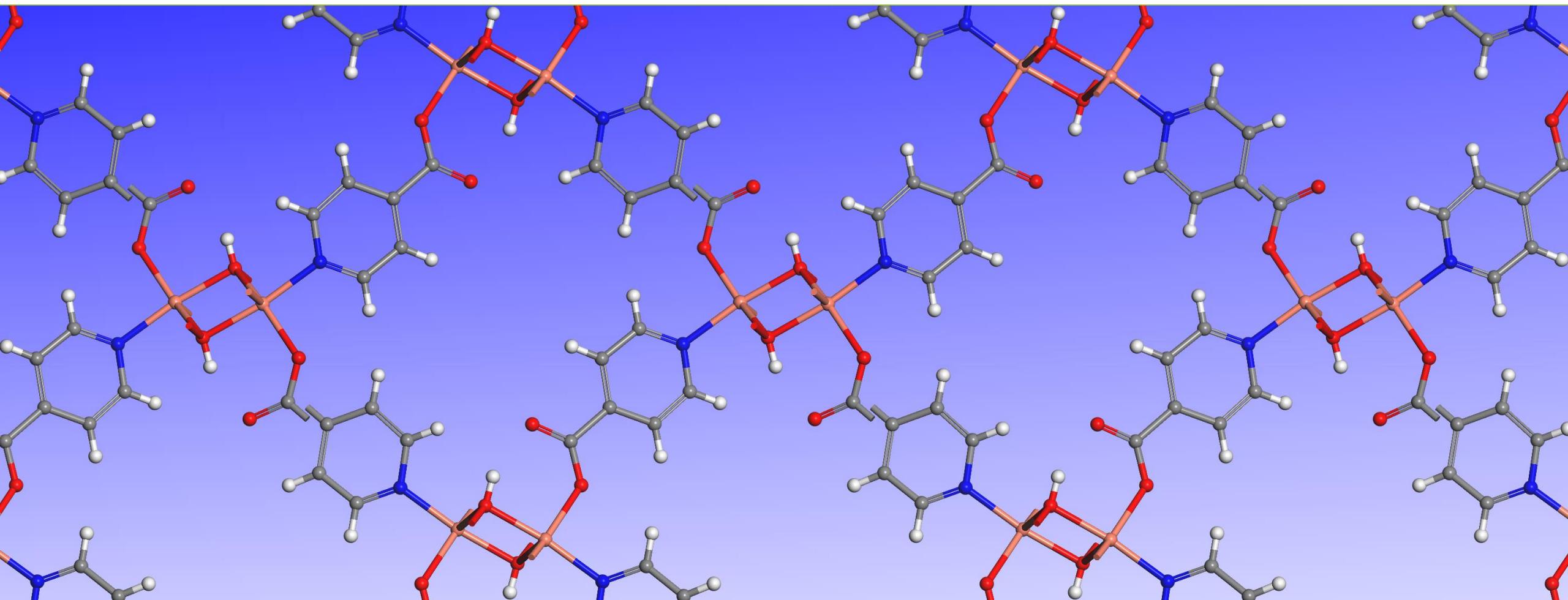


Machine Learned Force Field Modeling of Metal Organic Frameworks for CO₂ Direct Air Capture

John Findley, Samir Budhathoki, Jan Steckel

ACS Meeting, August 2024



Acknowledgements

Co-authors:

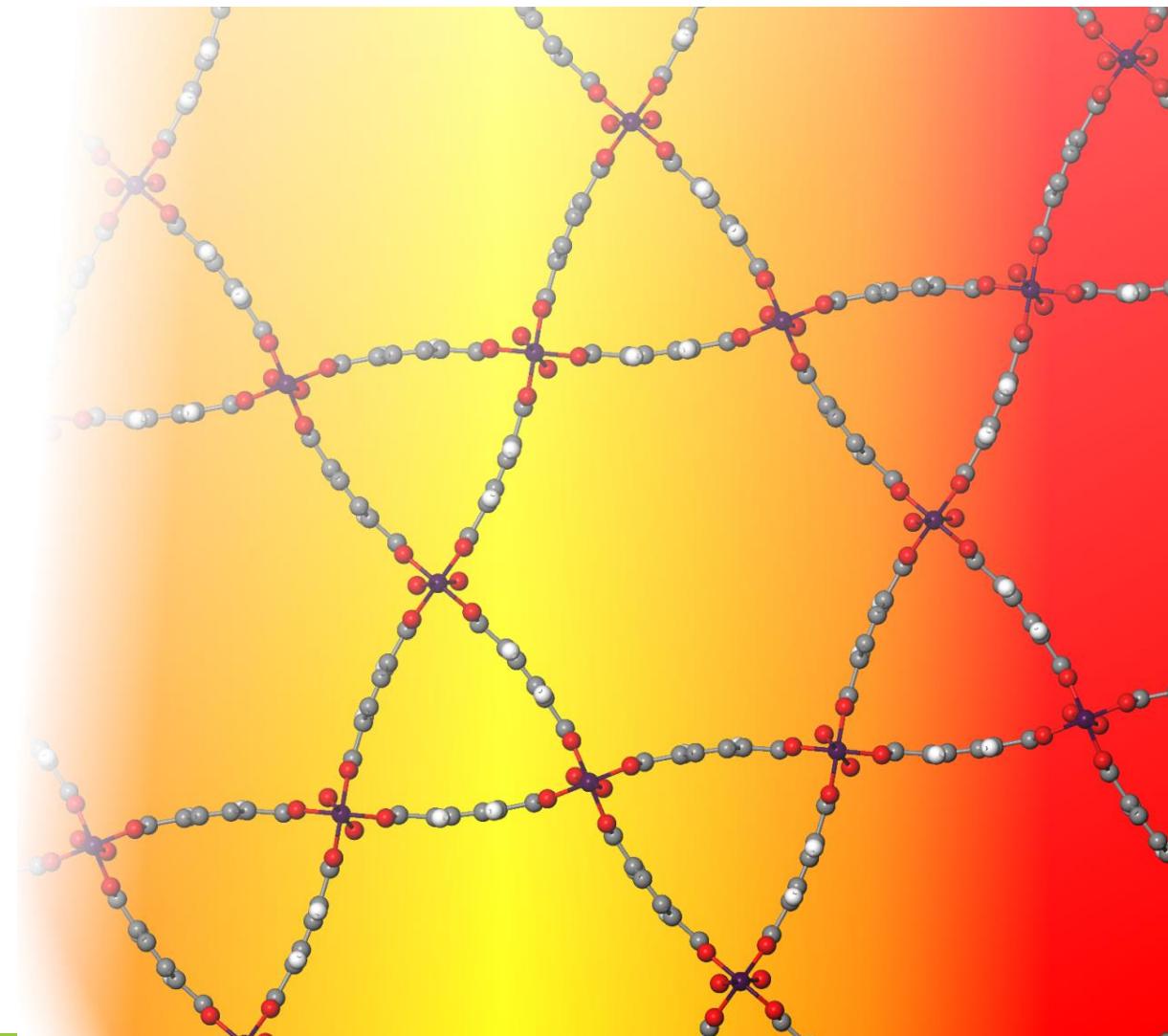
- Jack Findley – NETL
- Samir Budhathoki – formerly at NETL, currently Braskem

Summer Students:

- Tiernan Baucom, Ugrad, currently at University of Michigan
- Clare Martin, Ugrad, currently at University of Michigan
- Laine Roper, Ugrad, currently at Harvard

Collaborators:

- Christopher E. Wilmer, U of Pittsburgh
- Dan Sorescu - NETL



U.S. DEPARTMENT OF
ENERGY

Outline and Disclaimer

Outline: Metal Organic Framework Modeling using three methods:

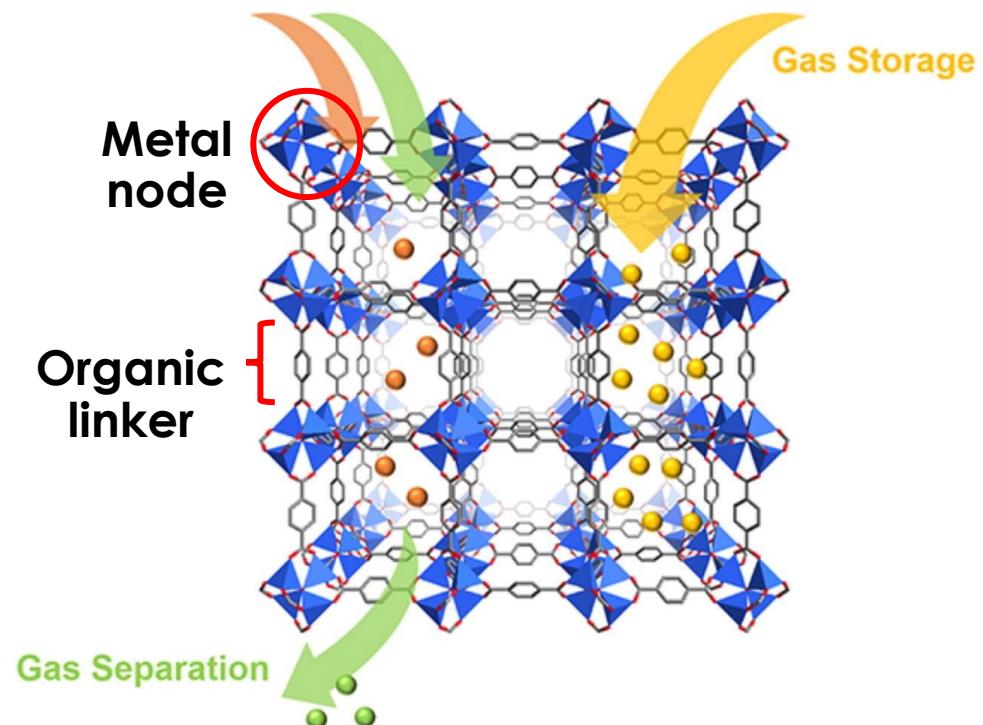
1. Classical (Rigid) Force Field: Universal Force Field (UFF)
2. Classical Flexible Force Field: QuickFF
3. Machine Learned Force Field: FitSNAP

Disclaimer:

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Metal Organic Frameworks (MOFs)

- Crystalline, porous materials
- Good for gas storage/separation applications
- Large, diverse class of molecules
 - >100,000 synthesized
 - >500,000 predicted



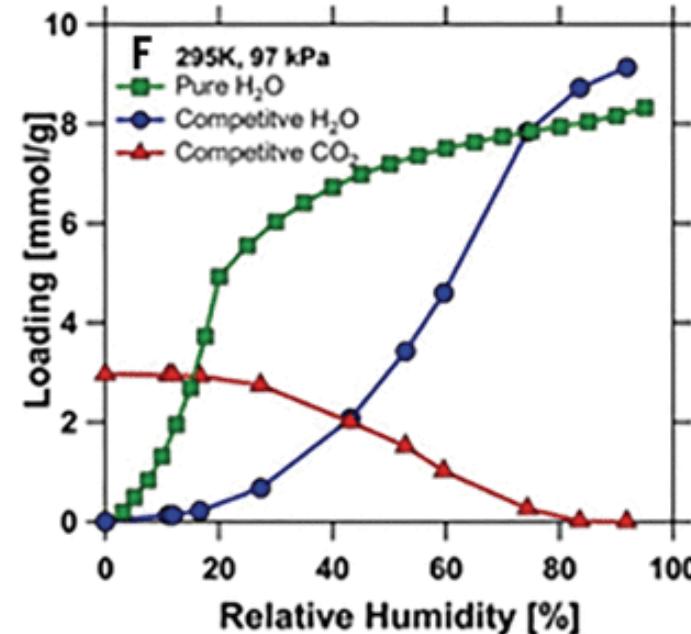
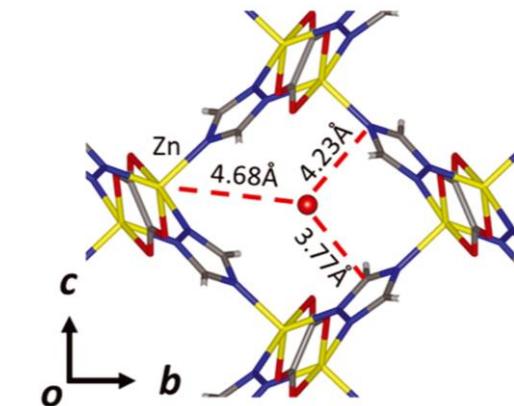
Physisorbent MOFs for CO₂ Capture

