

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-850747

Storage and persistence of organic carbon in the upper most three meters of soil under arable and native prairie land use

C. O. Anuo, L. Li, K. C. Moreland, K. J. McFarlane, A. Malakar, J. A. Cooper, B. Maharjan, M. Kaiser

June 26, 2023

Plant and Soil

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

1 **Storage and persistence of organic carbon in the upper three meters of soil under arable**
2 **and native prairie land use**

3

4 Christopher O. Anuo ^{1*}, Lidong Li ¹, Kimber C. Moreland ², Karis J. McFarlane ², Arindam
5 Malakar ³, Jennifer A. Cooper ⁴, Bijesh Maharjan ¹, Michael Kaiser ¹

6

7 ¹Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 202 Keim Hall,
8 Lincoln, NE 68583-0915, USA.

9

10 ²Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, 7000
11 East Ave, Livermore, CA, 94551, USA.

12

13 ³Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute and
14 School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0844, USA.

15

16 ⁴Nutrien, 4516 N Howard Avenue, Kerman, CA, 93630, USA.

17

18

19

20 *Authors email addresses:*

21 Christopher O. Anuo - canuo2@huskers.unl.edu: * Corresponding author

22 Lidong Li -lli32@unl.edu

23 Jennifer A. Cooper - jennifer.cooper@nutrien.com

24 Kimber C. Moreland - moreland3@llnl.gov

25 Karis J. McFarlane - kjmcfarlane@llnl.gov

26 Arindam Malakar - amalakar2@unl.edu

27 Bijesh Maharjan - bmaharjan@unl.edu

28 Michael Kaiser - mkaiser6@unl.edu

29

30

31

32

33

34

35

36

37

38

39

40

41
42

Abstract

43 *Aims* - Land use change from native grasslands to arable lands globally impacts soil ecosystem
44 functions, including the storage of soil organic carbon (SOC). Understanding the factors affecting
45 SOC changes in topsoil and subsoil due to land use is crucial for effective mitigation strategies.
46 We determined SOC storage and persistence as affected by land use change from native prairies
47 to arable lands.

48 *Methods* - We examined SOC stocks, soil $\delta^{13}\text{C}$ and $\Delta^{14}\text{C}$ signatures, microbial community
49 (bacteria and fungi), and soil mineral characteristics under native prairies and long-term arable
50 lands (i.e., > 40 years) down to 3 m in the U.S. Midwest.

51 *Results* - Native prairie soils had higher SOC stocks in the A horizon and 0-50 cm depth
52 increment than arable soils. For both land use types, the $\delta^{13}\text{C}$ and $\Delta^{14}\text{C}$ values significantly
53 decreased with depth, with the latter pointing towards highly stabilized SOC, especially in the B-
54 and C-horizons. Analysis of microbial communities indicated that the diversity of bacteria and
55 fungi decreased with soil depth. The content of oxalate soluble Al appeared to be the single most
56 important predictor of SOC across horizons and land use types.

57 *Conclusion* - Our data suggest that most SOC gains and losses and transformation and
58 translocation processes seem to be restricted to the uppermost 50 cm. Increasing SOC retention in
59 A and B horizons within the 0-50 cm depth would enhance organic material serving as substrate
60 and nutrients for microbes and plants (A horizon) and facilitate long-term SOC storage in subsoil
61 (B horizon).

62

63 **Keywords:** Land use, C₄-C₃ vegetation, $\delta^{13}\text{C}$, and $\Delta^{14}\text{C}$, soil organic carbon persistence, Microbial
64 communities.

65

66 **Abbreviations:** SOC, soil organic carbon; N_t, soil total nitrogen; M-DNA, microbial DNA.

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89 **Introduction**

90 Essential ecosystem services largely affected by soil organic carbon (SOC) levels, such as
91 nutrient supply, climate change mitigation, and water retention, are provided by both undisturbed
92 and managed soils (Franzluebbers, 2021; Cotrufo and Lavallee, 2022). Soils store more carbon
93 than the earth's atmosphere and living biomass combined, and about 50 to 70% of SOC is stored
94 below 30 cm, highlighting the importance of subsoil for terrestrial carbon storage (Jobbagy and
95 Jackson, 2000; Possinger et al., 2021; Moreland et al., 2021). However, uncertainty remains in our
96 process-level understanding of how land use and soil management affect SOC storage, especially
97 with depth (Yost and Hartemink, 2020). Furthermore, such uncertainty may affect estimations of
98 carbon exchange rates between the soil and atmosphere as a response to changes in land use and
99 soil management (Harrison et al., 2011; Gross and Harrison, 2019). Understanding drivers of
100 subsoil SOC dynamics in different land use systems is critical for sustainable and climate-smart
101 management strategies.

102 The intensification of land use has led to significant changes in SOC storage and turnover
103 compared to undisturbed conditions under native vegetation (Ogle et al., 2005; Lal, 2019; Cotrufo
104 and Lavallee, 2022). Over the course of human agricultural history, which began about 12,000
105 years ago, intensively managed arable soils have lost nearly 26% of their SOC stock in the top 30
106 cm and over 16% in the top 100 cm, resulting in a global estimated loss of about 116 Pg of carbon
107 from the upper 2 m of soils (Sanderman et al., 2017). In the U.S. Great Plains, intensively managed
108 arable soils, which produce approximately three-quarters of the country's corn and soybeans, have
109 suffered some of the most significant losses. Here, up to 50% of SOC has been lost since
110 agricultural expansion started in the 19th century (Malo et al., 2005; Paustian et al., 2019; Sanford
111 et al., 2022). When scaled to arable land areas in the region, such intensified cultivation has led to

112 a loss of about 1100 Tg of carbon, particularly in the top 30 cm of soil (Liebig et al., 2009). These
113 losses were mainly due to lower organic carbon (OC) input, destruction of soil aggregates, which
114 reduces SOC stabilization, and soil erosion (Sanford et al., 2022). There is growing interest in
115 managing agricultural soils as carbon sinks to reverse historical carbon losses and mitigate rising
116 atmospheric carbon levels, emphasizing the need for detailed information on land use change
117 impacts on SOC storage and persistence (Paustian et al., 2016; Sanderman et al., 2017).

118 Prerequisites for using the subsoil to store more OC in the long-term are systems that allow for
119 increased OC translocation in this soil compartment. Increasing belowground deep root-derived
120 carbon inputs has been suggested to foster long-term retention of OC in arable soils (Lal, 2019;
121 Slessarev et al., 2020; Wang et al., 2022). The direct contact of root litter-derived carbon with
122 protective soil minerals and the release of small, highly reactive root exudates and rhizodeposits,
123 which may also stimulate microbially derived carbon inputs, can contribute significantly to SOC
124 retention in the subsoil (Dijkstra et al., 2021; Bai and Cotrufo, 2022). Such strategies may include
125 cultivating deep-rooted perennials and cover crops or converting arable soils to grassland (Rasse
126 et al., 2005; Beniston et al., 2014; Cagnarini et al., 2019). In contrast, inputs (e.g., root exudates
127 and rhizodeposits) derived from deep-rooting vegetation may also facilitate SOC loss by
128 weakening or releasing organic compounds from protective mineral associations through priming
129 (Keiluweit et al., 2015). Thus, the extent to which different biotic and abiotic factors control SOC
130 accumulation and loss across depths remains largely unknown. The amount and turnover of SOC
131 under native vegetation with minimal disturbance can serve as a benchmark for SOC accumulation
132 in intensively used agricultural sites (Cotrufo and Lavallee, 2022). Such comparisons can be used
133 to delineate soil environmental conditions under which the highest SOC gains or losses can be

134 expected in response to land use or management changes (Follett et al., 2012; Amelung et al.,
135 2020; Maharjan et al., 2020).

136 Subsoils store most of the OC for centuries to millennia, making them ideal locations for long-
137 term carbon storage, which has implications for climate change mitigation (Scheibe et al., 2023;
138 Sierra et al., 2024). While subsoils generally have lower concentrations of SOC compared to
139 topsoils, their larger volume results in greater SOC storage (Angst et al., 2018; Moreland et al.,
140 2021). The larger potential for long-term carbon storage in the subsoil is further amplified by the
141 predominance of SOC, which is more protected from microbial access and a subsoil environment
142 that is less prone to disturbance than the topsoil (Rumpel and Kögel-Knabner, 2011; Hicks Pries
143 et al., 2018; Wang et al., 2022). Understanding how land use change impacts subsoil is key to
144 capturing how this terrestrial subsystem that stores most of the SOC for longer periods of time
145 might respond. This also includes examining changes in the structure of microbial communities
146 (e.g., bacteria and fungi), which are linked to modifications in SOC dynamics across depths (Fierer
147 et al., 2013; Mackelprang et al., 2018).

148 Major factors that impact SOC accumulation and persistence across the soil profile include
149 climate, vegetation, soil microorganisms and their access to substrate and nutrients, parent
150 material, and soil mineral characteristics (Viscarra Rossel et al., 2019; Wiesmeier et al., 2019;
151 Vormstein et al., 2020). Previous studies have suggested that SOC accumulation and persistence
152 in mineral soils result from interactions between organic matter (OM) and Fe and Al oxides or
153 oxyhydroxides (Kleber et al., 2015; Hall and Thompson, 2021; Shimada et al., 2022). Other studies
154 pointed toward the relevance of associations between OM and mineral surfaces via exchangeable
155 cations (Nitzsche et al., 2017; Rasmussen et al., 2018; Rowley et al., 2018). Thus, variation in soil
156 mineralogical characteristics dictated by soil parent material or soil type in different land use

systems will affect the magnitude of SOC retention across depths. Furthermore, the transformation of plant material into microbially processed OM and retention of microbially derived biomass (e.g., cell walls) have been discussed as critical processes within SOC stabilization and retention in mineral soils (Cotrufo et al., 2013; Kallenbach et al., 2016), thus affecting SOC accumulation and turnover. However, the impact of land use change on SOC stabilization processes and mechanisms across soil depths or horizons and their biotic and abiotic driving factors remain largely unclear. This is further exacerbated by the high variability in physical and chemical subsoil properties and SOC origin across scales (Chabbi et al., 2009; Heckman et al., 2021; Nave et al., 2021).

In this study, we aimed (1) to quantify soil depth-specific differences in SOC stocks in the uppermost three meters of native prairie soils and arable soils, (2) to clarify the impact of soil mineral characteristics on land use-specific SOC characteristics across soil horizons, (3) to examine $\Delta^{14}\text{C}$ and $\delta^{13}\text{C}$ isotopic signatures of SOC to understand land use impact on carbon stabilization and transformation, inputs, and losses across horizons, and (4) to evaluate the impact of land use on soil microbial community structure across horizons. To address these objectives, we sampled 11 native prairie sites and 11 arable sites in the US Midwest (Nebraska) and quantified SOC stocks across soil horizons and depth increments. To identify factors and processes that control SOC retention across soil horizons in both land use systems, we analyzed relationships between SOC, soil characteristics (i.e., texture, soil pH, exchangeable Ca, and Mg, reactive Fe, and Al phases), soil carbon isotope signatures ($\delta^{13}\text{C}$ and $\Delta^{14}\text{C}$), and microbial DNA concentration. Based on differences in SOC characteristics between arable and native prairie sites, soil environmental conditions were set out to be identified that might be most relevant for gains in SOC within climate-smart management strategies.

180 **Materials and Methods**

181 *Site description*

182 We selected 11 native prairie sites and 11 arable sites whose soils predominantly developed
183 from the parent material loess across Nebraska, as shown in Figure 1. The selected sites (listed in
184 Table S1; USDA-NRCS, 2022) were picked from the major land resource areas (MLRAs) of the
185 United States and were chosen to encompass a variety of soil characteristics and climatic variables.
186 The native prairie sites are presumed to reflect the original state of the arable sites before they were
187 cultivated. The general soil, climatic, and vegetation characteristics for all sites are summarized in
188 Table S1. The native prairie soils and arable soils were moderately to well-drained, spanning a soil
189 texture gradient. More than 80% of the vegetation cover in the native prairie sites consists of a
190 mixture of short, mid, and tall C₃ and C₄ grasses. The arable sites were long-term (> 40 years)
191 continuously cropped fields, mainly under corn (*Zea mays*, *L.*) and soybean (*Glycine max*)
192 rotations. The most common management practices adopted in the arable sites include cover
193 cropping, no-till or reduced-till, fertilizer application, and irrigation (Table S1).

194

195 *Soil sampling and processing*

196 Samples were collected from each native prairie and arable site between November 2020 and
197 May 2021. In each site, soil was collected from a uniform flat area, free of signs of erosion caused
198 by wind or water. Soil cores were collected from three random locations per site (~ 1 m apart),
199 representing three pseudo-field replicates as continuous cores from 0-50, 50-100, 100-200, and
200 200-300 cm depth increments (i.e., 300 cm) using a Genuine Geoprobe (3.45 cm core diameter,
201 Geoprobe systems, Salina, KS). After sampling, soil cores were wrapped in aluminum foil, stored
202 in cool containers (with ice packs), transported to the laboratory, and frozen at -80°C until

203 processed. The frozen cores were unpacked during processing, and the entire 300 cm soil core was
204 split according to the major pedogenetic horizons (A, B, and C). Samples for microbial analysis
205 were collected from each horizon and immediately stored at -80 °C. The remaining bulk soil
206 samples from each horizon of the three random soil cores per site were air-dried, sieved to pass
207 through a 2 mm sieve, and stored in glass jars.

208

209 *Bulk soil physical-chemical characteristics*

210 All laboratory measurements were performed on air-dried soils except soil used for microbial
211 analysis and bulk density determination. Moisture corrections were done by calculating the mass
212 difference between air-dried soils and soils oven-dried overnight at 105°C (Wood and Bowman,
213 2021). Bulk density was determined using the intact soil core method (both fine and coarse
214 particles), as described by Grossman and Reinsch (2002), and soil pH (1:1 water) was measured
215 following the procedure described by Miller and Kissel (2010). Particle size distribution: sand (50-
216 2000 µm), silt (50-2 µm), and clay (<2 µm) was determined using the hydrometer method (Gee
217 and Or, 2002). Macronutrient analyses were performed to determine available N-NO₃ using the
218 KCl extraction method (Doane and Horwáth, 2003), available S-SO₄, and P-PO₄³⁻ using the
219 Mehlich 3 extraction method (Schulte and Eik, 1988; Mallarino, 2003; Pittman et al., 2005).
220 Exchangeable base cations (Ca, K, and Mg) were determined by the ammonium (NH₄⁺) acetate
221 (AA) extraction method. Reactive Fe and Al phases were determined by acid ammonium (NH₄⁺)
222 oxalate (AO) (targeting short-range ordered phases and organo-metal complexes) and dithionite-
223 citrate bicarbonate (DCB) (targeting highly crystalline oxides as well as short-range ordered
224 phases) extraction methods following the standard USDA-NRCS procedure (Soil Survey Staff,
225 2014). Briefly, for AO extraction, Tamm reagent (acid ammonium oxalate, 0.2 M, pH 3) was

226 prepared by dissolving 16.15 g of ammonium oxalate and 10.90 g of oxalic acid in 1 L of Milli-Q
227 water (resistivity of 18.2 MΩ). 1 g of air-dried soil (dried for 24 hours) was added to a 50 ml
228 centrifuge tube, followed by 50 ml of the acid oxalate reagent. The mixture was gently shaken to
229 mix and then equilibrated in darkness on a reciprocating shaker for 4 hours. After equilibration,
230 the mixture was centrifuged for 5 minutes, and the extraction was collected and analyzed for Fe
231 and Al in inductively coupled plasma mass spectroscopy (Thermo Dionex IC 5000+ iCAP RQ ICP
232 MS). For DCB extraction, 79.4 g of trisodium citrate and 9.24 g of sodium bicarbonate were
233 dissolved in 1 L of Milli-Q water, resulting in a buffer solution with a pH of approximately 7.3. In
234 a 50 mL centrifuge tube, 3 g of air-dried soil sample was added and mixed with 45 mL of the
235 buffer solution. The mixture was agitated in a hot water bath at 75 °C for 15 minutes. Then, 1 g of
236 sodium dithionite was added, and the mixture was kept in the hot water bath for an additional 10
237 minutes. Another 1 g of dithionite was then added very slowly, and the mixture was agitated in the
238 water bath for another 15 minutes. Finally, the solution was cooled and centrifuged, and the
239 supernatant was collected and analyzed for DCB-extractable Fe and Al using ICP-MS.

240

241 *Soil organic carbon and total nitrogen*

242 After ball-milling (SPEX SamplePrep, 8000D Mixer/Mill) the soil samples, total soil carbon
243 and nitrogen (N_t) in percent (%) were measured by dry combustion using an elemental analyzer
244 (Thermos Scientific, Waltham, MA, USA). Before the analysis, an effervescence test conducted
245 by application of 10% HCl was used to determine if any inorganic carbon was present. When
246 carbonates were detected, soil inorganic carbon content was quantified using the modified pressure
247 calcimeter method (Digital Gauge Model Kit+Mixer, HMLS) described by Sherrod et al. (2002).
248 The soil inorganic carbon content was subtracted from the total carbon to obtain the SOC content.

249 The SOC stocks (kg m^{-2}) were calculated for each identified horizon according to their respective
250 depths, although some cores had more than one B and C horizon. If, for example, two B horizons
251 were identified (i.e., B_1 and B_2), the stocks from each horizon were summed to calculate the total
252 stock for the B horizon ($B = B_1 + B_2$). For the fixed depth increments, SOC stocks were summed
253 to obtain the cumulative SOC stocks for the 0-50, 50-100, 100-200, and 200-300 cm depth
254 increments, considering the specific contribution of individual pedogenic horizons to each
255 increment. Across horizons, bulk density between arable and native prairie soils was not different
256 (Table 1). Thus, an equivalent soil mass (ESM) approach was not applicable (Ellert et al., 2002;
257 Wendt and Hauser, 2013).

258 $\text{SOC stocks (kg m}^{-2}\text{)} = \text{SOC concentration (g kg}^{-1}\text{)} * [\text{Bulk density (g cm}^{-3}\text{)} * \text{Volume (cm}^3\text{)}]$ (Eq.
259 1). Where volume is the product of area (cm^2) multiplied by depth (cm).

260

261 Bulk soil samples from A, B, and C horizons were analyzed for $\delta^{13}\text{C}$ and for $\Delta^{14}\text{C}$.
262 Specifically, selected samples from these horizons across land use types were utilized for $\Delta^{14}\text{C}$
263 analysis. Samples that contained carbonates were initially treated following the acid fumigation
264 method, as described by Harris et al. (2001). However, this method did not completely eliminate
265 the carbonates in several samples. Samples that showed effervescence and a $\delta^{13}\text{C}$ less negative
266 than -12‰ after fumigation were treated with the acid soaking and drying method described by
267 Slessarev et al. (2020) to ensure complete removal of the carbonates. For $\delta^{13}\text{C}$ analysis, samples
268 were measured using the Thermo Finnigan Delta Plus isotope-ratio mass spectrometer (IRMS)
269 interfaced with a Carlo Erba Elemental Analyzer (Thermo Finnigan, San Jose, CA). For $\Delta^{14}\text{C}$
270 analysis, analyzed as graphite using the NEC 1.0 MV Model 3SDH-1 or FN van de Graff tandem
271 accelerator mass spectrometer at the Center for Accelerator Mass Spectrometry (Lawrence

272 Livermore National Laboratory, Livermore, CA, USA) following the method of Broek et al.
273 (2021). Briefly, soil samples were weighed into quartz tubes containing cupric oxide and silver
274 under a vacuum. After the tubes were sealed, the samples were converted to CO₂ by heating at 900
275 °C for 6 hours. In the presence of hydrogen gas and Fe catalyst, the CO₂ was reduced to graphite
276 at 570 °C (Vogel et al. 1987). Data were corrected for mass-dependent fractionation using the
277 measured $\delta^{13}\text{C}$ values (i.e., differential partitioning of carbon isotopes based on their masses) and
278 are reported in $\Delta^{14}\text{C}$ notation corrected for the year of measurement (2022) and conventional
279 radiocarbon age (based on the Libby half-life) following Stuiver and Polach (1977). Conventional
280 radiocarbon ages are provided for reference and should not be interpreted as actual ages, as soils
281 are open systems with respect to OC.

282

283 *Soil microbial community analyses*

284 To determine the diversity and composition of microbial communities (bacteria and fungi),
285 soil DNA was extracted from 0.25 g subsamples of each horizon from two cores of 10 sites (i.e.,
286 pseudo field replicates) using the DNeasy PowerSoil Pro Kits (QIAGEN, Hilden, Germany). The
287 concentrations of purified DNA were verified using a spectrophotometer (NanoDrop, ND2000,
288 Thermo Scientific, USA). Amplification and sequencing of DNA were performed at the Argonne
289 National Laboratory in Lemont, IL, using Illumina MiSeq (Illumina Inc., San Diego, CA, USA).
290 The bacterial V4 hypervariable regions of the 16S rRNA gene and fungal internal transcribed
291 spacer (ITS) region were amplified using the primer pair 505F/816R (Caporaso et al., 2011, 2012)
292 and ITS1F/ITS2 (Buée et al., 2009), respectively. The raw DNA sequence data were analyzed
293 using QIIME2-2021.11 (Bolyen et al., 2019). The *q2-dada2* plugin was used for sequence quality
294 control and feature table construction (Callahan et al., 2016). Sequences were trimmed to remove

295 low-quality regions, and trimming parameters were determined according to the quality plots. The
296 phylogenetic tree was generated using the *align-to-tree-mafft-fasttree* pipeline from the *q2-phylogeny* plugin (Katoh et al., 2002). Sequences were rarefied for downstream analyses to ensure
297 comparability across samples. Rarefaction depth was chosen to retain more sequences per sample
298 while excluding as few samples as possible on the condition that the richness in the samples is
299 fully saturated. The alpha diversity was analyzed with the *q2-diversity* plugin.

