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Abstract

Aims - Land use change from native grasslands to arable lands globally impacts soil ecosystem
functions, including the storage of soil organic carbon (SOC). Understanding the factors affecting
SOC changes in topsoil and subsoil due to land use is crucial for effective mitigation strategies.
We determined SOC storage and persistence as affected by land use change from native prairies
to arable lands.

Methods - We examined SOC stocks, soil 8'3C and A!C signatures, microbial community
(bacteria and fungi), and soil mineral characteristics under native prairies and long-term arable
lands (i.e., > 40 years) down to 3 m in the U.S. Midwest.

Results - Native prairie soils had higher SOC stocks in the A horizon and 0-50 cm depth
increment than arable soils. For both land use types, the 8'°C and AC values significantly
decreased with depth, with the latter pointing towards highly stabilized SOC, especially in the B-
and C-horizons. Analysis of microbial communities indicated that the diversity of bacteria and
fungi decreased with soil depth. The content of oxalate soluble Al appeared to be the single most
important predictor of SOC across horizons and land use types.

Conclusion - Our data suggest that most SOC gains and losses and transformation and
translocation processes seem to be restricted to the uppermost 50 cm. Increasing SOC retention in
A and B horizons within the 0-50 cm depth would enhance organic material serving as substrate
and nutrients for microbes and plants (A horizon) and facilitate long-term SOC storage in subsoil

(B horizon).

Keywords: Land use, C4-C3 vegetation, §'3C, and A'*C, soil organic carbon persistence, Microbial

communities.
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Abbreviations: SOC, soil organic carbon; Ny, soil total nitrogen; M-DNA, microbial DNA.
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Introduction

Essential ecosystem services largely affected by soil organic carbon (SOC) levels, such as
nutrient supply, climate change mitigation, and water retention, are provided by both undisturbed
and managed soils (Franzluebbers, 2021; Cotrufo and Lavallee, 2022). Soils store more carbon
than the earth’s atmosphere and living biomass combined, and about 50 to 70% of SOC is stored
below 30 cm, highlighting the importance of subsoil for terrestrial carbon storage (Jobbagy and
Jackson, 2000; Possinger et al., 2021; Moreland et al., 2021). However, uncertainty remains in our
process-level understanding of how land use and soil management affect SOC storage, especially
with depth (Yost and Hartemink, 2020). Furthermore, such uncertainty may affect estimations of
carbon exchange rates between the soil and atmosphere as a response to changes in land use and
soil management (Harrison et al., 2011; Gross and Harrison, 2019). Understanding drivers of
subsoil SOC dynamics in different land use systems is critical for sustainable and climate-smart
management strategies.

The intensification of land use has led to significant changes in SOC storage and turnover
compared to undisturbed conditions under native vegetation (Ogle et al., 2005; Lal, 2019; Cotrufo
and Lavallee, 2022). Over the course of human agricultural history, which began about 12,000
years ago, intensively managed arable soils have lost nearly 26% of their SOC stock in the top 30
cm and over 16% in the top 100 cm, resulting in a global estimated loss of about 116 Pg of carbon
from the upper 2 m of soils (Sanderman et al., 2017). In the U.S. Great Plains, intensively managed
arable soils, which produce approximately three-quarters of the country’s corn and soybeans, have
suffered some of the most significant losses. Here, up to 50% of SOC has been lost since
agricultural expansion started in the 19" century (Malo et al., 2005; Paustian et al., 2019; Sanford

et al., 2022). When scaled to arable land areas in the region, such intensified cultivation has led to
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a loss of about 1100 Tg of carbon, particularly in the top 30 cm of soil (Liebig et al., 2009). These
losses were mainly due to lower organic carbon (OC) input, destruction of soil aggregates, which
reduces SOC stabilization, and soil erosion (Sanford et al., 2022). There is growing interest in
managing agricultural soils as carbon sinks to reverse historical carbon losses and mitigate rising
atmospheric carbon levels, emphasizing the need for detailed information on land use change
impacts on SOC storage and persistence (Paustian et al., 2016; Sanderman et al., 2017).
Prerequisites for using the subsoil to store more OC in the long-term are systems that allow for
increased OC translocation in this soil compartment. Increasing belowground deep root-derived
carbon inputs has been suggested to foster long-term retention of OC in arable soils (Lal, 2019;
Slessarev et al., 2020; Wang et al., 2022). The direct contact of root litter-derived carbon with
protective soil minerals and the release of small, highly reactive root exudates and rhizodeposits,
which may also stimulate microbially derived carbon inputs, can contribute significantly to SOC
retention in the subsoil (Dijkstra et al., 2021; Bai and Cotrufo, 2022). Such strategies may include
cultivating deep-rooted perennials and cover crops or converting arable soils to grassland (Rasse
et al., 2005; Beniston et al., 2014; Cagnarini et al., 2019). In contrast, inputs (e.g., root exudates
and rhizodeposits) derived from deep-rooting vegetation may also facilitate SOC loss by
weakening or releasing organic compounds from protective mineral associations through priming
(Keiluweit et al., 2015). Thus, the extent to which different biotic and abiotic factors control SOC
accumulation and loss across depths remains largely unknown. The amount and turnover of SOC
under native vegetation with minimal disturbance can serve as a benchmark for SOC accumulation
in intensively used agricultural sites (Cotrufo and Lavallee, 2022). Such comparisons can be used

to delineate soil environmental conditions under which the highest SOC gains or losses can be
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expected in response to land use or management changes (Follett et al., 2012; Amelung et al.,
2020; Maharjan et al., 2020).

Subsoils store most of the OC for centuries to millennia, making them ideal locations for long-
term carbon storage, which has implications for climate change mitigation (Scheibe et al., 2023;
Sierra et al., 2024). While subsoils generally have lower concentrations of SOC compared to
topsoils, their larger volume results in greater SOC storage (Angst et al., 2018; Moreland et al.,
2021). The larger potential for long-term carbon storage in the subsoil is further amplified by the
predominance of SOC, which is more protected from microbial access and a subsoil environment
that is less prone to disturbance than the topsoil (Rumpel and Kégel-Knabner, 2011; Hicks Pries
et al., 2018; Wang et al., 2022). Understanding how land use change impacts subsoil is key to
capturing how this terrestrial subsystem that stores most of the SOC for longer periods of time
might respond. This also includes examining changes in the structure of microbial communities
(e.g., bacteria and fungi), which are linked to modifications in SOC dynamics across depths (Fierer
et al., 2013; Mackelprang et al., 2018).

Major factors that impact SOC accumulation and persistence across the soil profile include
climate, vegetation, soil microorganisms and their access to substrate and nutrients, parent
material, and soil mineral characteristics (Viscarra Rossel et al., 2019; Wiesmeier et al., 2019;
Vormstein et al., 2020). Previous studies have suggested that SOC accumulation and persistence
in mineral soils result from interactions between organic matter (OM) and Fe and Al oxides or
oxyhydroxides (Kleber et al., 2015; Hall and Thompson, 2021; Shimada et al., 2022). Other studies
pointed toward the relevance of associations between OM and mineral surfaces via exchangeable
cations (Nitzsche et al., 2017; Rasmussen et al., 2018; Rowley et al., 2018). Thus, variation in soil

mineralogical characteristics dictated by soil parent material or soil type in different land use
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systems will affect the magnitude of SOC retention across depths. Furthermore, the transformation
of plant material into microbially processed OM and retention of microbially derived biomass
(e.g., cell walls) have been discussed as critical processes within SOC stabilization and retention
in mineral soils (Cotrufo et al., 2013; Kallenbach et al., 2016), thus affecting SOC accumulation
and turnover. However, the impact of land use change on SOC stabilization processes and
mechanisms across soil depths or horizons and their biotic and abiotic driving factors remain
largely unclear. This is further exacerbated by the high variability in physical and chemical subsoil
properties and SOC origin across scales (Chabbi et al., 2009; Heckman et al., 2021; Nave et al.,
2021).