Characteristics of a good capture sorbent

- Strong CO₂ adsorption
- Regenerable
- Not hindered by humidity

Example: CALF-20

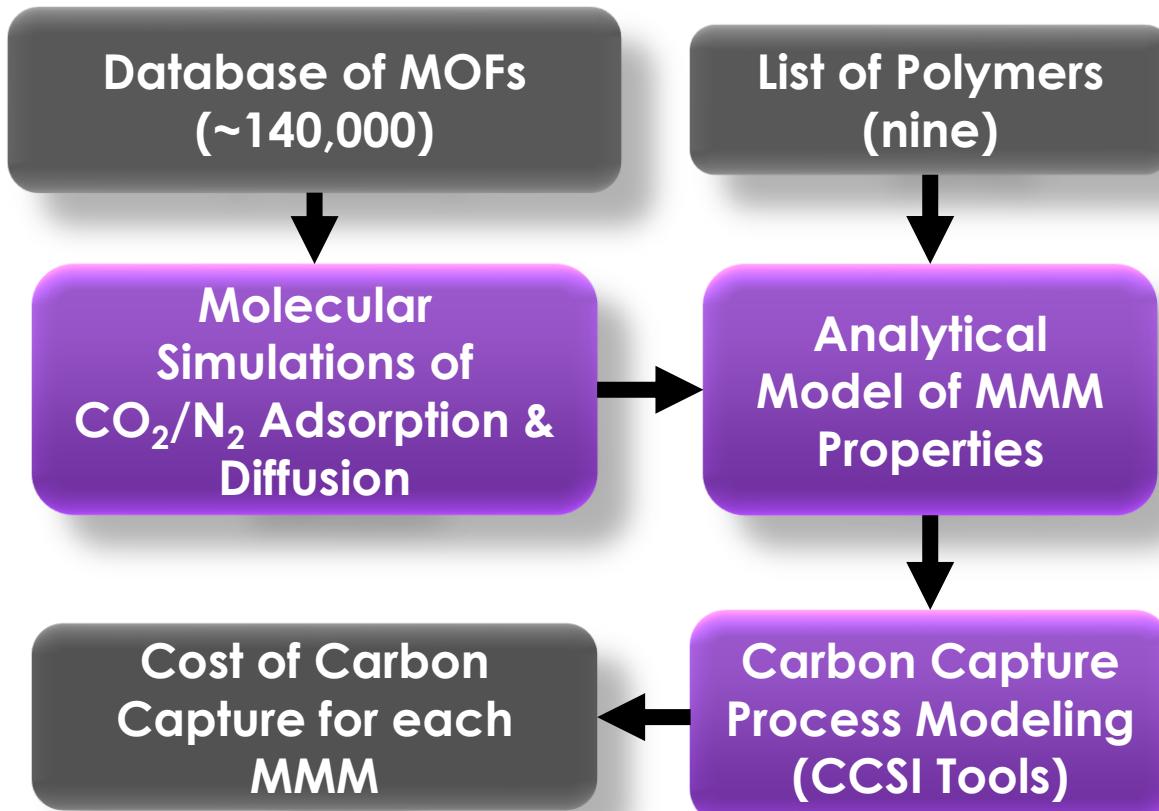
- Successfully used for point source
- Little effect of humidity up to 30% RH
- Strong **dispersion** interactions (CO₂ > H₂O)



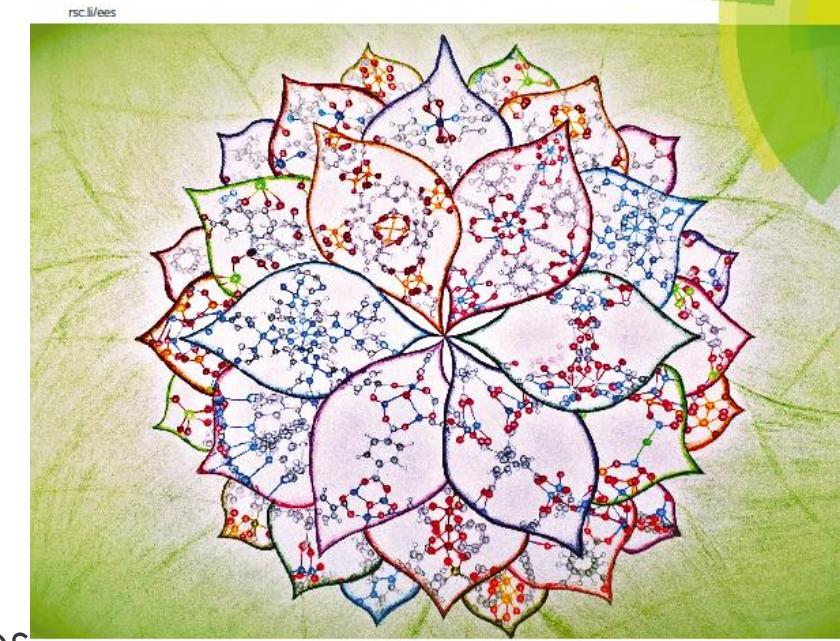
Computational Screening for Mixed Matrix Membranes (MMMs)

MMMs can be made from Combining MOFs and Polymer Materials

Volume 12 Number 4 April 2019 Pages 1111–1430



Energy & Environmental Science



Predicted Cost of Capture Process for >1 million membranes

Samir Budhathoki, Kayode Ajayi, Christopher E. Wilmer

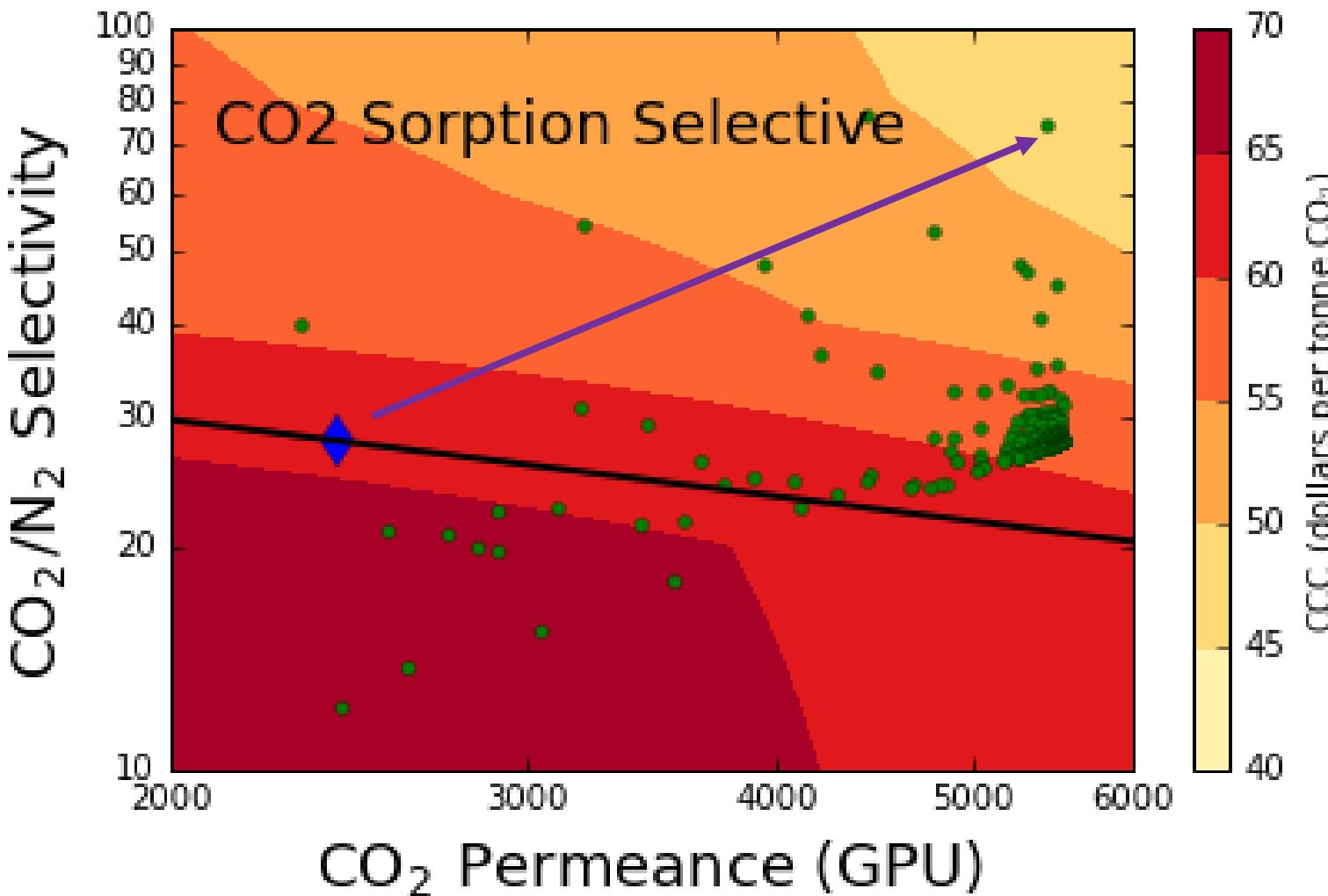
ROYAL SOCIETY
OF CHEMISTRY

Celebrating
IYPT 2019

PAPER

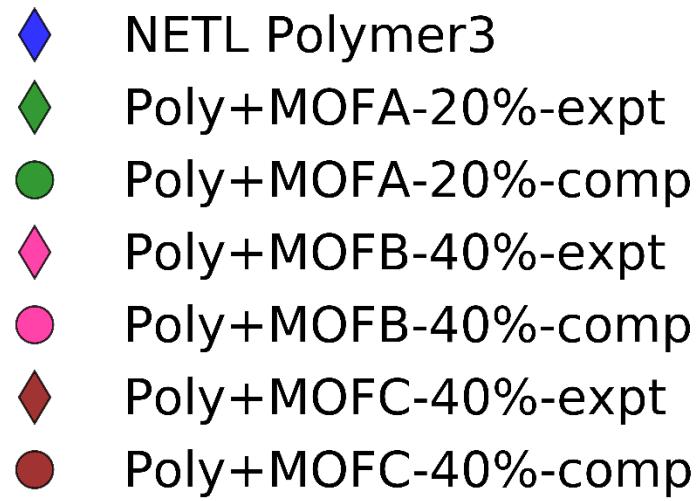
James A. Steckel, Christopher E. Wilmer et al.
High-throughput computational prediction of the cost
of carbon capture using mixed matrix membranes