301

302 *Statistical analysis*

303 A two-way mixed model ANOVA was used to determine the main and interaction effect of
304 land use and soil depths or horizons on soil biogeochemical characteristics (Glimmix procedure;
305 SAS 9.4, SAS Institute Inc., Cary, NC, USA). Since pedon-scale SOC storage is often controlled
306 by horizon thickness (i.e., vertical depth of each distinct layer), analysis of patterns by both horizon
307 and fixed depth approaches is crucial for understanding genetic soil formation processes that are
308 relevant to OC accumulation and persistence within the soil profile (Li et al., 2023). Land use was
309 treated as a fixed factor, with depths or horizons as repeated measure variables and block (site)
310 and replications as random variables. Means were compared using Fisher's Least Significant
311 Difference. Data were log-transformed to achieve normal distribution when necessary. The
312 univariate procedure was used to check for the normality of residuals, and Shapiro-Wilk's test was
313 used to determine normality. Levene's test was used to assess the equality of variance. Results
314 were reported as untransformed mean \pm standard error. Pearson correlation was used to evaluate
315 the relationships between SOC and N_t concentrations, soil mineral characteristics, soil carbon
316 isotope signatures, soil microbial DNA concentrations, and soil nutrients. Correlations were
317 performed separately by horizon (A, B, and C) and land use type (native prairie and arable). If

318 more than one horizon was detected for one of the three major horizons, e.g., B₁ and B₂, or C₁ and
319 C₂, the respective results were treated as individual data points in the correlation analyses. We also
320 used results from each core per site (three pseudo-field replicates) as individual data points. Data
321 were normally distributed and linear with no outliers. Significance was set at $p \leq 0.05$. The errors
322 reported in the text and tables are standard errors.

323 Further, we used structural equation modeling (SEM) (*semopy*; Python 3.12) to measure the
324 impact of management intensity and soil horizon on SOC and other soil properties and illustrate
325 how these variables interact with each other to produce the overall effect. We followed the
326 procedures for developing a structural equation model outlined by Li et al. (2019). We initially
327 proposed a hypothesized model according to background information and then tested the
328 significance of these pathways. The path coefficients were tested by maximum likelihood
329 estimation at $p \leq 0.05$. We reported the standardized path coefficients that are based on standard
330 deviation units. Data were scaled using *StandardScaler* from *scikit-learn*. Model fit was evaluated
331 by the goodness of fit index (GFI) and the comparative fit index CFI.

332

333 **Results**

334 *Chemical and physical bulk soil characteristics*

335 For sites under arable and native prairie land use, soil characteristics such as pH, bulk density,
336 texture, exchangeable base cations, and reactive Fe and Al oxides observed in A, B, and C horizons
337 are presented in Tables 1 to 3. Table 1 also includes information regarding the depths of the
338 individual soil horizons, highlighting the upper and lower depth ranges. Across different sites and
339 soil depths (i.e., from A to C horizon), soil pH measured in water ranged from 5.3-8.8 for arable
340 soils and 5.6-8.6 for native prairie soils (Table 1). Silt and clay contents in arable soils ranged from

341 8.0-74% and 1.3-38%, respectively, whereas in native prairie soils, they ranged from 0-72% and
342 2.0-34% (Table 1). For reactive Fe and Al oxides phases, we detected ammonium oxalate (AO)
343 extractable Fe (Fe_{AO}) and Al (Al_{AO}) in the range of 42-2711 $mg\ kg^{-1}$ and 178-1093, respectively,
344 in arable soils, while in native prairie soils, they were found in the range of 35-2996 $mg\ kg^{-1}$ and
345 34-1296 $mg\ kg^{-1}$ (Table 3). Averaged across all sites within each land use system, $N\text{-NO}_3$ and $P\text{-}$
346 PO_4 were significantly higher in arable soils than in native prairie soils in the A horizon. Nitrate-
347 N was also significantly higher in the C horizon of arable soils than in native prairie soils (Table
348 S2).

349 *Contents and stocks of bulk soil organic carbon and total nitrogen across soil profiles*

350 Across all 11 sites under arable and native prairie land use, the SOC and total nitrogen (N_t)
351 contents in the A horizon ranged from 5.5-22 $g\ kg^{-1}$ (SOC) and 0.5-1.8 $g\ kg^{-1}$ (N_t) in arable soils
352 and from 7.0-36 $g\ kg^{-1}$ (SOC) and 0.6-3.4 $g\ kg^{-1}$ (N_t) in native prairie soils (Table 1). Land use
353 significantly affected the average SOC and N_t in the A horizon, with larger contents observed in
354 native prairie soils ($22 \pm 1.2\ g\ kg^{-1}$ SOC, $1.9 \pm 0.1\ g\ kg^{-1}$ N_t) compared to soils under arable land
355 use ($13 \pm 0.8\ g\ kg^{-1}$ SOC, $1.2 \pm 0.1\ g\ kg^{-1}$ N_t). In the B and C horizons, SOC and N_t contents did
356 not significantly differ between arable and native prairie soils.

357 The SOC and N stocks observed in the A, B, and C horizons are shown in Figure 2a and b. In
358 the A horizon, the SOC and N_t stocks observed in arable soils ranged from $2.2\text{-}12\ kg\ m^{-2}$ and 0.2-
359 $1.0\ kg\ m^{-2}$, respectively, compared to $3.2\text{-}13\ kg\ m^{-2}$ (SOC) and $0.3\text{-}1.4\ kg\ m^{-2}$ (N_t) found in the
360 native prairie soils. Land use significantly affected SOC and N_t stocks only in the A horizon, with
361 greater SOC and N_t stocks found in the native prairie soils ($8.0 \pm 0.9\ kg\ m^{-2}$ SOC, $0.7 \pm 0.1\ kg\ m^{-2}$
362 N_t) compared to the arable soils ($5.3 \pm 1.0\ kg\ m^{-2}$ SOC, $0.5 \pm 0.1\ kg\ m^{-2}$ N_t).

363 Considering fixed depth increments (Figure 3a and b), the stocks in 0-50 cm range from 2.7-
364 11 kg m⁻² SOC and 0.3-0.9 kg m⁻² N_t in the arable soils and from 4.0-17 kg m⁻² SOC and 0.4-1.4
365 kg m⁻² N_t in the native prairie soils. Significant differences in SOC and N_t stocks were observed
366 only in 0-50 cm depth but not for the 50-100 cm, 100-200 cm, and 200-300 cm depth increments.
367 In 0-50 cm, the SOC and N_t stocks were greater in the native prairie soils (9.9 ± 0.9 kg m⁻² SOC,
368 0.9 ± 0.1 kg m⁻² N_t) compared to arable soils (7.0 ± 0.9 kg m⁻² SOC, 0.6 ± 0.1 kg m⁻² N_t). In the
369 entire 300 cm depth profile, the total amount of SOC and N_t stocks ranged from 5.9-35 kg m⁻²
370 SOC and 0.6-3.1 kg m⁻² N_t in arable soils compared to 6.0-35 kg m⁻² SOC and 0.9-3.5 kg m⁻² N_t
371 in native prairie soils. Land use-derived differences in SOC and N_t for the total 0-300 cm were
372 observed for paired sites where soils under arable and native prairie land use were directly adjacent
373 (Pearl harbor, Wildcat, and Pokorny) (Table S3 and Table S4).

374

375 *Horizon-specific bulk soil C/N ratio, δ¹³C and Δ¹⁴C signatures*

376 The average C/N ratio of bulk soil in arable and native prairie soils was generally low across
377 the A to C horizons (Figure S1). In arable soils, the C/N ratio ranged from 9.6-11, while in native
378 prairie soils, it ranged from 9.0-14. However, no significant differences were observed between
379 the land use systems for the individual horizons.

380 The bulk soil δ¹³C values detected for the A, B, and C horizons significantly decreased with
381 depth (i.e., from A to C horizons) independent from the land use type, as shown in Figure 2c and
382 Table 4. Differences between land use types for specific pedogenetic horizons were not significant
383 (p > 0.05). In the A horizon, an average δ¹³C value of -15.8 ± 0.3‰ was observed for arable soils
384 compared to -16.2 ± 0.2‰ found for native prairie soils. In the B horizon, -17.9 ± 0.5‰ was found
385 for arable soils compared to -17.3 ± 0.5‰ detected for native prairie soils. In the C horizon, arable

386 soils show an average $\delta^{13}\text{C}$ value of $-21.4 \pm 0.4\text{\textperthousand}$ compared to $-22.3 \pm 0.4\text{\textperthousand}$ found for native
387 prairie soils.

388 The bulk soil $\Delta^{14}\text{C}$ values for selected A, B, and C horizons significantly decreased with depth
389 (i.e., from A to C horizons), which was observed for both land use systems (Figure 2d; Table 4).
390 The average values for specific horizons indicated that land use significantly affected the $\Delta^{14}\text{C}$
391 value in the A horizon, with lower $\Delta^{14}\text{C}$ for arable soils ($-118 \pm 26\text{\textperthousand}$) (i.e., more depleted)
392 compared to native prairie soils ($-7 \pm 8.0\text{\textperthousand}$) (i.e., less depleted). In the B horizon, significant
393 differences in $\Delta^{14}\text{C}$ were not observed between arable ($-518 \pm 75\text{\textperthousand}$) and native prairie soils (-380
394 $\pm 83\text{\textperthousand}$). Similarly, in the C horizon, significant differences were not detected between arable ($-$
395 $746 \pm 33\text{\textperthousand}$) and native prairie soils ($-730 \pm 38\text{\textperthousand}$) ($p = 0.76$).

396

397 *Horizon-specific bulk soil microbial DNA concentrations and microbial community structure*

398 The average soil microbial DNA concentration observed for the individual horizons in arable
399 and native prairie sites (i.e., 10 sites) decreased with depth, as shown in Figure 4a. In the A horizon,
400 significantly larger microbial DNA concentrations ($153.8 \pm 18 \text{ mg kg}^{-1}$ soil) were observed in the
401 native prairie soils compared to the arable soils ($57.7 \pm 7.0 \text{ mg kg}^{-1}$ soil). In the B horizon, the
402 amount detected in the arable soils ($12.6 \pm 2.7 \text{ mg kg}^{-1}$ soil) did not differ significantly from the
403 amount observed in the native prairie soils ($19.8 \pm 5.0 \text{ mg kg}^{-1}$ soil). A similar observation was
404 made in the C horizon with no significant differences between the arable ($7.5 \pm 1.2 \text{ mg kg}^{-1}$ soil)
405 and native prairie soils ($6.2 \pm 1.2 \text{ mg kg}^{-1}$ soil).

406 Analysis of microbial communities showed that the diversity of bacteria and fungi decreased
407 with depth and responded differently to the type of land use for the individual horizons (Figure 4b-
408 e). In the A horizon, land use did not significantly affect the bacteria Faith's phylogenetic diversity

409 (Figure 4b) but influenced the distribution of species (Pielou's evenness), with more species
410 evenness found in the arable soils than soils under native prairie (Figure 4c). In the B horizon, land
411 use had a similar effect on the bacteria Faith's phylogenetic diversity compared to the A horizon
412 but enhanced species evenness in the native prairie soils compared to soils under arable land use.
413 In the C horizon, the bacteria Faith's phylogenetic diversity was significantly higher in the native
414 prairie soils than in the arable soils. However, species distribution was similar in both land use
415 systems. In contrast, fungi Faith's phylogenetic diversity and species distribution for the individual
416 horizons were not significantly affected by land use (Figure 4d and e).

417

418 *Correlations between soil organic carbon characteristics and soil chemical, physical, and*
419 *biological characteristics*

420 To identify potential factors significantly affecting SOC retention and persistence, Pearson
421 correlation matrices were generated for the A, B, and C horizons under arable and native prairie
422 land use (Figure S2a-f). Only significant correlations ($p < 0.05$) are considered below. Except for
423 pH, $\delta^{13}\text{C}$ (‰), and $\Delta^{14}\text{C}$ (‰), the parameters used within the correlation analyses were bulk soil
424 contents in mg kg^{-1} or g kg^{-1} .

425 Generally, a significant correlation between SOC and N_t was observed across the individual
426 horizons regardless of land use type. For the A horizon, the SOC of arable soils was positively
427 correlated with Al_{AO} ($r = 0.35$, $n = 33$), $\delta^{13}\text{C}$ ($r = 0.43$, $n = 33$), phosphate-P ($r = 0.53$, $n = 33$),
428 sulfate-S ($r = 0.47$, $n = 33$), and microbial DNA ($r = 0.43$, $n = 20$) (Figure S2a). A negative
429 correlation in arable topsoil was also detected between $\Delta^{14}\text{C}$ and Fe_{DCB} ($r = -0.89$, $n = 9$). For the
430 native prairie soils, SOC was positively correlated with silt ($r = 0.66$, $n = 33$), exchangeable Ca (r
431 = 0.41, $n = 33$), Fe_{AO} ($r = 0.56$, $n = 33$), Al_{AO} ($r = 0.53$, $n = 33$), Fe_{DCB} ($r = 0.52$, $n = 33$), and Al_{DCB}

432 (r = 0.61, n = 33) (Figure S2b). Furthermore, SOC was positively correlated with microbial DNA
433 (r = 0.48, n = 19) and sulfate-S (r = 0.44, n = 33), and $\Delta^{14}\text{C}$ was negatively correlated with Fe_{AO} (r
434 = -0.78, n = 10).

435 For the B horizon under arable land use, SOC showed positive correlations with silt (r = 0.35,
436 Al_{AO} (r = 0.33, n = 40), and microbial DNA (r = 0.54, n = 22) (Figure S2c). Under native
437 prairie land use, similar parameters as observed for the arable soils, such as Al_{AO} (r = 0.35, n = 41)
438 and microbial DNA (r = 0.42, n = 22), were positively correlated with SOC (Figure S2d).

439 For the C horizon, significant relationships between SOC or $\Delta^{14}\text{C}$ and soil mineral
440 characteristics were not observed for the arable soils (Figure S2e). However, SOC was positively
441 correlated with microbial DNA (r = 0.36, n = 48). For the native prairie soils, SOC was positively
442 correlated with silt (r = 0.37, n = 80), exchangeable Ca (r = 0.32, n = 80), and Mg (r = 0.28, n =
443 80), Al_{AO} (r = 0.26, n = 80), and microbial DNA (r = 0.34, n = 52) (Figure S2f).

444 Independent of land use type and horizons-specific correlation analysis, results from the SEM
445 indicated that management intensity negatively affected SOC through microbial DNA (Figure S3).
446 For instance, if management intensity increases by 1.00 unit, it will cause a 0.17 unit decrease in
447 microbial DNA, and a 1.00 unit decrease in microbial DNA will lead to a 0.51 unit decrease in
448 SOC ($p < 0.05$). Increasing soil pH decreased Al_{AO}, Fe_{AO}, Al_{DCB}, and Fe_{DCB} ($p < 0.05$). The Al_{AO}
449 and Fe_{AO} increased SOC ($p < 0.05$), but Al_{DCB} or Fe_{DCB} had no significant effect on SOC ($p >$
450 0.05).

451

452

453

454

455 **Discussion**

456 *Land use affected soil organic carbon storage only in the A horizon or uppermost 50 cm*

457 In the A horizon, significant differences in SOC and N_t stocks between arable and native prairie
458 soils suggest an average loss of about 2.7 kg m⁻² SOC (~ 34%) and 0.2 kg m⁻² N (~ 29%) due to
459 the intensification of land use. In most cultivated soils, topsoil SOC and N_t stocks are lower relative
460 to undisturbed native grassland soils. This disparity can be attributed to reduced carbon inputs
461 from annual crops, characterized by short-growing cycles and shallow root architecture, in contrast
462 to perennial grasses with extensive root systems that contribute continuously to soil carbon (Chen
463 et al., 2022). Additionally, the lower SOC stocks may result from increased microbial
464 decomposition of SOC due to disruption of aggregates or topsoil SOC losses due to erosion (for
465 example, Wiesmeier et al., 2019; Borrelli et al., 2017; Berhe et al., 2018). Previous studies
466 conducted across the U.S. Midwest and the Great Plains have reported similar SOC losses from
467 topsoils under cultivation, as found in our study. In a study analyzing one site in Wisconsin,
468 Jelinski and Kucharik (2009) reported an average loss of 2.4 kg m⁻² SOC (~35%) and 0.17 kg m⁻²
469 N_t from the A horizon (0-10 cm depth) of soil under long-term arable land use (~ 60 years) by
470 comparison to an adjacent soil under native prairie land use. Liebig et al. (2009) analyzed soils
471 from 42 sites across the U.S. Great Plains (North Dakota, Montana, Wyoming, Colorado, Kansas,
472 Nebraska, Texas) and found an average loss of about 42% in SOC from near-surface soil (average
473 depth of 30.5 cm) in long-term arable sites (30-120 years) relative to sites under native prairie. In
474 the B and C horizons (i.e., subsoil horizons), our study showed no significant effect of land use on
475 SOC and N_t stocks, suggesting that losses due to cultivation mainly impacted the surface horizon
476 but did not extend into the subsoil horizons. Similarly, Wiesmeier et al. (2013a) did not detect land
477 use effects on SOC storage in B and C horizons by comparing clay-rich agricultural soils in

478 Bavaria, Germany, to native grassland soils. However, A horizon depths can vary largely between
479 land use types (as shown in Table 1), soil types, and study sites, which makes it difficult to identify
480 specific soil depths that might need to be sampled and analyzed preferentially to account for the
481 majority of SOC losses due to disturbances or SOC gains due to improved management. To
482 address this, we also analyzed differences in SOC and N_t stocks for fixed depth increments.

483 The fixed depth increments analyzed here integrate information from the relative contributions
484 of different pedogenetic horizons specifically quantified for each arable and native prairie soil
485 profile. Significant differences in SOC and N_t stocks between land use types were observed in 0-
486 50 cm depth, with lower SOC and N_t stocks found in the arable soils. Our data suggest here an
487 average loss of about 2.9 kg m⁻² SOC and 0.3 kg m⁻² N_t due to land use change. In Northwestern
488 Illinois, Olson and Gennadiev (2020) found slightly lower SOC differences (~ 2.41 kg m⁻²) at 0-
489 50 cm depth by comparing arable soil more than 150 years after conversion to a soil under native
490 vegetation. In a study conducted in Switzerland by Guillaume et al. (2022), on average, found 3.0
491 ± 0.8 kg m⁻² less SOC down to 50 cm depth of arable soils compared to soils under permanent
492 grassland.

493 In contrast to other studies, we were also able to analyze differences in depth increments across
494 50 to 300 cm depth. No significant differences in SOC and N_t stocks between the two land use
495 types were detected for 50-100 cm, 100-200 cm, and 200-300 cm increments. This suggests that
496 losses due to cultivation were limited to the uppermost 50 cm soil depth, which consists of the A
497 horizon but can also include proportions of B and C horizons depending on their site-specific
498 thickness. This also highlights the need to sample soils at least 50 cm deep to capture the soil
499 volume reflecting most of the changes in SOC storage derived from changes in management or
500 land use. In line with our observations, results from ten long-term experiments in Germany

501 published by Skadell et al. (2023) showed significant impacts of agricultural management on SOC
502 stocks down to 50 cm depth. In their study, the topsoil (0-30 cm) accounted for 79% of the total
503 management effects, the upper subsoil (30-50 cm) for 19%, and the lower subsoil (50-100 cm) for
504 3%. Our study, which analyzed the uppermost 3 m of soil, revealed that the main impact of land
505 use change on SOC storage was restricted to the top 50 cm. Storage-wise, our data also showed
506 substantial amounts of SOC stored below 50 cm (57-67%), 1 m (37-45%), and even 2 m (16-19%)
507 depth (Figure 3a, Figure S5). This highlights the significance of SOC stored at greater depths,
508 which should be taken into consideration when budgeting for terrestrial carbon storage.

509

510 *Bulk soil organic carbon is correlated to soil nutrients and microbial DNA depending on the*
511 *horizon and land use*

512 Soils under arable and native prairie showed distinct ranges in mineral characteristics (e.g.,
513 Fe_{AO} , Al_{AO} , Fe_{DCB} , Al_{DCB} , exchangeable Ca, and clay content: Tables 1 to 3) known to be relevant
514 for SOC retention (e.g., Rasmussen et al., 2018; Heckman et al., 2021; Hall and Thompson, 2021).
515 For the A horizon of arable soils (11 sites), the amount of poorly crystalline Al-oxides (Al_{AO}) was
516 the only mineral characteristic significantly related to SOC. In contrast, in the A horizon of native
517 prairie soils (11 sites), contents of silt, exchangeable Ca ions, and Fe and Al oxides/hydroxides
518 (Fe_{AO} , Al_{AO} , Fe_{DCB} , and Al_{DCB}) were positively correlated with SOC. These results suggest a
519 stronger influence of soil mineral characteristics on soil carbon retention in topsoils under native
520 prairie compared to soils under arable land use.

