
Efficient graph representation framework for
chemical molecule similarity tasks

Jiaji Ma
Department of Computer Science 

University of Virginia 
Charlottesville, VA, USA 

yjk8jd@virginia.edu

Seung-Hwan Lim
Computer Science and Mathematics Division 

Oak Ridge National Laboratory
Oak Ridge, TN, USA

lims1@ornl.gov

Abstract—Graph data has emerged in numerous scientific
domains and machine learning techniques have been widely
used for analysis and learning of diverse data for prediction
and decision. Machine learning techniques can readily address
complex problems by leveraging their structural information. But
graphs cannot be directly used for existing machine learning
algorithms unless encoded as vectors. The problem of efficient
representation of graphs is a substantial challenge in graph
machine learning. In this paper, we propose a novel two-stage
framework for the representation of chemical molecule graphs
based on the strengths of Graph Isomorphism Networks (GINs)
and Siamese autoencoders. In the first stage, the GIN model
is constructed and trained using the structural information of
chemical molecule graphs. Node attributes, edge attributes, and
edge indices are used as input data, while graph attributes
are used as labels. The GIN model effectively captures the
structural characteristics of graphs and can accurately predict
graph attributes, i.e., molecular properties. It also generates
Graph Embeddings, represented as vectors that encode the
structural information of graphs. In the second stage, Graph Em-
bedding vectors are further optimized for downstream similarity
tasks while preserving the graph structural information. The
Siamese autoencoder is constructed and trained, which reduces
the dimensionality of the Graph Embedding vectors, while
maximizing the preservation of structural information in the
original high-dimensional vectors. The resulting low-dimensional
Graph Embeddings can be effectively utilized for tasks such as
approximate nearest neighbor search. The experimental results
demonstrate the effectiveness of our proposed framework in
accurately predicting graph similarity.

Index Terms—Graph representation learning, Autoencoder,
Similarity Learning, Graph Neural Network

I. INTRODUCTION

In recent years, machine learning methodologies have

gained remarkable success in various domains, particularly

when applied to text and image data. There have been sig-

nificant advancements in fields such as computer vision and

natural language processing, fueled by the power of machine

This manuscript has been authored by UT-Battelle, LLC, under contract
DE-AC05-00OR22725 with the US Department of Energy (DOE). The US
government retains and the publisher, by accepting the article for publication,
acknowledges that the US government retains a nonexclusive, paid-up, irre-
vocable, worldwide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for US government purposes. DOE will
provide public access to these results of federally sponsored research in ac-
cordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

learning techniques [1], [2]. However, as the complexity and

diversity of real-world data continue to expand, a growing real-

ization has emerged that graphs, as a versatile and expressive

data structure, have tremendous potential for capturing and

understanding intricate relationships among entities [3].

Graphs have proven to be highly effective structures for

representing and analyzing real-world data in numerous do-

mains, such as social networks and biological networks. The

effectiveness of graphs in these domains can be attributed to

their ability to encode both structural and semantic informa-

tion. By representing entities as nodes and relationships as

edges, graphs provide a powerful framework for capturing

the underlying patterns, dependencies, and inter-dependencies

within complex systems. This flexibility and ability to capture

and model arbitrary relationships between arbitrary entities

allow graphs to go beyond the limitations of traditional data

structures, providing a more comprehensive and holistic un-

derstanding of complex systems and real-world data.

One of the fundamental problems is retrieving a set of

similar graphs from a database given a query [4]. Many

different similarity metrics have been proposed, such as the

Graph Edit Distance [5] and Maximum Common Subgraph

[6] that are based only on the graph structure without any real-

world context. Models have been proposed to approximate the

true values of these NP-complete problems [4]. But in many

fields, it is hard to adapt these methods to new tasks since these

metrics do not necessarily have any meaningful interpretations.

Efficient graph representation is particularly valuable in

real-world applications. Such as virtual screening chemical

compounds for drug discovery, which is an in silico method

that enables researchers to avoid the time and cost of ex-

perimentally testing infinite possibilities of compounds and

reduces the number of candidate molecules [7]. The ability

to find similar molecules to a given compound allows for the

exploration of the chemical space and aids in the identification

of potential drug candidates with desirable properties [8].

Similarity-based approaches enable the transfer of knowledge

from known molecules to new or unexplored molecules,

facilitating the discovery of novel chemical entities [9]. They

also enable the exploration of alternative chemical scaffolds

that may exhibit improved drug-like properties or reduced side

effects. By efficiently representing molecular graph structures



as vectors, we can employ various similarity search algorithms

to identify similar molecules.