Predictions from High Throughput Computational Screening

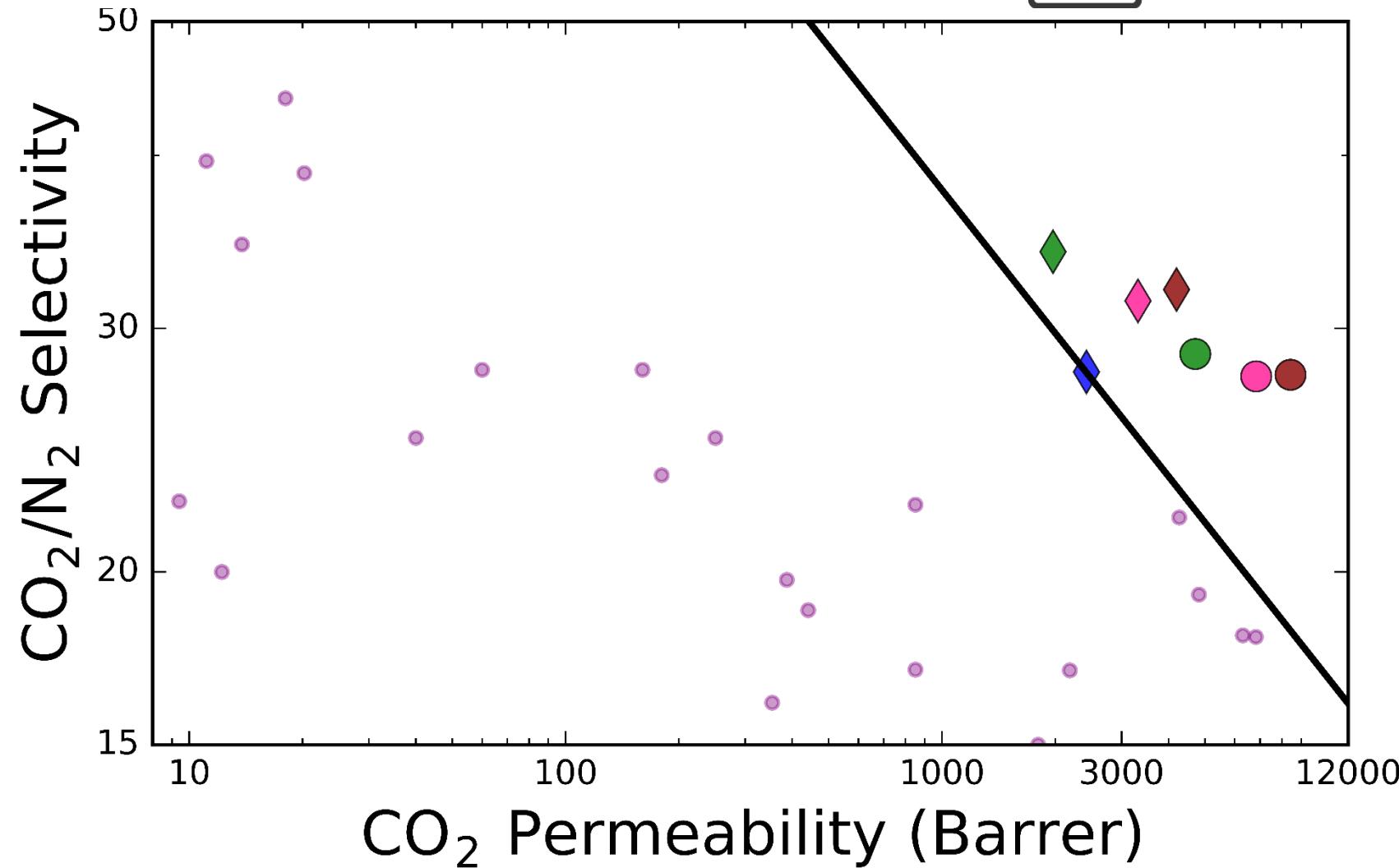


- MMMs using NETL Polymer 3 (blend polymer)
- Best MMM in this set:
 - Predicted CCC Reduction from \$62.9 to \$42.7 per tonne CO₂
- Tool for selecting MOFs to pair with polymers

Comparison with Experiment

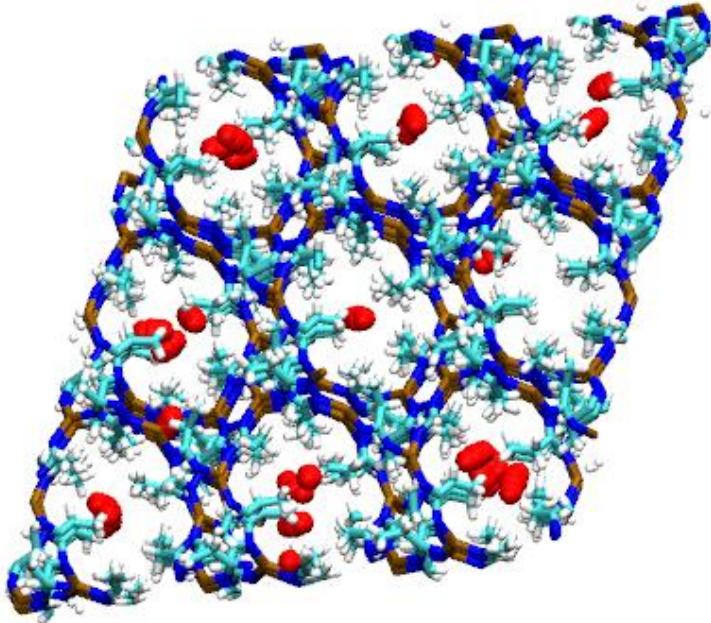


- Predictions have the correct trend and reasonable accuracy



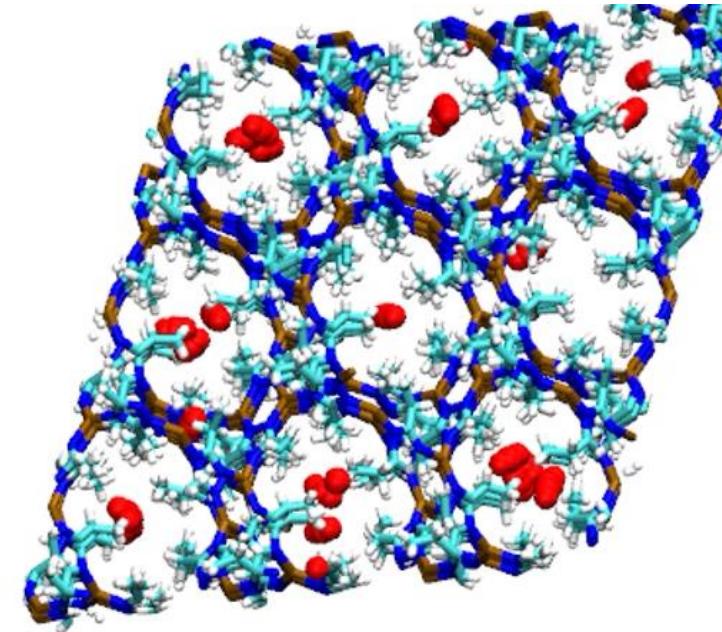
MOF Computational Screening for CO₂ Capture

Past large scale screening studies have modeled MOFs atoms as rigid



Rigid Force Field

- Electrostatic + dispersion
- Low computational cost
- Good for rigid MOFs but most MOFs are flexible
- Easy to obtain

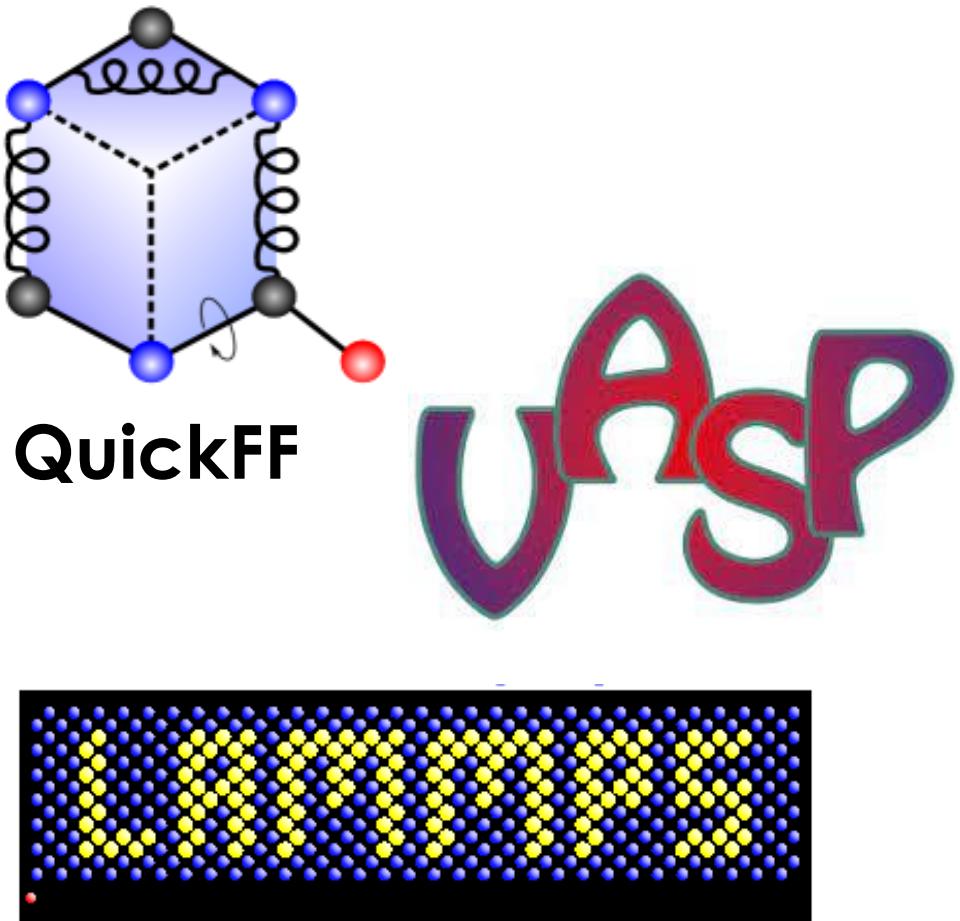
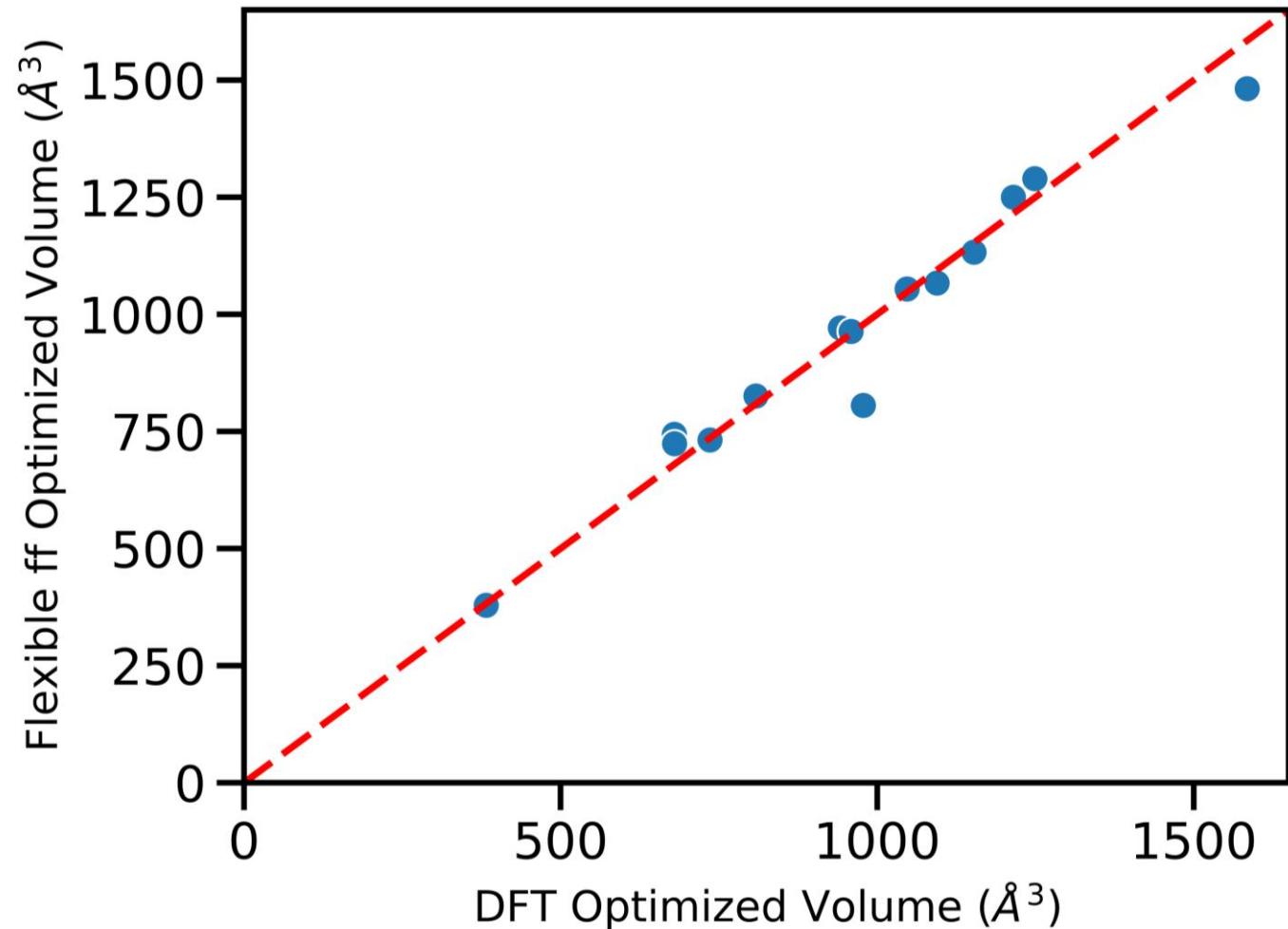