521 For arable soils, the effects of management practices seem to mask the impact of soil minerals
522 or are more relevant for the topsoil SOC storage than soil mineral characteristics (An et al., 2023;
523 Xiao et al., 2023). Differences in tillage intensity, for example, are known to affect SOC levels,

especially in the topsoil (Cui et al., 2024). The SOC content of the arable soils is, for example, positively correlated with phosphate-P, suggesting an indirect effect of fertilization via enhanced crop productivity and higher soil carbon inputs from crop residues (Hijbeek et al., 2019). Crop productivity and resulting soil carbon inputs in drought-affected agro-ecoregions, as given for our study sites, are also affected by irrigation, which was used for six of our study sites (Dai, 2011; Reichstein et al., 2013). Regular high moisture events caused by irrigation can increase the occurrence of anoxic microsites in soils (Malakar et al., 2022), which can enhance the reductive dissolution of Fe-oxides relative to Al-oxides due to the biogeochemical transformation of Fe^{3+} to Fe^{2+} (e.g., Barcellos et al., 2018; Malakar et al., 2022; Li et al., 2023). In this scenario, the reductive dissolution of Fe might weaken organo-Fe complexes, thereby reducing SOC protection against microbial decomposition (Hall et al., 2018; Hall and Thompson, 2020) relative to the Al species, which is not redox-sensitive. This might explain the effect of Al_{AO} on SOC detected in the arable soils (Figure S2a), which is consistent with other studies (Rasmussen et al., 2018; Yu et al., 2021).

For the B and C horizons (11 sites for each land use type), correlations between SOC and soil characteristics were highly variable without consistent patterns. In the B horizon, Al_{AO} was the primary mineral characteristic correlated with SOC content in arable and native prairie soils, highlighting the importance of poorly crystalline Al-oxides/hydroxides for subsoil SOC retention across land use types (Hall and Thompson, 2021). In the C horizon, SOC retention was not directly linked to soil mineral characteristics in the arable soils but was positively correlated with silt, exchangeable Ca and Mg, and Al_{AO} in the native prairie soils. Overall, as assessed by correlation analyses, the controlling effect of soil mineral characteristics on subsoil SOC (i.e., B and C horizons) was lower than expected (i.e., less relationship). It is assumed that with increasing soil depth, organic compounds become smaller and more reactive towards charged mineral surface

547 sites because of the ongoing oxidative breakdown (microbial processing) (Kleber et al. 2015).
548 Consequently, with increasing soil depth, organo-mineral associations should become increasingly
549 important for SOC retention (Rasse et al. 2006). Preferential flow paths of dissolved OC and the
550 spatial discontinuity, variability, and heterogeneity of “OM-mineral interaction events” likely
551 make it difficult to detect linear relationships with individual mineral parameters in the subsoil.
552 The bulk SOC, as analyzed here, however, consists of different sub-compartments with distinct
553 soil ecological functions, such as dissolved, particulate, and mineral-associated organic
554 compounds (Anuo et al., 2023). To better understand the relevance of individual soil mineral
555 characteristics on subsoil SOC retention, the separation and quantification of mineral-associated
556 SOC seem to be necessary (Vormstein et al., 2020).

557 Independent of soil depth/horizon and land use type, SOC was positively correlated with the
558 microbial DNA content (data from 10 sites for each land use type), which serves as a proxy for
559 microbial biomass (Gong et al., 2021). The correlation can be interpreted in both directions with
560 higher substrate (i.e., SOC), resulting in higher microbial biomass. On the other hand, microbial
561 necromass and microbial decomposition products retained in soil due to associations with soil
562 minerals, for example, have been identified as major contributors to SOC formation and storage
563 (Liang et al., 2019). The impact of microbial-derived SOC on the bulk SOC should thereby
564 increase with more favorable environmental conditions for microbial communities across the soil
565 profiles in terms of habitat (i.e., pores) and resources (i.e., water, redox partners, nutrients) besides
566 organic substrate (Kästner & Miltner, 2018; Wang et al., 2021; Sokol et al., 2022). Accordingly,
567 we found higher SOC stocks and higher microbial DNA contents for the A horizon of native prairie
568 soils than for the A horizon of arable soils. This is further elucidated by our SEM results, which
569 indicate that increased management intensity exerts a deleterious effect on SOC storage overall

570 (Figure S3). This negative impact likely results in diminished SOC stocks and reduced microbial
571 biomass in the more intensively managed arable soils relative to the undisturbed native soils.

572

573

574 *Persistence of soil organic carbon increased with soil depth but was affected by land use only in*
575 *the A horizon*

576 Bulk soil $\delta^{13}\text{C}$ and $\Delta^{14}\text{C}$, which provided more information on SOC turnover and persistence
577 within the analyzed land use systems, decreased with soil depth (Figure 2 c and d; Table 4). The
578 $\delta^{13}\text{C}$ values were not affected by the type of land use, although our study sites have experienced a
579 complex vegetation history, including the presence of C₃ and C₄ plants. The decrease in $\delta^{13}\text{C}$ with
580 depth might be explained by differences across horizons in C₄ derived carbon inputs (here: Process
581 1) and with differences in the amount of organic matter highly microbially processed (here:
582 Process 2).

583 For Process 1, soil $\delta^{13}\text{C}$ values of -22 to -32 ‰ generally indicate carbon input from C₃ plants,
584 whereas values of -12 to -17 ‰ suggest carbon input from C₄ plants whose biomass is ¹³C enriched,
585 leading to less negative $\delta^{13}\text{C}$ values as compared with C₃ plants (Malo et al., 2005; Slessarev et
586 al., 2020). In the A horizon, average bulk soil $\delta^{13}\text{C}$ values of -15.8 ‰ (arable soils) and -16.2 ‰
587 (prairie soils) were found, suggesting C₄-derived carbon inputs for both land use systems. For the
588 arable soils, the C₄-carbon originates from corn (Malo et al., 2005), and for the native prairie soils
589 from C₄-grasses (Havrilla et al., 2022). In the B horizon, a slight decline in the average $\delta^{13}\text{C}$ values
590 (-17.9 and 17.2 ‰) compared to the A horizon indicates material with a lower ¹³C abundance and
591 less C₄ plant derived carbon input. This trend is even stronger in the C horizon, where average

592 $\delta^{13}\text{C}$ values of -21.4 and -22.3 ‰ were observed. This suggests that the SOC in the C horizon is
593 dominated by C₃ derived carbon.

594 For Process 2, it is known that microorganisms preferentially metabolize the lighter ¹²C, thus
595 enriching the heavier ¹³C isotope and leading to less negative $\delta^{13}\text{C}$ values in organic matter not
596 fully processed/respired and retained in the soil (Balesdent et al., 2018). The decreasing microbial
597 DNA content with depth (Figure 4a) points towards an accompanied decrease in microbial
598 abundance and decomposition activity. This, in turn, seems to contribute to the decrease in $\delta^{13}\text{C}$
599 found for the A, B, and C horizons due to decreasing amounts of highly microbially processed
600 organic matter and ¹³C enriched with depth (Scheibe et al., 2023). Specifically for the C horizons,
601 the most negative $\delta^{13}\text{C}$ values suggest low input of C₄ derived carbon, low microbial processing
602 of organic matter, and low input of microbially processed organic matter mobilized in the A and
603 B horizons and translocated into the C horizon (Sanderman et al., 2008; Kaiser and Kalbitz, 2012).

604 The information obtained from $\Delta^{14}\text{C}$ can offer a better understanding in order to untangle the
605 patterns observed above. The ¹⁴C analyses showed that land use affected the $\Delta^{14}\text{C}$ value in the A
606 horizon, with less depleted (younger) $\Delta^{14}\text{C}$ observed in the native prairie soils compared to the
607 arable soils (Figure 2d and Table 4). It appears that the A horizon has experienced a preferential
608 loss of more recently incorporated and potentially less protected organic material due to the
609 conversion of native prairie vegetation into arable land (Finstad et al., 2019). This loss appears to
610 have resulted in the preservation of older and more stabilized organic materials leading to a higher
611 mean residence time as inferred from the $\Delta^{14}\text{C}$ values (Table 4). A similar observation was
612 reported by Mikhailova et al. (2018) in the Russian Chernozem with more depleted (older) $\Delta^{14}\text{C}$
613 in arable soil relative to soil under native grassland. Our finding that the $\Delta^{14}\text{C}$ values were
614 negatively correlated with Fe_{DCB} for the arable soils (9 sites) and with Fe_{AO} for the native prairie

615 soils (10 sites) (Figure S2a and b) indicates stronger stabilization of organic matter against
616 microbial decomposition in the topsoil with increasing content of Fe-oxides/hydroxides. Here,
617 more crystalline, and less redox-sensitive Fe-species (i.e., Fe_{DCB}) seem more relevant in the arable
618 soils than the native prairie soils. Direct evidence beyond the performed correlation analyses to
619 prove the assumption that older OC is more stabilized against microbial decay would require
620 extended decomposition experiments coupled with ¹⁴CO₂ measurements to track the origin of
621 respired carbon, which is not within the scope of this study.

622 In the B horizon, no significant differences in the $\Delta^{14}\text{C}$ values were observed between the land
623 use systems. However, the $\Delta^{14}\text{C}$ of SOC in the B horizon of native prairie soils ($-380 \pm 83\text{\textperthousand}$) was
624 substantially less negative than in arable soils ($-518 \pm 75\text{\textperthousand}$), showing a similar pattern as the A
625 horizon. Typically, native prairie soil receives a higher continuous input of recently assimilated
626 OC via plant roots and root exudates as opposed to arable soils, which are often more disturbed
627 with higher microbial decomposition rates leading to less recent or fresh carbon (Hauser et al.,
628 2022) (i.e., more depleted or negative $\Delta^{14}\text{C}$ values). The absence of a significant difference in $\Delta^{14}\text{C}$
629 between arable and native grassland soil in the B horizon can result from a generally lower
630 disturbance sensitivity of the subsoil compared to the topsoil. Another factor can be the higher
631 depth span for the B horizon compared to the A horizon, which would increase the variability for
632 the B horizon data, making more data (study sites) necessary to detect significant differences.

633 Independent of land use effect, the $\Delta^{14}\text{C}$ values were more negative in the B horizon than the
634 values detected in the A horizon. This suggests an accumulation of more persistent SOC with
635 depth, which is not affected by land use. Paul et al. (2001) found similar trends with depth for
636 SOC- $\Delta^{14}\text{C}$ analyses with ¹⁴C age in the range of 485 - 1100 years BP in the surface horizon (0-20
637 cm) of two arable soils derived from grassland soils in the U.S. Midwest compared to 2620 - 3100

638 years BP in 25-50 cm depth, and 4412 -6107 years BP in 50-100 cm depth. Overall, the strong
639 negative $\Delta^{14}\text{C}$ values point towards soil environmental conditions in the B horizons, promoting the
640 long-term persistence of carbon in this subsoil compartment. Based on the soil $\delta^{13}\text{C}$ values (-17.9
641 and -17.2‰), this carbon might be derived from less microbially processed and stabilized C₄-plant
642 compounds (¹³C enriched), highly microbially processed C₃-plant compounds (¹³C enriched),
643 and/or from stabilized microbial biomass (¹³C enriched, Coyle et al., 2009).

644 In the C horizon, an average $\Delta^{14}\text{C}$ of $-746 \pm 33\text{‰}$ was detected for the arable soils, which was
645 very similar to the $\Delta^{14}\text{C}$ of $-730 \pm 38\text{‰}$ observed for the native prairie soils. Strong depletion in
646 $\Delta^{14}\text{C}$ at 3 m and deeper was previously reported by Moreland et al. (2021). Our findings indicate
647 that the SOC persistence continued to drastically increase with depth along pedogenetic boundary
648 conditions that resulted in the formation of A, B, and C horizons independent of the land use
649 system. The $\delta^{13}\text{C}$ values (-21.4, -22.3 ‰) indicate that the organic material in the C horizon was
650 mainly derived from highly stabilized C₃-plant compounds. An explanation could be that this
651 material was derived and preserved from the early stages of soil development and revegetation
652 preceding the last ice age (glacial retreat) (Van Der Voort et al., 2019). Based on historical records,
653 it is widely recognized that C₃ grasses were the dominant vegetation in grassland eco-regions
654 characterized by lower temperatures and varying precipitation levels (Havrilla et al., 2022). It is
655 probable that during early soil development stages approximately 12,000 years ago (based on
656 average conventional ¹⁴C radiocarbon age) (Figure S6), the predominant vegetation consisted of
657 C₃ species (Edwards et al., 2017).

658 The similar and strong negative $\Delta^{14}\text{C}$ and $\delta^{13}\text{C}$ values found in this study for the C horizons of
659 soils under arable and native prairie land use suggest this pedogenetically defined soil environment
660 to be less affected by inputs of recently assimilated carbon and OC translocation and

661 transformation processes that seem to be more important for SOC storage and turnover in A and
662 B horizons. However, the intensity of subsoil OC responses to changes in management seem to be
663 affected by site-specific characteristics such as texture (Slessarev et al., 2020) or management
664 strategy (Tautges et al., 2019), which might not be reflected in the average values across sites as
665 presented here. Inputs from recently assimilated carbon into the deeper subsoil (i.e., below B
666 horizon) via roots or dissolved OC might serve immediately as substrate for the subsoil
667 microorganisms, thereby reducing the imprint of these inputs on bulk soil $\Delta^{14}\text{C}$ and $\delta^{13}\text{C}$ values
668 (Scheibe et al., 2023). This also implies that, especially for the C horizon, more research is needed
669 to clarify if and how this soil compartment can play a significant role in increasing long-term
670 carbon storage across the soil profile.

671

672 *Soil microbial abundance decreased with depth, but community structure was differentially
673 affected by land use within individual horizons*

674 At the community level, the diversity of bacteria and fungi (Faith's phylogenetic diversity)
675 decreased with depth (Figure 4b and d). The highest diversity was observed in the topsoil horizon
676 (A horizon), while the subsoil horizons (B and C horizons) had lower diversity independent of
677 land use type. Polain et al. (2020) and Upton et al. (2020) found a similar trend in a 1 m deep soil
678 profile under arable land use and native grassland, respectively. In their study, the authors found
679 that both bacteria and fungi diversity decreased with increasing soil depth. The microbial diversity
680 (bacteria and fungi) observed in our study followed a similar trend as the microbial DNA
681 concentration (an indicator of microbial biomass) (Figure 4a; Gong et al., 2021), which positively
682 correlated with SOC content across the individual horizons (Figure S2a-f). In line with this
683 observation, Bastida et al. (2021) found that increased SOC content significantly enhanced soil

684 microbial biomass, influencing the diversity of bacteria and fungi communities. Moreover, studies
685 have shown that substrate availability plays a crucial role in regulating the diversity of soil
686 microorganisms under different land use systems (Chen et al., 2022; Han et al., 2023). Thus,
687 variation in substrate accessibility due to differences in land use types and across depth or horizon
688 can affect microbial resources (e.g., carbon, nitrogen, phosphorus, sulfur) (Han et al., 2023),
689 consequently driving changes in community patterns (i.e., distribution) and composition
690 (Labouyrie et al., 2023).

691 Although there were no significant changes in the diversity of bacteria and fungi communities
692 between arable and native prairie soils in the A horizon, the arable soils had a higher degree of
693 species evenness (Pielou evenness) within the bacteria community compared to soils under native
694 prairie (Figure 4c). This observation indicates a relatively balanced distribution among species in
695 the arable soils, most likely due to a broader array of resources (Romdhane et al., 2022). For
696 example, studies have shown that agricultural intensification enhanced bacterial diversity in the
697 topsoil, due to rotations of different crop types and changes in management practices (e.g.,
698 fertilization) that may result in higher substrate diversity via root, crop residues, and legacy effect
699 of nutrients (Delgado-Baquerizo et al., 2016; Romdhane et al., 2022). Furthermore, increased
700 niche availability in arable soils due to soil disturbance or the existence of a heterogeneous
701 environment with different crop species may result in higher microbial diversity (Labouyrie et al
702 2023).

703 Similar to the A horizon, the diversity of bacteria and fungi communities in the B horizon was
704 not affected by land use. However, within the bacteria community, greater species distribution was
705 observed in soils under native prairie compared to soils under arable land use (Figure 4c). Since
706 grassland vegetation consists of perennial plants that continuously contribute to subsoil SOC via

707 roots and root exudates (Bai & Cotrufo, 2022), substrate derived from perennial roots, which
708 extend even up to 2 meters in the native prairie soils studied here, may play a significant role. In
709 contrast, arable soils are typically cultivated with annual crops with short growing cycles that can
710 limit the amount of OC inputs into the subsoil (Salonen et al., 2023).

711 In the C horizon, land use only affected the diversity of the bacteria community, with higher
712 diversity observed in the native prairie soils compared to arable soils. This observation further
713 strengthens the hypothesis that alterations in microbial communities in the subsoil could be
714 impacted by inputs originating from perennial roots (Upton et al., 2020).

715

716 **Conclusions**

717 Most of the SOC losses due to increased agricultural intensification of native prairie
718 ecosystems seem to be restricted to the uppermost 50 cm, which might be targeted in future studies
719 as the minimum sampling depth needed to account for changes in SOC due to changed
720 management or land use. Relationships between SOC and soil mineral characteristics varied
721 depending on soil horizon and land use type. Oxalate soluble Al was positively correlated to SOC
722 in almost all combinations of soil horizon and land use type, while clay content was not correlated
723 with SOC for any of the analyzed soil environments. This suggests soil mineral characteristics
724 other than clay content might be more important for predicting soil carbon storage under changing
725 soil environmental conditions.

726 For both land use systems, $\delta^{13}\text{C}$ and $\Delta^{14}\text{C}$ decreased with soil depth along pedogenetic
727 boundary conditions that resulted in the formation of A, B, and C horizons. The strong negative
728 and very similar $\delta^{13}\text{C}$ and $\Delta^{14}\text{C}$ values found for the SOC of the C horizons for both land use types
729 suggest these carbon pools to be less affected by inputs from recently assimilated carbon.

730 However, the increase in bacteria diversity found in the C horizon of native prairie soils as
731 compared to arable soils suggests that changes in microbial diversity may have been influenced by
732 inputs from perennial roots. These findings support previously postulated subsoil carbon pathways
733 (Scheibe et al., 2023), where subsoil inputs of recently assimilated carbon are preferentially used
734 as substrate by microorganisms populating the deeper subsoil (i.e., below B horizon). Overall, our
735 study suggests that the impact of land use change on SOC storage is not solely horizon-dependent
736 but also depth-dependent since the uppermost 50 cm may include A, B, and C horizons based on
737 their thickness.

738

739 **Acknowledgments**

740 Our thanks go out to Dr. Rebecca Young for providing soil pedology expertise during soil
741 sample diagnostic characterization and horizon designation. We thank Aaron Hird at Natural
742 Resources Conservation Service for helping with information on sites in different Major Land
743 Resource Areas (MLRAs) in Nebraska.

744 This work was supported in part by the U.S. Department of Agriculture Natural Resources
745 Conservation Service (USDA-NRCS) with grant number (NR206526XXXXC037). A portion of
746 this work was performed under the auspices of the U.S. Department of Energy by Lawrence
747 Livermore National Laboratory under Contract DE-AC52-07NA27344.

748

749 **Data Availability**

750 The datasets generated during and/or analyzed during the current study are archived on GitHub
751 (<https://github.com/chrisanuo/Raw-data>).

752

753 **Declarations**

754 The authors declare that they have no known competing financial interests or personal
755 relationships that could have appeared to influence the work reported in this paper.

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776 **References**

777 Amelung, W., Bossio, D., de Vries, W., Kögel-Knabner, I., Lehmann, J., Amundson, R., Bol, R.,
778 Collins, C., Lal, R., Leifeld, J., Minasny, B., Pan, G., Paustian, K., Rumpel, C., Sanderman,
779 J., van Groenigen, J. W., Mooney, S., van Wesemael, B., Wander, M., & Chabbi, A (2020)
780 Towards a global-scale soil climate mitigation strategy. *Nature Communications*, 11(1), 1–
781 10. <https://doi.org/10.1038/s41467-020-18887-7>

782 An, Z., Pokharel, P., Plante, A. F., Bork, E. W., Carlyle, C. N., Williams, E. K., & Chang, S. X
783 (2023) Soil organic matter stability in forest and cropland components of two agroforestry
784 systems in western Canada. *Geoderma*, 433(March), 116463.
785 <https://doi.org/10.1016/j.geoderma.2023.116463>

786 Angst, G., Messinger, J., Greiner, M., Häusler, W., Hertel, D., Kirfel, K., Kögel-Knabner, I.,
787 Leuschner, C., Rethemeyer, J., & Mueller, C. W (2018) Soil organic carbon stocks in
788 topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and
789 microbial-derived compounds. *Soil Biology and Biochemistry*, 122, 19–30.
790 <https://doi.org/10.1016/j.soilbio.2018.03.026>

791 Anuo, C. O., Cooper, J. A., Koehler-Cole, K., Ramirez, S., & Kaiser, M (2023) Effect of cover
792 cropping on soil organic matter characteristics: Insights from a five-year field experiment in
793 Nebraska. *Agriculture, Ecosystems and Environment*, 347.
794 <https://doi.org/10.1016/j.agee.2023.108393>

795 Bai, Y., & Cotrufo, M. F (2022) Grassland soil carbon sequestration: Current understanding,
796 challenges, and solutions. *Science*, 377(6606), 603–608.
797 <https://doi.org/10.1126/science.abo2380>

798 Balesdent, J., Basile-Doelsch, I., Chadoeuf, J., Cornu, S., Derrien, D., Fekiacova, Z., & Hatté, C

799 (2018) Atmosphere–soil carbon transfer as a function of soil depth. *Nature*, 559(7715),

800 599–602. <https://doi.org/10.1038/s41586-018-0328-3>

801 Barcellos, D., O’Connell, C. S., Silver, W., Meile, C., & Thompson, A (2018) Hot spots and hot

802 moments of soil moisture explain fluctuations in iron and carbon cycling in a humid tropical

803 forest soil. *Soil Systems*, 2(4), 59. <https://doi.org/10.3390/soilsystems2040059>

804 Bastida, F., Eldridge, D. J., García, C., Kenny Png, G., Bardgett, R. D., & Delgado-Baquerizo,

805 M., 2021. Soil microbial diversity–biomass relationships are driven by soil carbon content

806 across global biomes. *ISME Journal*, 15(7), 2081–2091. <https://doi.org/10.1038/s41396-021-00906-0>

808 Beniston, J. W., DuPont, S. T., Glover, J. D., Lal, R., & Dungait, J. A. J (2014) Soil organic

809 carbon dynamics 75 years after land-use change in perennial grassland and annual wheat

810 agricultural systems. *Biogeochemistry*, 120(1–3), 37–49. <https://doi.org/10.1007/s10533-014-9980-3>

812 Berhe, A. A., Barnes, R. T., Six, J., & Marín-Spiotta, E (2018) Role of Soil Erosion in

813 Biogeochemical Cycling of Essential Elements: Carbon, Nitrogen, and Phosphorus. *Annual*

814 *Review of Earth and Planetary Sciences*, 46, 521–548. <https://doi.org/10.1146/annurev-earth-082517-010018>

816 Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A.,

817 Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K.,

818 Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M.,

819 Chase, J., ... Caporaso, J. G (2019) Reproducible, interactive, scalable and extensible

820 microbiome data science using QIIME 2. *Nature Biotechnology*, 37(8), 852–857.