The integration of graph-based methodologies with ma-

chine learning techniques for graph representation learning has

gained significant attention [10]. There have been methods

developed for graph isomorphism testing without mapping

functions [11] and thus cannot be applied for general sim-

ilarity learning. For similarity learning models to be useful

for querying in downstream tasks, the graphs have to be

encoded into vector representations. Graph embeddings enable

the transformation of graph data into vector representations,

thereby bridging the gap between graph structures and tra-

ditional vector-based machine learning models [12], [13].

Using graph embeddings, a wide array of established machine

learning techniques can be employed to tackle diverse tasks,

extending beyond the limited applications of graph data in

its original form. This enhanced flexibility allows for more

comprehensive analysis, prediction, and decision-making in

real-world scenarios. With the emergence of deep learning

on graph data, Graph Neural Networks (GNNs) have become

a powerful tool to encode graphs into embedding vectors

[14]–[17]. Compared to traditional graph embedding methods,

GNNs address tasks in an end-to-end manner [18] and can

better leverage graph features for specific learning tasks. GNN

models have been proposed to solve problems in multiple

domains, such as brain networks [19] and computer security

[20].

In the field of biomedicine, due to the nature of the graph

data as chemical molecules, there have been cheminformatics

tools for mapping the chemical space long before machine

learning, called molecular fingerprinting. Specifically, Morgan

fingerprinting [21] is one of the most widely used featurization

methods for chemical molecules. The algorithm iteratively

encodes circular substructures of a molecule as identifiers,

hashes them, and folds them to bit positions to generate a bit

string. Since fingerprinting methods are optimized specifically

for chemical molecules, fingerprinting has achieved good

performance when used as input representations in deep neural

networks [22], but in many cases fingerprinting methods are

not able to offer ideal performance due to the length of the

resulting embedding vectors.

In this paper we propose a two-stage framework to generate

efficient vector representations for molecular graphs, which

combines the power of the Graph Isomorphism Network and

the Siamese autoencoder. We aim to enhance the accuracy and

efficiency of similarity search for chemical molecules. Our

framework provides a robust representation of molecules as

graphs that capture essential structural and chemical informa-

tion. Using machine learning techniques, we can effectively

compare and rank molecules on their similarity, enabling more

targeted and efficient drug discovery processes. Our research

aims to advance the field of graph representation for similarity

search, providing a powerful tool for the exploration and

discovery of new compounds with desired properties. Our

results demonstrate the effectiveness of the proposed frame-

work in accurately predicting graph similarity while preserving

the essential structural information of the graphs in Graph

Embeddings. Our findings provide valuable insights into the

application of machine learning to graph data, specifically

chemical molecule analysis.

The rest of this paper is organized as follows. Section

2 introduces the methodology and technical details of our

framework. Section 3 presents the experimental results. Sec-

tion 4 summarizes this paper and discusses possible research

directions.

II. METHODOLOGY

In this section, we introduce the overall framework to pro-

duce an efficient vector representation for any given chemical

molecule, as illustrated in Figure 1. The overall pipeline in our

proposed framework consists of two stages. In the first stage,

we use the structural information of molecule graphs to train

Graph Neural Network models for predicting individual graph

attributes. Then we use these trained models to calculate the

embeddings of the molecules for each graph attribute. In the

second stage, we use the output vectors from the first stage to

train Siamese autoencoders for preserving the information in

the vectors and the relative similarity between vectors. Then

we use the trained autoencoders to obtain the corresponding

low-dimensional Graph Embedding vectors from the high-

dimensional embedding vectors from the previous stage.

A. Graph Isomorphism Network (GIN)

Each chemical molecule can be represented as an undirected

weighted graph denoted as G = (V, E). The set of nodes in the

graph, V, corresponds to the atoms present in the molecule.

The set of edges, E, represents the bonds between the

atoms, capturing the connectivity information of the molecular

structure. The graph includes intrinsic properties associated

with the molecule itself in nodes, edges, and the overall

graph, providing valuable data for analysis. Specifically, each

node (atom) in the graph is associated with 11 attributes

that characterize various atomic properties. Similarly, each

edge (bond) carries 4 attributes that describe bond-specific

properties. At the graph level, 19 attributes are provided that

represent different molecular properties as shown in Table I.

