) [33] to project the Graph Embedding
vectors onto a 2-dimensional space. This allows us to examine
how well the distribution and vector distances reflect the
ground truth value for attribute similarities between the graphs.
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Fig. 5. Attribute prediction MAE comparison between embeddings obtained
after each stage against Morgan Fingerprinting embeddings

And finally, we use the Graph Embedding Vectors as input to
perform Approximate Nearest Neighbor Search using Faiss
[34]. This measures the downstream task performance from
multiple aspects for each set of Graph Embedding vectors.

D. Experiment results

Our framework was implemented using PyTorch Geometric
(PyG) library for all model and tensor related computations in
Python.

Since all the Graph Embedding vectors were obtained using
the graph structural information as input, we are able to
measure how well the they retained the ability of the original
graph to predict graph attributes. For each attribute, 1000
previously unseen graphs are randomly selected and split 60%
training set, 20% validation set and 20% testing set; these
graphs are used to train the Feed Forward Neural Network
(FNN). The FNN has 4 fully connected layers, each separated
by a non-linear activation function and a dropout layer. Three
FNNs were trained separately using fingerprinting vectors,
vectors after our first stage, and vectors after the second stage,
respectively. Another 1000 unseen graphs were randomly se-
lected and run on each trained FNN. Then the Mean Absolute
Error (MAE) values between the ground truth graph attribute
values and the FNN prediction values were calculated for
each of the three sets of vector inputs. Figure 5 shows the
comparison of MAE (after normalizing by setting the values
of the fingerprinting method as reference points) between
the three embedding methods. For all graph attributes, the
Graph Embedding vectors after both stages of the framework
consistently provide at least similar or better performance as
the fingerprinting embedding vectors despite having far fewer
dimensions. Notably, for attributes 2, 4, 11, 16, 17 and 18, our
embedding methods offer far superior performance.

The preservation of similarity is illustrated in Figure 6.
Using UMAP, Graph Embedding vectors obtained using each
method are mapped onto a 2-dimensional space to make their
relative position and distance more intuitive and comprehen-
sible. 500 embeddings were randomly selected, in which a
random embedding is designated as the query entry. The
ground truth for the original graph attribute similarities be-
tween the query entry and all other embeddings is calculated
and mapped to a continuous color scale. The scatter plots of
these randomly selected embeddings demonstrate that after
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each stage of our framework, the original graph similarity
is still mostly preserved, as graphs with higher values of
ground truth difference are mapped as points further away,
generally, and vice versa. And embedding vectors obtained
using our models achieve much better similarity preservation
compared to fingerprinting vectors. These scatterplots can be
done individually for each graph attribute. Figure 6 is an
example using attribute 0, other attributes yield similar results.

Figure 4 shows the downstream task performance com-
parison of the three different embedding methods, including
time, indexing memory, and MAE between the query results
and ground truth. It illustrates the differences across different
Approximate Nearest Neighbor (ANN) search optimization
methods, including Exact Search, Inverted File Indexing (IVF),
IVF + Product Quantization (PQ), Locality Sensitive Hashing
(LSH), and Hierarchical Navigable Small World (HNSW).
Here wer use attribute 0 as an example in Figure 7, similar
differences can be observed for other graph attributes as well.
The low-dimensional embedding vectors obtained from our
models achieve better time and memory performance than
molecular fingerprinting methods. This was to be expected due
to the differences in dimensionality of the vectors. It is worth
noting that our embedding methods also achieve superior MAE
performance in terms of original graph attributes, meaning that
the query results have higher quality (lower distance from
query item) since the vectors preserved the graph attribute
similarities better. Memory usage differences are especially
great when compression techniques are not used. For example,
when using Hierarchical Navigable Small World (HNSW),
compared to fingerprinting vectors, the vectors after stage 1
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Fig. 7. Time, memory, and MAE performance in Faiss Approximate Nearest
Neighbor search using different optimizations

of our model only require 4.82% of the memory, and the
vectors after stage 2 of our model only requires 2.28% of the
memory. Furthermore, our embedding vectors were able to
greatly reduce query time. Specifically, embeddings obtained
from the autoencoders only require 0.64%, 2.60%, 29.88%,
46.00% and 20.83% of the time when using fingerprinting
vectors, under different optimization techniques. We observe
that the relative query result quality advantages of our embed-
dings are the least obvious when utilizing Locality Sensitive
Hashing (LSH). Specifically, they were only able to reduce
the MAE by 27.9% and 7.6%, while under Inverted File
Index (IVF), our embedding methods reduce the MAE by
83.7% and 53.1%, in addition to reducing the search time
by 94.2% and 97.4%. Figure 7 illustrates the effectiveness of
Faiss Approximate Nearest Neighbor Search. Across all three
embedding methods, better query time and indexing memory
usage can be achieved with little to almost no MAE loss. It
is worth noting that GNN vectors achieve universally better
performance than fingerprinting vectors, but further reducing
the vector dimensionality through the autoencoders involves a
trade-off, especially between memory and MAE.

IV. DISCUSSION AND CONCLUSION

This study contributes to existing knowledge about graph
representation and provides valuable insights into the complex
nature of chemical molecule data and proposes an efficient
approach to obtain Graph Embeddings in vector format op-
timized for chemical molecule similarity tasks. Through its
incorporation of graph convolutional layers, global pooling,
and edge features, as well as the introduction of biases



for enhanced discriminative power, our GIN model offers a
more comprehensive and expressive representation of graph-
structured data, capturing intricate relationships and attributes
with greater accuracy and efficiency. And the Siamese au-
toencoder achieves dimensionality reduction while preserving
essential information and learning similarity between pairs
of graphs. Compared to traditional methods in the chemistry
field such as molecular fingerprinting, our approach is able to
greatly reduce the dimensionality of the embeddings, making
them more manageable and computationally efficient. This di-
mensionality reduction also helps to improve the interpretabil-
ity and scalability of the embeddings for downstream tasks.
The results highlight the effectiveness of the combination of
comprehensive modeling capabilities of our GIN model and
the dimensionality reduction capabilities of the Siamese au-
toencoders, which allows our framework to effectively produce
efficient graph representations for similarity tasks.

The current study focuses on static molecule structure
graphs. Future work can benefit from spatial-temporal chemi-
cal molecule data that better reflect how molecules transform
over time. For more realistic molecule behavior, molecule
isomerization can be modeled using dynamic graphs in the
form of time series data. Moreover, this framework is limited
to individual graph attributes, multi-tasking models can be ex-
plored in the future. Our proposed framework and techniques
can also be explored in various other domains that require
analysis and prediction of complex graph-structured data.
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