Flexible Force Field

- Electrostatic + dispersion + bond + angle + torsion
- High computational cost
- Accounts for MOF flexibility
- Hard to obtain for a large set of materials

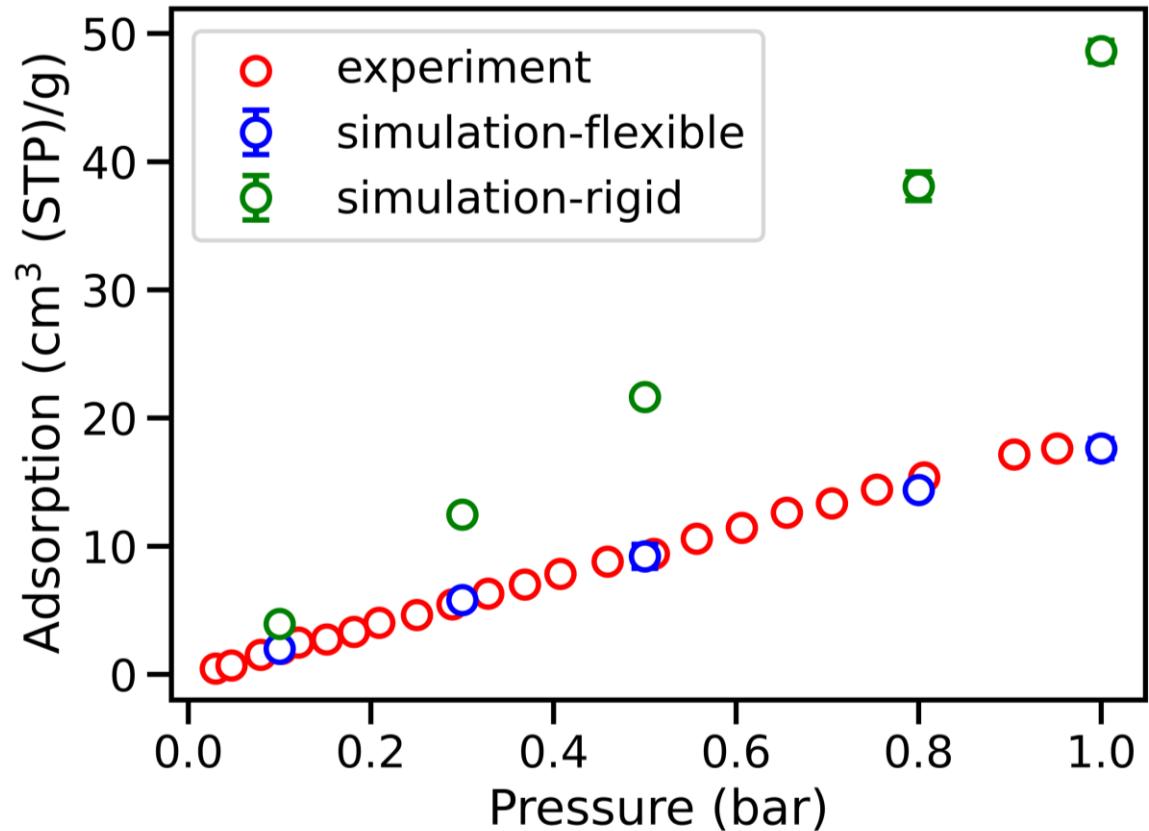
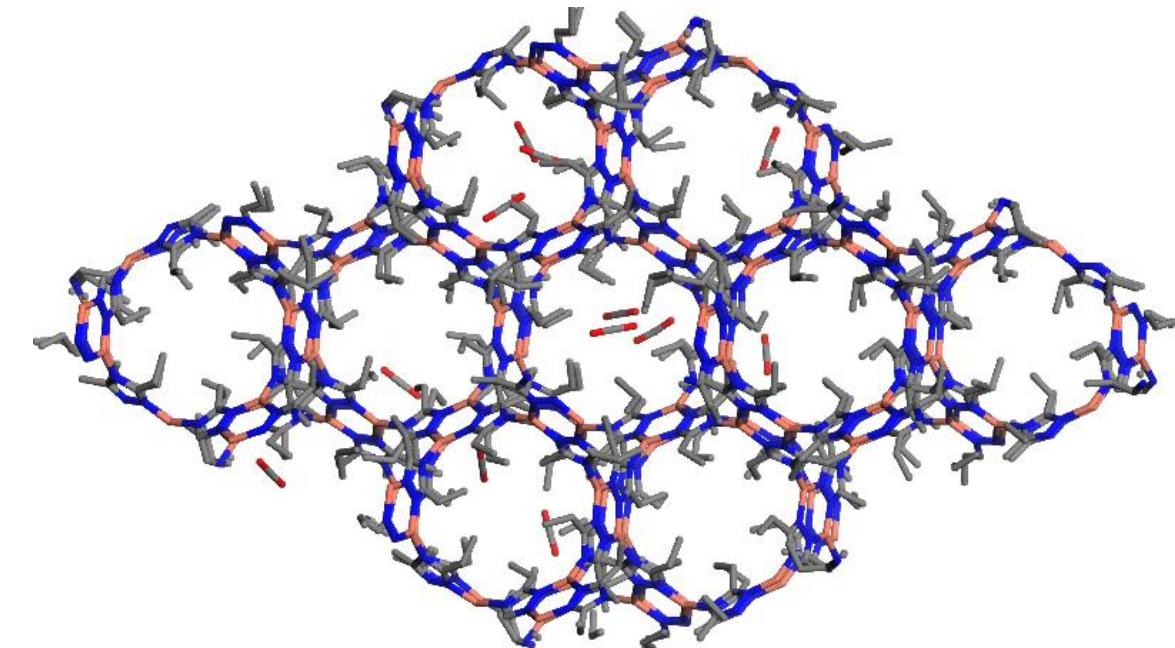
Flexible Force Fields for MOFs

Quick FF used with DFT Vibrational Frequency Calculations to fit flexible FFs



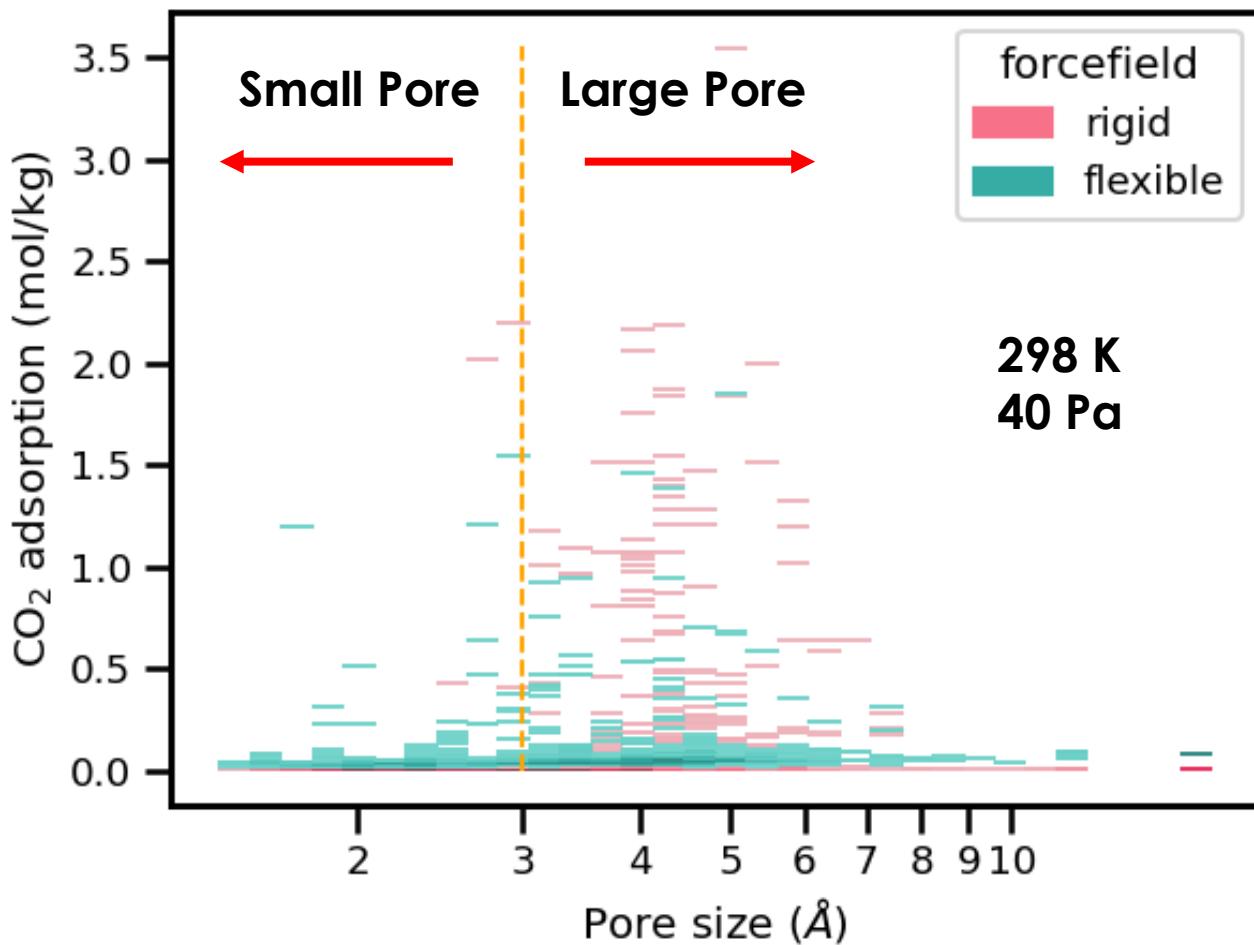
Calculated Isotherm: Flexible vs Rigid FF