These descriptors encompass a diverse set of features, and

provide relevant information that captures global aspects of

the chemical molecules.

By leveraging the properties encoded within the dataset, our

GIN exploits the rich information present in the graphs. This

comprehensive representation enables the model to effectively

capture the intricate relationships and interactions between

atoms, bonds, and the overall molecular structure.

We designed our framework for similarity tasks, but cur-

rently, for how similar any two given chemical molecule

graphs are, there is no canonical definition and no standard

way for measuring or calculating the ground truth. So, based

on a central premise of medicinal chemistry that structurally

similar molecules tend to exhibit similar properties [23], we



Fig. 1. Sequence diagram of overall 2-stage framework

TABLE I
GRAPH ATTRIBUTES IN QM9 DATASET

Attribute index Molecular property Unit
0 Dipole moment μ D

1 Isotropic polarizability α a03

2
Highest occupied molecular

orbital energy εHOMO
eV

3
Lowest unoccupied molecular

orbital energy εLUMO
eV

4 Gap between εHOMO and εLUMO eV

5 Electronic spatial extent 〈R2〉
6 Zero point vibrational energy ZPVE eV
7 Internal energy at 0K U0 eV
8 Internal energy at 298.15K U eV
9 Enthalpy at 298.15K H eV
10 Free energy at 298.15K G eV

11 Heat capavity at 298.15K cv
cal

mol K

12 Atomization energy at 0K UATOM
0 eV

13 Atomization energy at 298.15K UATOM eV

14 Atomization enthalpy at 298.15K HATOM eV

15 Atomization free energy at 298.15K GATOM eV
16 Rotational constant A GHz
17 Rotational constant B GHz
18 Rotational constant C GHz

use the graph attributes, which represent molecular properties,

as the labels for each graph.

Our GIN model has the following stages: (1) Node em-

bedding, which encodes the features and structural properties

of each node into a vector; (2) Graph embedding, during

which graph level representations are obtained from each set

of node embeddings using global pooling, then graph level

embeddings from each level of abstraction is concatenated

to form a single high-dimensional embedding vector; and

(3) the graph attribute computation stage, which reduces the

high-dimensional vectors into one final attribute value, which

is compared with the ground-truth value to update model

parameters.

The model formulated as a sequence of graph convolution

operations can be represented as the following expression.

hl+1 = σ(AhlW l + bl) (1)

Where hl represents the node embeddings in layer l, A

denotes the graph adjacency matrix, W l is the weight matrix

for layer l, and bl represents the bias vector at layer l. The

activation function σ is applied element-wise, introducing non-

linearity to the model.

1) Stage 1: Node embedding: We choose GINE [24] as the

convolutional layer, which is based on the Graph Isomorphism

Network aggregation method and has the following aggrega-

tion function:

x′
i = hΘ

⎛
⎝(1 + ε) · xi +

∑
j∈N (i)

ReLU(xj + ej,i)

⎞
⎠ (2)

Where xi is the input representation of node i, x′
i is

the updated representation of node i, N (i) is the set of

neighboring nodes of node i, ej,i is the edge feature vector

between nodes i and j, ReLU is the rectified linear unit

activation function, ε is a learnable parameter that controls

the scaling of the input representation, and hΘ is a non-linear

activation function applied to the aggregated representation.

At the core of obtaining node embeddings is the aggregation

function, which computes the updated representation of each

node by combining its own input representation with the

representations of its neighboring nodes and edges [25]. No-

tably, the edge level attributes are incorporated into the update

process, the input representation of each neighboring node j
is first transformed by adding the corresponding edge feature

vector ej,i and applying the rectified linear unit activation

function. The resulting representations are then summed and

scaled by a learnable parameter ε, before being added to

the scaled input representation of the node i. The aggregated

representation is then passed through a non-linear activation

function hΘ to obtain the final updated representation. This

function is learned during training and is representation-

invariant, which improves its ability to generalize to unseen

data.



Our model consists of five GINE convolutional layers to up-

date node embeddings, with each layer capturing the essential

structural and semantic information at a different level of ab-

straction through a nonlinear activation function. The forward

pass involves successive updates of node embeddings through

each convolutional layer, this results in five sets of node

embeddings, corresponding to different levels of neighborhood

information, ranging from local neighborhood to global graph

characteristics. The convolutional layers allow the model to

aggregate and propagate information from neighboring nodes,

allowing it to discern local structural patterns and capture local

context.

