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Ovutline and Disclaimer
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Outline: Metal Organic
Framework Modeling using
three methods:

1. Classical (Rigid) Force
Field: Universal Force Field
(UFF)

2. Classical Flexible Force
Field: QuickFF

3. Machine Learned Force
Field: FitSNAP
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Metal Organic Frameworks (MOFs) N = |NAToNAL
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« Crystalline, porous materials

« Good for gas storage/separation
applications

Metal
« Large, diverse class of molecules node
« >100,000 synthesized
- >500,000 predicted Organic .[ !

linker

Gas Separation °
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Characteristics of a good capture 10 TR W —
sorbent

« Strong CO, adsorption
« Regenerable
« Not hindered by humidity

Loading [mmol/g]

Example: CALF-20

+ Successfully used for point source 0 20 40 60 80 100
- Little effect of humidity up to 30% RH Relative Humidity [%]
« Strong dispersion interactions (CO, > H,0)
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Computational Screening for Mixed Matrix Membranes (MMMs) [N = |NATIONAL
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MMMs can be made from Combining MOFs and Polymer Materials LABORATORY
UL SN JOD
Database of MOFs List of Polymers Energy&
(~140,000) QLD Environmental

Molecular
Simulations of
CO,/N, Adsorption &

Analytical
Model of MMM

Diffusion Properties

Cost of Carbon Carbon Capture
Capture for each Process Modeling
MMM (CCSlI Tools)

Predicted Cost of Capture Process for >1 million membranes

Jankce A. Steckel, Christopher £. Wimer et .
High-throughput computational pradiction of the cost
of Carbon Capture using mibxed Matrix membranes

Samir Budhathoki, Kayode Ajayi, Christopher E. Wilmer
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Predictions from High Throughput Computational Screening N = |NATIONAL
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100 . . . 70 :
o _ _ i * MMMs using NETL
- 70 orption Selective - Polymer 3 (blend
.4;' 60 ] polymer)
= @2 « Best MMM in this set:
% ‘m = « Predicted CCC
. % 8 Reduction from
o = $62.9 to $42.7 per
€ 150 8 tonne CO,
(e
O | s 3 - Tool for selecting MOFs
O to pair with polymers
10 1 40
2000 3000 4000 5000 e000

CO-> Permeance (GPU)

Fay, LS EPARINEIIGA I, Ajayi, Steckel, Wilmer, Energy and Environmental Sciences,
.3 ENERGY onstants for H,O in CoRE MOFs courtesy of:Li, S.; Chung, Y. G.;




Comparison with Experiment

e 000

NETL Polymer3
Poly+MOFA-20%-expt
Poly+MOFA-20%-comp
Poly+MOFB-40%-expt
Poly+MOFB-40%-comp
Poly+MOFC-40%-expt
Poly+MOFC-40%-comp

Predictions have
the correct tfrend
and reasonable
accuracy

Ali Sekizkardes, Sameh Elsaidi
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MOF Computational Screening for CO, Capfure N
Past large scale screening studies have modeled MOFs atoms as rigid TLJiRs0karory

Rigid Force Field Flexible Force Field

 Elecftrostatic + dispersion « Electrostatic + dispersion + bond + angle + forsion
« Low computational cost « High computational cost

« Good forrigid MOFs but most MOFs are flexible «  Accounts for MOF flexibility

« Easy to obtain « Hard to obtain for a large set of materials
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Flexible Force Fields for MOFs N = |NATIONAL
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Vanduyfhuys, L. et al. JCC 2015, 36 (13), 1015-1027. _
Vanduyfhuys, L. et al. JCC 2018, 39 (16), 999-1011.




Calculated Isotherm: Flexible vs Rigid FF N=|NAToNAL
TL TECHNOLOGY
CO, adsorption in MAF-2 (BOGXIF) at 298 K LABORATORY
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CO, Adsorption at Direct Air Capture Conditions

Comparison Between Rigid and Flexible Force Field Results
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359 <mall P L p forcefield * Flexible forcefields yield CO,
mall Fore  Large rore e rigid adsorption in MOFs with smalll
530 - > B flexible pore sizes
S 2.5+ | . Rigid forcefields yield no CO,
E | adsorption for MOFs with pore
§ 2.0 | B 298 K size less than 3 A in most of the
e ! 40 Pa cases
E ' . ! = « For some MOFs with pore size
© 1.0 e greater than 3 A, rigid forcefields
9 o i overestimate the CO, adsorption
- — —:E,_E—= :__ -
00 — e S —— = =

Pore size (A)
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Machine Learning model for MOF classification  [N=|vanox

TE TECHNOLOGY
LABORATORY

"a" -
—
3 10° =
E :
S _ 1- CO, ads >= 0.052 mol/kg
= 0 - CO, ads <0.052 mol/kg
c 10 3
i -
o -
v -
e -
®
O




MOF Featurization N=|anone:
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Feature: n-dimensional numerical vector that represents each MOF LABORATORY
1.  Stoichiometric-45
* 45 statistical attributes of elemental properties
2.  Stoichiometric-120 Feature Matrix (X) Target Vector (y)
* 103 attributes describing elemental fractions n_features —
* 7 statistical attributes of elemental properties i W
Y ¥
3. Sine Coulomb Matrix S )
* pairwise electrostatic interactions between nuclei o o
4.  Otbital Field Matrix < <
* distribution of valence electrons l l