CO₂ adsorption in MAF-2 (BOGXIF) at 298 K



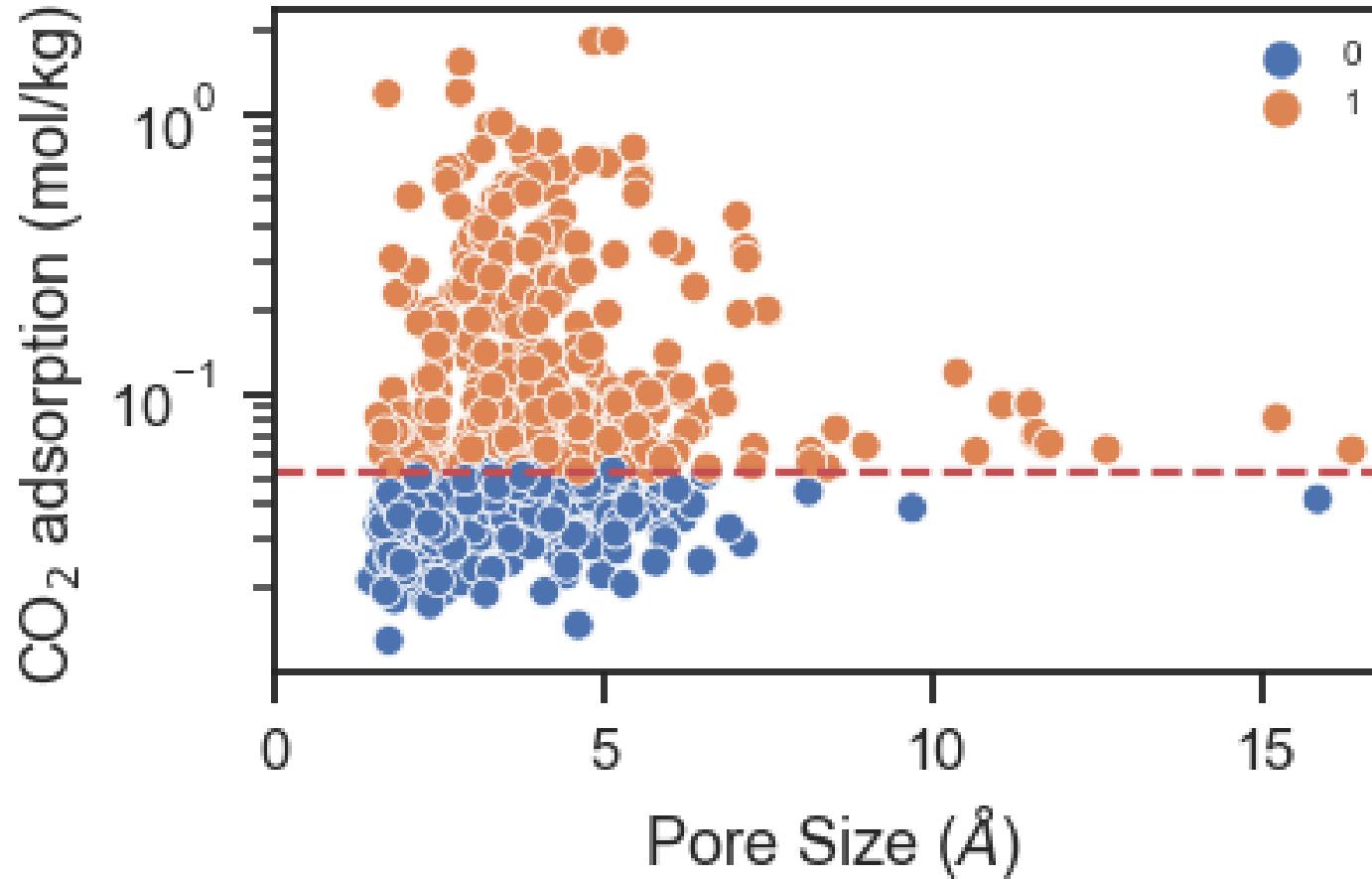
CO₂ Adsorption at Direct Air Capture Conditions

Comparison Between Rigid and Flexible Force Field Results



- Flexible forcefields yield CO₂ adsorption in MOFs with small pore sizes
- Rigid forcefields yield no CO₂ adsorption for MOFs with pore size less than 3 Å in most of the cases
- For some MOFs with pore size greater than 3 Å, rigid forcefields overestimate the CO₂ adsorption

Machine Learning model for MOF classification

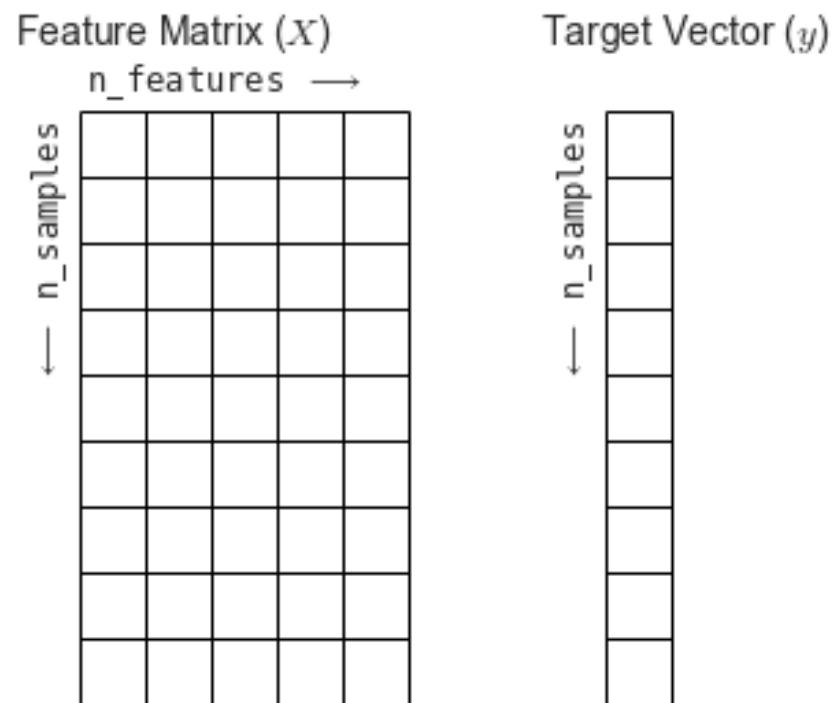


1 – CO₂ ads ≥ 0.052 mol/kg
0 – CO₂ ads < 0.052 mol/kg

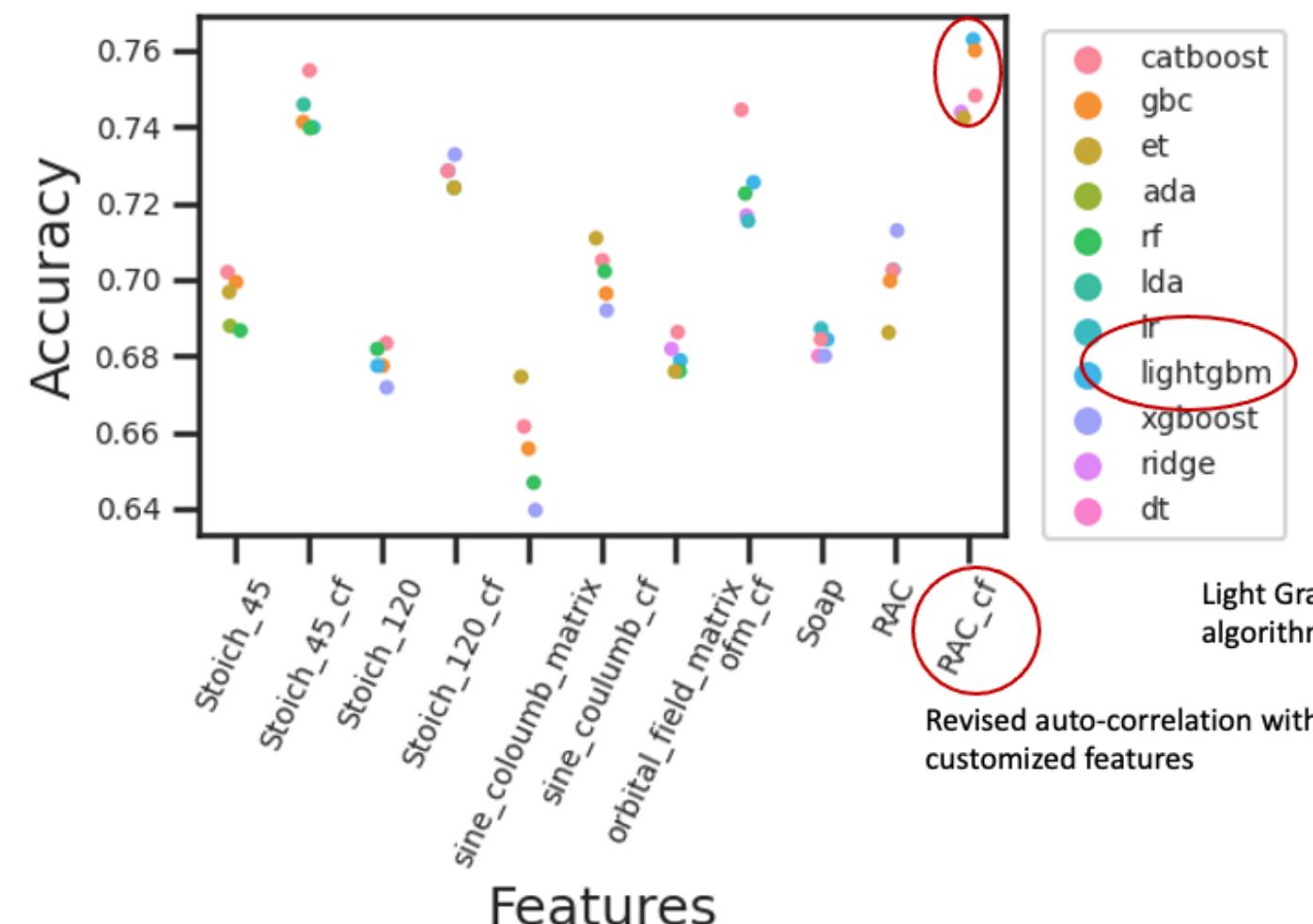
MOF Featurization

Feature: n-dimensional numerical vector that represents each MOF

1. **Stoichiometric-45**
 - 45 statistical attributes of elemental properties
2. **Stoichiometric-120**
 - 103 attributes describing elemental fractions
 - 7 statistical attributes of elemental properties
3. **Sine Coulomb Matrix**
 - pairwise electrostatic interactions between nuclei
4. **Orbital Field Matrix**
 - distribution of valence electrons
 - interaction of valence subshells between atoms
5. **Smooth Overlap of Atomic Positions (SOAP)**
 - similarity between a pair of local atomic environments
6. **Revised Autocorrelation (RAC) values + Custom features**
 - molecular revised autocorrelation (RAC) values, surface area, volume, density, pore-limiting diameter (PLD), charge difference, epsilon