To further enhance the expressiveness and discriminative

capabilities of our model, we include a bias term in the forward

pass. The bias term is a learnable parameter that is added to

each layer’s aggregated representations of neighboring nodes

and edges after passing them through a neural network. The

neural network then applies a nonlinear activation function to

the sum of the aggregated representations and the bias term.

This allows the model to learn a shift in the activation function,

which can be useful for capturing complex nonlinearities in

the data. By customizing the influence of each layer, we can

improve the model’s ability to capture the local structure

of the graph and learn more expressive node embeddings,

since the model can selectively emphasize or attenuate specific

graph features during the aggregation process. This adaptabil-

ity allows the model to focus on the most relevant graph

properties, leading to improved predictive performance and

better generalization.

2) Graph Representation: To obtain the graph-level rep-

resentation, we perform global add pooling operations. They

compute the sum of the node embeddings across the set of

nodes, to obtain a single vector representation that captures the

aggregate features of the graph for each level of abstraction.

This operation is applied independently to each feature dimen-

sion, resulting in sets of feature vectors that capture different

aspects of the graph. These pooled representations provide

a concise summary of the graph’s structural and semantic

properties, enabling higher-level analysis and inference.

The global add pooling mechanism is a powerful tool for

capturing the aggregate features of the graph, which helps

effectively capture the overall characteristics and patterns

exhibited by the graph as a whole, facilitating the capture of

more holistic and higher-level graph properties. Notably, it is

permutation invariant, meaning that the order of the nodes does

not affect the resulting pooled representation. This property

makes the pooling operation robust to variations in graph

structure and node ordering, leading to more consistent and

reliable graph-level representations. And it offers flexibility

when graphs in the dataset have varying sizes since the

representation it produces has a fixed size.

To combine and integrate graph embeddings from different

levels, the resulting set of feature vectors is concatenated into

a single high-dimensional vector with a length of 64, which

captures the structure of the graph and encapsulates a rich

and expressive representation of the global context of the

entire graph, consolidating information from various levels of

abstraction.

3) Graph attribute computation: The final stage of our

model involves computing the graph attributes based on the

concatenated graph embedding. To achieve this, we employ

a series of fully connected layers, each consisting of a linear

layer and with rectified linear unit (ReLU) activations. These

layers enable the model to learn complex mappings from the

high-dimensional concatenated embedding space to the desired

attribute space. We use three linear layers to gradually re-

duce the dimensionality of the concatenated graph embedding

while capturing relevant features. The activation function after

each linear layer introduces non-linearity into the attribute

computation process and allows the model to learn complex

relationships between the graph embeddings and the target

attributes. Finally, we employ a fourth linear layer to map

the reduced-dimensional embedding to a single attribute value.

The output of this layer represents the predicted value for the

target attribute. By comparing this predicted value with the

ground truth value, we can calculate the loss and update the

model parameters during the training process. During training,

we employ the Adam optimizer with a learning rate of 0.01

and weight decay of 0.01. The loss function used is the L1 loss,

which measures the absolute difference between the predicted

and ground truth attribute values. The model is trained for

100 epochs, and in each epoch, the training loss and error

rate, as well as the validation loss and error rate are computed

and monitored. The model with the lowest validation loss is

selected as the final model. After training, we evaluate the

performance of the trained model using the test dataset. We

compute the L1 loss and error rate on the test data to assess

the model’s predictive accuracy and generalization ability.

B. Siamese Autoencoder

After obtaining the complete, high-dimensional Graph Em-

bedding vectors from our GIN model, optimizing them to

be more suitable to use for downstream tasks is an impor-

tant issue. Since superficially high-dimensional and complex

phenomena can actually be dominated by a small amount of

simple variables in most situations [26], this can be done using

some learned projection method that maps the vectors in high-

dimensional feature space to low-dimensional feature space.

We choose Siamese autoencoders to be our dimensionality

reduction technique, to maximize preservation of information

in the original high-dimensional embedding vectors while

reducing the dimensionality of the vectors, which optimizes

them for tasks requiring vector input.

1) Autoencoders: Autoencoders serve as the foundational

component of the Siamese autoencoder stage of our frame-

work. They are neural network architectures designed for

unsupervised representation learning. An autoencoder consists

of three layers, separated by an encoder and a decoder,

which work together to learn compressed and meaningful

representations of the input data, through the minimization

of reconstruction error by adjusting model parameters.