* interaction of valence subshells between atoms

5.  Smooth Overlap of Atomic Positions (SOAP)

* similarity between a pair of local atomic environments

6. Revised Autocorrelation (RAC) values + Custom
features
* molecular revised autocorrelation (RAC) values, surface area,

volume, density, pore-limiting diameter (PLD), charge difference,
epsilon
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Results: ML Classifiers validation results N=|NAnoa
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0.76 = . @ ® catboost
. ® > ® gbc
0.74 = . . .
- $ , ® z’;ﬂ Train size : 80 %
m 0725 . o . : o Test size: 20%
S 0703 - : ® Mda Results are averaged from 10 cv folds
) » ) a 8 o
< 008 : o 3 ) -11 different classification ML models
0.66 — . : :“5‘ All the features were customized
064 — . I (denoted by ‘_cf’ in plot ) with
T T T T T T 1T T T geometric features such as surface areaq,
o o & & R © Light Gre - ; : :
P N j YA E‘: *gf"{; § g Jsorithy  POTE Size, electrostatics and dispersion
£ 5 s o5 2 . . term. | | |
§F 7 5 $§¢ & Revised auto-correlation with | gt Gradient Boosting algorithm
%) S & 3 customized features
¢ 5 ¥ performed the best
g &
&
Features
ACCUI’OCY True Positive + True Negative 76%
— — 0
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Results: Predictions on rest of QMOF Database  [N=|ranona
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Total MOFs High adsorbing MOFs (1) Low adsorbing MOFs (0)
( CO, adsorption > = 0.05 mol/kg) (C0O,<0.05 mol/kg)
10,645 2447 (~23 %) 8198 (~77%)
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Performance of Classical Force Fields: TIFSIX, SIFSIX N
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Perfformance at Low Pressure

CO, adsorption overpredicte
using rigid force fields
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~--e-- TIFSIX-3-Ni Simulated (298 K)
—e— TIFSIX-3-Ni Expt (298 K)
---¢-- §|FSIX-3-Cu Simulated (298 K)
—+— SIFSIX-3-Cu Expt (298 K)
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Importance of Flexibility and Accuracy

« Poor performance of rigid force fields
« Overprediction at low P-q,

 DFT molecular dynamics:
« Significant motion of fluorine atoms
» Fluorine location affects adsorption strength

6.30

F-F Diagonal Distance (A)
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0 20 40 60 80 100
time (fs)




MLFF Training: Spectral Neighbor Analysis Potential N= gﬁg&%ﬁ;m
MLFFs Trained on Accurate DFT Data TL|{A50rAtorY
Sample Volume Changes
* MLFF Method: SNAP
* regression model maps local atomic Expanded MOF Optimized MOF Compressed MOF
environments to atomic energies
and forces

« Training Configurations
- Favorable (low energy) and
unfavorable (high energy)

« MOF with and without CO,
 Our Approach
» Hybrid SNAP/classical potential
« MLFF handles short range
« Classical handles long range

Sample CO, Adsorption

Lower Energy CO,
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MLFF Describes MOF Structure and Flexibility (TIFSIX_3_Zn) LABORATORY
« Prediction of energy vs. volume curve is almost
perfect (bottom) —728.00
+ Related to bulk modulus —728.25.
« Compared energies/forces in QM-based 58 50
dynamics calculations, performance is good " “™
« 7000 training configurations —728.75- °
1800 testing configurations S
L —-729.00 °
w .
- - —729.25; o .
Data R R L . o .
Empty MOF Energies Forces —729.50-
(Testing set)
—729.75; ® DFT
Structure 0.998 0.990 . MLFF
Optimization —730 | | | |
AIMD = 300 K 0.991 0.981 oo 1550 1600 . 1650 1700 1750
AIMD - 450 K 0.990 0.975 V(A7)
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Performance of MLFF: MOF + CO,, VE o
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Parity Plots for Energies and Forces Data R R LABORATORY
MOF + CO2 Energies Forces
(Testing set)
AIMD - 300K 0.990 0.983
AIMD - 450K 0.990 0.978
_10.5 - MC - 300K 0.975
30 -
'S -11.01
S 20~
= E
T -115- @ 10;
()
S S 0
@ _12.0- =
= BN AIMD_300_CO2 % R BN AIMD 300 CO2
T AIMD_300_Empty = AIMD_300_Empt
S T SN AIMD_450_CO2 R — AIMD—450_CO§ ’
i AIMD_450_Empty - -
BN NVT 300K ~30 - I AIMD_450_Empty
-13.0 - =0 BN NVT 300K
BN Optimization _40 - Bl Optimization
~13.0 -125 -120 -11.5 -11.0 -105 —30 —20 —10 0 10 20 30

Target energy (eV/atom) Target force (eV/A)
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Performance of MLFF Force Field: TIFSIX-3-Zn N =|NATIONAL
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Performance at Low Pressure LABORATORY
One point on isotherm so far 3.0 :
MLFF SimUIqﬁon: : ................. . B T ELTTTTPPELTTTTID 7 A 4
TIFSIX-3-Zn adsorbs1.08 mmol/g* 55 i g
* 400 ppm, 298K : i

O i
8

~--e-- TIFSIX-3-Ni Simulated (298 K)
—e— TIFSIX-3-Ni Expt (298 K)
---¢-- §|FSIX-3-Cu Simulated (298 K)
—+— SIFSIX-3-Cu Expt (298 K)
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Conclusions

Inclusion of MOFs in polymer membranes can lower
the cost of membrane-based CO, capture by up to
1/3

Rigid FF can lead to large overprediction of CO,
isotherm at low pressure

MLFF flexible potential accurately describes energies
and forces in a MOF loaded with CO,

Training on the error of the classical force field
improves the MLFF model fit

TIFSIX-3-Zn AE s cop. MLFF =-52.9 kJ/mol, DFT -52.1
kJ/mol

MLFF Prediction: TIFSIX-3-Zn adsorbs 1.08 mmol/g* at
400 ppm, 298 K
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