In this study, we aimed (1) to quantify soil depth-specific differences in SOC stocks in the
uppermost three meters of native prairie soils and arable soils, (2) to clarify the impact of soil
mineral characteristics on land use-specific SOC characteristics across soil horizons, (3) to
examine A¥C and 3'°C isotopic signatures of SOC to understand land use impact on carbon
stabilization and transformation, inputs, and losses across horizons, and (4) to evaluate the impact
of land use on soil microbial community structure across horizons. To address these objectives,
we sampled 11 native prairie sites and 11 arable sites in the US Midwest (Nebraska) and quantified
SOC stocks across soil horizons and depth increments. To identify factors and processes that
control SOC retention across soil horizons in both land use systems, we analyzed relationships
between SOC, soil characteristics (i.e., texture, soil pH, exchangeable Ca, and Mg, reactive Fe,
and Al phases), soil carbon isotope signatures (8'°C and A*C), and microbial DNA concentration.
Based on differences in SOC characteristics between arable and native prairie sites, soil
environmental conditions were set out to be identified that might be most relevant for gains in

SOC within climate-smart management strategies.
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Materials and Methods
Site description

We selected 11 native prairie sites and 11 arable sites whose soils predominantly developed
from the parent material loess across Nebraska, as shown in Figure 1. The selected sites (listed in
Table S1; USDA-NRCS, 2022) were picked from the major land resource areas (MLRAs) of the
United States and were chosen to encompass a variety of soil characteristics and climatic variables.
The native prairie sites are presumed to reflect the original state of the arable sites before they were
cultivated. The general soil, climatic, and vegetation characteristics for all sites are summarized in
Table S1. The native prairie soils and arable soils were moderately to well-drained, spanning a soil
texture gradient. More than 80% of the vegetation cover in the native prairie sites consists of a
mixture of short, mid, and tall C; and C4 grasses. The arable sites were long-term (> 40 years)
continuously cropped fields, mainly under corn (Zea mays, L.) and soybean (Glycine max)
rotations. The most common management practices adopted in the arable sites include cover

cropping, no-till or reduced-till, fertilizer application, and irrigation (Table S1).

Soil sampling and processing

Samples were collected from each native prairie and arable site between November 2020 and
May 2021. In each site, soil was collected from a uniform flat area, free of signs of erosion caused
by wind or water. Soil cores were collected from three random locations per site (~ 1 m apart),
representing three pseudo-field replicates as continuous cores from 0-50, 50-100, 100-200, and
200-300 cm depth increments (i.e., 300 cm) using a Genuine Geoprobe (3.45 cm core diameter,
Geoprobe systems, Salina, KS). After sampling, soil cores were wrapped in aluminum foil, stored

in cool containers (with ice packs), transported to the laboratory, and frozen at -80°C until
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processed. The frozen cores were unpacked during processing, and the entire 300 cm soil core was
split according to the major pedogenetic horizons (A, B, and C). Samples for microbial analysis
were collected from each horizon and immediately stored at -80 °C. The remaining bulk soil
samples from each horizon of the three random soil cores per site were air-dried, sieved to pass

through a 2 mm sieve, and stored in glass jars.

Bulk soil physical-chemical characteristics

All laboratory measurements were performed on air-dried soils except soil used for microbial
analysis and bulk density determination. Moisture corrections were done by calculating the mass
difference between air-dried soils and soils oven-dried overnight at 105°C (Wood and Bowman,
2021). Bulk density was determined using the intact soil core method (both fine and coarse
particles), as described by Grossman and Reinsch (2002), and soil pH (1:1 water) was measured
following the procedure described by Miller and Kissel (2010). Particle size distribution: sand (50-
2000 pm), silt (50-2 um), and clay (<2 um) was determined using the hydrometer method (Gee
and Or, 2002). Macronutrient analyses were performed to determine available N-NOj3 using the
KCI extraction method (Doane and Horwdath, 2003), available S-SOs, and P-POs* using the
Mehlich 3 extraction method (Schulte and Eik, 1988; Mallarino, 2003; Pittman et al., 2005).
Exchangeable base cations (Ca, K, and Mg) were determined by the ammonium (NH4") acetate
(AA) extraction method. Reactive Fe and Al phases were determined by acid ammonium (NH4")
oxalate (AO) (targeting short-range ordered phases and organo-metal complexes) and dithionite-
citrate bicarbonate (DCB) (targeting highly crystalline oxides as well as short-range ordered
phases) extraction methods following the standard USDA-NRCS procedure (Soil Survey Staff,

2014). Briefly, for AO extraction, Tamm reagent (acid ammonium oxalate, 0.2 M, pH 3) was
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prepared by dissolving 16.15 g of ammonium oxalate and 10.90 g of oxalic acid in 1 L of Milli-Q
water (resistivity of 18.2 MQ). 1 g of air-dried soil (dried for 24 hours) was added to a 50 ml
centrifuge tube, followed by 50 ml of the acid oxalate reagent. The mixture was gently shaken to
mix and then equilibrated in darkness on a reciprocating shaker for 4 hours. After equilibration,
the mixture was centrifuged for 5 minutes, and the extraction was collected and analyzed for Fe
and Al in inductively coupled plasma mass spectroscopy (Thermo Dionex IC 5000+ iCAP RQ ICP
MS). For DCB extraction, 79.4 g of trisodium citrate and 9.24 g of sodium bicarbonate were
dissolved in 1 L of Milli-Q water, resulting in a buffer solution with a pH of approximately 7.3. In
a 50 mL centrifuge tube, 3 g of air-dried soil sample was added and mixed with 45 mL of the
buffer solution. The mixture was agitated in a hot water bath at 75 °C for 15 minutes. Then, 1 g of
sodium dithionite was added, and the mixture was kept in the hot water bath for an additional 10
minutes. Another 1 g of dithionite was then added very slowly, and the mixture was agitated in the
water bath for another 15 minutes. Finally, the solution was cooled and centrifuged, and the

supernatant was collected and analyzed for DCB-extractable Fe and Al using ICP-MS.

Soil organic carbon and total nitrogen

After ball-milling (SPEX SamplePrep, 8000D Mixer/Mill) the soil samples, total soil carbon
and nitrogen (Ny) in percent (%) were measured by dry combustion using an elemental analyzer
(Thermos Scientific, Waltham, MA, USA). Before the analysis, an effervescence test conducted
by application of 10% HCI was used to determine if any inorganic carbon was present. When
carbonates were detected, soil inorganic carbon content was quantified using the modified pressure
calcimeter method (Digital Gauge Model Kit+Mixer, HMLS) described by Sherrod et al. (2002).

The soil inorganic carbon content was subtracted from the total carbon to obtain the SOC content.

10
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The SOC stocks (kg m2) were calculated for each identified horizon according to their respective
depths, although some cores had more than one B and C horizon. If, for example, two B horizons
were identified (i.e., B1 and B.), the stocks from each horizon were summed to calculate the total
stock for the B horizon (B = Bi + B»). For the fixed depth increments, SOC stocks were summed
to obtain the cumulative SOC stocks for the 0-50, 50-100, 100-200, and 200-300 cm depth
increments, considering the specific contribution of individual pedogenic horizons to each
increment. Across horizons, bulk density between arable and native prairie soils was not different
(Table 1). Thus, an equivalent soil mass (ESM) approach was not applicable (Ellert et al., 2002;
Wendt and Hauser, 2013).

SOC stocks (kg m?) =SOC concentration (g kg ') * [Bulk density (g cm™) * Volume (cm’)] (Eq.

1). Where volume is the product of area (cm?) multiplied by depth (cm).