821 <https://doi.org/10.1038/s41587-019-0209-9>.

822 Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger,
823 K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Oost, K. Van, Montanarella, L., &
824 Panagos, P. (2017) An assessment of the global impact of 21st century land use change on
825 soil erosion. *Nature Communications*, 8(1). <https://doi.org/10.1038/s41467-017-02142-7>

826 Broek, T. A. B., Ognibene, T. J., McFarlane, K. J., Moreland, K. C., Brown, T. A., and Bench, G
827 (2021) Conversion of the LLNL/CAMS 1 MV biomedical AMS system to a semi-
828 automated natural abundance ^{14}C spectrometer: system optimization and performance
829 evaluation, *Nuclear Instruments and Methods in Physics Research Section B: Beam
830 Interactions with Materials and Atoms*, 499, 124-132, 10.1016/j.nimb.2021.01.022, 2021.

831 Buée, M., Reich, M., Murat, C., Morin, E., Nilsson, R. H., Uroz, S., & Martin, F (2009) 454
832 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. *New
833 Phytologist*, 184(2), 449–456. <https://doi.org/10.1111/j.1469-8137.2009.03003.x>

834 Cagnarini, C., Blyth, E., Emmett, B. A., Evans, C. D., Griffiths, R. I., Keith, A., Jones, L.,
835 Lebron, I., McNamara, N. P., Puissant, J., Reinsch, S., Robinson, D. A., Rowe, E. C.,
836 Thomas, A. R. C., Smart, S. M., Whitaker, J., & Cosby, B. J (2019) Zones of influence for
837 soil organic matter dynamics: A conceptual framework for data and models. *Global Change
838 Biology*, 25(12), 3996–4007. <https://doi.org/10.1111/gcb.14787>

839 Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P
840 (2016) DADA2: High-resolution sample inference from Illumina amplicon data. *Nature
841 Methods*, 13(7), 581–583. <https://doi.org/10.1038/nmeth.3869>

842 Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens,
843 S. M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J. A., Smith, G., & Knight, R
844 (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and
845 MiSeq platforms. *ISME Journal*, 6(8), 1621–1624. <https://doi.org/10.1038/ismej.2012.8>

846 Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P.
847 J., Fierer, N., & Knight, R (2011) Global patterns of 16S rRNA diversity at a depth of
848 millions of sequences per sample. *Proceedings of the National Academy of Sciences of the*
849 *United States of America*, 108(SUPPL. 1), 4516–4522.
850 <https://doi.org/10.1073/pnas.1000080107>

851 Chabbi, A., Kögel-Knabner, I., & Rumpel, C (2009) Stabilised carbon in subsoil horizons is
852 located in spatially distinct parts of the soil profile. *Soil Biology and Biochemistry*, 41(2),
853 256–261. <https://doi.org/10.1016/j.soilbio.2008.10.033>

854 Chen, J., Lærke, P. E., & Jørgensen, U (2022) Land conversion from annual to perennial crops:
855 A win-win strategy for biomass yield and soil organic carbon and total nitrogen
856 sequestration. *Agriculture, Ecosystems and Environment*, 330(September 2021).
857 <https://doi.org/10.1016/j.agee.2022.107907>

858 Chen, Q., Yang, F., & Cheng, X (2022) Effects of land use change type on soil microbial
859 attributes and their controls: Data synthesis. *Ecological Indicators*, 138(March), 108852.
860 <https://doi.org/10.1016/j.ecolind.2022.108852>

861 Cotrufo, M.F., and Lavallee, J.M (2022) Soil organic matter formation, persistence, and
862 functioning: A synthesis of current understanding to inform its conservation and

863 regeneration. *Advances in Agronomy*, 172, 1-66.

864 <https://doi.org/10.1016/bs.agron.2021.11.002>

865 Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K., Paul, E (2013) The Microbial
866 Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition
867 with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?
868 *Global Change Biology* 19, 988–995. <https://doi.org/10.1111/gcb.12113>.

869 Coyle, J. S., Dijkstra, P., Doucett, R. R., Schwartz, E., Hart, S. C., & Hungate, B. A (2009)
870 Relationships between C and N availability, substrate age, and natural abundance ^{13}C and
871 ^{15}N signatures of soil microbial biomass in a semiarid climate. *Soil Biology and*
872 *Biochemistry*, 41(8), 1605–1611. <https://doi.org/10.1016/j.soilbio.2009.04.022>

873 Cui, Y., Zhang, W., Zhang, Y., Liu, X., Zhang, Y., Zheng, X., Luo, J., & Zou, J. (2022). Effects
874 of no-till on upland crop yield and soil organic carbon: a global meta-analysis. *Plant and*
875 *Soil*, 499(1), 363–377. <https://doi.org/10.1007/s11104-022-05854-y>

876 Dai, A (2011) Drought under global warming: A review. *Wiley Interdisciplinary Reviews: Climate Change*, 2(1), 45–65. <https://doi.org/10.1002/wcc.81>

877 Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Jeffries, T. C., Gaitan, J. J., Encinar, D.,
878 Berdugo, M., Campbell, C. D., & Singh, B. K., 2016. Microbial diversity drives
879 multifunctionality in terrestrial ecosystems. *Nature Communications*, 7, 1–8.
880 <https://doi.org/10.1038/ncomms10541>

882 Dijkstra, F. A., Zhu, B., & Cheng, W (2021) Root effects on soil organic carbon: a double-edged
883 sword. *New Phytologist*, 230(1), 60–65. <https://doi.org/10.1111/nph.17082>

884 Doane, T. A., & Horwáth, W. R (2003) Spectrophotometric determination of nitrate with a single
885 reagent. *Analytical Letters*, 36(12), 2713–2722. <https://doi.org/10.1081/AL-120024647>

886 Edwards, K. J., Fyfe, R. M., & Jackson, S. T (2017) The first 100 years of pollen analysis.
887 *Nature Plants*, 3(2). <https://doi.org/10.1038/nplants>.

888 Ellert, B. H., Janzen, H. H., & Entz, T (2002) Assessment of a Method to Measure Temporal
889 Change in Soil Carbon Storage. *Soil Science Society of America Journal*, 66(5), 1687–
890 1695. <https://doi.org/10.2136/sssaj2002.1687>

891 Finstad, K., van Straaten, O., Veldkamp, E., & McFarlane, K (2020) Soil Carbon Dynamics
892 Following Land Use Changes and Conversion to Oil Palm Plantations in Tropical Lowlands
893 Inferred from Radiocarbon. *Global Biogeochemical Cycles*, 34(9).
894 <https://doi.org/10.1029/2019GB006461>

895 Fierer, N., Ladau, J., Clemente, J. C., Leff, J. W., Owens, S. M., Pollard, K. S., Knight, R.,
896 Gilbert, J. A., & McCulley, R. L (2013). Reconstructing the microbial diversity and
897 function of pre-agricultural tallgrass prairie soils in the United States. *Science*, 342(6158),
898 621–624. <https://doi.org/10.1126/science.1243768>

899 Follett, R. F., Stewart, C. E., Pruessner, E. G., & Kimble, J. M (2012) Effects of climate change
900 on soil carbon and nitrogen storage in the US Great Plains. *Journal of Soil and Water
901 Conservation*, 67(5), 331–342. <https://doi.org/10.2489/jswc.67.5.331>

902 Franzluebbers, A. J (2021) Root-zone enrichment of carbon, nitrogen, and soil-test biological
903 activity under cotton systems in North Carolina. *Soil Science Society of America Journal*,
904 85(5), 1785–1798. <https://doi.org/10.1002/saj2.20290>

905 Gee, G.W. and D. Or (2002) Particle-size analysis: In Dane, J.H. and G.C. Topp (eds.), Methods
906 of Soil Analysis, Part 4. Physical Methods, Soil Science Society of America Book Series
907 no. 5. p. 255-293

908 Gong, H., Du, Q., Xie, S., Hu, W., Akram, M. A., Hou, Q., Dong, L., Sun, Y., Manan, A., Deng,
909 Y., Ran, J., & Deng, J (2021) Soil microbial DNA concentration is a powerful indicator for
910 estimating soil microbial biomass C and N across arid and semi-arid regions in northern
911 China. *Applied Soil Ecology*, 160(December 2020).
912 <https://doi.org/10.1016/j.apsoil.2020.103869>

913 Grossman, R.B., and T.G. Reinsch (2002) Bulk density and linear extensibility. In: Dane, J.H.,
914 Topp, G.C. (Eds.), Methods of Soil Analysis: Part 4. Physical Methods. Book Series No. 5,
915 SSSA and ASA. Madison, WI, pp. 201–225.

916 Gross, C. D., & Harrison, R. B (2019) The case for digging deeper: Soil organic carbon storage,
917 dynamics, and controls in our changing world. *Soil Systems*, 3(2), 1–24.
918 <https://doi.org/10.3390/soilsystems3020028>

919 Guillaume, T., Makowski, D., Libohova, Z., Elfouki, S., Fontana, M., Leifeld, J., Bragazza, L.,
920 & Sinaj, S (2022) Carbon storage in agricultural topsoils and subsoils is promoted by
921 including temporary grasslands into the crop rotation. *Geoderma*, 422(May), 115937.
922 <https://doi.org/10.1016/j.geoderma.2022.115937>

923 Hall, S. J., Berhe, A. A., & Thompson, A (2018) Order from disorder: Do soil organic matter
924 composition and turnover co-vary with iron phase crystallinity? *Biogeochemistry*, 140, 93–
925 110. <https://doi.org/10.1007/s10533-018-0476-4>

926 Hall, S. J., & Thompson, A (2021) What do relationships between extractable metals and soil
927 organic carbon concentrations mean? *Soil Science Society of America Journal*, June 2021,
928 1–14. <https://doi.org/10.1002/saj2.20343>

929 Hall, S. J., Ye, C., Weintraub, S. R., & Hockaday, W. C (2020) Molecular trade-offs in soil
930 organic carbon composition at continental scale. *Nature Geoscience*, 13(10), 687–692.
931 <https://doi.org/10.1038/s41561-020-0634-x>

932 Han, W., Wang, F., Zhang, L., Zhao, H., Zheng, Y., Sun, R., & Meng, L (2023) Variations of
933 soil bacterial community and denitrifier abundance with depth under different land-use
934 types. *Journal of Soils and Sediments*, 23(4), 1889–1900. <https://doi.org/10.1007/s11368-023-03428-8>

935 Harris, D., Horwáth, W. R., & van Kessel, C (2001) Acid fumigation of soils to remove
936 carbonates prior to total organic carbon or CARBON-13 isotopic analysis. *Soil Science
937 Society of America Journal*, 65(6), 1853–1856. <https://doi.org/10.2136/sssaj2001.1853>

938 Harrison, R.B., Footen, P.W., Strahm, B.D (2011) Deep soil horizons: Contribution and
939 importance to soil carbon pools and in assessing whole-ecosystem response to management
940 and global change. *Forest Science* 57, 67–76.

941 Havrilla, C. A., Bradford, J. B., Yackulic, C. B., & Munson, S. M (2022) Divergent climate
942 impacts on C₃ versus C₄ grasses imply widespread 21st century shifts in grassland
943 functional composition. *Diversity and Distributions*, 29(3), 379–394.
944 <https://doi.org/10.1111/ddi.13669>

945 Hauser E, Sullivan P. L, Flores A. N, Hirmas D, Billings S. A (2022). Global-scale shifts in
946 rooting depths due to Anthropocene land cover changes pose unexamined consequences for
947 critical zone functioning. *Earth's Future*. 10: e2022EF002897

949 Heckman, K. A., Nave, L. E., Bowman, M., Gallo, A., Hatten, J. A., Matosziuk, L. M.,
950 Possinger, A. R., SanClements, M., Strahm, B. D., Weiglein, T. L., Rasmussen, C., &
951 Swanston, C. W (2021) Divergent controls on carbon concentration and persistence
952 between forests and grasslands of the conterminous US. *Biogeochemistry*, 156(1), 41–56.
953 <https://doi.org/10.1007/s10533-020-00725-z>

954 Hicks Pries, C. E., Sulman, B. N., West, C., O'Neill, C., Poppleton, E., Porras, R. C., Castanha,
955 C., Zhu, B., Wiedemeier, D. B., & Torn, M. S (2018) Root litter decomposition slows with
956 soil depth. *Soil Biology and Biochemistry*, 125(March), 103–114.
957 <https://doi.org/10.1016/j.soilbio.2018.07.002>

958 Hijbeek, R., van Loon, M., & van Ittersum, M (2019) Fertiliser use and soil carbon sequestration:
959 trade-offs and opportunities. CGIAR Research Program on Climate Change, Agriculture
960 and Food Security (CCAFS), 264, 12. www.ccafs.cgiar.org

961 Jelinski, N. A., & Kucharik, C. J (2009) Land-use Effects on Soil Carbon and Nitrogen on a U.S.
962 Midwestern Floodplain. *Soil Science Society of America Journal*, 73(1), 217–225.
963 <https://doi.org/10.2136/sssaj2007.0424>

964 Jobbágy, E. G., & Jackson, R. B (2000) The vertical distribution of soil organic carbon and its
965 relation to climate and vegetation. *Ecological Applications*, 10(2), 423–436.
966 [https://doi.org/10.1890/1051-0761\(2000\)010\[0423: TVDOSO\]2.0.CO;2](https://doi.org/10.1890/1051-0761(2000)010[0423: TVDOSO]2.0.CO;2)

967 Kästner, M., & Miltner, A (2018) SOM and microbes—What is left from microbial life. In C.
968 Garcia, P. Nannipieri & T. Hernandez (Eds.), *The future of soil carbon* (pp. 125–163). San
969 Diego, CA: Academic Press. <https://doi.org/10.1016/B978-0-12-811687-6.00005-5>

970 Kaiser, K., and Kalbitz, K (2012) Cycling downwards–dissolved organic matter in soils, *Soil
971 Biology & Biochemistry*, 52, 29–32, <https://doi.org/10.1016/j.soilbio.2012.04.002>

972 Kallenbach, C.M., Frey, S.D., Grandy, A.S (2016) Direct evidence for microbial-derived soil
973 organic matter formation and its ecophysiological controls. *Nat. Commun.* 7 (1)
974 <https://doi.org/10.1038/ncomms13630>.

975 Katoh, K., Misawa, K., Kuma, K. I., & Miyata, T (2002) MAFFT: A novel method for rapid
976 multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Research*,
977 30(14), 3059–3066. <https://doi.org/10.1093/nar/gkf436>

978 Keiluweit, M., Bougoure, J. J., Nico, P. S., Pett-Ridge, J., Weber, P. K., & Kleber, M (2015).
979 Mineral protection of soil carbon counteracted by root exudates. *Nature Climate Change*,
980 5(6), 588–595. <https://doi.org/10.1038/nclimate2580>

981 Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., & Nico, P. S (2015)
982 Mineral-Organic Associations: Formation, Properties, and Relevance in Soil Environments.
983 In *Advances in Agronomy* (Vol. 130). Elsevier Ltd.
984 <https://doi.org/10.1016/bs.agron.2014.10.005>

985 Labouyrie, M., Ballabio, C., Romero, F., Panagos, P., Jones, A., Schmid, M. W., Mikryukov, V.,
986 Dulya, O., Tedersoo, L., & Bahram, M (2023) Patterns in soil microbial diversity across
987 Europe. *Nature Communications* 14:3311. <https://doi.org/10.1038/s41467-023-37937-4>

988 Lal, R., 2019. Eco-intensification through soil carbon sequestration: Harnessing ecosystem
989 services and advancing sustainable development goals. *Journal of Soil and Water
990 Conservation*, 74(3), 55A-61A. <https://doi.org/10.2489/jswc.74.3.55A>

991 Li, Q., Hu, W., Li, L., & Li, Y (2023) Interactions between organic matter and Fe oxides at soil
992 micro-interfaces: Quantification, associations, and influencing factors. *Science of the Total
993 Environment*, 855(July 2022). <https://doi.org/10.1016/j.scitotenv.2022.158710>

994 Li, L., Wilson, C. B., He, H., Zhang, X., Zhou, F., & Schaeffer, S. M (2019). Physical,
995 biochemical, and microbial controls on amino sugar accumulation in soils under long-term
996 cover cropping and no-tillage farming. *Soil Biology and Biochemistry*, 135, 369–378.
997 <https://doi.org/10.1016/j.soilbio.2019.05.017>

998 Li, N., Zhou, S., & Margenot, A. J (2023) From prairie to crop: Spatiotemporal dynamics of
999 surface soil organic carbon stocks over 167 years in Illinois, U.S.A. *Science of the Total
1000 Environment*, 857. <https://doi.org/10.1016/j.scitotenv.2022.159038>

1001 Liang, C., Amelung, W., Lehmann, J., & Kästner, M (2019) Quantitative assessment of
1002 microbial necromass contribution to soil organic matter. *Global Change Biology*, 25(11),
1003 3578–3590. <https://doi.org/10.1111/gcb.14781>

1004 Liebig, M. A., Mikha, M. M., & Potter, K. N (2009) Management of dryland cropping systems in
1005 the U.S. great plains: Effects on soil organic carbon. *Soil Carbon Sequestration and the
1006 Greenhouse Effect*, 97–113. <https://doi.org/10.2136/sssaspecpub57.2ed.c6>

1007 Maharjan, B., Das, S., & Acharya, B. S (2020) Soil Health Gap: A concept to establish a
1008 benchmark for soil health management. *Global Ecology and Conservation*, 23, e01116.
1009 <https://doi.org/10.1016/j.gecco.2020.e01116>

1010 Mackelprang, R., Grube, A. M., Lamendella, R., Jesus, E. da C., Copeland, A., Liang, C.,
1011 Jackson, R. D., Rice, C. W., Kapucija, S., Parsa, B., Tringe, S. G., Tiedje, J. M., & Jansson,
1012 J. K (2018). Microbial community structure and functional potential in cultivated and native
1013 tallgrass prairie soils of the midwestern United States. *Frontiers in Microbiology*, 9(AUG),
1014 1–15. <https://doi.org/10.3389/fmicb.2018.01775>

1015 Malakar, A., Snow, D. D., Kaiser, M., Shields, J., Maharjan, B., Walia, H., Rudnick, D., & Ray, C (2022) Ferrihydrite enrichment in the rhizosphere of unsaturated soil improves nutrient retention while limiting arsenic and uranium plant uptake. *Science of the Total Environment*, 806, 150967. <https://doi.org/10.1016/j.scitotenv.2021.150967>

1019 Mallarino, A. P (2003) Field Calibration for Corn of the Mehlich-3 Soil Phosphorus Test with Colorimetric and Inductively Coupled Plasma Emission Spectroscopy Determination Methods. *Soil Science Society of America Journal*, 67(6), 1928–1934. <https://doi.org/10.2136/sssaj2003.1928>

1023 Malo, D. D., Schumacher, T. E., & Doolittle, J. J (2005) Long-term cultivation impacts on selected soil properties in the northern Great Plains. *Soil and Tillage Research*, 81(2), 277–291. <https://doi.org/10.1016/j.still.2004.09.015>

1026 Mikhailova, E. A., Bryant, R. B., Galbraith, J. M., Wang, Y., Post, C. J., Khokhlova, O. S., Schlautman, M. A., Cope, M. P., & Shen, Z (2018) Pedogenic carbonates and radiocarbon isotopes of organic carbon at depth in the Russian chernozem. *Geosciences (Switzerland)*, 8(12), 1–16. <https://doi.org/10.3390/geosciences8120458>

1030 Miller, R. O., & Kissel, D. E (2010) Comparison of Soil pH Methods on Soils of North America. *Soil Science Society of America Journal*, 74(1), 310–316. <https://doi.org/10.2136/sssaj2008.0047>

1033 Moreland, K., Tian, Z., Berhe, A. A., McFarlane, K. J., Hartsough, P., Hart, S. C., Bales, R., & O'Geen, A. T (2021) Deep in the Sierra Nevada critical zone: saprock represents a large terrestrial organic carbon stock. *Environmental Research Letters*, 16(12). <https://doi.org/10.1088/1748-9326/ac3bfe>

1037 Nave, L. E., Bowman, M., Gallo, A., Hatten, J. A., Heckman, K. A., Matosziuk, L., Possinger,
1038 A. R., SanClements, M., Sanderman, J., Strahm, B. D., Weiglein, T. L., & Swanston, C. W
1039 (2021) Patterns and predictors of soil organic carbon storage across a continental-scale
1040 network. *Biogeochemistry*, 156(1), 75–96. <https://doi.org/10.1007/s10533-020-00745-9>

1041 Nitzsche, K. N., Kalettka, T., Premke, K., Lischeid, G., Gessler, A., & Kayler, Z. E., 2017. Land-
1042 use and hydroperiod affect kettle hole sediment carbon and nitrogen biogeochemistry.
1043 *Science of the Total Environment*, 574, 46–56.
1044 <https://doi.org/10.1016/j.scitotenv.2016.09.003>

1045 Ogle, S. M., Breidt, F. J., Paustian, K., *Biogeochemistry*, S., Jan, N., Ogle, S. M., Breidt, F. J. A.
1046 Y., & Paustian, K (2005) Agricultural Management Impacts on Soil Organic Carbon
1047 Storage under Moist and Dry Climatic Conditions of Temperate and Tropical Regions
1048 Published by: Springer Stable URL: <https://www.jstor.org/stable/20055160> REFERENCES
1049 Linked references are available. 72(1), 87–121. <https://doi.org/10.1007/s10533-004-0360-2>

1050 Olson, K. R., & Gennadiev, A. N (2020) Dynamics of Soil Organic Carbon Storage and Erosion
1051 due to Land Use Change (Illinois, USA). *Eurasian Soil Science*, 53(4), 436–445.
1052 <https://doi.org/10.1134/S1064229320040122>

1053 Paul, E. A., Collins, H. P., & Leavitt, S. W (2001) Dynamics of resistant soil carbon of
1054 midwestern agricultural soils measured by naturally occurring ¹⁴C abundance. *Geoderma*,
1055 104(3–4), 239–256. [https://doi.org/10.1016/S0016-7061\(01\)00083-0](https://doi.org/10.1016/S0016-7061(01)00083-0)

1056 Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G.P., Smith, P (2016) Climate- smart
1057 soils. *Nature* 532, 49–57. <http://dx.doi.org/10.1038/nature17174>.