Results: ML Classifiers validation results

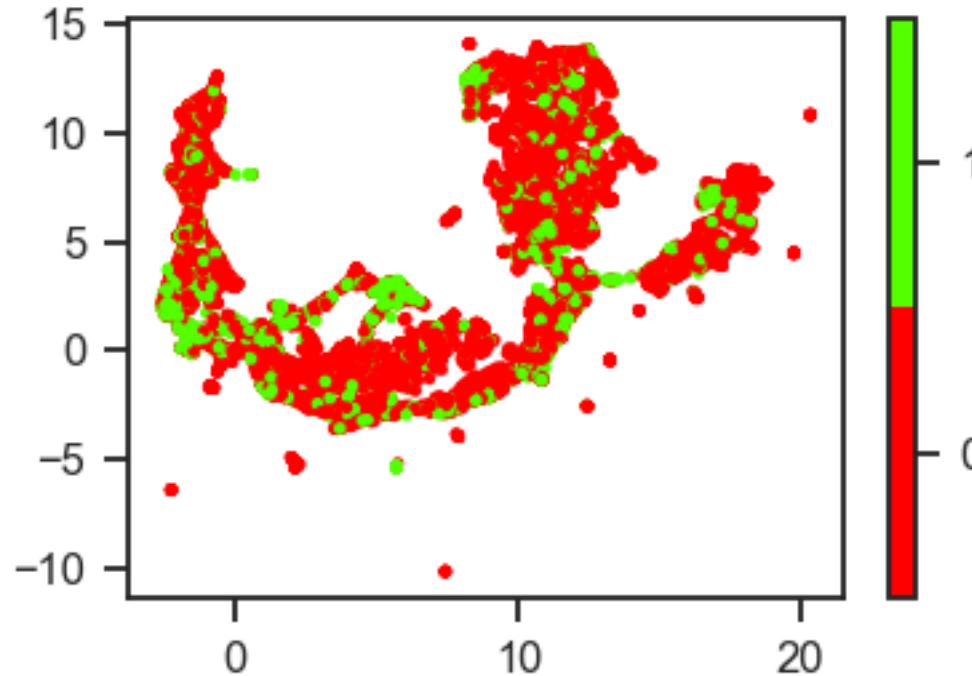


Train size : 80 %
Test size: 20%
Results are averaged from 10 cv folds

- 11 different classification ML models
- All the features were customized (denoted by '_cf' in plot) with geometric features such as surface area, pore size, electrostatics and dispersion term.
- Light Gradient Boosting algorithm performed the best

$$\text{Accuracy} = \frac{\text{True Positive} + \text{True Negative}}{\text{True Positive} + \text{False Positive} + \text{True Negative} + \text{False Negative}} = 76\%$$

Results: Predictions on rest of QMOF Database

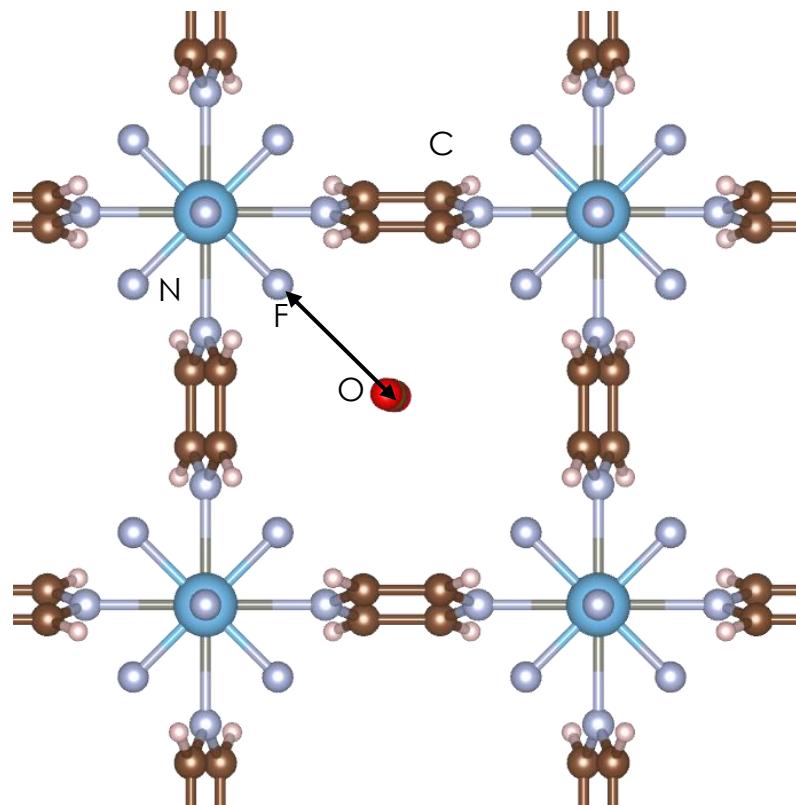
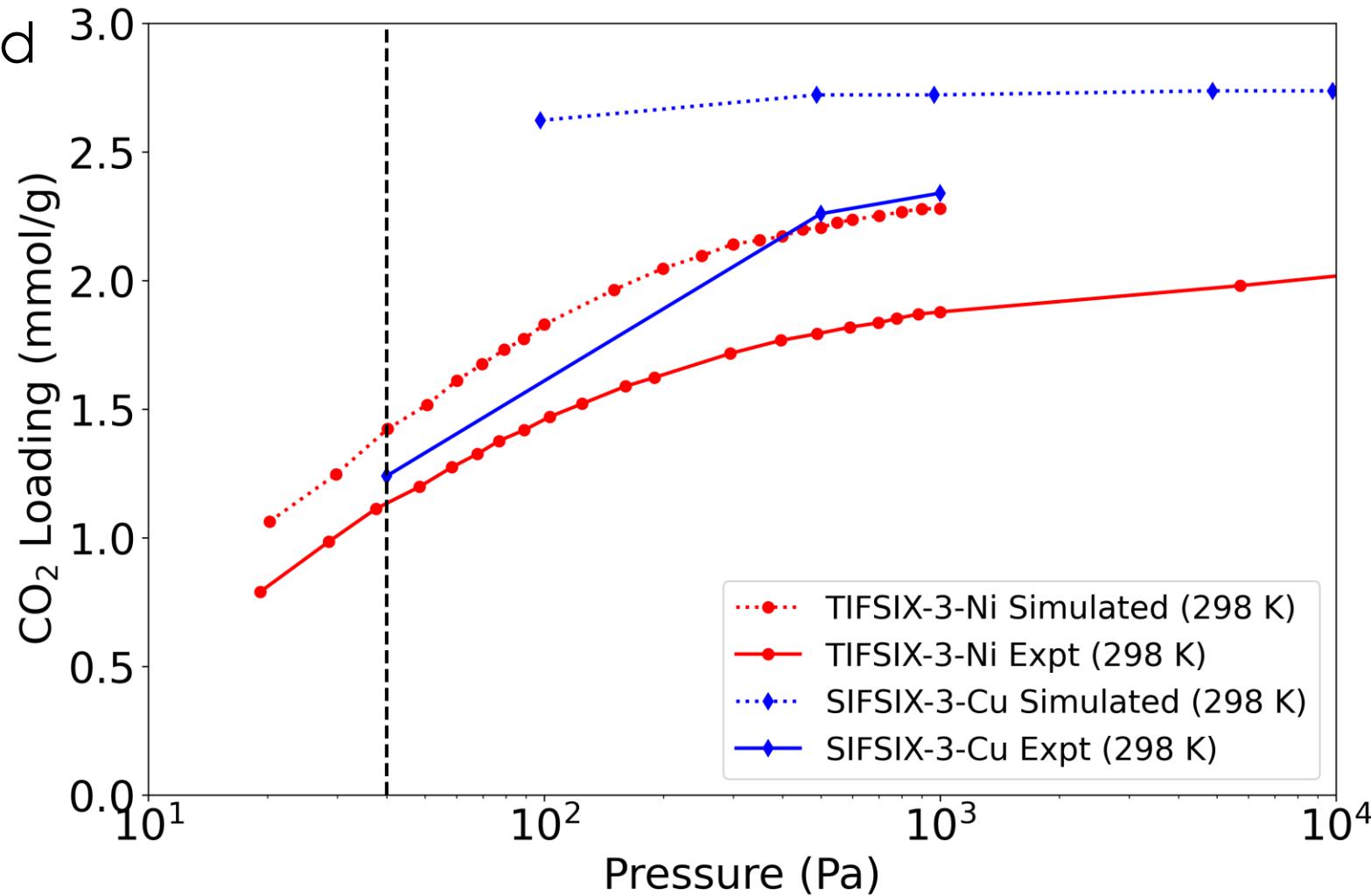


Total MOFs	High adsorbing MOFs (1) (CO ₂ adsorption >= 0.05 mol/kg)	Low adsorbing MOFs (0) (CO ₂ < 0.05 mol/kg)
10,645	2447 (~23 %)	8198 (~77%)

Performance of Classical Force Fields: TIFSIX, SIFSIX

Performance at Low Pressure

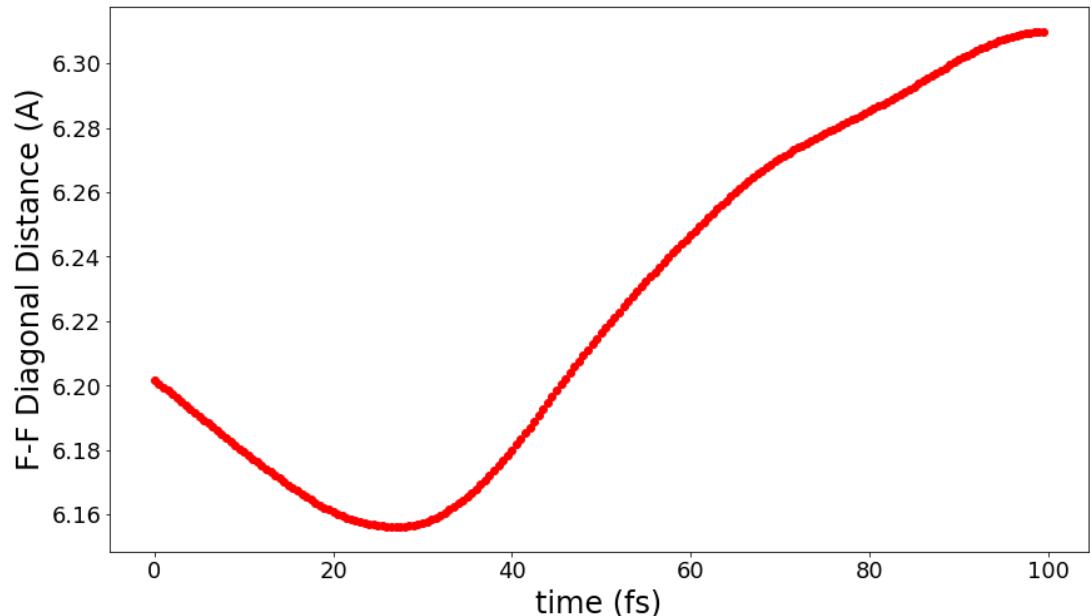
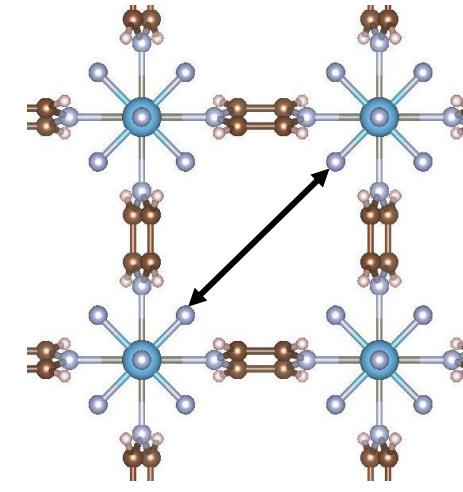
CO_2 adsorption overpredicted using rigid force fields