Bulk soil samples from A, B, and C horizons were analyzed for 8'°C and for AMC.
Specifically, selected samples from these horizons across land use types were utilized for A*C
analysis. Samples that contained carbonates were initially treated following the acid fumigation
method, as described by Harris et al. (2001). However, this method did not completely eliminate
the carbonates in several samples. Samples that showed effervescence and a 3'3C less negative
than -12%o after fumigation were treated with the acid soaking and drying method described by
Slessarev et al. (2020) to ensure complete removal of the carbonates. For 8!3C analysis, samples
were measured using the Thermo Finnigan Delta Plus isotope-ratio mass spectrometer (IRMS)
interfaced with a Carlo Erba Elemental Analyzer (Thermo Finnigan, San Jose, CA). For A#C
analysis, analyzed as graphite using the NEC 1.0 MV Model 3SDH-1 or FN van de Graff tandem

accelerator mass spectrometer at the Center for Accelerator Mass Spectrometry (Lawrence

11
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Livermore National Laboratory, Livermore, CA, USA) following the method of Broek et al.
(2021). Briefly, soil samples were weighed into quartz tubes containing cupric oxide and silver
under a vacuum. After the tubes were sealed, the samples were converted to CO- by heating at 900
°C for 6 hours. In the presence of hydrogen gas and Fe catalyst, the CO, was reduced to graphite
at 570 °C (Vogel et al. 1987). Data were corrected for mass-dependent fractionation using the
measured 3'3C values (i.e., differential partitioning of carbon isotopes based on their masses) and
are reported in A™C notation corrected for the year of measurement (2022) and conventional
radiocarbon age (based on the Libby half-life) following Stuiver and Polach (1977). Conventional
radiocarbon ages are provided for reference and should not be interpreted as actual ages, as soils

are open systems with respect to OC.

Soil microbial community analyses

To determine the diversity and composition of microbial communities (bacteria and fungi),
soil DNA was extracted from 0.25 g subsamples of each horizon from two cores of 10 sites (i.e.,
pseudo field replicates) using the DNeasy PowerSoil Pro Kits (QIAGEN, Hilden, Germany). The
concentrations of purified DNA were verified using a spectrophotometer (NanoDrop, ND2000,
Thermo Scientific, USA). Amplification and sequencing of DNA were performed at the Argonne
National Laboratory in Lemont, IL, using Illumina MiSeq (Illumina Inc., San Diego, CA, USA).
The bacterial V4 hypervariable regions of the 16S rRNA gene and fungal internal transcribed
spacer (ITS) region were amplified using the primer pair 505F/816R (Caporaso et al., 2011, 2012)
and ITS1F/ITS2 (Buée et al., 2009), respectively. The raw DNA sequence data were analyzed
using QIIME2-2021.11 (Bolyen et al., 2019). The g2-dada2 plugin was used for sequence quality

control and feature table construction (Callahan et al., 2016). Sequences were trimmed to remove

12
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low-quality regions, and trimming parameters were determined according to the quality plots. The
phylogenetic tree was generated using the align-to-tree-mafft-fasttree pipeline from the ¢2-
phylogeny plugin (Katoh et al., 2002). Sequences were rarefied for downstream analyses to ensure
comparability across samples. Rarefaction depth was chosen to retain more sequences per sample
while excluding as few samples as possible on the condition that the richness in the samples is

fully saturated. The alpha diversity was analyzed with the g2-diversity plugin.

Statistical analysis

A two-way mixed model ANOVA was used to determine the main and interaction effect of
land use and soil depths or horizons on soil biogeochemical characteristics (Glimmix procedure;
SAS 9.4, SAS Institute Inc., Cary, NC, USA). Since pedon-scale SOC storage is often controlled
by horizon thickness (i.e., vertical depth of each distinct layer), analysis of patterns by both horizon
and fixed depth approaches is crucial for understanding genetic soil formation processes that are
relevant to OC accumulation and persistence within the soil profile (Li et al., 2023). Land use was
treated as a fixed factor, with depths or horizons as repeated measure variables and block (site)
and replications as random variables. Means were compared using Fisher’s Least Significant
Difference. Data were log-transformed to achieve normal distribution when necessary. The
univariate procedure was used to check for the normality of residuals, and Shapiro-Wilk’s test was
used to determine normality. Levene's test was used to assess the equality of variance. Results
were reported as untransformed mean + standard error. Pearson correlation was used to evaluate
the relationships between SOC and N concentrations, soil mineral characteristics, soil carbon
isotope signatures, soil microbial DNA concentrations, and soil nutrients. Correlations were

performed separately by horizon (A, B, and C) and land use type (native prairie and arable). If
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more than one horizon was detected for one of the three major horizons, e.g., Bi and B, or C; and
(>, the respective results were treated as individual data points in the correlation analyses. We also
used results from each core per site (three pseudo-field replicates) as individual data points. Data
were normally distributed and linear with no outliers. Significance was set at p < 0.05. The errors
reported in the text and tables are standard errors.

Further, we used structural equation modeling (SEM) (semopy; Python 3.12) to measure the
impact of management intensity and soil horizon on SOC and other soil properties and illustrate
how these variables interact with each other to produce the overall effect. We followed the
procedures for developing a structural equation model outlined by Li et al. (2019). We initially
proposed a hypothesized model according to background information and then tested the
significance of these pathways. The path coefficients were tested by maximum likelihood
estimation at p < 0.05. We reported the standardized path coefficients that are based on standard
deviation units. Data were scaled using StandardScaler from scikit-learn. Model fit was evaluated

by the goodness of fit index (GFT) and the comparative fit index CFIL.

Results
Chemical and physical bulk soil characteristics

For sites under arable and native prairie land use, soil characteristics such as pH, bulk density,
texture, exchangeable base cations, and reactive Fe and Al oxides observed in A, B, and C horizons
are presented in Tables 1 to 3. Table 1 also includes information regarding the depths of the
individual soil horizons, highlighting the upper and lower depth ranges. Across different sites and
soil depths (i.e., from A to C horizon), soil pH measured in water ranged from 5.3-8.8 for arable

soils and 5.6-8.6 for native prairie soils (Table 1). Silt and clay contents in arable soils ranged from

14
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8.0-74% and 1.3-38%, respectively, whereas in native prairie soils, they ranged from 0-72% and
2.0-34% (Table 1). For reactive Fe and Al oxides phases, we detected ammonium oxalate (AO)
extractable Fe (Feao) and Al (Alao) in the range of 42-2711 mg kg! and 178-1093, respectively,
in arable soils, while in native prairie soils, they were found in the range of 35-2996 mg kg! and
34-1296 mg kg'! (Table 3). Averaged across all sites within each land use system, N-NOj3 and P-
PO4 were significantly higher in arable soils than in native prairie soils in the A horizon. Nitrate-
N was also significantly higher in the C horizon of arable soils than in native prairie soils (Table
S2).
Contents and stocks of bulk soil organic carbon and total nitrogen across soil profiles

Across all 11 sites under arable and native prairie land use, the SOC and total nitrogen (Ny)
contents in the A horizon ranged from 5.5-22 g kg™! (SOC) and 0.5-1.8 g kg™' (Ny) in arable soils
and from 7.0-36 g kg (SOC) and 0.6-3.4 g kg'! (Ny) in native prairie soils (Table 1). Land use
significantly affected the average SOC and N in the A horizon, with larger contents observed in
native prairie soils (22 + 1.2 g kg'! SOC, 1.9 + 0.1 g kg'! Ny) compared to soils under arable land
use (13 +0.8 gkg! SOC, 1.2 £ 0.1 gkg! Ny). In the B and C horizons, SOC and N; contents did
not significantly differ between arable and native prairie soils.