1058 Paustian, K., Larson, E., Kent, J., Marx, E., & Swan, A (2019) Soil C Sequestration as a
1059 Biological Negative Emission Strategy. *Frontiers in Climate*, 1(October), 1–11.
1060 <https://doi.org/10.3389/fclim.2019.00008>

1061 Polain, K., Knox, O., Wilson, B., & Pereg, L (2020) Subsoil microbial diversity and stability in
1062 rotational cotton systems. *Soil Systems*, 4(3), 1–18.
1063 <https://doi.org/10.3390/soilsystems4030044>

1064 Pittman, J. J., Zhang, H., Schroder, J. L., & Payton, M. E (2005) Differences of phosphorus in
1065 Mehlich 3 extracts determined by colorimetric and spectroscopic methods. *Communications
1066 in Soil Science and Plant Analysis*, 36(11–12), 1641–1659. <https://doi.org/10.1081/CSS-200059112>

1068 Possinger, A. R., Weiglein, T. L., Bowman, M. M., Gallo, A. C., Hatten, J. A., Heckman, K. A.,
1069 Matosziuk, L. M., Nave, L. E., SanClements, M. D., Swanston, C. W., & Strahm, B. D
1070 (2021) Climate Effects on Subsoil Carbon Loss Mediated by Soil Chemistry. *Environmental
1071 Science and Technology*, 55(23), 16224–16235. <https://doi.org/10.1021/acs.est.1c04909>

1072 Rasmussen, C., Heckman, K., Wieder, W. R., Keiluweit, M., Lawrence, C. R., Berhe, A. A.,
1073 Blankinship, J. C., Crow, S. E., Druhan, J. L., Hicks Pries, C. E., Marin-Spiotta, E., Plante,
1074 A. F., Schädel, C., Schimel, J. P., Sierra, C. A., Thompson, A., & Wagai, R (2018) Beyond
1075 clay: towards an improved set of variables for predicting soil organic matter content.
1076 *Biogeochemistry*, 137(3), 297–306. <https://doi.org/10.1007/s10533-018-0424-3>

1077 Rasse, D. P., Mulder, J., Moni, C., & Chenu, C (2006) Carbon Turnover Kinetics with Depth in a
1078 French Loamy Soil. *Soil Science Society of America Journal*, 70(6), 2097–2105.
1079 <https://doi.org/10.2136/sssaj2006.0056>

1080 Rasse, D. P., Rumpel, C., & Dignac, M. F (2005) Is soil carbon mostly root carbon? Mechanisms
1081 for specific stabilisation. *Plant and Soil*, 269(1–2), 341–356.

1082 <https://doi.org/10.1007/s11104-004-0907-y>

1083 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Zscheischler,
1084 J., Beer, C., Buchmann, N., Frank, D. C., Papale, D., Rammig, A., Smith, P., Thonicke, K.,
1085 Van Der Velde, M., Vicca, S., Walz, A., & Wattenbach, M (2013) Climate extremes and the
1086 carbon cycle. *Nature*, 500(7462), 287–295. <https://doi.org/10.1038/nature12350>

1087 Romdhane, S., Spor, A., Banerjee, S., Breuil, M. C., Bru, D., Chabbi, A., Hallin, S., van der
1088 Heijden, M. G. A., Saghai, A., & Philippot, L (2022) Land-use intensification differentially
1089 affects bacterial, fungal and protist communities and decreases microbiome network
1090 complexity. *Environmental Microbiomes*, 17(1), 1–15. <https://doi.org/10.1186/s40793-021-00396-9>

1091

1092 Rowley, M. C., Grand, S., & Verrecchia, É. P (2018) Calcium-mediated stabilisation of soil
1093 organic carbon. *Biogeochemistry*, 137(1–2), 27–49. <https://doi.org/10.1007/s10533-017-0410-1>

1094

1095 Rumpel, C., & Kögel-Knabner, I (2011) Deep soil organic matter-a key but poorly understood
1096 component of terrestrial C cycle. *Plant and Soil*, 338(1), 143–158.

1097 <https://doi.org/10.1007/s11104-010-0391-5>

1098 Sanderman, J., Hengl, T., & Fiske, G. J (2017) Soil carbon debt of 12,000 years of human land
1099 use. *Proceedings of the National Academy of Sciences of the United States of America*,
1100 114(36), 9575–9580. <https://doi.org/10.1073/pnas.1706103114>

1101 Sanderman, J., Baldock, J. A., and Amundson, R (2008) Dissolved organic carbon chemistry and
1102 dynamics in contrasting forest and grassland soils, *Biogeochemistry*, 89, 181–198,
1103 <https://doi.org/10.1007/s10533-008-9211-x>

1104 Sanford, G. R., Jackson, R. D., Rui, Y., & Kucharik, C. J (2022) Land use-land cover gradient
1105 demonstrates the importance of perennial grasslands with intact soils for building soil carbon
1106 in the fertile Mollisols of the North Central US. *Geoderma* 418, 1-11.

1107 Salonen, A.-R., Soinne, H., Creamer, R., Lemola, R., Ruoho, N., Uhlgren, O., de Goede, R., &
1108 Heinonsalo, J (2023) Assessing the effect of arable management practices on carbon storage
1109 and fractions after 24 years in boreal conditions of Finland. *Geoderma Regional*, e00678.
1110 <https://doi.org/10.1016/j.geodrs.2023.e00678>

1111 Scheibe, A., Sierra, C. A., & Spohn, M (2023) Recently fixed carbon fuels microbial activity
1112 several meters below the soil surface. *Biogeosciences* 20, 827–838.
1113 <https://doi.org/10.5194/bg-2022-199>

1114 Schulte, E. E., & Eik, K (1988) Recommended sulfate-sulfur test. In recommended chemical soil
1115 test procedures for north central region. In W. C. Dahnke, (Ed.) *Bulletin no. 499 (revised)*.
1116 (pp. 17–19). North Dakota Agriculture Experiment Station.

1117 Sherrod, L. A., Dunn, G., Peterson, G. A., & Kolberg, R. L (2002) Inorganic Carbon Analysis by
1118 Modified Pressure-Calcimeter Method. *Soil Science Society of America Journal*, 66(1),
1119 299–305. <https://doi.org/10.2136/sssaj2002.2990>

1120 Shimada, H., Wagai, R., Inoue, Y., Tamura, K., & Asano, M (2022) Millennium timescale
1121 carbon stability in an Andisol: How persistent are organo-metal complexes? *Geoderma*,
1122 417, 115820. <https://doi.org/10.1016/j.geoderma.2022.115820>

1123 Sierra, C. A., Ahrens, B., Bolinder, M. A., Braakhekke, M. C., von Fromm, S., Kätterer, T., Luo,
1124 Z., Parvin, N., & Wang, G (2024). Carbon sequestration in the subsoil and the time required
1125 to stabilize carbon for climate change mitigation. *Global Change Biology*, 30(1), 1–26.
1126 <https://doi.org/10.1111/gcb.17153>

1127 Skadell, L. E., Schneider, F., Gocke, M. I., Guigue, J., Amelung, W., Bauke, S. L., Hobley, E.
1128 U., Barkusky, D., Honermeier, B., Siebert, S., Sommer, M., Vazirabar, Y., & Don, A
1129 (2023) *Agriculture, Ecosystems and Environment* Twenty percent of agricultural
1130 management effects on organic carbon stocks occur in subsoils – Results of ten long-term
1131 experiments. 356.

1132 Slessarev, E. W., Nuccio, E. E., McFarlane, K. J., Ramon, C. E., Saha, M., Firestone, M. K., &
1133 Pett-Ridge, J (2020) Quantifying the effects of switchgrass (*Panicum virgatum*) on deep
1134 organic C stocks using natural abundance ^{14}C in three marginal soils. *GCB Bioenergy*,
1135 12(10), 834–847. <https://doi.org/10.1111/gcbb.12729>

1136 Soil Survey Staff (2014) *Soil Survey Field and Laboratory Methods Manual*. In *Soil Survey*
1137 *Investigations Report No. 51, Version 2.0*; Burt, R., Ed.; U.S. Department of Agriculture,
1138 Natural Resources Conservation Service.

1139 Soil Survey Staff (2022) *Keys to Soil Taxonomy*, Thirteenth Edition. United States Department
1140 of Agriculture Natural Resources Conservation Service, 1–410.
1141 http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051546.pdf

1142 Sokol, N. W., Slessarev, E., Marschmann, G. L., Nicolas, A., Blazewicz, S. J., Brodie, E. L.,
1143 Firestone, M. K., Foley, M. M., Hestrin, R., Hungate, B. A., Koch, B. J., Stone, B. W.,
1144 Sullivan, M. B., Zablocki, O., Trubl, G., McFarlane, K., Stuart, R., Nuccio, E., Weber, P.,

1145 Pett-Ridge, J (2022) Life and death in the soil microbiome: how ecological processes
1146 influence biogeochemistry. *Nature Reviews Microbiology*, 20(7), 415–430.

1147 <https://doi.org/10.1038/s41579-022-00695-z>

1148 Stuiver M, & Polach, H.A (1977). Discussion: reporting of ¹⁴C data. *Radiocarbon* 19:355–363.

1149 <https://doi.org/10.1017/S0033822200003672>

1150 Tautges, N. E., Chiartas, J. L., Gaudin, A. C. M., O'Geen, A. T., Herrera, I., & Scow, K. M
1151 (2019) Deep soil inventories reveal that impacts of cover crops and compost on soil carbon
1152 sequestration differ in surface and subsurface soils. *Global Change Biology*, 25(11), 3753–
1153 3766. <https://doi.org/10.1111/gcb.14762>

1154 United States Department of Agriculture, Natural Resources Conservation Service (2022) Land
1155 resource regions and major land resource areas of the United States, the Caribbean, and the
1156 Pacific Basin. U.S. Department of Agriculture, Agriculture Handbook 296.

1157 Upton, R. N., Checinska Sielaff, A., Hofmockel, K. S., Xu, X., Polley, H. W., & Wilsey, B. J
1158 (2020) Soil depth and grassland origin cooperatively shape microbial community co-
1159 occurrence and function. *Ecosphere*, 11(1). <https://doi.org/10.1002/ecs2.2973>

1160 Van Der Voort, T. S., Mannu, U., Hagedorn, F., McIntyre, C., Walthert, L., Schleppi, P.,
1161 Haghipour, N., & Eglinton, T. I (2019) Dynamics of deep soil carbon - Insights from ¹⁴C
1162 time series across a climatic gradient. *Biogeosciences*, 16(16), 3233–3246.
1163 <https://doi.org/10.5194/bg-16-3233-2019>

1164 Viscarra Rossel, R. A., Lee, J., Behrens, T., Luo, Z., Baldock, J., & Richards, A (2019)
1165 Continental-scale soil carbon composition and vulnerability modulated by regional

1166 environmental controls. *Nature Geoscience*, 12(7), 547–552.

1167 <https://doi.org/10.1038/s41561-019-0373-z>

1168 Vogel J.S., Southon J.R., Nelson D.E (1987) Catalyst and binder effects in the use of filamentous

1169 graphite for AMS. *Nuclear Instruments & Methods in Physics Research, Sect B* 29:50–56.

1170 [https://doi.org/10.1016/0168-583X\(87\)90202-3](https://doi.org/10.1016/0168-583X(87)90202-3)

1171 Vormstein, S., Kaiser, M., Piepho, H. P., & Ludwig, B (2020) Aggregate formation and organo-

1172 mineral association affect characteristics of soil organic matter across soil horizons and

1173 parent materials in temperate broadleaf forest. *Biogeochemistry*, 148(2), 169–189.

1174 <https://doi.org/10.1007/s10533-020-00652-z>

1175 Wang, B., An, S., Liang, C., Liu, Y., & Kuzyakov, Y (2021) Microbial necromass as the source

1176 of soil organic carbon in global ecosystems. *Soil Biology and Biochemistry*, 162, 108422.

1177 <https://doi.org/10.1016/j.soilbio.2021.108422>

1178 Wang, S., Gao, X., Yang, M., Zhang, L., Wang, X., Wu, P., & Zhao, X (2022) The efficiency of

1179 organic C sequestration in deep soils is enhanced by drier climates. *Geoderma*, 415(26),

1180 115774. <https://doi.org/10.1016/j.geoderma.2022.115774>

1181 Wendt, J. W., & Hauser, S (2013) An equivalent soil mass procedure for monitoring soil organic

1182 carbon in multiple soil layers. *European Journal of Soil Science*, 64(1), 58–65.

1183 <https://doi.org/10.1111/ejss.12002>

1184 Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van

1185 Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H. J., &

1186 Kögel-Knabner, I (2019) Soil organic carbon storage as a key function of soils - A review

1187 of drivers and indicators at various scales. *Geoderma*, 333, 149–162.

1188 <https://doi.org/10.1016/j.geoderma.2018.07.026>

1189 Wiesmeier, M., Hübner, R., Barthold, F., Spörlein, P., Geuß, U., Hangen, E., Reischl, A.,

1190 Schilling, B., von Lützow, M., & Kögel-Knabner, I (2013) Amount, distribution and driving

1191 factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast

1192 Germany (Bavaria). *Agriculture, Ecosystems and Environment*, 176, 39–52.

1193 <https://doi.org/10.1016/j.agee.2013.05.012>

1194 Wood, S. A., & Bowman, M (2021) Large-scale farmer-led experiment demonstrates positive

1195 impact of cover crops on multiple soil health indicators. *Nature Food*, 2(2), 97–103.

1196 <https://doi.org/10.1038/s43016-021-00222-y>

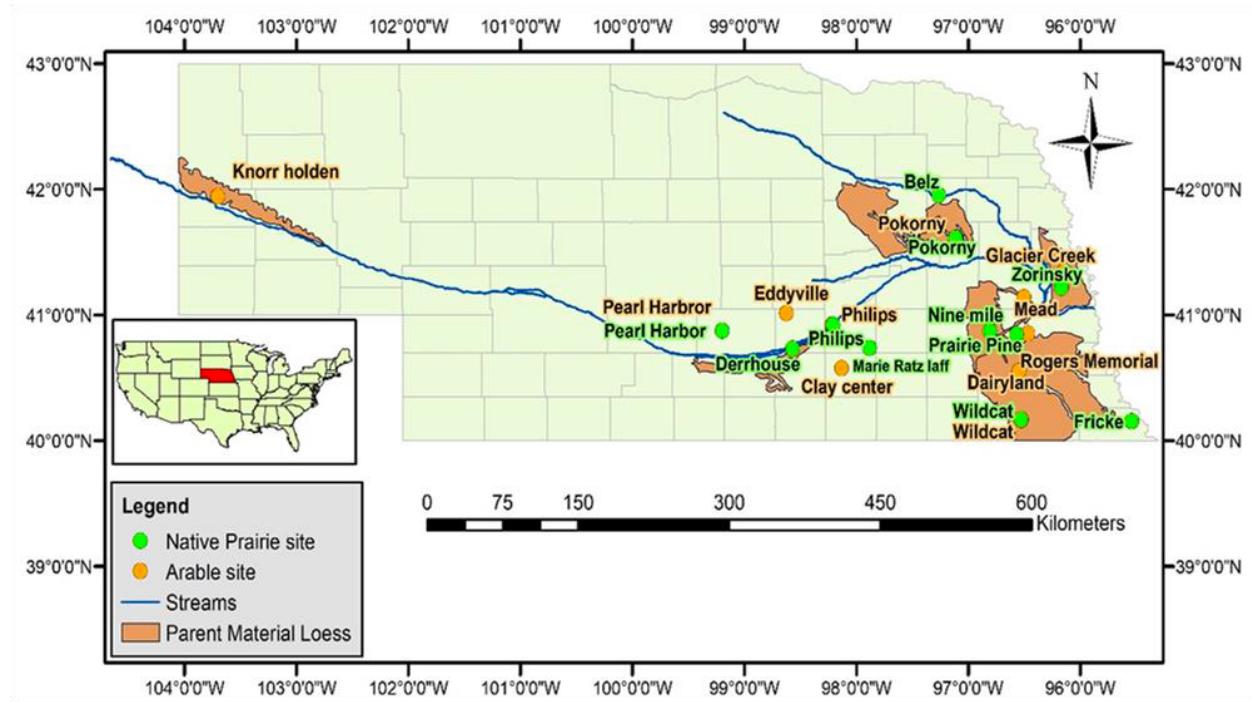
1197 Xiao, J., Wang, X., Zhao, Y., Li, J., Tang, J., Wang, K., & Hao, Z (2023) Soil organic carbon

1198 stability of vegetation restoration during 11 - year - old grassland succession. *Journal of*

1199 *Soils and Sediments*, 0123456789. <https://doi.org/10.1007/s11368-023-03497-9>

1200 Yost, J. L., & Hartemink, A. E (2020) How deep is the soil studied – an analysis of four soil

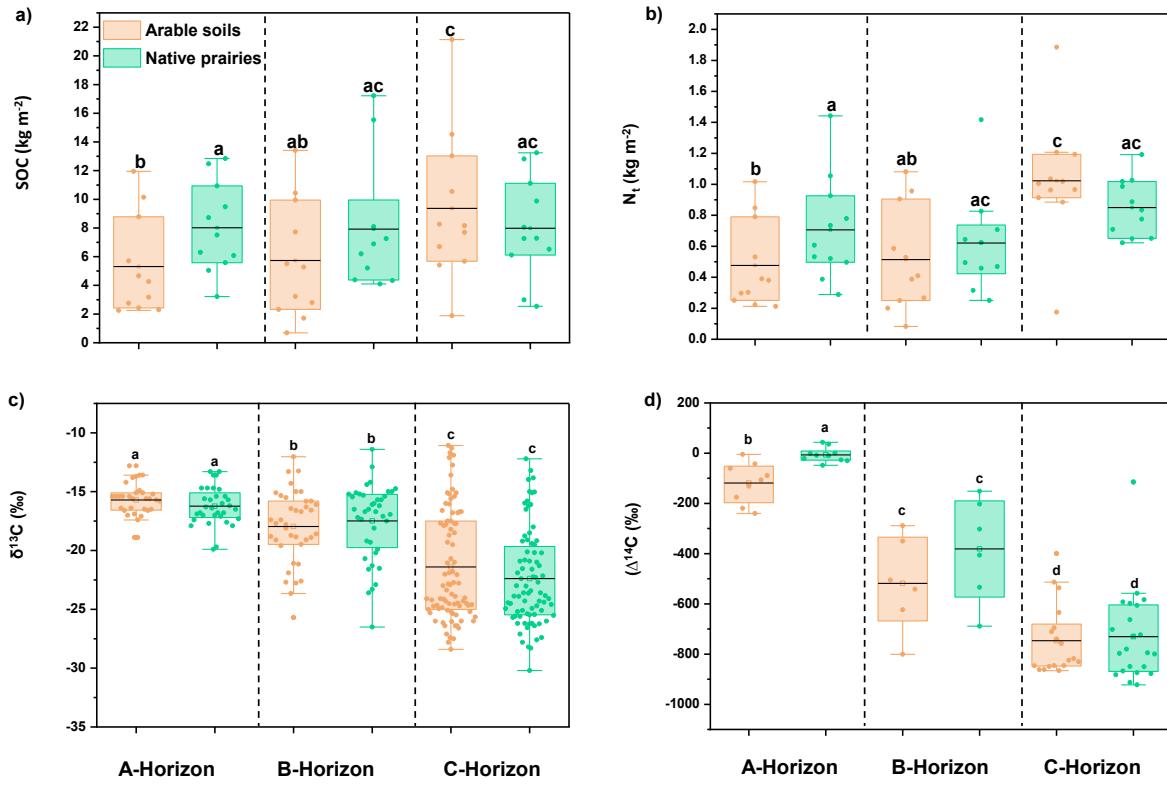
1201 science journals. *Plant and Soil*, 452(1–2), 5–18. <https://doi.org/10.1007/s11104-020-04550-z>