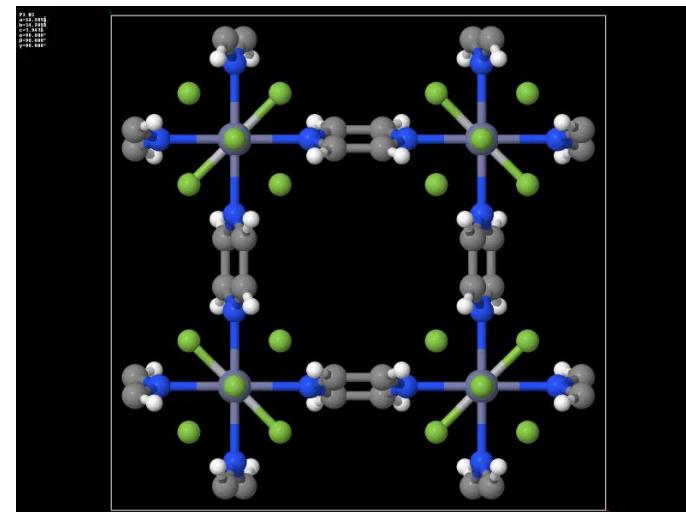
Importance of Flexibility and Accuracy

Flexible SiF_6 and TiF_6 can Cause Changes in Window Size

- Poor performance of rigid force fields
 - Overprediction at low P_{CO_2}
- DFT molecular dynamics:
 - Significant motion of fluorine atoms
 - Fluorine location affects adsorption strength



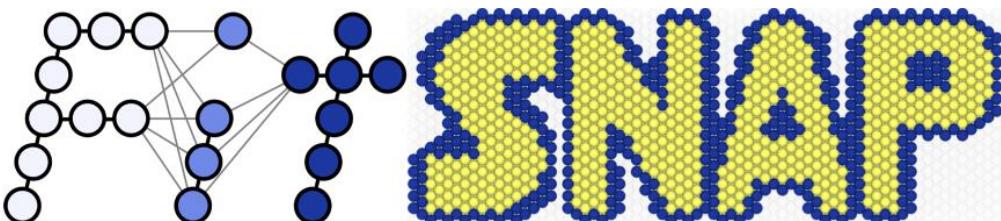
F-F diagonal



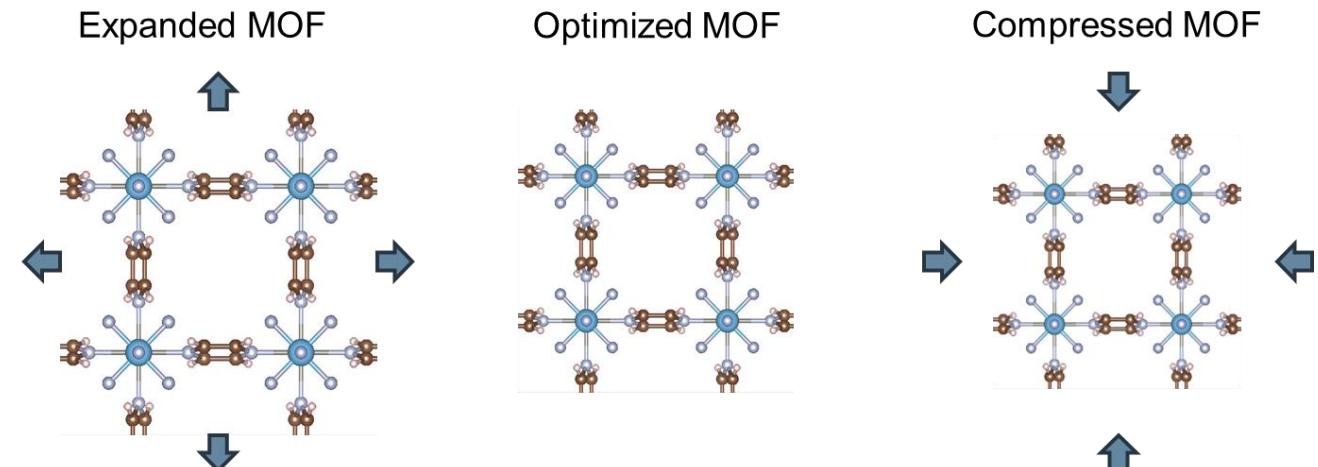
MLFF Training: Spectral Neighbor Analysis Potential

MLFFs Trained on Accurate DFT Data

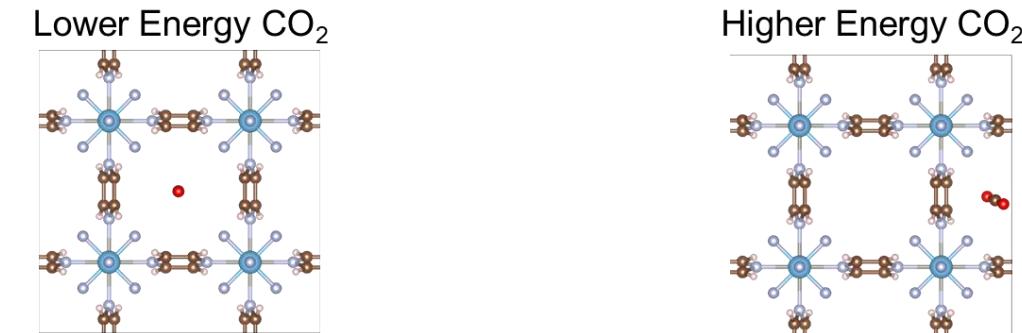
- **MLFF Method: SNAP**
 - regression model maps local atomic environments to atomic energies and forces
- **Training Configurations**
 - Favorable (low energy) and unfavorable (high energy)
 - MOF with and without CO_2
- **Our Approach**
 - Hybrid SNAP/classical potential
 - MLFF handles short range
 - Classical handles long range



Sample Volume Changes



Sample CO_2 Adsorption

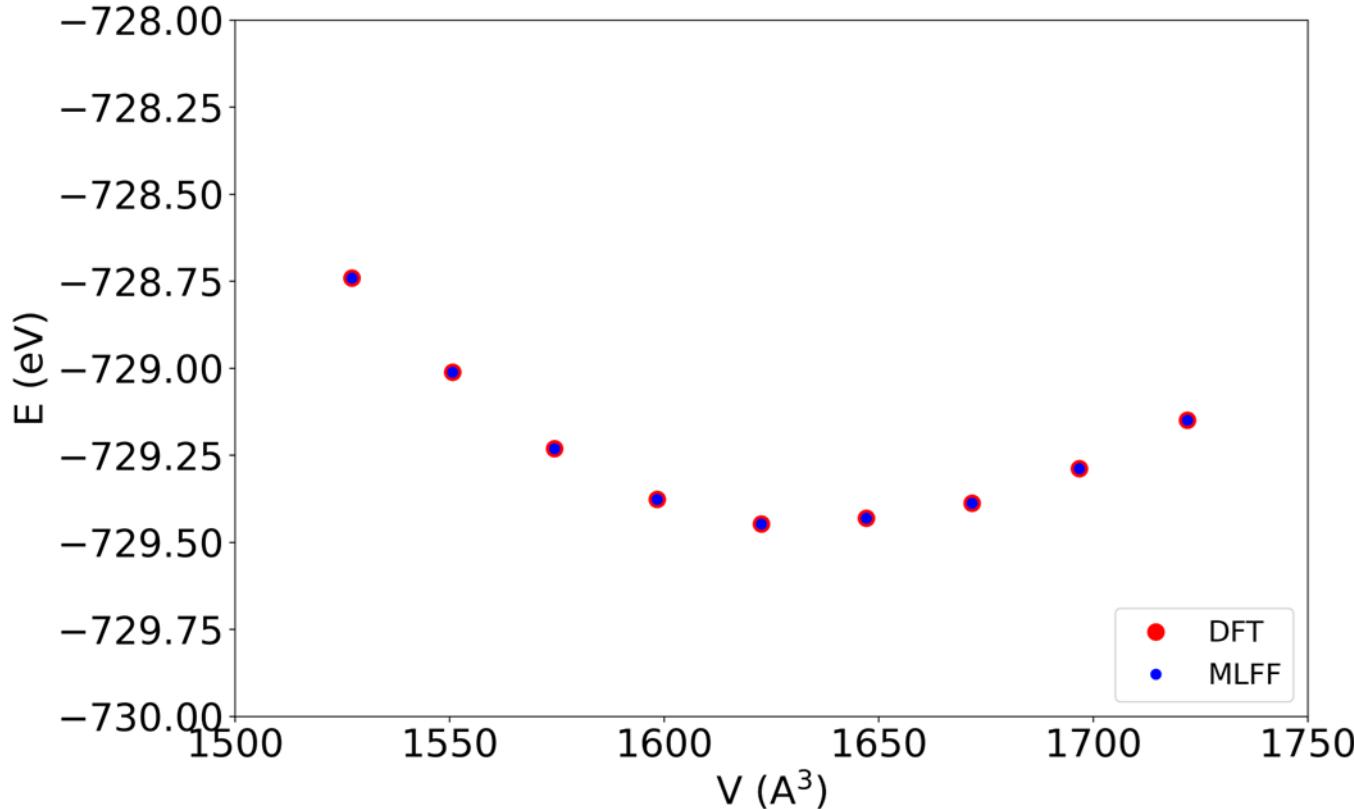


Performance of MLFF Model (Empty)

MLFF Describes MOF Structure and Flexibility (TIFSIX_3_Zn)

- Prediction of energy vs. volume curve is almost perfect (bottom)
 - Related to bulk modulus
- Compared energies/forces in QM-based dynamics calculations, performance is good
 - 7000 training configurations
 - 1800 testing configurations