The SOC and N stocks observed in the A, B, and C horizons are shown in Figure 2a and b. In
the A horizon, the SOC and N; stocks observed in arable soils ranged from 2.2-12 kg m2 and 0.2-
1.0 kg m™2, respectively, compared to 3.2-13 kg m (SOC) and 0.3-1.4 kg m (Ny) found in the
native prairie soils. Land use significantly affected SOC and N; stocks only in the A horizon, with
greater SOC and N; stocks found in the native prairie soils (8.0 = 0.9 kg m2 SOC, 0.7 £ 0.1 kg m"

2 Ni) compared to the arable soils (5.3 + 1.0 kg m2 SOC, 0.5 + 0.1 kg m2 Ny).
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Considering fixed depth increments (Figure 3a and b), the stocks in 0-50 cm range from 2.7-
11 kg m2 SOC and 0.3-0.9 kg m? N in the arable soils and from 4.0-17 kg m? SOC and 0.4-1.4
kg m2 N; in the native prairie soils. Significant differences in SOC and N; stocks were observed
only in 0-50 cm depth but not for the 50-100 cm, 100-200 cm, and 200-300 cm depth increments.
In 0-50 c¢m, the SOC and N; stocks were greater in the native prairie soils (9.9 + 0.9 kg m? SOC,
0.9 + 0.1 kg m? Ny) compared to arable soils (7.0 £ 0.9 kg m2 SOC, 0.6 + 0.1 kg m2 Ny). In the
entire 300 cm depth profile, the total amount of SOC and N; stocks ranged from 5.9-35 kg m™
SOC and 0.6-3.1 kg m? N; in arable soils compared to 6.0-35 kg m2 SOC and 0.9-3.5 kg m?2 N;
in native prairie soils. Land use-derived differences in SOC and N; for the total 0-300 cm were
observed for paired sites where soils under arable and native prairie land use were directly adjacent

(Pearl harbor, Wildcat, and Pokorny) (Table S3 and Table S4).

Horizon-specific bulk soil C/N ratio, 6'3C and A"*C signatures

The average C/N ratio of bulk soil in arable and native prairie soils was generally low across
the A to C horizons (Figure S1). In arable soils, the C/N ratio ranged from 9.6-11, while in native
prairie soils, it ranged from 9.0-14. However, no significant differences were observed between
the land use systems for the individual horizons.

The bulk soil 8'3C values detected for the A, B, and C horizons significantly decreased with
depth (i.e., from A to C horizons) independent from the land use type, as shown in Figure 2c and
Table 4. Differences between land use types for specific pedogenetic horizons were not significant
(p>0.05). In the A horizon, an average '3C value of -15.8 + 0.3%o was observed for arable soils
compared to -16.2 + 0.2%o found for native prairie soils. In the B horizon, -17.9 & 0.5%0 was found

for arable soils compared to -17.3 + 0.5%o detected for native prairie soils. In the C horizon, arable
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soils show an average 8!°C value of -21.4 + 0.4%o0 compared to -22.3 + 0.4%o found for native
prairie soils.

The bulk soil A*C values for selected A, B, and C horizons significantly decreased with depth
(i.e., from A to C horizons), which was observed for both land use systems (Figure 2d; Table 4).
The average values for specific horizons indicated that land use significantly affected the A*C
value in the A horizon, with lower A“C for arable soils (-118 + 26%o) (i.c., more depleted)
compared to native prairie soils (-7 = 8.0%o) (i.e., less depleted). In the B horizon, significant
differences in AC were not observed between arable (-518 +75%o) and native prairie soils (-380
+ 83%o). Similarly, in the C horizon, significant differences were not detected between arable (-

746 + 33%0) and native prairie soils (-730 = 38%o) (p = 0.76).

Horizon-specific bulk soil microbial DNA concentrations and microbial community structure

The average soil microbial DNA concentration observed for the individual horizons in arable
and native prairie sites (i.e., 10 sites) decreased with depth, as shown in Figure 4a. In the A horizon,
significantly larger microbial DNA concentrations (153.8 +18 mg kg! soil) were observed in the
native prairie soils compared to the arable soils (57.7 £7.0 mg kg™! soil). In the B horizon, the
amount detected in the arable soils (12.6 + 2.7 mg kg™! soil) did not differ significantly from the
amount observed in the native prairie soils (19.8 + 5.0 mg kg™! soil). A similar observation was
made in the C horizon with no significant differences between the arable (7.5 + 1.2 mg kg™! soil)
and native prairie soils (6.2 1.2 mg kg'! soil).

Analysis of microbial communities showed that the diversity of bacteria and fungi decreased
with depth and responded differently to the type of land use for the individual horizons (Figure 4b-

e). In the A horizon, land use did not significantly affect the bacteria Faith’s phylogenetic diversity
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(Figure 4b) but influenced the distribution of species (Pielou’s evenness), with more species
evenness found in the arable soils than soils under native prairie (Figure 4c). In the B horizon, land
use had a similar effect on the bacteria Faith’s phylogenetic diversity compared to the A horizon
but enhanced species evenness in the native prairie soils compared to soils under arable land use.
In the C horizon, the bacteria Faith’s phylogenetic diversity was significantly higher in the native
prairie soils than in the arable soils. However, species distribution was similar in both land use
systems. In contrast, fungi Faith’s phylogenetic diversity and species distribution for the individual

horizons were not significantly affected by land use (Figure 4d and e).

Correlations between soil organic carbon characteristics and soil chemical, physical, and
biological characteristics

To identify potential factors significantly affecting SOC retention and persistence, Pearson
correlation matrices were generated for the A, B, and C horizons under arable and native prairie
land use (Figure S2a-f). Only significant correlations (p <0.05) are considered below. Except for
pH, 8'3C (%o), and A™C (%o), the parameters used within the correlation analyses were bulk soil
contents in mg kg! or g kg'!.

Generally, a significant correlation between SOC and N; was observed across the individual
horizons regardless of land use type. For the A horizon, the SOC of arable soils was positively
correlated with Alao (r = 0.35, n = 33), 8'°C (r = 0.43, n = 33), phosphate-P (r = 0.53, n = 33),
sulfate-S (r = 0.47, n = 33), and microbial DNA (r = 0.43, n = 20) (Figure S2a). A negative
correlation in arable topsoil was also detected between A'*C and Fepcg (r = -0.89, n = 9). For the
native prairie soils, SOC was positively correlated with silt (r = 0.66, n = 33), exchangeable Ca (r

=0.41,n=33), Feao (r=0.56,n=33), Alao (r=0.53,n=33), Fepcs (r=0.52, n =33), and Alpcs
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(r=10.61, n =33) (Figure S2b). Furthermore, SOC was positively correlated with microbial DNA
(r=0.48,n=19) and sulfate-S (r = 0.44, n = 33), and A'*C was negatively correlated with Feao (r
=-0.78,n=10).

For the B horizon under arable land use, SOC showed positive correlations with silt (r = 0.35,
n =40), Alao (r = 0.33, n =40), and microbial DNA (r = 0.54, n = 22) (Figure S2c¢). Under native
prairie land use, similar parameters as observed for the arable soils, such as Alao (r=0.35,n=41)
and microbial DNA (r = 0.42, n = 22), were positively correlated with SOC (Figure S2d).

For the C horizon, significant relationships between SOC or AC and soil mineral
characteristics were not observed for the arable soils (Figure S2¢). However, SOC was positively
correlated with microbial DNA (r = 0.36, n = 48). For the native prairie soils, SOC was positively
correlated with silt (r = 0.37, n = 80), exchangeable Ca (r = 0.32, n = 80), and Mg (r = 0.28, n =
80), Alao (r =0.26, n = 80), and microbial DNA (r = 0.34, n = 52) (Figure S2f).