The encoder takes an input sample and maps it to a lower-

dimensional latent space representation with length 10, this

is also known as a bottleneck layer or code, and is followed

by a Rectified Linear Unit (ReLU) activation function, which

introduces non-linearity and captures complex patterns in the

data. The latent representation aims to capture the most salient

features and patterns in the data. The decoder, on the other

hand, reconstructs the original input sample from the latent

representation, aiming to minimize the reconstruction error.

In the process of dimensionality reduction, discarding and

simplifying some dimensions inevitably leads to loss of infor-

mation, so the autoencoder is trained to keep the most impor-

tant characteristics as much as possible. During training, the

autoencoder learns to minimize the discrepancy between the

reconstructed output and the original input by optimizing a L1

loss function, which measures the difference between the input

and its reconstruction. By iteratively adjusting the weights and

biases of the encoder and decoder, the autoencoder gradually

improves its ability to compress and reconstruct the input data.

2) Siamese structure: Siamese networks consist of two

identical neural networks with shared weights that take sep-

arate inputs. The neural networks are eventually merged into

a single layer by applying a discriminative function to the

outputs of individual neural networks [27]. This makes them

ideal for similarity-related tasks, as they are designed to

compare two inputs.

We design a Siamese autoencoder architecture, as an exten-

sion of the traditional autoencoder, specifically designed for

similarity tasks, as it includes a pair of identical autoencoders

sharing weights. Each autoencoder consists of an encoder and

a decoder, which utilize fully connected layers to process the

input vectors. During the forward pass, two input vectors are

fed into autoencoders separately, resulting in two sets of en-

coded representations. These encoded representations capture

the essential molecular features in a lower-dimensional space.

The decoder then reconstructs the original molecules from

the encoded representations, producing two sets of decoded

molecules.

By utilizing this Siamese architecture, we leverage the

shared weights to learn representations that effectively capture

the similarity relationships between the input samples. During

training, the Siamese autoencoder optimizes two main objec-

tives simultaneously: accurate reconstruction and preservation

of similarity. To achieve this, the Siamese autoencoder com-

bines the autoencoder loss, which quantifies the discrepancy

between the input samples and their reconstructions, with a

similarity preservation loss. The similarity preservation loss

compares the pairwise distances or similarities between the

original input samples with those derived from the decoder

outputs. By minimizing the difference between the original

distances and the distances computed from the decoder out-

puts, the Siamese autoencoder ensures that the latent space

representations maintain not only the high-dimensional vector

information, but also the inherent pairwise relationships.

In our training process, we use the Adam optimizer with

a learning rate of 0.01 and a weight decay of 0.1. The L1

Fig. 2. Distribution of the number of edges in each graph in the entire QM9
dataset

Fig. 3. Distribution of the number of nodes in each graph in the entire QM9
dataset

loss function is applied for both the autoencoder and the

Siamese loss components. The model is trained over 100

epochs using mini batches of data to update the parameters

and optimize its performance. The Siamese autoencoder’s ar-

chitecture leverages the power of unsupervised representation

learning while incorporating similarity preservation, which

enables more effective and accurate handling of similarity-

related tasks.

III. RESULTS

A. Dataset

The chemical molecule dataset QM9 [28] is used for the ex-

periments. It is a subset collection from the GDB-17 database

[29] and consists of 130,831 stable organic molecules. All the

molecules are made up of H, C, N, O, F elements, have up to

nine non-hydrogen heavy atoms and are modeled using density

functional theory. It has been used in several existing works on

graph machine learning [30]–[32]. We randomly select 1000

graphs from the dataset and randomly split 60%, 20% and

20% as the training set, validation set, and testing set.

As illustrated in Figures 2, 3, and 4, the graph sizes are

close to normally distributed, while most graph attributes have

distributions without much discernible pattern, and for some

attributes, there are some obvious outliers that deviate a lot

from other values.

B. Baseline method

Our baseline approach is molecular fingerprinting, in which

a kernel is applied that extracts features from the molecule.

The features are hashed and then used to calculate a bit

vector. Specifically, we chose one of the most widely used

methods, the Morgan fingerprint [21], also known as the

extended-connectivity fingerprint ECFP4, which is optimized



Fig. 4. Distribution of the value of each graph attribute across all graphs in
the QM9 dataset

to compare the similarity between molecules. It takes into

account the neighborhood of each atom and perceive the

presence of specific circular substructures around each atom in

a molecule, which are predictive of the biological activities. It

is one of the best performing molecular fingerprinting methods

for target prediction tasks. By default, it produces vectors of

length 2048.

