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Outline: Metal Organic 

Framework Modeling using 

three methods:

1. Classical (Rigid) Force 

Field: Universal Force Field 

(UFF)

2. Classical Flexible Force 

Field: QuickFF

3. Machine Learned Force 

Field: FitSNAP

1Lin et al., Science (2021)



• Crystalline, porous materials

• Good for gas storage/separation 
applications

• Large, diverse class of molecules
• >100,000 synthesized

• >500,000 predicted

Metal Organic Frameworks (MOFs)

Organic 
linker

Metal 
node

Li et al. Materials Today 2018, 21 (2), 108–121. 4



Physisorbent MOFs for CO2 Capture
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Characteristics of a good capture 

sorbent

• Strong CO2 adsorption

• Regenerable

• Not hindered by humidity

Example: CALF-20

• Successfully used for point source

• Little effect of humidity up to 30% RH

• Strong dispersion interactions (CO2 > H2O)

Lin et al., Science (2021)



MMMs can be made from Combining MOFs and Polymer Materials

Computational Screening for Mixed Matrix Membranes (MMMs)
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Database of MOFs

(~140,000)

List of Polymers

(nine)

Molecular 

Simulations of 

CO2/N2 Adsorption & 

Diffusion

Analytical 

Model of MMM

Properties

Carbon Capture 

Process Modeling

(CCSI Tools)

Cost of Carbon 

Capture for each 

MMM

Predicted Cost of Capture Process for >1 million membranes

Budhathoki, Ajayi, Steckel, Wilmer, Energy and Environmental Sciences, 2019

Samir Budhathoki, Kayode Ajayi, Christopher E. Wilmer



• MMMs using NETL 
Polymer 3 (blend 
polymer)

• Best MMM in this set:

• Predicted CCC 
Reduction from 
$62.9 to $42.7 per 
tonne CO2

• Tool for selecting MOFs 
to pair with polymers

Predictions from High Throughput Computational Screening

7
Budhathoki, Ajayi, Steckel, Wilmer, Energy and Environmental Sciences, 2019

Henry’s Constants for H2O in CoRE MOFs courtesy of:Li, S.; Chung, Y. G.; Snurr, R. Q. Langmuir 2016



• Predictions have 
the correct trend 
and reasonable 
accuracy

Comparison with Experiment
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Ali Sekizkardes, Sameh Elsaidi



Flexible Force Field

• Electrostatic + dispersion + bond + angle + torsion

• High computational cost

• Accounts for MOF flexibility

• Hard to obtain for a large set of materials

Past large scale screening studies have modeled MOFs atoms as rigid

MOF Computational Screening for CO2 Capture
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Rigid Force Field

• Electrostatic + dispersion

• Low computational cost

• Good for rigid MOFs but most MOFs are flexible

• Easy to obtain



Quick FF used with DFT Vibrational Frequency Calculations to fit flexible FFs

Flexible Force Fields for MOFs
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QuickFF

Vanduyfhuys, L. et al. JCC 2015, 36 (13), 1015–1027. 

Vanduyfhuys, L. et al. JCC 2018, 39 (16), 999–1011.



CO2 adsorption in MAF-2 (BOGXIF) at 298 K

Calculated Isotherm: Flexible vs Rigid FF
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Baucom, T.; Budhathoki, S.; Steckel, J. A. J. Phys. Chem. C 2023
Zhang, J. P.; Chen, X-M.; J. Am. Chem. Soc. 2009, 131, 15, 5516-5521



• Flexible forcefields yield CO2 
adsorption in MOFs with small 
pore sizes

• Rigid forcefields yield no CO2 
adsorption for MOFs with pore 
size less than 3 Å in most of the 
cases

• For some MOFs with pore size 
greater than 3 Å,  rigid forcefields 
overestimate the CO2 adsorption 

Comparison Between Rigid and Flexible Force Field Results

CO2 Adsorption at Direct Air Capture Conditions
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Small Pore Large Pore

298 K

40 Pa



Machine Learning model for MOF classification
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1 –  CO2 ads >= 0.052 mol/kg 

0 – CO2 ads < 0.052 mol/kg

Martin, C.; Budhathoki, S.; Steckel, J. A. Machine Learning Models of CO2 Sorption and 

Diffusion in MOFs for Direct Air Capture. In Preparation 2023.