Independent of land use type and horizons-specific correlation analysis, results from the SEM
indicated that management intensity negatively affected SOC through microbial DNA (Figure S3).
For instance, if management intensity increases by 1.00 unit, it will cause a 0.17 unit decrease in
microbial DNA, and a 1.00 unit decrease in microbial DNA will lead to a 0.51 unit decrease in
SOC (p <0.05). Increasing soil pH decreased Alao, Feao, Alpca, and Fepcg (p < 0.05). The Alao
and Feao increased SOC (p < 0.05), but Alpcs or Fepcs had no significant effect on SOC (p >

0.05).
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Discussion
Land use affected soil organic carbon storage only in the A horizon or uppermost 50 cm

In the A horizon, significant differences in SOC and N stocks between arable and native prairie
soils suggest an average loss of about 2.7 kg m2 SOC (~ 34%) and 0.2 kg m2 N (~ 29%) due to
the intensification of land use. In most cultivated soils, topsoil SOC and N; stocks are lower relative
to undisturbed native grassland soils. This disparity can be attributed to reduced carbon inputs
from annual crops, characterized by short-growing cycles and shallow root architecture, in contrast
to perennial grasses with extensive root systems that contribute continuously to soil carbon (Chen
et al.,, 2022). Additionally, the lower SOC stocks may result from increased microbial
decomposition of SOC due to disruption of aggregates or topsoil SOC losses due to erosion (for
example, Wiesmeier et al., 2019; Borrelli et al., 2017; Berhe et al., 2018). Previous studies
conducted across the U.S. Midwest and the Great Plains have reported similar SOC losses from
topsoils under cultivation, as found in our study. In a study analyzing one site in Wisconsin,
Jelinski and Kucharik (2009) reported an average loss of 2.4 kg m2 SOC (~35%) and 0.17 kg m™
Nt from the A horizon (0-10 cm depth) of soil under long-term arable land use (~ 60 years) by
comparison to an adjacent soil under native prairie land use. Liebig et al. (2009) analyzed soils
from 42 sites across the U.S. Great Plains (North Dakota, Montana, Wyoming, Colorado, Kansas,
Nebraska, Texas) and found an average loss of about 42% in SOC from near-surface soil (average
depth of 30.5 cm) in long-term arable sites (30-120 years) relative to sites under native prairie. In
the B and C horizons (i.e., subsoil horizons), our study showed no significant effect of land use on
SOC and N; stocks, suggesting that losses due to cultivation mainly impacted the surface horizon
but did not extend into the subsoil horizons. Similarly, Wiesmeier et al. (2013a) did not detect land

use effects on SOC storage in B and C horizons by comparing clay-rich agricultural soils in
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Bavaria, Germany, to native grassland soils. However, A horizon depths can vary largely between
land use types (as shown in Table 1), soil types, and study sites, which makes it difficult to identify
specific soil depths that might need to be sampled and analyzed preferentially to account for the
majority of SOC losses due to disturbances or SOC gains due to improved management. To
address this, we also analyzed differences in SOC and N; stocks for fixed depth increments.

The fixed depth increments analyzed here integrate information from the relative contributions
of different pedogenetic horizons specifically quantified for each arable and native prairie soil
profile. Significant differences in SOC and N stocks between land use types were observed in 0-
50 cm depth, with lower SOC and N; stocks found in the arable soils. Our data suggest here an
average loss of about 2.9 kg m2 SOC and 0.3 kg m N; due to land use change. In Northwestern
Illinois, Olson and Gennadiev (2020) found slightly lower SOC differences (~ 2.41 kg m™) at 0-
50 cm depth by comparing arable soil more than 150 years after conversion to a soil under native
vegetation. In a study conducted in Switzerland by Guillaume et al. (2022), on average, found 3.0
+ 0.8 kg m? less SOC down to 50 cm depth of arable soils compared to soils under permanent
grassland.

In contrast to other studies, we were also able to analyze differences in depth increments across
50 to 300 cm depth. No significant differences in SOC and Nt stocks between the two land use
types were detected for 50-100 cm, 100-200 cm, and 200-300 cm increments. This suggests that
losses due to cultivation were limited to the uppermost 50 cm soil depth, which consists of the A
horizon but can also include proportions of B and C horizons depending on their site-specific
thickness. This also highlights the need to sample soils at least 50 cm deep to capture the soil
volume reflecting most of the changes in SOC storage derived from changes in management or

land use. In line with our observations, results from ten long-term experiments in Germany
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published by Skadell et al. (2023) showed significant impacts of agricultural management on SOC
stocks down to 50 cm depth. In their study, the topsoil (0-30 cm) accounted for 79% of the total
management effects, the upper subsoil (30-50 cm) for 19%, and the lower subsoil (50-100 cm) for
3%. Our study, which analyzed the uppermost 3 m of soil, revealed that the main impact of land
use change on SOC storage was restricted to the top 50 cm. Storage-wise, our data also showed
substantial amounts of SOC stored below 50 cm (57-67%), 1 m (37-45%), and even 2 m (16-19%)
depth (Figure 3a, Figure S5). This highlights the significance of SOC stored at greater depths,

which should be taken into consideration when budgeting for terrestrial carbon storage.

Bulk soil organic carbon is correlated to soil nutrients and microbial DNA depending on the
horizon and land use

Soils under arable and native prairie showed distinct ranges in mineral characteristics (e.g.,
Feao, Alao, Fepcs, Alpca, exchangeable Ca, and clay content: Tables 1 to 3) known to be relevant
for SOC retention (e.g., Rasmussen et al., 2018; Heckman et al., 2021; Hall and Thompson, 2021).
For the A horizon of arable soils (11 sites), the amount of poorly crystalline Al-oxides (Alao) was
the only mineral characteristic significantly related to SOC. In contrast, in the A horizon of native
prairie soils (11 sites), contents of silt, exchangeable Ca ions, and Fe and Al oxides/hydroxides
(Feao, Alao, Fepcs, and Alpcs) were positively correlated with SOC. These results suggest a
stronger influence of soil mineral characteristics on soil carbon retention in topsoils under native
prairie compared to soils under arable land use.

For arable soils, the effects of management practices seem to mask the impact of soil minerals
or are more relevant for the topsoil SOC storage than soil mineral characteristics (An et al., 2023;

Xiao et al., 2023). Differences in tillage intensity, for example, are known to affect SOC levels,
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especially in the topsoil (Cui et al., 2024). The SOC content of the arable soils is, for example,
positively correlated with phosphate-P, suggesting an indirect effect of fertilization via enhanced
crop productivity and higher soil carbon inputs from crop residues (Hijbeek et al., 2019). Crop
productivity and resulting soil carbon inputs in drought-affected agro-ecoregions, as given for our
study sites, are also affected by irrigation, which was used for six of our study sites (Dai, 2011;
Reichstein et al., 2013). Regular high moisture events caused by irrigation can increase the
occurrence of anoxic microsites in soils (Malakar et al., 2022), which can enhance the reductive
dissolution of Fe-oxides relative to Al-oxides due to the biogeochemical transformation of Fe** to
Fe?* (e.g., Barcellos et al., 2018; Malakar et al., 2022; Li et al., 2023). In this scenario, the reductive
dissolution of Fe might weaken organo-Fe complexes, thereby reducing SOC protection against
microbial decomposition (Hall et al., 2018; Hall and Thompson, 2020) relative to the Al species,
which is not redox-sensitive. This might explain the effect of Alao on SOC detected in the arable
soils (Figure S2a), which is consistent with other studies (Rasmussen et al., 2018; Yu et al., 2021).

For the B and C horizons (11 sites for each land use type), correlations between SOC and soil
characteristics were highly variable without consistent patterns. In the B horizon, Alao was the
primary mineral characteristic correlated with SOC content in arable and native prairie soils,
highlighting the importance of poorly crystalline Al-oxides/hydroxides for subsoil SOC retention
across land use types (Hall and Thompson, 2021). In the C horizon, SOC retention was not directly
linked to soil mineral characteristics in the arable soils but was positively correlated with silt,
exchangeable Ca and Mg, and Alao in the native prairie soils. Overall, as assessed by correlation
analyses, the controlling effect of soil mineral characteristics on subsoil SOC (i.e., B and C
horizons) was lower than expected (i.e., less relationship). It is assumed that with increasing soil

depth, organic compounds become smaller and more reactive towards charged mineral surface
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sites because of the ongoing oxidative breakdown (microbial processing) (Kleber et al. 2015).
Consequently, with increasing soil depth, organo-mineral associations should become increasingly
important for SOC retention (Rasse et al. 2006). Preferential flow paths of dissolved OC and the
spatial discontinuity, variability, and heterogeneity of “OM-mineral interaction events” likely
make it difficult to detect linear relationships with individual mineral parameters in the subsoil.
The bulk SOC, as analyzed here, however, consists of different sub-compartments with distinct
soil ecological functions, such as dissolved, particulate, and mineral-associated organic
compounds (Anuo et al., 2023). To better understand the relevance of individual soil mineral
characteristics on subsoil SOC retention, the separation and quantification of mineral-associated
SOC seem to be necessary (Vormstein et al., 2020).