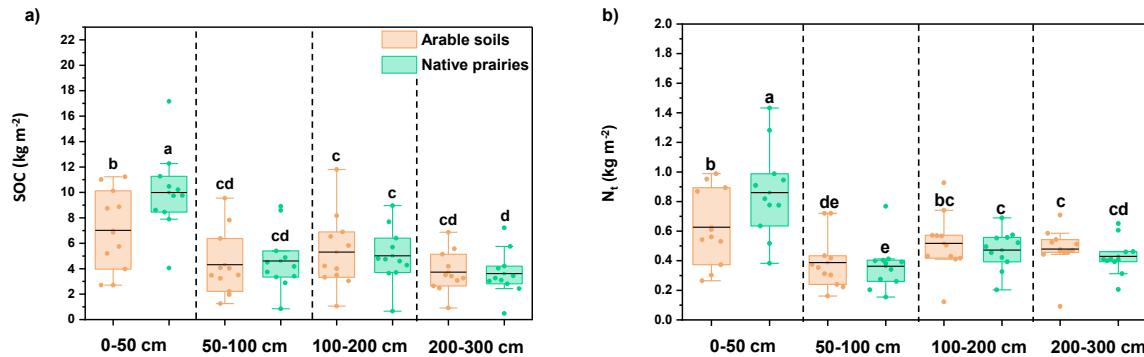

1203 Yu, W., Weintraub, S. R., & Hall, S. J (2021) Climatic and geochemical controls on soil carbon

1204 at the continental scale: Interactions and thresholds. *Global Biogeochemical Cycles*, 35(3),

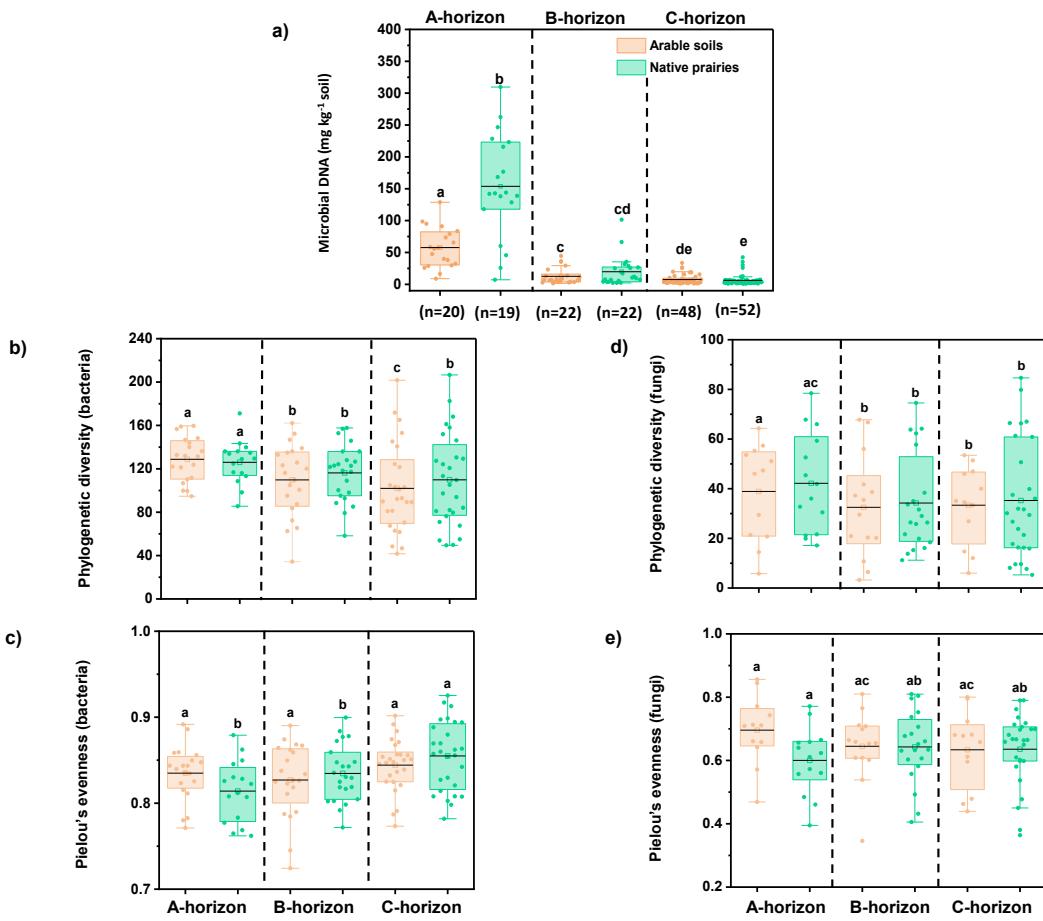
1205 e2020GB006781. <https://doi.org/10.1029/2020GB006781>

1206


1207 **Figures**


1208

1209 **Fig. 1** Map showing the long-term (> 40 years) arable (orange circle) and the native prairie (green
1210 circle) sites in Nebraska


1211

1214 **Fig. 2** Mean soil organic carbon (SOC) and total nitrogen (N) stocks (kg m^{-2}) (a-b) and $\delta^{13}\text{C}$ and
 1215 selected $\Delta^{14}\text{C}$ of SOC (c-d) compared between arable and native prairie sites across A, B, and C
 1216 horizons to a depth of 3 m (300 cm). For SOC and total N stocks, the box plots display site-specific
 1217 mean values (represented by the scattered orange and green dots) derived from three replicated
 1218 cores per site, with a total of 11 sites for each land use type. For the $\delta^{13}\text{C}$ and $\Delta^{14}\text{C}$ of SOC, the
 1219 orange and green dots represent the total number of samples utilized for analysis from all A, B,
 1220 and C horizons in each land use type. Different letters indicate significant differences ($p \leq 0.05$)
 1221 between land uses for each horizon.

1225 **Fig. 3** Mean soil organic carbon (SOC) and total nitrogen (N) stocks (kg m^{-2}) compared between
 1226 arable and native prairie sites across 0–50, 50–100, 100–200, and 200–300 cm depth increments.
 1227 The box plots display site-specific mean values (represented by the scattered orange and green
 1228 dots) derived from three replicated cores per site, with a total of 11 sites for each land use type.
 1229 Different letters denote significant differences ($p \leq 0.05$) between land uses for each depth
 1230 increment.

1234

1235 **Fig. 4** Comparison of mean soil microbial DNA concentrations (a) and Faith's phylogenetic
 1236 diversity and evenness (Pielou's evenness) of soil bacteria (b and c) and fungi (d and e)
 1237 communities across A, B, and C horizons in arable and native prairie sites. The box plots depict
 1238 the total number of samples (n) utilized for analysis from all horizons in both land use types
 1239 (represented by scattered orange and green dots). Significant differences between land uses at $p \leq$
 1240 0.05 for each horizon are indicated by different letters.

1241

1242 **Tables**

Table 1. Range, mean, and standard error of soil properties, including pH, bulk density (BD), percentage of sand, silt, and clay content, soil organic carbon (SOC), and total nitrogen (Nt) concentrations across arable and native prairie sites for A, B, and C horizons. Significant differences between land uses at $p \leq 0.05$ for each horizon are denoted by different letters. Given variations in horizon thickness across arable and native prairie sites, the upper (minimum) and lower (maximum) depth ranges for individual horizons are provided. For example, 0-12-38 cm indicates that the upper depth ranged from 0 to 12 cm, while the lower depth ranged from 0 to 38 cm.

Land use	Horizon	Depth ranges (cm) (upper and lower)	Soil pH	SOC (g kg ⁻¹)	Nt (g kg ⁻¹)	BD (g cm ⁻³)	Sand (%)	Silt (%)	Clay (%)
Arable	A	0-12-38	5.3-8.0 6.6 ± 0.1 a n=33	5.5-22 13 ± 0.8 a n=33	0.5-1.8 1.2 ± 0.1 a n=33	0.8-1.5 1.2 ± 0.03 a n=33	18-63 39 ± 2.3 a n=33	10-56 36 ± 2.0 a n=33	13-34 23 ± 0.9 a n=33
			5.6-7.3 6.3 ± 0.1 a n=33	7.0-36 22 ± 1.2 b n=33	0.6-3.4 1.9 ± 0.1 b n=33	0.9-1.4 1.1 ± 0.02 a n=33	18-92 44 ± 2.9 a n=33	0-60 36 ± 2.4 a n=33	2.0-34 19 ± 1.0 a n=33
Native prairie	A	0-17-38	6.0-8.7 7.5 ± 0.1 cd n=40	0.7-18 6.1 ± 0.6 c n=40	0.2-1.8 0.6 ± 0.1 c n=40	0.8-1.9 1.4 ± 0.04 c n=40	13-86 39 ± 2.1 ac n=40	8-60 37 ± 1.6 c n=40	5-33 21 ± 1.1 c n=40
			5.8-8.6 7.1 ± 0.1 cd n=41	1.2-18 6.5 ± 0.6 c n=41	0.1-1.5 0.5 ± 0.04 c n=41	1.1-1.9 1.5 ± 0.03 c n=41	18-62 34 ± 1.6 c n=41	14-66 43 ± 1.8 ac n=41	11-34 22 ± 0.9 c n=41
Arable	B	12-28-170	6.7-8.8 8.0 ± 0.1 d n=87	0.5-10 2.5 ± 0.2 d n=87	0.04-0.9 0.3 ± 0.01 d n=87	1.2-2.3 1.8 ± 0.03 d n=87	11-88 40 ± 1.8 ad n=87	8.0-74 42 ± 1.5 ac n=87	1.3-38 17 ± 0.9 d n=87
			6.1-8.6 7.8 ± 0.1d n=80	0.2-5.9 2.4 ± 0.2 d n=80	0.04-0.7 0.3 ± 0.01 d n=80	1.1-2.3 1.7 ± 0.03 d n=80	8.5-98 45 ± 2.4 ad n=80	0-72 38 ± 2 ac n=80	2-33 16 ± 0.9 d n=80
Native Prairie	C	28-176-300	6.7-8.8 8.0 ± 0.1 d n=87	0.5-10 2.5 ± 0.2 d n=87	0.04-0.9 0.3 ± 0.01 d n=87	1.2-2.3 1.8 ± 0.03 d n=87	11-88 40 ± 1.8 ad n=87	8.0-74 42 ± 1.5 ac n=87	1.3-38 17 ± 0.9 d n=87
			6.1-8.6 7.8 ± 0.1d n=80	0.2-5.9 2.4 ± 0.2 d n=80	0.04-0.7 0.3 ± 0.01 d n=80	1.1-2.3 1.7 ± 0.03 d n=80	8.5-98 45 ± 2.4 ad n=80	0-72 38 ± 2 ac n=80	2-33 16 ± 0.9 d n=80

n: total number of samples utilized for analysis from all A, B, and C horizons in arable and native prairie sites.

1243

1244

Table 2. Range, mean, and standard error of exchangeable calcium (Ca), magnesium (Mg), potassium (K), and cation exchange capacity (CEC) across arable and native prairie sites for A, B, and C horizons. Significant differences between land uses at $p \leq 0.05$ for each horizon are indicated by different letters.

Land use	Horizon	Depth ranges (cm) (upper and lower)	Ca (mg kg ⁻¹)	Mg (mg kg ⁻¹)	K (mg kg ⁻¹)	CEC (cmol kg ⁻¹)
Arable	A	0-12-38	1881-4548 3083 ± 106 a n=33	274-957 604 ± 29 a n=33	198-1093 427 ± 34 a n=33	13-31 22 ± 0.7 a n=33
			723-3286 2475 ± 103 a n=33	108-822 514 ± 28 a n=33	93-634 361 ± 28 a n=33	5.5-27 20 ± 0.8 a n=33
Native prairie	A	0-17-38	1999-6040 3901 ± 140 c n=40	291-1377 740 ± 38 b n=40	163-775 338 ± 29 c n=40	13-35 26 ± 0.7 b n=40
			2255-5529 3292 ± 118 c n=41	484-1030 789 ± 23 b n=41	91-679 292 ± 24 cd n=41	16-33 24 ± 0.6 b n=41
Arable	B	12-28-170	2061-5495 3612 ± 90 c n=87	222-1797 720 ± 30 c n=87	129-922 389 ± 24 ac n=87	13-35 25 ± 0.5 b n=87
			259-5446 3178 ± 148 c n=80	52-1133 639 ± 27 c n=80	42-812 281 ± 21 ac n=80	2.0-33 22 ± 0.8 b n=80
Native Prairie	C	17-28-176	259-5446 3178 ± 148 c n=80	52-1133 639 ± 27 c n=80	42-812 281 ± 21 ac n=80	2.0-33 22 ± 0.8 b n=80
			2061-5495 3612 ± 90 c n=87	222-1797 720 ± 30 c n=87	129-922 389 ± 24 ac n=87	13-35 25 ± 0.5 b n=87

n: total number of samples utilized for analysis from all A, B, and C horizons in arable and native prairie sites.

1245

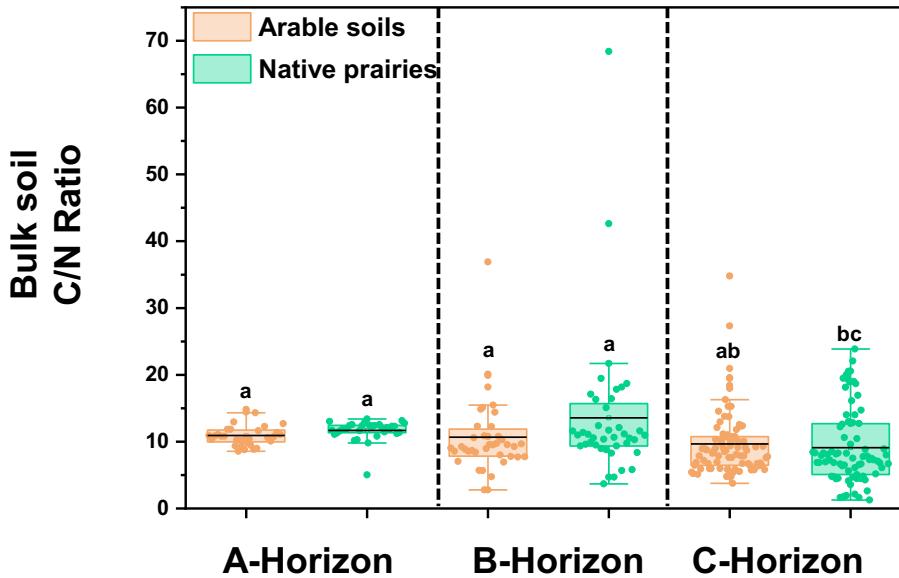
Table 3. Range, mean, and standard error of reactive Fe and Al oxides phases across arable and native prairie sites for A, B, and C horizons. Significant differences between land uses at $p \leq 0.05$ for each horizon are indicated by different letters.

Land use	Horizon	Depth ranges (cm) (upper and lower)	Al _{AO} (mg kg ⁻¹)	Fe _{AO} (mg kg ⁻¹)	Al _{DCB} (mg kg ⁻¹)	Fe _{DCB} (mg kg ⁻¹)
Arable	A	0-12-38	193-1093 694 \pm 36 a n=33	125-1962 859 \pm 79 a n=33	147-974 468 \pm 39 a n=33	706-15933 3802 \pm 572 a n=33
Native prairie	A	0-17-38	150-1296 689 \pm 57 a n=33	138-1534 833 \pm 69 a n=33	103-2196 506 \pm 69 a n=33	359-8066 2760 \pm 342 a n=33
Arable	B	12-28-170	279-954 631 \pm 25 a n=40	42-1643 739 \pm 72 a n=40	93-900 349 \pm 34 b n=40	572-7582 2496 \pm 307 a n=40
Native Prairie	B	17-28-176	320-1282 717 \pm 42 a n=41	253-1791 905 \pm 66 a n=41	48-2673 551 \pm 91 b n=41	274-10300 3071 \pm 366 a n=41
Arable	C	28-170-300	178-729 438 \pm 14 b n=87	56-2711 691 \pm 52 b n=87	58-615 216 \pm 14 c n=87	375-10678 3112 \pm 284 a n=87
Native Prairie	C	28-176-300	34-1005 402 \pm 19 b n=80	35-2996 676 \pm 67 b n=80	31-1826 242 \pm 26 c n=80	146-9683 3106 \pm 291 a n=80

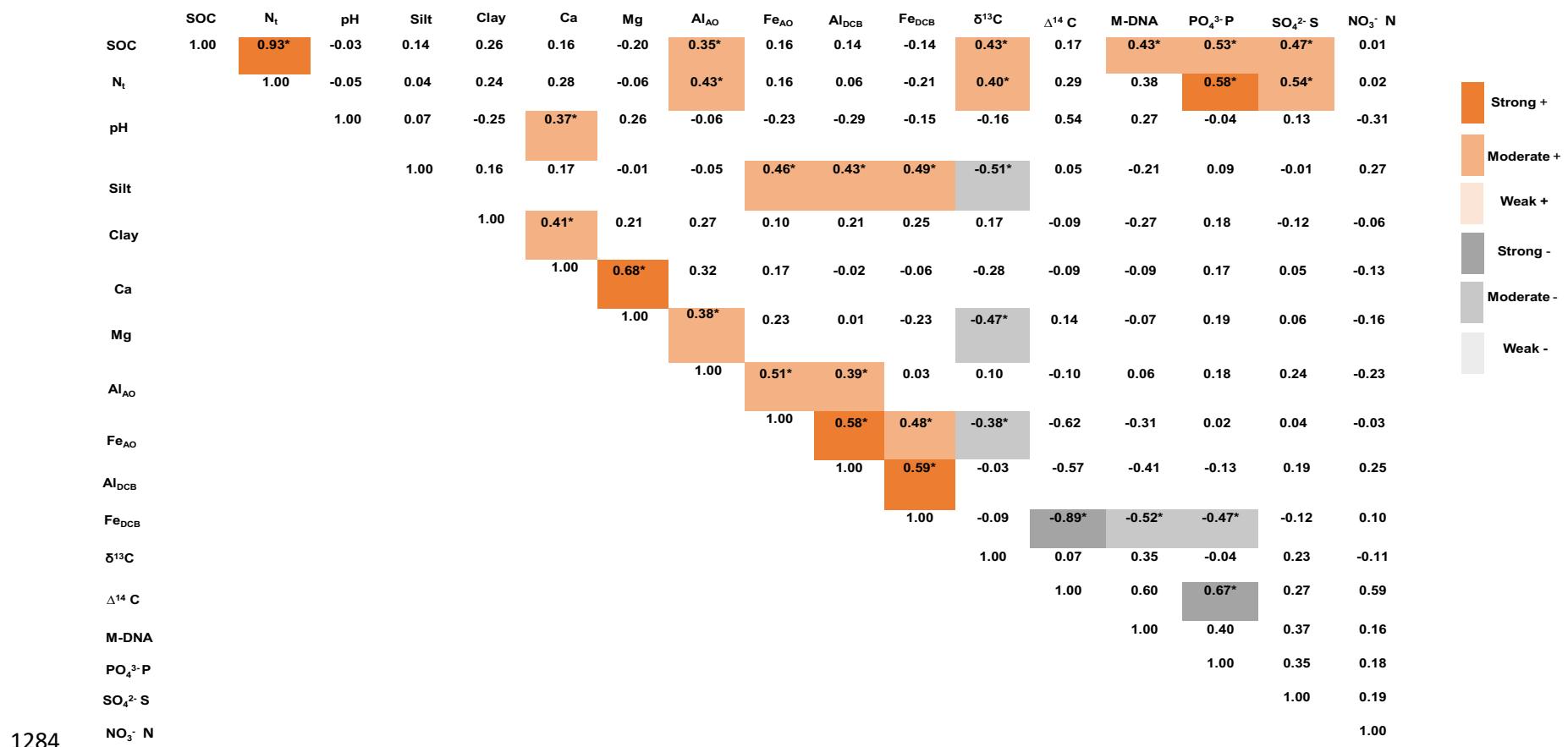
n: total number of samples utilized for analysis from all A, B, and C horizons in arable and native prairie sites.

Al_{AO}: ammonium oxalate extractable Aluminum, Fe_{AO}: ammonium oxalate extractable iron, Al_{DCB}: dithionite citrate bicarbonate extractable Aluminum; Fe_{DCB}: dithionite citrate bicarbonate extractable iron, n: total number of samples from all A, B, and C horizons in arable and native prairie sites.

1246


Table 4. Summary of range, mean, standard error, and sample size (n) (number of measurements per horizon and land use type) for $\delta^{13}\text{C}$ and $\Delta^{14}\text{C}$ data of bulk soil organic carbon across A, B, and C horizons in arable and native prairie soils, along with corresponding radiocarbon ages for reference. Different letters denote significant differences between land uses at $p \leq 0.05$ for each horizon. BP signifies "before present."