C. Evaluation metrics

For both the baseline method and after each stage of our

framework, we run three different benchmarks to evaluate

different aspects of the performance of our models. First,

we use the Graph Embedding vectors as input to a simple

Forward Feeding Neural Network that is trained to predict the

original graph attribute; this measures how well the structural

information (which was used to obtain the embeddings) is

preserved. Second, we use Uniform Manifold Approximation

and Projection (UMAP) [33] to project the Graph Embedding

vectors onto a 2-dimensional space. This allows us to examine

how well the distribution and vector distances reflect the

ground truth value for attribute similarities between the graphs.

Fig. 5. Attribute prediction MAE comparison between embeddings obtained
after each stage against Morgan Fingerprinting embeddings

And finally, we use the Graph Embedding Vectors as input to

perform Approximate Nearest Neighbor Search using Faiss

[34]. This measures the downstream task performance from

multiple aspects for each set of Graph Embedding vectors.

D. Experiment results

Our framework was implemented using PyTorch Geometric

(PyG) library for all model and tensor related computations in

Python.

Since all the Graph Embedding vectors were obtained using

the graph structural information as input, we are able to

measure how well the they retained the ability of the original

graph to predict graph attributes. For each attribute, 1000

previously unseen graphs are randomly selected and split 60%

training set, 20% validation set and 20% testing set; these

graphs are used to train the Feed Forward Neural Network

(FNN). The FNN has 4 fully connected layers, each separated

by a non-linear activation function and a dropout layer. Three

FNNs were trained separately using fingerprinting vectors,

vectors after our first stage, and vectors after the second stage,

respectively. Another 1000 unseen graphs were randomly se-

lected and run on each trained FNN. Then the Mean Absolute

Error (MAE) values between the ground truth graph attribute

values and the FNN prediction values were calculated for

each of the three sets of vector inputs. Figure 5 shows the

comparison of MAE (after normalizing by setting the values

of the fingerprinting method as reference points) between

the three embedding methods. For all graph attributes, the

Graph Embedding vectors after both stages of the framework

consistently provide at least similar or better performance as

the fingerprinting embedding vectors despite having far fewer

dimensions. Notably, for attributes 2, 4, 11, 16, 17 and 18, our

embedding methods offer far superior performance.

The preservation of similarity is illustrated in Figure 6.

Using UMAP, Graph Embedding vectors obtained using each

method are mapped onto a 2-dimensional space to make their

relative position and distance more intuitive and comprehen-

sible. 500 embeddings were randomly selected, in which a

random embedding is designated as the query entry. The

ground truth for the original graph attribute similarities be-

tween the query entry and all other embeddings is calculated

and mapped to a continuous color scale. The scatter plots of

these randomly selected embeddings demonstrate that after



Fig. 6. Embedding vectors mapped to 2-d using UMAP distance scatterplot
(colored by ground truth differences)

each stage of our framework, the original graph similarity

is still mostly preserved, as graphs with higher values of

ground truth difference are mapped as points further away,

generally, and vice versa. And embedding vectors obtained

using our models achieve much better similarity preservation

compared to fingerprinting vectors. These scatterplots can be

done individually for each graph attribute. Figure 6 is an

example using attribute 0, other attributes yield similar results.

Figure 4 shows the downstream task performance com-

parison of the three different embedding methods, including

time, indexing memory, and MAE between the query results

and ground truth. It illustrates the differences across different

Approximate Nearest Neighbor (ANN) search optimization

methods, including Exact Search, Inverted File Indexing (IVF),

IVF + Product Quantization (PQ), Locality Sensitive Hashing

(LSH), and Hierarchical Navigable Small World (HNSW).

Here wer use attribute 0 as an example in Figure 7, similar

differences can be observed for other graph attributes as well.