Independent of soil depth/horizon and land use type, SOC was positively correlated with the
microbial DNA content (data from 10 sites for each land use type), which serves as a proxy for
microbial biomass (Gong et al., 2021). The correlation can be interpreted in both directions with
higher substrate (i.e., SOC), resulting in higher microbial biomass. On the other hand, microbial
necromass and microbial decomposition products retained in soil due to associations with soil
minerals, for example, have been identified as major contributors to SOC formation and storage
(Liang et al., 2019). The impact of microbial-derived SOC on the bulk SOC should thereby
increase with more favorable environmental conditions for microbial communities across the soil
profiles in terms of habitat (i.e., pores) and resources (i.e., water, redox partners, nutrients) besides
organic substrate (Kéistner & Miltner, 2018; Wang et al., 2021; Sokol et al., 2022). Accordingly,
we found higher SOC stocks and higher microbial DNA contents for the A horizon of native prairie
soils than for the A horizon of arable soils. This is further elucidated by our SEM results, which

indicate that increased management intensity exerts a deleterious effect on SOC storage overall
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(Figure S3). This negative impact likely results in diminished SOC stocks and reduced microbial

biomass in the more intensively managed arable soils relative to the undisturbed native soils.

Persistence of soil organic carbon increased with soil depth but was affected by land use only in
the A horizon

Bulk soil 8'3C and A*C, which provided more information on SOC turnover and persistence
within the analyzed land use systems, decreased with soil depth (Figure 2 ¢ and d; Table 4). The
813C values were not affected by the type of land use, although our study sites have experienced a
complex vegetation history, including the presence of C3 and C4 plants. The decrease in §'3C with
depth might be explained by differences across horizons in C4 derived carbon inputs (here: Process
1) and with differences in the amount of organic matter highly microbially processed (here:
Process 2).

For Process 1, soil 8!3C values of -22 to -32 %o generally indicate carbon input from Cj plants,
whereas values of -12 to -17 %o suggest carbon input from Cs plants whose biomass is '*C enriched,
leading to less negative 8'*C values as compared with C3 plants (Malo et al., 2005; Slessarev et
al., 2020). In the A horizon, average bulk soil '°C values of -15.8 %o (arable soils) and -16.2 %o
(prairie soils) were found, suggesting Cs-derived carbon inputs for both land use systems. For the
arable soils, the C4-carbon originates from corn (Malo et al., 2005), and for the native prairie soils
from Cs-grasses (Havrilla et al., 2022). In the B horizon, a slight decline in the average §'3C values
(-17.9 and 17.2 %o) compared to the A horizon indicates material with a lower '3C abundance and

less C4 plant derived carbon input. This trend is even stronger in the C horizon, where average
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8!3C values of -21.4 and -22.3 %o were observed. This suggests that the SOC in the C horizon is
dominated by Cs derived carbon.

For Process 2, it is known that microorganisms preferentially metabolize the lighter '2C, thus
enriching the heavier 13C isotope and leading to less negative 8'3C values in organic matter not
fully processed/respired and retained in the soil (Balesdent et al., 2018). The decreasing microbial
DNA content with depth (Figure 4a) points towards an accompanied decrease in microbial
abundance and decomposition activity. This, in turn, seems to contribute to the decrease in §!°C
found for the A, B, and C horizons due to decreasing amounts of highly microbially processed
organic matter and 1*C enriched with depth (Scheibe et al., 2023). Specifically for the C horizons,
the most negative 8'3C values suggest low input of C4 derived carbon, low microbial processing
of organic matter, and low input of microbially processed organic matter mobilized in the A and
B horizons and translocated into the C horizon (Sanderman et al., 2008; Kaiser and Kalbitz, 2012).

The information obtained from A'*C can offer a better understanding in order to untangle the
patterns observed above. The “C analyses showed that land use affected the A'*C value in the A
horizon, with less depleted (younger) A'“C observed in the native prairie soils compared to the
arable soils (Figure 2d and Table 4). It appears that the A horizon has experienced a preferential
loss of more recently incorporated and potentially less protected organic material due to the
conversion of native prairie vegetation into arable land (Finstad et al., 2019). This loss appears to
have resulted in the preservation of older and more stabilized organic materials leading to a higher
mean residence time as inferred from the A'C values (Table 4). A similar observation was
reported by Mikhailova et al. (2018) in the Russian Chernozem with more depleted (older) A'*C
in arable soil relative to soil under native grassland. Our finding that the AC values were

negatively correlated with Fepcp for the arable soils (9 sites) and with Feao for the native prairie
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soils (10 sites) (Figure S2a and b) indicates stronger stabilization of organic matter against
microbial decomposition in the topsoil with increasing content of Fe-oxides/hydroxides. Here,
more crystalline, and less redox-sensitive Fe-species (i.e., Fepcg) seem more relevant in the arable
soils than the native prairie soils. Direct evidence beyond the performed correlation analyses to
prove the assumption that older OC is more stabilized against microbial decay would require
extended decomposition experiments coupled with '*CO, measurements to track the origin of
respired carbon, which is not within the scope of this study.

In the B horizon, no significant differences in the A'*C values were observed between the land
use systems. However, the A*C of SOC in the B horizon of native prairie soils (-380 + 83%o) was
substantially less negative than in arable soils (-518 + 75%o), showing a similar pattern as the A
horizon. Typically, native prairie soil receives a higher continuous input of recently assimilated
OC via plant roots and root exudates as opposed to arable soils, which are often more disturbed
with higher microbial decomposition rates leading to less recent or fresh carbon (Hauser et al.,
2022) (i.e., more depleted or negative A'*C values). The absence of a significant difference in A'*C
between arable and native grassland soil in the B horizon can result from a generally lower
disturbance sensitivity of the subsoil compared to the topsoil. Another factor can be the higher
depth span for the B horizon compared to the A horizon, which would increase the variability for
the B horizon data, making more data (study sites) necessary to detect significant differences.

Independent of land use effect, the A*C values were more negative in the B horizon than the
values detected in the A horizon. This suggests an accumulation of more persistent SOC with
depth, which is not affected by land use. Paul et al. (2001) found similar trends with depth for
SOC-A'"C analyses with *C age in the range of 485 - 1100 years BP in the surface horizon (0-20

cm) of two arable soils derived from grassland soils in the U.S. Midwest compared to 2620 - 3100
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years BP in 25-50 cm depth, and 4412 -6107 years BP in 50-100 cm depth. Overall, the strong
negative A!*C values point towards soil environmental conditions in the B horizons, promoting the
long-term persistence of carbon in this subsoil compartment. Based on the soil 8'*C values (-17.9
and -17.2%o), this carbon might be derived from less microbially processed and stabilized C4-plant
compounds ('*C enriched), highly microbially processed Cs-plant compounds ('*C enriched),
and/or from stabilized microbial biomass (}3C enriched, Coyle et al., 2009).

In the C horizon, an average A*C of -746 + 33%o was detected for the arable soils, which was
very similar to the A*C of -730 + 38%o observed for the native prairie soils. Strong depletion in
A'C at 3 m and deeper was previously reported by Moreland et al. (2021). Our findings indicate
that the SOC persistence continued to drastically increase with depth along pedogenetic boundary
conditions that resulted in the formation of A, B, and C horizons independent of the land use
system. The 8'3C values (-21.4, -22.3 %o) indicate that the organic material in the C horizon was
mainly derived from highly stabilized Cs-plant compounds. An explanation could be that this
material was derived and preserved from the early stages of soil development and revegetation
preceding the last ice age (glacial retreat) (Van Der Voort et al., 2019). Based on historical records,
it is widely recognized that C; grasses were the dominant vegetation in grassland eco-regions
characterized by lower temperatures and varying precipitation levels (Havrilla et al., 2022). It is
probable that during early soil development stages approximately 12,000 years ago (based on
average conventional “C radiocarbon age) (Figure S6), the predominant vegetation consisted of
Cs species (Edwards et al., 2017).