Feature: n-dimensional numerical vector that represents each MOF

MOF Featurization
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1. Stoichiometric-45
• 45 statistical attributes of  elemental properties

2. Stoichiometric-120
• 103 attributes describing elemental fractions

• 7 statistical attributes of  elemental properties

3. Sine Coulomb Matrix
• pairwise electrostatic interactions between nuclei

4. Orbital Field Matrix
• distribution of  valence electrons

• interaction of  valence subshells between atoms

5. Smooth Overlap of  Atomic Positions (SOAP)
• similarity between a pair of  local atomic environments

6. Revised Autocorrelation (RAC) values + Custom 
features
• molecular revised autocorrelation (RAC) values, surface area, 

volume, density, pore-limiting diameter (PLD), charge difference, 
epsilon

Matter 2021, 4 (5), 1578–1597.



Results: ML Classifiers validation results
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•11 different classification ML models

•All the features were customized 
(denoted by ‘_cf’ in plot ) with 

geometric features such as surface area, 

pore size, electrostatics and dispersion 

term.
•Light Gradient Boosting algorithm 
performed the best

Train size : 80 %

Test size: 20%

Results are averaged from  10 cv folds

Accuracy =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
= 76%

Martin, C.; Budhathoki, S.; Steckel, J. A. Machine Learning Models of CO2 Sorption and 

Diffusion in MOFs for Direct Air Capture. In Preparation 2024.



Results: Predictions on rest of QMOF Database
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Total MOFs High adsorbing MOFs (1)

( CO 2 adsorption > = 0.05 mol/kg)

Low adsorbing MOFs (0)

(CO2< 0.05 mol/kg)

10,645 2447 (~23 %) 8198 (~77%)



CO2 adsorption overpredicted 
using rigid force fields

Performance at Low Pressure

Performance of Classical Force Fields: TIFSIX, SIFSIX
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3Ullah et al., Angewandte Chemie (2022) 4Low et al. Energy& Fuels (2024)

5Shekhah et al., Nature Communications (2014) 6Mulcair, Dissertation (2017) 7Forrest et al., Crystal Growth and Design (2019)
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• Poor performance of rigid force fields
• Overprediction at low PCO2

• DFT molecular dynamics:
• Significant motion of fluorine atoms

• Fluorine location affects adsorption strength

Flexible SiF6 and TiF6 can Cause Changes in Window Size

Importance of Flexibility and Accuracy
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F-F diagonal 



MLFFs Trained on Accurate DFT Data

MLFF Training: Spectral Neighbor Analysis Potential
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• MLFF Method: SNAP

• regression model maps local atomic 

environments to atomic energies 

and forces

• Training Configurations

• Favorable (low energy) and 

unfavorable (high energy)

• MOF with and without CO2

• Our Approach

• Hybrid SNAP/classical potential

• MLFF handles short range

• Classical handles long range

Rohskopf, A. et al. JOSS 2023, 8 (84), 5118. 

Thompson, A. P. et al. JCP 2015, 285, 316–330. 



• Prediction of energy vs. volume curve is almost 

perfect (bottom)

• Related to bulk modulus

• Compared energies/forces in QM-based 

dynamics calculations, performance is good
• 7000 training configurations

• 1800 testing configurations

MLFF Describes MOF Structure and Flexibility (TIFSIX_3_Zn)

Performance of MLFF Model (Empty)
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Data
Empty MOF
(Testing set)

R
2

Energies
R

2

Forces

Structure 
Optimization

0.998 0.990

AIMD – 300 K 0.991 0.981

AIMD – 450 K 0.990 0.975



Parity Plots for Energies and Forces

Performance of MLFF: MOF + CO2
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Data
MOF + CO2

(Testing set)

R
2

Energies
R

2

Forces

AIMD – 300K 0.990 0.983

AIMD – 450K 0.990 0.978

MC – 300K 0.975 0.995



One point on isotherm so far
MLFF Simulation: 

TIFSIX-3-Zn adsorbs1.08 mmol/g*
• 400 ppm, 298 K

Performance at Low Pressure

Performance of MLFF Force Field: TIFSIX-3-Zn
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3Ullah et al., Angewandte Chemie (2022) 4Low et al. Energy& Fuels (2024)

5Shekhah et al., Nature Communications (2014) 6Mulcair, Dissertation (2017) 7Forrest et al., Crystal Growth and Design (2019)
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• Inclusion of MOFs in polymer membranes can lower 
the cost of membrane-based CO2 capture by up to 
1/3

• Rigid FF can lead to large overprediction of CO2 
isotherm at low pressure

• MLFF flexible potential accurately describes energies 
and forces in a MOF loaded with CO2

• Training on the error of the classical force field 
improves the MLFF model fit

• TIFSIX-3-Zn ΔEads, CO2, MLFF = -52.9 kJ/mol, DFT -52.1 
kJ/mol

• MLFF Prediction: TIFSIX-3-Zn adsorbs 1.08 mmol/g* at 
400 ppm, 298 K

Conclusions
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