Land use	Horizons	$\delta^{13}\text{C}$ (‰)		
		A	B	C
Arable		-12.8 to -21.6 -15.8 \pm 0.3 a n=33	-12.0 to -25.7 -17.9 \pm 0.5 b n=39	-11.0 to -28.4 -21.4 \pm 0.4 c n=87
Native prairie		-13.3 to -19.9 -16.2 \pm 0.2 a n=33	-11.4 to -26.5 -17.3 \pm 0.5 b n=41	-12.2 to -30.2 -22.3 \pm 0.4 c n=80
$\Delta^{14}\text{C}$ (‰) (^{14}C age in years BP)				
Land use	Horizons	A	B	C
		-5 to -240 -118 \pm 26 b (285 - 2135 yrs.) n= 9	-288 to -800 -518 \pm 75 c (2665 - 12890 yrs.) n=6	-399 to -865 -746 \pm 33 d (4030 - 16060 yrs.) n=18
Arable		-48 to 43 -7 \pm 8 a (105 - 330 yrs.) n=10	-151 to -688 -380 \pm 83 c (1250 - 9310 yrs.) n=6	-114 to -922 -730 \pm 38 d (910 - 20460 yrs.) n=22
Native prairie				


1247

1248

1249 **Supplementary Material**

1279 Figure S1. Mean soil carbon to nitrogen ratio (C/N) of bulk soil for arable (n = 11) and native prairie (n = 11) soils across A, B, and C
1280 horizons. The orange and green dots on the box plot represent individual data points for each horizon. Means with different letters
1281 indicate a significant difference between land uses at $p \leq 0.05$.
1282
1283

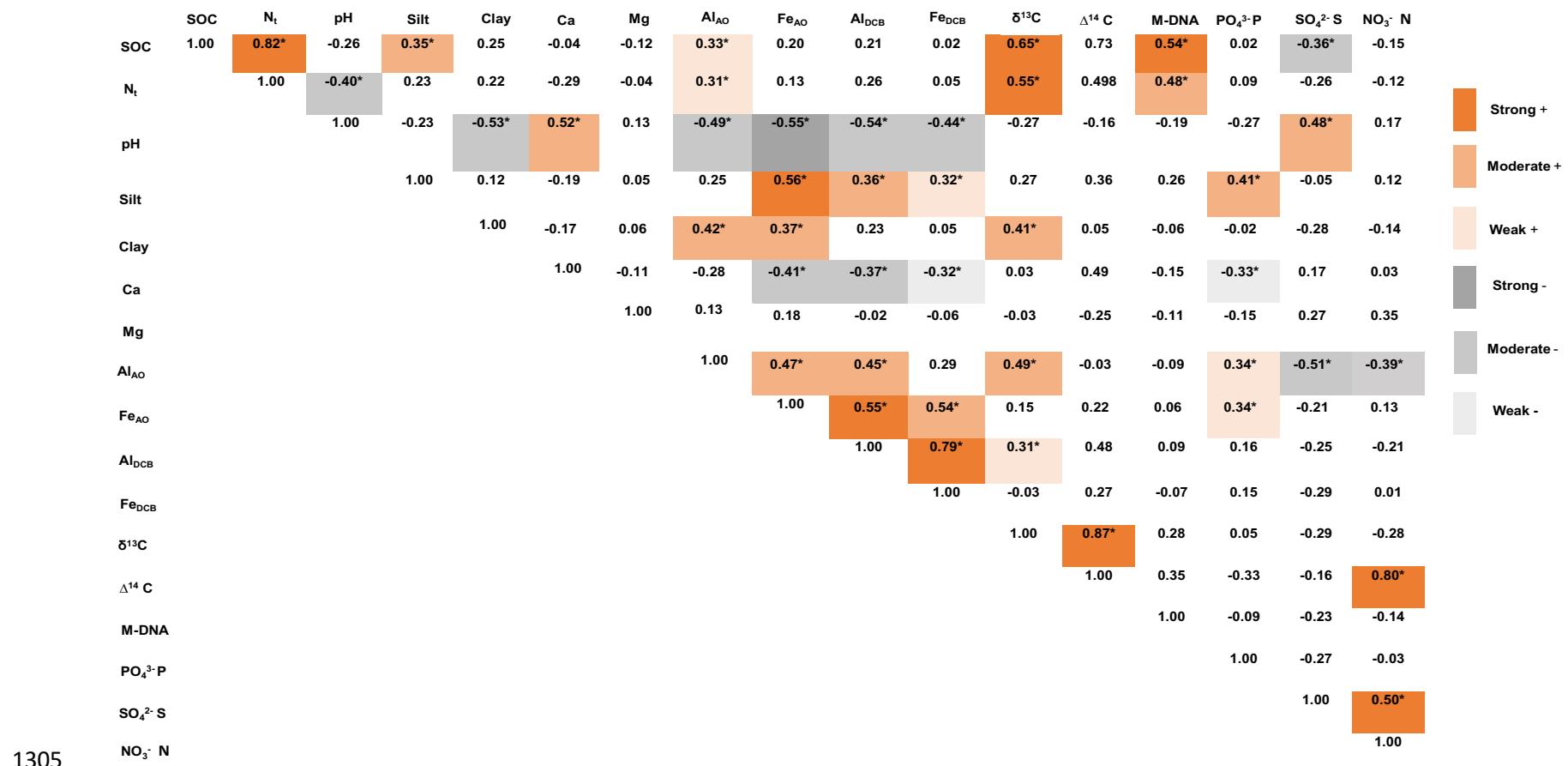
1284

1285

1286

1287

1288 Figure S2a. Correlations between soil organic carbon (SOC) characteristics and soil physical, chemical, and biological properties in
 1289 the A horizon of sites under arable land use. The symbol * indicates a significant correlation at $p \leq 0.05$. Abbreviations: SOC: soil
 1290 organic carbon content, N_t: soil total nitrogen content, M-DNA: microbial DNA concentration, Ca: exchangeable cation, Mg:
 1291 exchangeable magnesium, Al_{AO}: ammonium oxalate extractable Aluminum, Fe_{AO}: ammonium oxalate extractable iron, Al_{DCB}: dithionite
 1292 citrate bicarbonate extractable Aluminum; Fe_{DCB}: dithionite citrate bicarbonate extractable iron, NO₃⁻-N: nitrate-nitrogen, PO₄³⁻:
 1293 phosphate-phosphorous, SO₄²⁻: sulphate-Sulphur. Strong positive ($r > 0.5$), moderate positive ($0.3 \leq r \leq 0.5$), weak positive ($0 \leq r \leq$
 1294 0.3); strong negative ($r < -0.5$), moderate negative ($-0.3 \geq r \geq -0.5$), weak negative ($r \leq 0$ to -0.3).


	SOC	N _t	pH	Silt	Clay	Ca	Mg	Al _{AO}	Fe _{AO}	Al _{DCB}	Fe _{DCB}	δ ¹³ C	Δ ¹⁴ C	M-DNA	PO ₄ ³⁻ -P	SO ₄ ²⁻ -S	NO ₃ ⁻ -N
SOC	1.00	0.83*	-0.25	0.66*	0.27	0.41*	0.26	0.53*	0.56*	0.61*	0.52*	0.12	-0.77*	0.48*	-0.08	0.44*	-0.03
N _t		1.00	-0.09	0.58*	0.13	0.34*	0.18	0.45*	0.40*	0.41*	0.38*	-0.05	-0.79*	0.51*	0.02	0.41*	0.02
pH			1.00	-0.05	-0.24	0.16	-0.18	-0.19	-0.43*	-0.38*	-0.37*	-0.28	0.24	0.04	0.12	-0.40*	0.36*
Silt				1.00	0.35*	0.54*	0.50*	0.47*	0.29	0.50*	0.34*	0.01	-0.29	0.54*	0.04	0.36*	-0.01
Clay					1.00	0.69*	0.80*	0.41*	0.36*	0.32	0.16	0.26	-0.37	0.21	-0.56*	0.15	-0.20
Ca						1.00	0.76*	0.38*	0.35*	0.27	0.24	0.08	-0.05	0.39	-0.54*	0.18	-0.04
Mg							1.00	0.52*	0.48*	0.36*	0.20	0.25	-0.19	0.43	-0.57*	0.17	-0.17
Al _{AO}								1.00	0.65*	0.35*	0.03	0.38*	-0.57	0.49*	-0.21	0.21	0.02
Fe _{AO}									1.00	0.35*	0.56*	0.47*	-0.78*	0.23	-0.38*	0.49*	-0.16
Al _{DCB}										1.00	0.31	0.07	-0.30	0.43	-0.03	0.17	-0.21
Fe _{DCB}											1.00	0.20	-0.62	0.03	-0.11	0.56*	-0.30
δ ¹³ C												1.00	-0.24	0.06	-0.35*	0.16	-0.21
Δ ¹⁴ C													1.00	-0.10	0.37	0.13	0.24
M-DNA														1.00	-0.09	-0.05	0.23
PO ₄ ³⁻ -P															1.00	0.07	0.31
SO ₄ ²⁻ -S																1.00	0.01
NO ₃ ⁻ -N																	1.00

1295

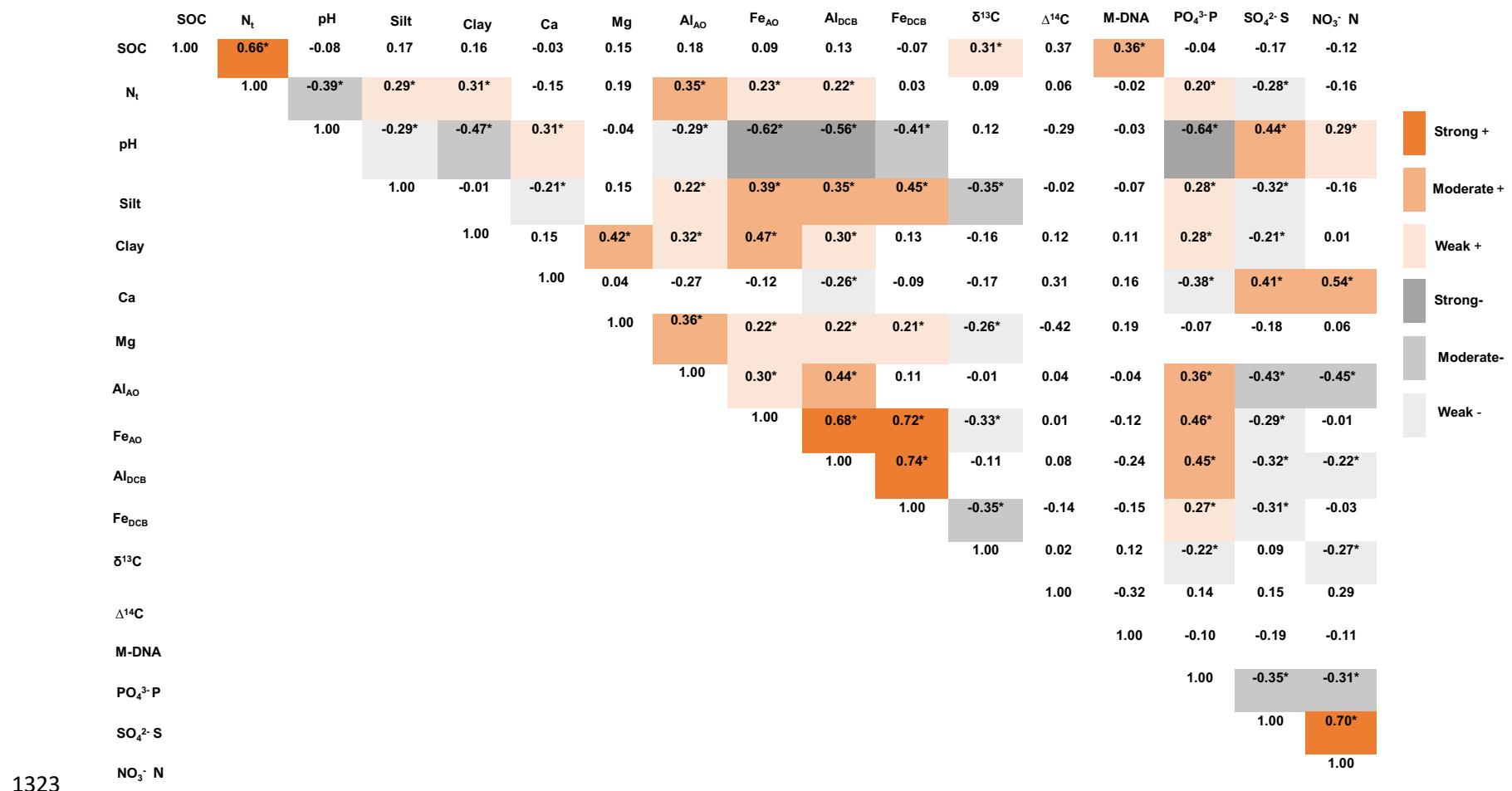
1296

1297

1298 Figure S2b. Correlations between soil organic carbon (SOC) characteristics and soil physical, chemical, and biological properties in
 1299 the A horizon of sites under native prairie land use. The symbol * indicates a significant correlation at $p \leq 0.05$. Abbreviations: SOC:
 1300 soil organic carbon content, N_t: soil total nitrogen content, M-DNA: microbial DNA concentration, Ca: exchangeable cation, Mg:
 1301 exchangeable magnesium, Al_{AO}: ammonium oxalate extractable Aluminum, Fe_{AO}: ammonium oxalate extractable iron, Al_{DCB}: dithionite
 1302 citrate bicarbonate extractable Aluminum; Fe_{DCB}: dithionite citrate bicarbonate extractable iron, NO₃⁻-N: nitrate-nitrogen, PO₄³⁻:
 1303 phosphate-phosphorous, SO₄²⁻: sulphate-Sulphur. Strong positive ($r > 0.5$), moderate positive ($0.3 \leq r \leq 0.5$), weak positive ($0 \leq r \leq$
 1304 0.3); strong negative ($r < -0.5$), moderate negative ($-0.3 \geq r \geq -0.5$), weak negative ($r \leq 0$ to -0.3).

1305

1306


1307 Figure S2c. Correlations between soil organic carbon (SOC) characteristics and soil physical, chemical, and biological properties in
 1308 the B horizon of sites under arable land use. The symbol * indicates a significant correlation at $p \leq 0.05$. Abbreviations: SOC: soil
 1309 organic carbon content, N_t : soil total nitrogen content, M-DNA: microbial DNA concentration, Ca: exchangeable cation, Mg:
 1310 exchangeable magnesium, Al_{AO} : ammonium oxalate extractable Aluminum, Fe_{AO} : ammonium oxalate extractable iron, Al_{DCB} : dithionite
 1311 citrate bicarbonate extractable Aluminum; Fe_{DCB} : dithionite citrate bicarbonate extractable iron, $NO_3^- N$: nitrate-nitrogen, PO_4^{3-P} :
 1312 phosphate-phosphorous, SO_4^{2-S} : sulphate-Sulphur. Strong positive ($r > 0.5$), moderate positive ($0.3 \leq r \leq 0.5$), weak positive ($0 \leq r \leq$
 1313 0.3); strong negative ($r < -0.5$), moderate negative ($-0.3 \geq r \geq -0.5$), weak negative ($r \leq 0$ to -0.3).

	SOC	N _t	pH	Silt	Clay	Ca	Mg	Al _{AO}	Fe _{AO}	Al _{DCB}	Fe _{DCB}	δ ¹³ C	Δ ¹⁴ C	M-DNA	PO ₄ ³⁻ -P	SO ₄ ²⁻ -S	NO ₃ ⁻ -N
SOC	1.00	0.75*	-0.36*	-0.17	0.05	-0.12	-0.35*	0.35*	0.08	0.13	0.07	0.33*	0.20	0.42*	-0.34*	0.02	-0.01
N _t		1.00	-0.45*	0.16	0.03	-0.37*	-0.51*	0.43*	0.02	0.23	0.13	0.31*	0.15	0.37	-0.18	0.01	-0.02
pH			1.00	-0.17	-0.23	0.63*	0.38*	-0.51*	-0.58*	-0.35*	-0.47*	-0.04	-0.74	-0.20	0.02	0.44*	0.22
Silt				1.00	-0.42*	-0.26	-0.45*	0.04	0.04	0.07	0.26	-0.10	-0.79	0.31	0.44*	0.16	0.02
Clay					1.00	0.45*	0.13	0.18	0.25	-0.17	-0.03	0.53	-0.25	-0.18	-0.14	0.01	
Ca						1.00	0.44*	-0.41*	-0.42*	-0.27*	-0.56*	0.05	-0.42	-0.35	-0.16	0.30*	0.23
Mg							1.00	-0.22	-0.13	-0.14	-0.27	-0.18	0.34	-0.41*	-0.06	0.12	0.09
Al _{AO}								1.00	0.65*	0.48*	0.48*	0.29	0.37	0.50*	-0.17	-0.03	-0.14
Fe _{AO}									1.00	0.52*	0.57*	0.04	0.75	0.21	-0.09	-0.17	-0.17
Al _{DCB}										1.00	0.52*	0.02	0.19	0.11	0.03	0.05	-0.24
Fe _{DCB}											1.00	-0.05	-0.04	0.27	0.02	0.02	-0.25
δ ¹³ C												1.00	0.57	0.36	-0.38*	0.34*	0.35
Δ ¹⁴ C													1.00	-0.03	-0.77	-0.56	0.53
M-DNA														1.00	0.11	0.33	-0.14
PO ₄ ³⁻ -P															1.00	0.03	-0.02
SO ₄ ²⁻ -S																1.00	0.46*
NO ₃ ⁻ -N																	1.00

1314

1315

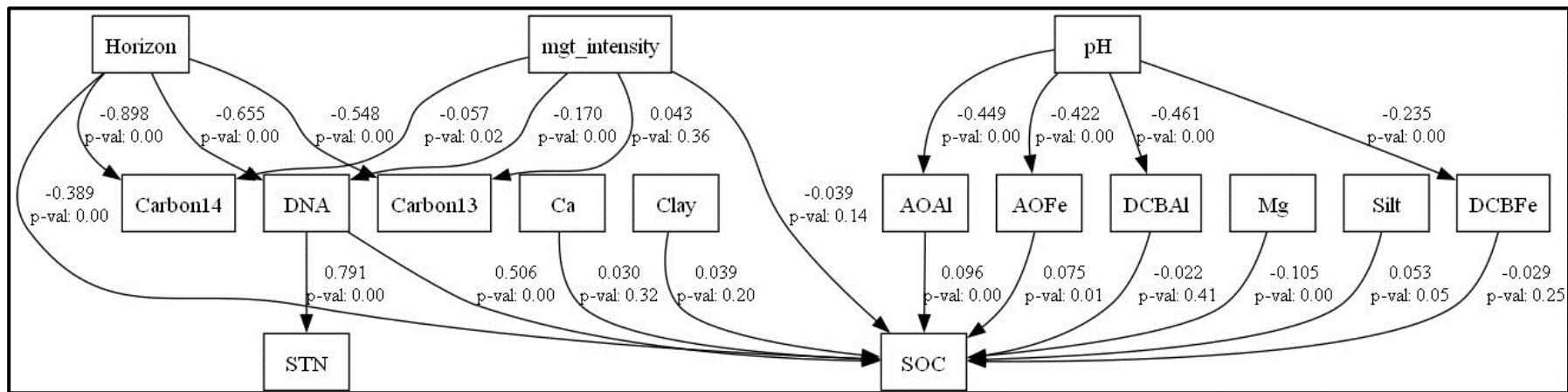
1316 Figure S2d. Correlations between soil organic carbon (SOC) characteristics and soil physical, chemical, and biological properties in
 1317 the B horizon of sites under native prairie land use. The symbol * indicates a significant correlation at $p \leq 0.05$. Abbreviations: SOC:
 1318 soil organic carbon content, N_t: soil total nitrogen content, M-DNA: microbial DNA concentration, Ca: exchangeable cation, Mg:
 1319 exchangeable magnesium, Al_{AO}: ammonium oxalate extractable Aluminum, Fe_{AO}: ammonium oxalate extractable iron, Al_{DCB}: dithionite
 1320 citrate bicarbonate extractable Aluminum; Fe_{DCB}: dithionite citrate bicarbonate extractable iron, NO₃⁻-N: nitrate-nitrogen, PO₄³⁻:
 1321 phosphate-phosphorous, SO₄²⁻: sulphate-Sulphur. Strong positive ($r > 0.5$), moderate positive ($0.3 \leq r \leq 0.5$), weak positive ($0 \leq r \leq$
 1322 0.3); strong negative ($r < -0.5$), moderate negative ($-0.3 \geq r \geq -0.5$), weak negative ($r \leq 0$ to -0.3).

1323

1324 Figure S2e. Correlations between soil organic carbon (SOC) characteristics and soil physical, chemical, and biological properties in
 1325 the C horizon of sites under arable land use. The symbol * indicates a significant correlation at $p \leq 0.05$. Abbreviations: SOC: soil
 1326 organic carbon content, N_t: soil total nitrogen content, M-DNA: microbial DNA concentration, Ca: exchangeable cation, Mg:
 1327 exchangeable magnesium, Al_{AO}: ammonium oxalate extractable Aluminum, Fe_{AO}: ammonium oxalate extractable iron, Al_{DCB}: dithionite
 1328 citrate bicarbonate extractable Aluminum; Fe_{DCB}: dithionite citrate bicarbonate extractable iron, NO₃⁻-N: nitrate-nitrogen, PO₄³⁻:
 1329 phosphate-phosphorous, SO₄²⁻: sulphate-Sulphur. Strong positive ($r > 0.5$), moderate positive ($0.3 \leq r \leq 0.5$), weak positive ($0 \leq r \leq 0.3$);
 1330 strong negative ($r < -0.5$), moderate negative ($-0.3 \geq r \geq -0.5$), weak negative ($r \leq 0$ to -0.3).