The low-dimensional embedding vectors obtained from our

models achieve better time and memory performance than

molecular fingerprinting methods. This was to be expected due

to the differences in dimensionality of the vectors. It is worth

noting that our embedding methods also achieve superior MAE

performance in terms of original graph attributes, meaning that

the query results have higher quality (lower distance from

query item) since the vectors preserved the graph attribute

similarities better. Memory usage differences are especially

great when compression techniques are not used. For example,

when using Hierarchical Navigable Small World (HNSW),

compared to fingerprinting vectors, the vectors after stage 1

Fig. 7. Time, memory, and MAE performance in Faiss Approximate Nearest
Neighbor search using different optimizations

of our model only require 4.82% of the memory, and the

vectors after stage 2 of our model only requires 2.28% of the

memory. Furthermore, our embedding vectors were able to

greatly reduce query time. Specifically, embeddings obtained

from the autoencoders only require 0.64%, 2.60%, 29.88%,

46.00% and 20.83% of the time when using fingerprinting

vectors, under different optimization techniques. We observe

that the relative query result quality advantages of our embed-

dings are the least obvious when utilizing Locality Sensitive

Hashing (LSH). Specifically, they were only able to reduce

the MAE by 27.9% and 7.6%, while under Inverted File

Index (IVF), our embedding methods reduce the MAE by

83.7% and 53.1%, in addition to reducing the search time

by 94.2% and 97.4%. Figure 7 illustrates the effectiveness of

Faiss Approximate Nearest Neighbor Search. Across all three

embedding methods, better query time and indexing memory

usage can be achieved with little to almost no MAE loss. It

is worth noting that GNN vectors achieve universally better

performance than fingerprinting vectors, but further reducing

the vector dimensionality through the autoencoders involves a

trade-off, especially between memory and MAE.

IV. DISCUSSION AND CONCLUSION

This study contributes to existing knowledge about graph

representation and provides valuable insights into the complex

nature of chemical molecule data and proposes an efficient

approach to obtain Graph Embeddings in vector format op-

timized for chemical molecule similarity tasks. Through its

incorporation of graph convolutional layers, global pooling,

and edge features, as well as the introduction of biases



for enhanced discriminative power, our GIN model offers a

more comprehensive and expressive representation of graph-

structured data, capturing intricate relationships and attributes

with greater accuracy and efficiency. And the Siamese au-

toencoder achieves dimensionality reduction while preserving

essential information and learning similarity between pairs

of graphs. Compared to traditional methods in the chemistry

field such as molecular fingerprinting, our approach is able to

greatly reduce the dimensionality of the embeddings, making

them more manageable and computationally efficient. This di-

mensionality reduction also helps to improve the interpretabil-

ity and scalability of the embeddings for downstream tasks.

The results highlight the effectiveness of the combination of

comprehensive modeling capabilities of our GIN model and

the dimensionality reduction capabilities of the Siamese au-

toencoders, which allows our framework to effectively produce

efficient graph representations for similarity tasks.

The current study focuses on static molecule structure

graphs. Future work can benefit from spatial-temporal chemi-

cal molecule data that better reflect how molecules transform

over time. For more realistic molecule behavior, molecule

isomerization can be modeled using dynamic graphs in the

form of time series data. Moreover, this framework is limited

to individual graph attributes, multi-tasking models can be ex-

plored in the future. Our proposed framework and techniques

can also be explored in various other domains that require

analysis and prediction of complex graph-structured data.

REFERENCES

[1] S. Xu et al., “Computer vision techniques in construction: a critical
review,” Archives of Computational Methods in Engineering, vol. 28,
pp. 3383–3397, 2021.

[2] D. H. Maulud, S. R. Zeebaree, K. Jacksi, M. A. M. Sadeeq, and
K. H. Sharif, “State of art for semantic analysis of natural language
processing,” Qubahan academic journal, vol. 1, no. 2, pp. 21–28, 2021.

[3] S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip, “A survey on
knowledge graphs: Representation, acquisition, and applications,” IEEE
transactions on neural networks and learning systems, vol. 33, no. 2,
pp. 494–514, 2021.

[4] Y. Bai et al., “Simgnn: A neural network approach to fast graph
similarity computation,” in Proceedings of the twelfth ACM international
conference on web search and data mining, 2019, pp. 384–392.

[5] H. Bunke and G. Allermann, “Inexact graph matching for structural
pattern recognition,” Pattern Recognition Letters, vol. 1, no. 4, pp. 245–
253, 1983.

[6] H. Bunke and K. Shearer, “A graph distance metric based on the maximal
common subgraph,” Pattern recognition letters, vol. 19, no. 3-4, pp.
255–259, 1998.

[7] A. Cereto-Massagué et al., “Molecular fingerprint similarity search in
virtual screening,” Methods, vol. 71, pp. 58–63, 2015.

[8] M. A. Skinnider, C. A. Dejong, B. C. Franczak, P. D. McNicholas, and
N. A. Magarvey, “Comparative analysis of chemical similarity methods
for modular natural products with a hypothetical structure enumeration
algorithm,” Journal of Cheminformatics, vol. 9, pp. 1–15, 2017.