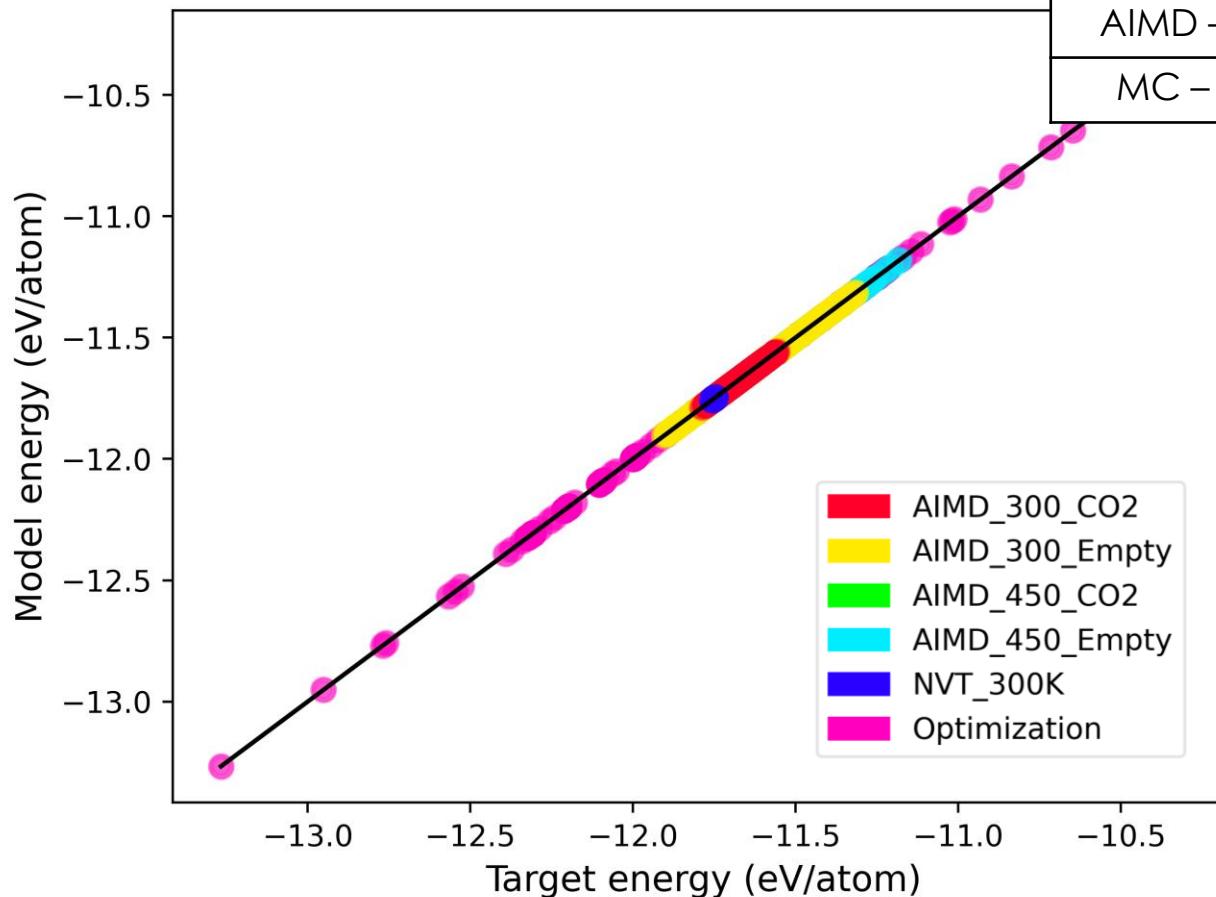
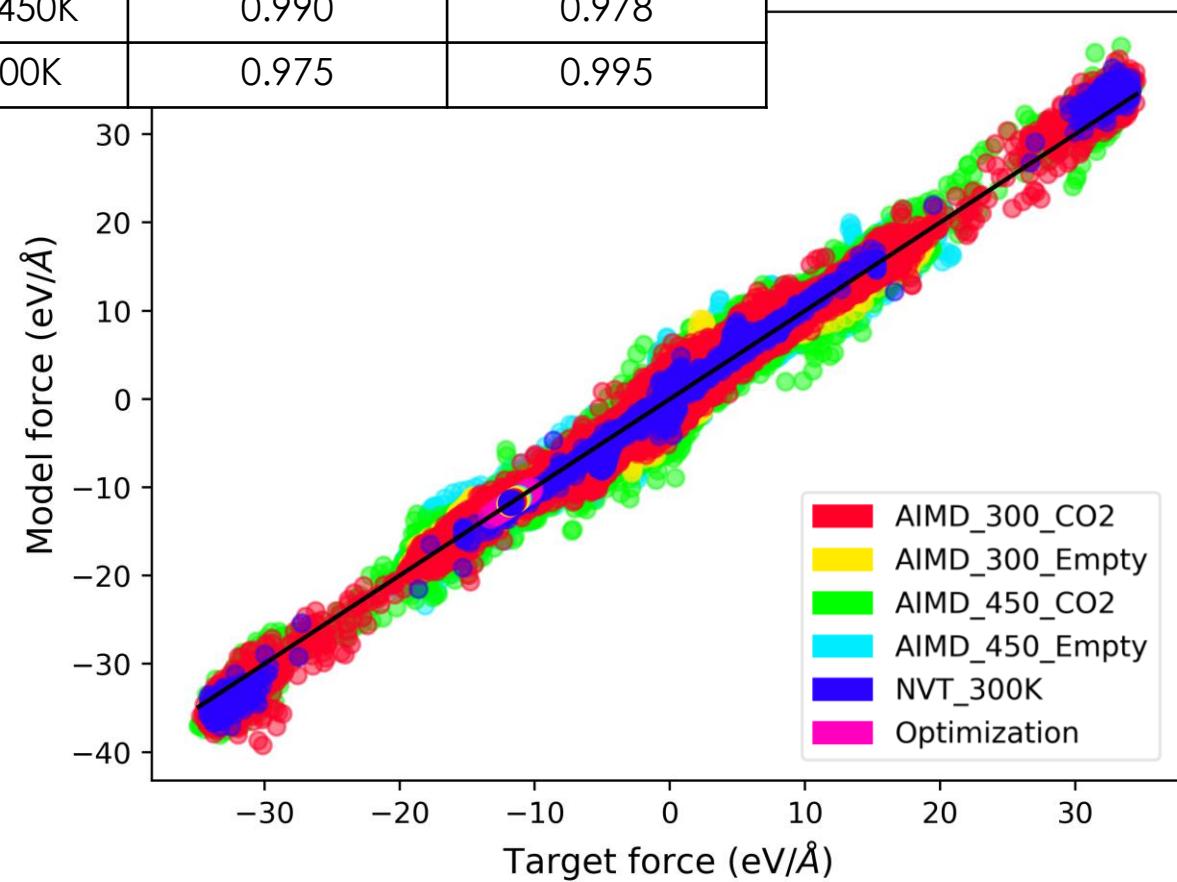
Data Empty MOF (Testing set)	R^2 Energies	R^2 Forces
Structure Optimization	0.998	0.990
AIMD – 300 K	0.991	0.981
AIMD – 450 K	0.990	0.975



Performance of MLFF: MOF + CO₂

Parity Plots for Energies and Forces

Data MOF + CO ₂ (Testing set)	R ² Energies	R ² Forces
AIMD - 300K	0.990	0.983
AIMD - 450K	0.990	0.978
MC - 300K	0.975	0.995



Performance of MLFF Force Field: TIFSIX-3-Zn

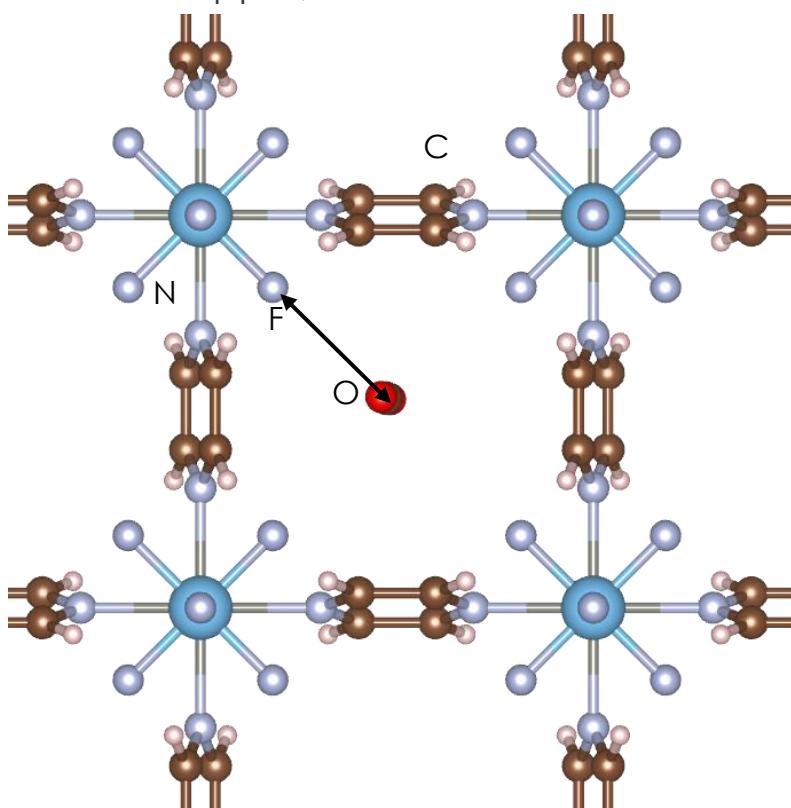
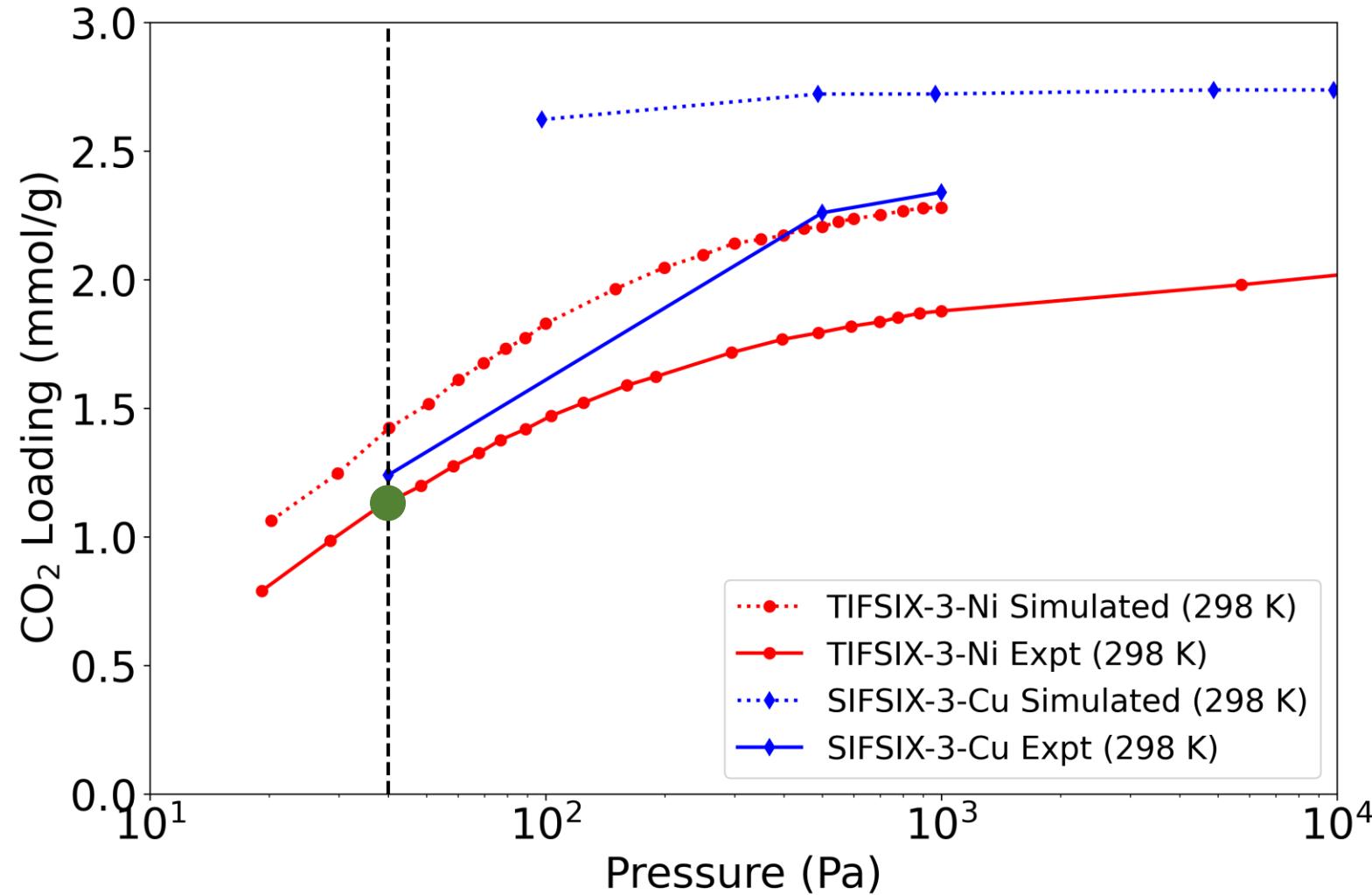
Performance at Low Pressure

One point on isotherm so far

MLFF Simulation:

TIFSIX-3-Zn adsorbs 1.08 mmol/g*

- 400 ppm, 298 K



Conclusions

- Inclusion of MOFs in polymer membranes can lower the cost of membrane-based CO₂ capture by up to 1/3
- Rigid FF can lead to large overprediction of CO₂ isotherm at low pressure
- MLFF flexible potential accurately describes energies and forces in a MOF loaded with CO₂
- Training on the error of the classical force field improves the MLFF model fit
- TIFSIX-3-Zn $\Delta E_{\text{ads, CO}_2}$, MLFF = -52.9 kJ/mol, DFT -52.1 kJ/mol
- MLFF Prediction: TIFSIX-3-Zn adsorbs 1.08 mmol/g* at 400 ppm, 298 K