	SOC	N _t	pH	Silt	Clay	Ca	Mg	Al _{AO}	Fe _{AO}	Al _{DCB}	Fe _{DCB}	δ ¹³ C	Δ ¹⁴ C	M-DNA	PO ₄ ³⁻ -P	SO ₄ ²⁻ -S	NO ₃ ⁻ -N
SOC	1.00	0.52*	0.10	0.37*	0.08	0.32*	0.28*	0.26*	0.06	-0.07	0.09	0.41*	0.23	0.34*	-0.21	-0.18	-0.01
N _t		1.00	-0.16	0.37*	0.07	0.08	0.31*	0.34*	0.16	0.12	0.09	0.37*	0.21	0.41*	0.17	-0.30*	-0.09
pH			1.00	0.20	0.15	0.57*	0.37*	0.02	-0.29*	-0.25*	-0.12	0.02	-0.53*	-0.40*	-0.17	0.30*	0.11
Silt				1.00	0.25*	0.41*	0.74*	0.50*	0.25*	0.22*	0.36*	0.04	-0.46*	-0.11	0.26*	-0.05	0.02
Clay					1.00	0.54*	0.54*	0.50*	0.24*	0.41*	0.35*	-0.10	-0.39	-0.07	0.26*	0.18	-0.09
Ca						1.00	0.49*	0.31*	-0.01	-0.01	0.15	0.16	-0.26	-0.12	-0.24*	0.38*	0.03
Mg							1.00	0.59*	0.25*	0.25*	0.30*	-0.01	-0.56*	-0.19	0.36*	0.15	-0.06
Al _{AO}								1.00	0.49*	0.49*	0.43*	0.02	-0.06	-0.10	0.43*	0.16	-0.19
Fe _{AO}									1.00	0.50*	0.79*	-0.17	-0.06	-0.04	0.32*	-0.02	-0.20
Al _{DCB}										1.00	0.53*	-0.13	-0.21	0.04	0.42*	-0.12	-0.16
Fe _{DCB}											1.00	-0.21	-0.17	-0.07	0.15	0.02	-0.18
δ ¹³ C												1.00	0.13	0.32*	-0.21*	-0.02	0.06
Δ ¹⁴ C													1.00	0.67*	-0.32	0.13	0.08
M-DNA														1.00	-0.15	-0.22	-0.07
PO ₄ ³⁻ -P															1.00	-0.15	-0.19
SO ₄ ²⁻ -S																1.00	0.05
NO ₃ ⁻ -N																	1.00

1331


1332

1333 Figure S2f. Correlations between soil organic carbon (SOC) characteristics and soil physical, chemical, and biological properties in the
 1334 C horizon of sites under native prairie land use. The symbol * indicates a significant correlation at $p \leq 0.05$. Abbreviations: SOC: soil
 1335 organic carbon content, N_t: soil total nitrogen content, M-DNA: microbial DNA concentration, Ca: exchangeable cation, Mg:
 1336 exchangeable magnesium, Al_{AO}: ammonium oxalate extractable Aluminum, Fe_{AO}: ammonium oxalate extractable iron, Al_{DCB}: dithionite
 1337 citrate bicarbonate extractable Aluminum; Fe_{DCB}: dithionite citrate bicarbonate extractable iron, NO₃⁻-N: nitrate-nitrogen, PO₄³⁻:
 1338 phosphate-phosphorous, SO₄²⁻: sulphate-Sulphur. Strong positive ($r > 0.5$), moderate positive ($0.3 \leq r \leq 0.5$), weak positive ($0 \leq r \leq$
 1339 0.3); strong negative ($r < -0.5$), moderate negative ($-0.3 \geq r \geq -0.5$), weak negative ($r \leq 0$ to -0.3).

1340

1341

1342

1343

1344

1345

1346

1347 Figure S3. Structural equation model measuring the impact of management intensity and soil horizon on SOC and other soil
 1348 biogeochemical properties and how these variables interact with each other to produce the overall effect on SOC storage. Boxes
 1349 indicate variables. An arrow represents a causal relationship ($P < 0.05$). The arrow direction indicates the direction of effect. Numbers
 1350 beside arrows are standardized path coefficients. GFI = 0.568, and CFI = 0.580. All the data was log-transformed for normality.
 1351 Abbreviations: mgt_intensity: management intensity, carbon 14; $\Delta^{14}\text{C}$, carbon 13; $\delta^{13}\text{C}$, DNA: microbial DNA.

1352

1353

1354

1355 Table S1. Site names, locations, climatic conditions, vegetation, and management practices, parent material, soil type, and dominant
 1356 soil orders in arable and native prairie sites studied to evaluate the impact of land use on soil organic carbon (SOC) stocks.
 1357 Abbreviations: MLRA = Major land resource areas of the United States, MAT = Average annual temperature (range), MAP = Average
 1358 annual precipitation (range).
 1359

Sites name	Location	Latitude (dec. °N)	Longitude (dec. °W)	MLRA	MAT (°C)	MAP (mm)	Vegetation & management practices	Soil texture	Soil order	Parent material
Native prairies sites										
Derrhouse	Grand Island	40.73135	-98.56863	71	9-11	560-750	Prairies in this location support short, mid, and tall grasses, e.g., big bluestem, little bluestem, switchgrass, Indian grass, side oats grama, blue grama, western switchgrass, needle and thread, prairie sand reed, sand bluestem	Loamy Sand	Entisols and Mollisols	Loess
Pearl Harbor	Amherst	40.875022	-99.195397					Loam		
Marie Ratzlaff	Aurora	40.737911	-97.881464	75	10-12	590-800	Prairies in these locations support mid and tall grasses, e.g., big bluestem, little bluestem, switchgrass, Indian grass, side oats grama, western wheatgrass	Loam	Mollisols	Loess
Philips	Philips	40.919625	-98.207931					Sandy-loam		
Wildcat	Wachiska	40.16765	-96.526783					Sandy loam or sandy clay loam		

Belz	Norfolk	41.953158	-97.262828	102C	6.6-10.6	620-790	Prairie support little bluestem, big bluestem, switchgrass, western wheatgrass, Side oats grama, Porcupine, green needlegrass, and western wheatgrass	Loam or clay loam or silt loam	Mollisols	Loess
Nine-mile	Lincoln	40.86986	-96.80563	106	9.8-13.3	730-1040	Prairies in these locations support big bluestem, little bluestem, switchgrass, Indian grass, porcupine grass, side oats grama, switchgrass, and some wildrye	Loam	Mollisols, Alfisols, and Entisols	Loess
Pokorny Prairie pine Fricke	Midland Lincoln Fall city	41.61277 40.844422 40.151422	-97.11305 -96.567278 -95.539531					Silt loam Loam Loam or silt loam		
Zorinsky	Omaha	41.21543	-96.16649	107	6.7-13.4	700-1120	Prairies in this area support tall grasses and short grasses, e.g., blue grama, muhly, lovegrass, wheatgrass, little bluestem, big bluestem, Indian grass, and wild rye.	Silt loam	Mollisols and to a lesser degree Alfisol and Entisols	Loess

Arable sites

Eddyville	Eddyville	41.014392	-98.624322	71	9-11	560-750	Corn, soybean, alfalfa, and seed crops were commonly grown in these areas.	Sandy clay loam or loam	Entisols and Mollisols	Loess
-----------	-----------	-----------	------------	----	------	---------	--	-------------------------	------------------------	-------

								Crops received water through precipitation (somewhat erratic) and irrigation (gravity and lateral-move pivot irrigation systems).		
								Sites were under no-till, mulch-till and were fertilized.		
								Cover crops commonly grown were cereal rye, ryegrass, hairy vetch, wheat, cowpea, and oat		
Pearl Harbor	Amherst	40.87485	-99.19735							
Knorr-Holden	Scottsbluff	41.944	-103.70041							
Wildcat	Wachiska	40.164144	-96.525508	75	10-12	590-800	Crops commonly grown were wheat and sorghum, but predominantly corn and soybean.	Sandy loam or sandy clay loam	Mollisols	Loess
							Precipitation was moderate, somewhat erratic, and was the source of water for grain crops. In Clay Center and Philips, crops were irrigated using sub-surface drip and center pivot irrigation methods.			
							Cover crops commonly grown were cereal rye,			

							ryegrass, hairy vetch, wheat, cowpea, radish, and mixed.		
							Sites were under no-till and fertilized.		
Clay Center	Harvard	40.5743	-98.129056					Clay loam or loam	
Philips	Philips	40.922722	-98.215613					Sandy loam or sandy clay loam	
Dairyland	Firth	40.55361	-96.54539	106	10-13	730-1040	Crops grown were corn, soybean, and alfalfa. Precipitation is generally adequate for crop production in these areas except in Dairyland, where crops were irrigated (center-pivot irrigation)	Loam	Mollisols, Alfisols, and Entisols
							Cover crops commonly grown were cereal rye, ryegrass, hairy vetch, wheat, cowpea, radish, and mixed.		Loess
Pokorny	Midland	41.611606	-97.110539				sites were under no-till (except Rogers Memorial, under reduced tillage-chisel plow) and fertilized.	Silt loam	

Mead	Ithaca	40.85163	-96.46545					Silt loam or clay loam		
Rogers Memorial	Lincoln	40.85163	-96.46545					Silt loam or clay loam		
Glacier Creek	Omaha	41.3455	-96.1414	107B	6.7-13.4	700-1120	Major arable crops grown were corn and soybean. Precipitation is the main source of moisture for crops.	Silt loam	Mollisols and, to a lesser degree, Alfisol and Entisols	Loess

1360

1361 [†] USDA-NRCS (2022).

1362 * For MAT and MAP, values are 30-year averages (1981-2010) based on the PRISM data set

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378 Table S2. Range, mean, and standard error of soil available nitrate-N (N-NO₃), phosphate-P P-PO₄), and sulphate-S (S-SO₄)
 1379 concentrations across arable and native prairie sites for A, B, and C horizons. Significant differences between land uses at p ≤ 0.05
 1380 for each horizon are denoted by different letters.

1381
1382

Land use	Horizon	Depth ranges (cm) (upper and lower)	N-NO ₃ (mg kg ⁻¹)	P-PO ₄ (mg kg ⁻¹)	S-SO ₄ (mg kg ⁻¹) ³³
Arable	A	0-12-38	1.7-47 9 ± 1.9 a n=33	1.0-115 35 ± 5.6 a n=33	2.9-26 10 ± 0.8 a n=33
Native prairie	A	0-17-38	0.2-10 3 ± 0.4 b n=33	1.0-34 10 ± 1.5 b n=33	1.3-22 11 ± 0.7 a n=33
Arable	B	12-28-170	0.3-31 5 ± 1.0 cd n=40	1.0-81 15 ± 2.7 b n=40	1.3-55 13 ± 1.7 a n=40
Native Prairie	B	17-28-176	0.1-7.6 1.0 ± 0.2 e n=41	1.0-52 12 ± 1.8 b n=41	1.7-55 8.2 ± 1.3 a n=41
Arable	C	28-170-300	0.3-35 5 ± 0.9 d n=87	1.0-93 24 ± 2.6 c n=87	1.3-48 11 ± 1.0 a n=87
Native Prairie	C	28-176-300	0.2-8.8 0.9 ± 0.1 f n=80	1.0-57 16 ± 1.4 c n=80	1.2-53 9 ± 0.9 a n=80

1384
1385
1386
1387
1388
1389
1390

n: total number of samples utilized for analysis from all A, B, and C horizons in arable and native prairie sites.

1391 Table S3. Mean and standard error of soil organic carbon (SOC) stocks for individual arable (n=11) and native prairie (n=11) sites,
 1392 showing the amount of SOC stored in 0-50, 50-100, 100-200, and 200-300 cm depth increments, as well as the cumulative value for
 1393 the entire 0-300 cm depth. The mean values presented are site-specific and were derived from three replicated cores per site, with a
 1394 total of 11 sites for each land use type.
 1395
 1396

Land use		SOC (kg m⁻²)				
Arable	Depth (cm)	0-50	50-100	100-200	200-300	0-300
Dairyland		10 ± 1.0	2.2 ± 0.3	4.0 ± 0.8	3.4 ± 0.3	19 ± 0.1
Pokorny		8.8 ± 1.1	7.8 ± 0.9	11 ± 1.8	6.8 ± 1.2	35 ± 0.1
Glacier creek		2.7 ± 0.1	1.9 ± 0.3	3.4 ± 0.4	3.5 ± 0.4	11 ± 0.1
Knorr-holden		2.7 ± 0.2	1.2 ± 0.5	1.1 ± 0.1	0.9 ± 0.1	5.9 ± 0.1
Roger's memorial		6.8 ± 1.3	4.0 ± 1.4	4.2 ± 1.4	3.0 ± 0.1	18 ± 0.3
Pearl harbor		5.7 ± 0.7	3.2 ± 0.7	3.3 ± 0.2	2.4 ± 0.1	14 ± 0.1
Wildcat		11 ± 1.9	4.0 ± 1.4	5.8 ± 1.0	4.2 ± 0.1	25 ± 0.3
Philips		8.7 ± 1.9	6.3 ± 2.3	6.8 ± 1.7	3.2 ± 0.3	25 ± 0.4

Mead		11 ± 0.1	9.5 ± 1.5	8.1 ± 1.8	5.1 ± 0.8	34 ± 0.3
Eddyville		3.9 ± 0.2	3.5 ± 0.3	6.5 ± 0.7	5.5 ± 0.5	19 ± 0.1
Clay center		5.2 ± 1.4	3.4 ± 2.0	3.0 ± 0.5	2.6 ± 0.2	14 ± 0.4
SOC (kg m⁻²)						
Native prairie	Depth (cm)	0-50	50-100	100-200	200-300	0-300
Nine-mile		12 ± 0.9	4.8 ± 0.6	3.7 ± 0.5	2.8 ± 1.3	23 ± 0.2
Pokorny		17 ± 1.9	8.5 ± 1.7	5.7 ± 1.7	4.2 ± 1.0	35 ± 0.2
Zorinsky		7.8 ± 0.7	2.8 ± 0.4	4.7 ± 1.2	4.0 ± 0.6	19 ± 0.2
Derrhouse		4.0 ± 0.2	0.8 ± 0.2	0.6 ± 0.1	0.5 ± 0.02	6.0 ± 0.1
Prairie pine		9.7 ± 0.9	3.3 ± 0.5	4.5 ± 0.8	3.1 ± 0.2	20 ± 0.2
Pearl harbor		8.4 ± 2.6	5.3 ± 1.0	6.4 ± 0.3	3.4 ± 0.9	23 ± 0.4
Wildcat		9.7 ± 0.3	8.9 ± 1.0	8.9 ± 4.0	5.7 ± 3.9	33 ± 1.0

Philips		10 ± 1.2	4.1 ± 2.4	4.8 ± 1.6	3.3 ± 0.8	22 ± 0.3
Fricke		11 ± 0.9	3.4 ± 0.4	4.2 ± 1.0	2.4 ± 0.1	21 ± 0.2
Belz		10 ± 0.4	4.5 ± 0.3	7.6 ± 0.6	7.2 ± 0.8	29 ± 0.1
Marie Ratzlaff		8.6 ± 1.3	3.7 ± 1.9	3.6 ± 1.1	3.0 ± 0.9	19 ± 0.2

1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419

1420 Table S4. Mean and standard error of soil total nitrogen (N_t) stocks for individual arable (n=11) and native prairie (n=11) sites,
 1421 showing the amount of N_t stored in 0-50, 50-100, 100-200, and 200-300 cm depth increments, as well as the cumulative value for the
 1422 entire 0-300 cm depth. The mean values presented are site-specific and were derived from three replicated cores per site, with a
 1423 total of 11 sites for each land use type.
 1424
 1425

Land use		N_t (kg m⁻²)				
Arable	Depth (cm)	0-50	50-100	100-200	200-300	0-300
Dairyland		0.9 ± 0.1	0.3 ± 0.02	0.5 ± 0.1	0.5 ± 0.1	2.2 ± 0.01
Pokorny		0.6 ± 0.1	0.3 ± 0.02	0.6 ± 0.1	0.5 ± 0.1	1.9 ± 0.01
Glacier creek		0.3 ± 0.01	0.2 ± 0.03	0.4 ± 0.04	0.5 ± 0.03	1.4 ± 0.01
Knorr-holden		0.3 ± 0.02	0.2 ± 0.03	0.1 ± 0.01	0.09 ± 0.01	0.6 ± 0.004
Roger's memorial		0.6 ± 0.1	0.4 ± 0.1	0.5 ± 0.1	0.5 ± 0.01	2.1 ± 0.02
Pearl harbor		0.5 ± 0.1	0.3 ± 0.1	0.4 ± 0.01	0.5 ± 0.04	1.7 ± 0.01
Wildcat		0.9 ± 0.1	0.4 ± 0.1	0.7 ± 0.1	0.7 ± 0.1	2.8 ± 0.01
Philips		0.9 ± 0.1	0.7 ± 0.2	0.9 ± 0.1	0.6 ± 0.04	3.1 ± 0.03

Mead		0.8 ± 0.03	0.7 ± 0.1	0.6 ± 0.1	0.5 ± 0.1	2.6 ± 0.01
Eddyville		0.4 ± 0.01	0.2 ± 0.01	0.4 ± 0.04	0.4 ± 0.04	1.4 ± 0.01
Clay center		0.5 ± 0.1	0.4 ± 0.1	0.4 ± 0.04	0.5 ± 0.1	1.8 ± 0.02
N_t (kg m^{-2})						
Native prairie	Depth (cm)	0-50	50-100	100-200	200-300	0-300
Nine-mile		0.9 ± 0.1	0.3 ± 0.1	0.3 ± 0.03	0.3 ± 0.01	2.0 ± 0.01
Pokorny		1.4 ± 0.1	0.7 ± 0.1	0.6 ± 0.1	0.6 ± 0.1	3.5 ± 0.01
Zorinsky		0.7 ± 0.1	0.2 ± 0.02	0.4 ± 0.04	0.4 ± 0.01	1.8 ± 0.01
Derrhouse		0.4 ± 0.02	0.15 ± 0.01	0.2 ± 0.1	0.2 ± 0.1	0.9 ± 0.01
Prairie pine		0.8 ± 0.1	0.3 ± 0.03	0.5 ± 0.1	0.4 ± 0.02	2.1 ± 0.01
Pearl harbor		0.6 ± 0.2	0.4 ± 0.1	0.5 ± 0.1	0.4 ± 0.01	2.0 ± 0.04
Wildcat		0.5 ± 0.1	0.2 ± 0.1	0.4 ± 0.1	0.4 ± 0.1	1.6 ± 0.004

Philips		1.2 ± 0.3	0.4 ± 0.1	0.5 ± 0.1	0.6 ± 0.1	2.9 ± 0.1
Fricke		0.9 ± 0.1	0.2 ± 0.03	0.4 ± 0.01	0.4 ± 0.1	1.9 ± 0.01
Belz		0.9 ± 0.04	0.4 ± 0.02	0.4 ± 0.02	0.4 ± 0.02	2.1 ± 0.004
Marie Ratzlaff		0.7 ± 0.1	0.4 ± 0.1	0.5 ± 0.1	0.4 ± 0.1	2.1 ± 0.02

1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445

1446 Figure S5. Summary of the mean and standard error of soil organic carbon (SOC) and total nitrogen (N_t) stocks for the 11 arable and
1447 11 native prairie sites, showing the amount of SOC and N_t stored in the 0-50 cm, 50-100 cm, 100-200 cm, and 200-300 cm depth
1448 increments, as well as the total amount in the 0-300 cm depth range.

1449

Land use	Depth (cm)					
	SOC (Kg m ⁻²)	0-50	50 -100	100 -200	200 -300	0 - 300
Arable sites (n=11)		7.0 ± 0.9	4.3 ± 0.7	5.3 ± 0.8	3.7 ± 0.4	20.3 ± 2.7
Native prairie sites (n=11)		9.9 ± 0.9	4.6 ± 0.7	5.0 ± 0.6	3.6 ± 0.5	23.2 ± 2.4
	STN (Kg m ⁻²)	0-50	50 -100	100 -200	200 -300	0 - 300
Arable sites (n=11)		0.6 ± 0.1	0.4 ± 0.1	0.5 ± 0.1	0.5 ± 0.1	2.0 ± 0.2
Native prairie sites (n=11)		0.9 ± 0.1	0.4 ± 0.1	0.5 ± 0.1	0.4 ± 0.1	2.2 ± 0.2

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467
1468
1469
1470
1471

Table S6. Summary of range, mean, standard error, and sample size (n) (number of measurements per horizon and land use type) for $\Delta^{14}\text{C}$ of bulk soil organic carbon across, showing the radiocarbon ages across A, B, and C horizons in arable and native prairie soils. BP signifies "before present."

Land use	Horizons	$\Delta^{14}\text{C} (\text{\textperthousand})$ (^{14}C age in years BP)		
		A	B	C
Arable		$(1102 \pm 240 \text{ yrs.})$ n= 9	$(6415 \pm 1502 \text{ yrs.})$ n=6	$(11933 \pm 920 \text{ yrs.})$ n=18
Native prairie		$(190 \pm 48 \text{ yrs.})$ n=10	$(5161 \pm 1224 \text{ yrs.})$ n=6	$(11930 \pm 1046 \text{ yrs.})$ n=22

1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486