The similar and strong negative A*C and 8'*C values found in this study for the C horizons of
soils under arable and native prairie land use suggest this pedogenetically defined soil environment

to be less affected by inputs of recently assimilated carbon and OC translocation and
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transformation processes that seem to be more important for SOC storage and turnover in A and
B horizons. However, the intensity of subsoil OC responses to changes in management seem to be
affected by site-specific characteristics such as texture (Slessarev et al., 2020) or management
strategy (Tautges et al., 2019), which might not be reflected in the average values across sites as
presented here. Inputs from recently assimilated carbon into the deeper subsoil (i.e., below B
horizon) via roots or dissolved OC might serve immediately as substrate for the subsoil
microorganisms, thereby reducing the imprint of these inputs on bulk soil A™*C and 8'*C values
(Scheibe et al., 2023). This also implies that, especially for the C horizon, more research is needed
to clarify if and how this soil compartment can play a significant role in increasing long-term

carbon storage across the soil profile.

Soil microbial abundance decreased with depth, but community structure was differentially
affected by land use within individual horizons

At the community level, the diversity of bacteria and fungi (Faith’s phylogenetic diversity)
decreased with depth (Figure 4b and d). The highest diversity was observed in the topsoil horizon
(A horizon), while the subsoil horizons (B and C horizons) had lower diversity independent of
land use type. Polain et al. (2020) and Upton et al. (2020) found a similar trend in a 1 m deep soil
profile under arable land use and native grassland, respectively. In their study, the authors found
that both bacteria and fungi diversity decreased with increasing soil depth. The microbial diversity
(bacteria and fungi) observed in our study followed a similar trend as the microbial DNA
concentration (an indicator of microbial biomass) (Figure 4a; Gong et al., 2021), which positively
correlated with SOC content across the individual horizons (Figure S2a-f). In line with this

observation, Bastida et al. (2021) found that increased SOC content significantly enhanced soil
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microbial biomass, influencing the diversity of bacteria and fungi communities. Moreover, studies
have shown that substrate availability plays a crucial role in regulating the diversity of soil
microorganisms under different land use systems (Chen et al., 2022; Han et al., 2023). Thus,
variation in substrate accessibility due to differences in land use types and across depth or horizon
can affect microbial resources (e.g., carbon, nitrogen, phosphorus, sulfur) (Han et al., 2023),
consequently driving changes in community patterns (i.e., distribution) and composition
(Labouyrie et al., 2023).

Although there were no significant changes in the diversity of bacteria and fungi communities
between arable and native prairie soils in the A horizon, the arable soils had a higher degree of
species evenness (Pielou evenness) within the bacteria community compared to soils under native
prairie (Figure 4¢). This observation indicates a relatively balanced distribution among species in
the arable soils, most likely due to a broader array of resources (Romdhane et al., 2022). For
example, studies have shown that agricultural intensification enhanced bacterial diversity in the
topsoil, due to rotations of different crop types and changes in management practices (e.g.,
fertilization) that may result in higher substrate diversity via root, crop residues, and legacy effect
of nutrients (Delgado-Baquerizo et al., 2016; Romdhane et al., 2022). Furthermore, increased
niche availability in arable soils due to soil disturbance or the existence of a heterogeneous
environment with different crop species may result in higher microbial diversity (Labouyrie et al
2023).

Similar to the A horizon, the diversity of bacteria and fungi communities in the B horizon was
not affected by land use. However, within the bacteria community, greater species distribution was
observed in soils under native prairie compared to soils under arable land use (Figure 4c). Since

grassland vegetation consists of perennial plants that continuously contribute to subsoil SOC via
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roots and root exudates (Bai & Cotrufo, 2022), substrate derived from perennial roots, which
extend even up to 2 meters in the native prairie soils studied here, may play a significant role. In
contrast, arable soils are typically cultivated with annual crops with short growing cycles that can
limit the amount of OC inputs into the subsoil (Salonen et al., 2023).

In the C horizon, land use only affected the diversity of the bacteria community, with higher
diversity observed in the native prairie soils compared to arable soils. This observation further
strengthens the hypothesis that alterations in microbial communities in the subsoil could be

impacted by inputs originating from perennial roots (Upton et al., 2020).

Conclusions

Most of the SOC losses due to increased agricultural intensification of native prairie
ecosystems seem to be restricted to the uppermost 50 cm, which might be targeted in future studies
as the minimum sampling depth needed to account for changes in SOC due to changed
management or land use. Relationships between SOC and soil mineral characteristics varied
depending on soil horizon and land use type. Oxalate soluble Al was positively correlated to SOC
in almost all combinations of soil horizon and land use type, while clay content was not correlated
with SOC for any of the analyzed soil environments. This suggests soil mineral characteristics
other than clay content might be more important for predicting soil carbon storage under changing
soil environmental conditions.

For both land use systems, 8'°C and A'YC decreased with soil depth along pedogenetic
boundary conditions that resulted in the formation of A, B, and C horizons. The strong negative
and very similar §!3C and A'C values found for the SOC of the C horizons for both land use types

suggest these carbon pools to be less affected by inputs from recently assimilated carbon.
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However, the increase in bacteria diversity found in the C horizon of native prairie soils as
compared to arable soils suggests that changes in microbial diversity may have been influenced by
inputs from perennial roots. These findings support previously postulated subsoil carbon pathways
(Scheibe et al., 2023), where subsoil inputs of recently assimilated carbon are preferentially used
as substrate by microorganisms populating the deeper subsoil (i.e., below B horizon). Overall, our
study suggests that the impact of land use change on SOC storage is not solely horizon-dependent
but also depth-dependent since the uppermost 50 cm may include A, B, and C horizons based on

their thickness.
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Fig. 2 Mean soil organic carbon (SOC) and total nitrogen (N) stocks (kg m ) (a-b) and & C and
selected A C of SOC (c-d) compared between arable and native prairie sites across A, B, and C
horizons to a depth of 3 m (300 cm). For SOC and total N stocks, the box plots display site-specific
mean values (represented by the scattered orange and green dots) derived from three replicated
cores per site, with a total of 11 sites for each land use type. For the & C and A C of SOC, the
orange and green dots represent the total number of samples utilized for analysis from all A, B,
and C horizons in each land use type. Different letters indicate significant differences (p < 0.05)

between land uses for each horizon.
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Fig. 3 Mean soil organic carbon (SOC) and total nitrogen (N ) stocks (kg m ) compared between
arable and native prairie sites across 0—50, 50-100, 100-200, and 200-300 cm depth increments.
The box plots display site-specific mean values (represented by the scattered orange and green
dots) derived from three replicated cores per site, with a total of 11 sites for each land use type.
Different letters denote significant differences (p < 0.05) between land uses for each depth

increment.
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Fig. 4 Comparison of mean soil microbial DNA concentrations (a) and Faith’s phylogenetic
diversity and evenness (Pielou’s evenness) of soil bacteria (b and c¢) and fungi (d and e)
communities across A, B, and C horizons in arable and native prairie sites. The box plots depict
the total number of samples (n) utilized for analysis from all horizons in both land use types
(represented by scattered orange and green dots). Significant differences between land uses at p <

0.05 for each horizon are indicated by different letters.
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1243