[9] Y. Yang, M. Liu, and J. R. Kitchin, “Neural network embeddings based
similarity search method for atomistic systems,” Digital Discovery,
vol. 1, no. 5, pp. 636–644, 2022.

[10] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[11] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-lehman graph kernels.” Journal of
Machine Learning Research, vol. 12, no. 9, 2011.

[12] Z. Wu et al., “A comprehensive survey on graph neural networks,” IEEE
transactions on neural networks and learning systems, vol. 32, no. 1,
pp. 4–24, 2020.

[13] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey
of graph embedding: Problems, techniques, and applications,” IEEE
transactions on knowledge and data engineering, vol. 30, no. 9, pp.
1616–1637, 2018.

[14] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[15] P. Velickovic et al., “Graph attention networks,” stat, vol. 1050, no. 20,
pp. 10–48 550, 2017.

[16] K. Xu et al., “Representation learning on graphs with jumping knowl-
edge networks,” in International conference on machine learning.
PMLR, 2018, pp. 5453–5462.

[17] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful
are graph neural networks?” in 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019. [Online]. Available:
https://openreview.net/forum?id=ryGs6iA5Km

[18] G. Ma, N. K. Ahmed, T. L. Willke, and P. S. Yu, “Deep graph similarity
learning: A survey,” Data Mining and Knowledge Discovery, vol. 35,
pp. 688–725, 2021.

[19] G. Ma et al., “Deep graph similarity learning for brain data analysis,” in
Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, 2019, pp. 2743–2751.

[20] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching
networks for learning the similarity of graph structured objects,” in
International conference on machine learning. PMLR, 2019, pp. 3835–
3845.

[21] H. L. Morgan, “The generation of a unique machine description for
chemical structures-a technique developed at chemical abstracts service.”
Journal of chemical documentation, vol. 5, no. 2, pp. 107–113, 1965.

[22] T. Unterthiner et al., “Deep learning as an opportunity in virtual
screening,” in Proceedings of the deep learning workshop at NIPS,
vol. 27, 2014, pp. 1–9.

[23] I. Muegge and P. Mukherjee, “An overview of molecular fingerprint
similarity search in virtual screening,” Expert opinion on drug discovery,
vol. 11, no. 2, pp. 137–148, 2016.

[24] W. Hu et al., “Strategies for pre-training graph neural networks,” in
International Conference on Learning Representations (ICLR), 2020.

[25] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in International
conference on machine learning. PMLR, 2017, pp. 1263–1272.

[26] Y. Wang, H. Yao, and S. Zhao, “Auto-encoder based dimensionality
reduction,” Neurocomputing, vol. 184, pp. 232–242, 2016.

[27] L. V. Utkin, V. S. Zaborovsky, A. A. Lukashin, S. G. Popov, and A. V.
Podolskaja, “A siamese autoencoder preserving distances for anomaly
detection in multi-robot systems,” in 2017 international conference
on control, artificial intelligence, robotics & optimization (ICCAIRO).
IEEE, 2017, pp. 39–44.

[28] Z. Wu et al., “Moleculenet: a benchmark for molecular machine learn-
ing,” Chemical science, vol. 9, no. 2, pp. 513–530, 2018.

[29] L. Ruddigkeit, R. Van Deursen, L. C. Blum, and J.-L. Reymond,
“Enumeration of 166 billion organic small molecules in the chemical
universe database gdb-17,” Journal of chemical information and model-
ing, vol. 52, no. 11, pp. 2864–2875, 2012.

[30] G. A. Pinheiro et al., “Machine learning prediction of nine molecular
properties based on the smiles representation of the qm9 quantum-
chemistry dataset,” The Journal of Physical Chemistry A, vol. 124,
no. 47, pp. 9854–9866, 2020.

[31] O. A. von Lilienfeld, K.-R. Müller, and A. Tkatchenko, “Exploring
chemical compound space with quantum-based machine learning,” Na-
ture Reviews Chemistry, vol. 4, no. 7, pp. 347–358, 2020.

[32] S. Liu, M. F. Demirel, and Y. Liang, “N-gram graph: Simple un-
supervised representation for graphs, with applications to molecules,”
Advances in neural information processing systems, vol. 32, 2019.

[33] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold
approximation and projection for dimension reduction,” stat, vol. 1050,
p. 18, 2020.

[34] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–547,
2019.