1244

1245

Tables

Table 1. Range, mean, and standard error of soil properties, including pH, bulk density (BD), percentage of sand, silt, and clay content,
soil organic carbon (SOC), and total nitrogen (Nt) concentrations across arable and native prairie sites for A, B, and C horizons.
Significant differences between land uses at p < 0.05 for each horizon are denoted by different letters. Given variations in horizon
thickness across arable and native prairie sites, the upper (minimum) and lower (maximum) depth ranges for individual horizons are
provided. For example, 0-12-38 cm indicates that the upper depth ranged from 0 to 12 cm, while the lower depth ranged from 0 to 38

cm.
. Depth . - P R R
Land use Horizon (ui‘:)er ;ig%:;é;m) Soil pH SOC (g kg 1) N (g kg 1) BD (g cm 3) Sand (%) Silt (%) Clay (%)
0-12-38 5.3-8.0 5.5-22 0.5-1.8 0.8-1.5 18-63 10-56 13-34
Arable A 66+0.1a 13+0.8a 12+0.1a 1.2+0.03a 39+23a 36+20a 23+09a
n=33 n=33 n=33 n=33 n=33 n=33 n=33
Native 5.6-7.3 7.0-36 0.6-3.4 0.9-14 18-92 0-60 2.0-34
rairio A 0-17-38 63+01a 22+12b 19+0.1b 11+0.02a 44+29a 36+24a 19+1.0a
P n=33 n=33 n=33 n=33 n=33 n=33 n=33
6.0-8.7 0.7-18 0.2-1.8 0.8-1.9 13-86 8-60 5-33
Arable B 12-28-170 75+0.1cd 6.1+06¢c 06+0.1¢c 14+004c 39+t21ac 37+16¢c 21+x11¢c
n=40 n=40 n=40 n=40 n=40 n=40 n=40
Native 5.8-8.6 1.2-18 0.1-1.5 1.1-1.9 18-62 14-66 11-34
Prairie B 17-28-176 71+0.1cd 65+06¢c 05+0.04c 15+0.03c 34+16¢c 43+18ac 22+09c
n=41 n=41 n=41 n=41 n=41 n=41 n=41
6.7-8.8 0.5-10 0.04-0.9 1.2-2.3 11-88 8.0-74 1.3-38
Arable C 28-170-300 80+0.1d 25+0.2d 0.3+001d 18+0.03d 40+18ad 42+t15ac 17+0.9d
n=87 n=87 n=87 n=87 n=87 n=87 n=87
Native 6.1-8.6 0.2-5.9 0.04-0.7 1.1-2.3 8.5-98 0-72 2-33
Prairie C 28-176-300 7.8+0.1d 24+02d 0.3+0.01d 1.7+0.03d 45+24ad 38t2ac 16+09d
n=80 n=80 n=80 n=80 n=80 n=80 n=80

n: total number of samples utilized for analysis from all A, B, and C horizons in arable and native prairie sites.

Table 2. Range, mean, and standard error of exchangeable calcium (Ca), magnesium (Mg), potassium (K), and cation exchange
capacity (CEC) across arable and native prairie sites for A, B, and C horizons. Significant differences between land uses at p < 0.05
for each horizon are indicated by different letters.

Land use Horizon Depth ranges (cm) Ca (mg kg”') Mg (mg kg') K (mg kg™) CEC (cmol kg™)
(upper and lower)
Arable A 1881-4548 274-957 198-1093 13-31
0-12-38 3083+106a 604+29a  427+34a 22+07a
n=33 n=33 n=33 n=33
Native prairie A 723-3286 108-822 93-634 5.5-27
0-17-38 2475+103a 514+28a  361+28a 20+038a
n=33 n=33 n=33 n=33
Arable B 1999-6040 291-1377 163-775 13-35
12-28-170 3901+140c 740+38b  338%29c 26+0.7b
n=40 n=40 n=40 n=40
Native Prairie B 2255-5529 484-1030 91-679 16-33
17-28-176 3202+ 118c 789+23b  292+24cd 24+06b
n=41 n=41 n=41 n=41
Arable C 2061-5495 222-1797 129-922 13-35
28-170-300 3612+90c 720+30c  389+24ac 25+05b
n=87 n=87 n=87 n=87
Native Prairie C 259-5446 52-1133 42-812 2.0-33
28-176-300 3178+ 148¢c 639+27c  281+21ac  22+0.8b
n=80 n=80 n=80 n=80

n: total number of samples utilized for analysis from all A, B, and C horizons in arable and native prairie sites.
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Table 3. Range, mean, and standard error of reactive Fe and Al oxides phases across arable and native prairie sites for A, B, and C
horizons. Significant differences between land uses at p < 0.05 for each horizon are indicated by different letters.

Land use Horizon Depth ranges (cm) Alao (mg kg')  Feao(mg kg™') Alpcs (mg kg™') Fepcs (mg kg™)
(upper and lower)
Arable A 193-1093 125-1962 147-974 706-15933
0-12-38 694 + 36 a 859+79a 468 +39 a 3802572 a
n=33 n=33 n=33 n=33
Native prairie A 150-1296 138-1534 103-2196 359-8066
0-17-38 689 + 57 a 833169 a 506 + 69 a 2760 + 342 a
n=33 n=33 n=33 n=33
Arable B 279-954 42-1643 93-900 572-7582
12-28-170 631+25a 739+72a 349+34b 2496 + 307 a
n=40 n=40 n=40 n=40
Native Prairie B 320-1282 253-1791 48-2673 274-10300
17-28-176 717 +42 a 905 + 66 a 551+91b 3071 + 366 a
n=41 n=41 n=41 n=41
Arable C 178-729 56-2711 58-615 375-10678
28-170-300 438+ 14 b 691+52b 216+ 14 ¢ 3112+ 284 a
n=87 n=87 n=87 n=87
Native Prairie C 34-1005 35-2996 31-1826 146-9683
28-176-300 402+19b 676 £ 67 b 242+ 26 ¢ 3106 £ 291 a
n=80 n=80 n=80 n=80

n: total number of samples utilized for analysis from all A, B, and C horizons in arable and native prairie sites.

Alao: ammonium oxalate extractable Aluminum, Feao: ammonium oxalate extractable iron, Alpcs: dithionite citrate bicarbonate
extractable Aluminum; Fepcs: dithionite citrate bicarbonate extractable iron, n: total number of samples from all A, B, and C horizons
in arable and native prairie sites.

1246
Table 4. Summary of range, mean, standard error, and sample size (n) (number of measurements per horizon and land use type) for
5"3C and A'C data of bulk soil organic carbon across A, B, and C horizons in arable and native prairie soils, along with
corresponding radiocarbon ages for reference. Different letters denote significant differences between land uses at p < 0.05 for each
horizon. BP signifies "before present.”
Land use
5'°C (%)
Horizons A B C
-12.8t0-21.6 -12.0t0 -25.7 -11.0t0 -28.4
Arable -15.8+0.3a -17.9+0.5b -214+04c
n=33 n=39 n=87
-13.3t0-19.9 -11.4t0-26.5 -12.210-30.2
Native prairie -16.2+0.2a -17.3+0.5b -22.3+04c¢
n=33 n=41 n=80
A™C (%) (*C age in years BP)
Horizons A B C
-5 to -240 -288 to -800 -399 to -865
-118+26 b -518+75¢ -746 £ 33d
Arable (285 - 2135 yrs.) (2665 - 12890 yrs.) (4030 - 16060 yrs.)
n=9 n=6 n=18
-4810 43 -151 to -688 -114 to -922
Native prairie -7+8a -380+83¢c -730 £ 38d
P (105 - 330 yrs.) (1250 - 9310 yrs.) (910 - 20460 yrs.)
n=10 n=6 n=22
1247
1248
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1279  Figure S1. Mean soil carbon to nitrogen ratio (C/N) of bulk soil for arable (n = 11) and native prairie (n = 11) soils across A, B, and C
1280  horizons. The orange and green dots on the box plot represent individual data points for each horizon. Means with different letters
1281 indicate a significant difference between land uses at p < 0.05.
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1284
1285

1286
1287

1288
1289
1290
1291
1292
1293
1294

soc N, pH Silt Clay Ca Mg Alyo Fexo Alpcs Fepcs 513C Al C M-DNA POP S0, S NO; N

soc 1.00 0.93* -0.03 0.14 0.26 0.16 -0.20 0.35* 0.16 0.14 -0.14 0.43* 0.17 0.43* 0.53* 0.47* 0.01
N 1.00 -0.05 0.04 0.24 0.28 -0.06 0.43* 0.16 0.06 -0.21 0.40* 0.29 0.38 0.58* 0.54* 0.02
Strong +
pH 1.00 0.07 -0.25 0.37* 0.26 -0.06 -0.23 -0.29 -0.15 -0.16 0.54 0.27 -0.04 0.13 -0.31
Moderate +
1.00 0.16 0.17 -0.01 -0.05 0.46* 0.43* 0.49* -0.51* 0.05 -0.21 0.09 -0.01 0.27
silt
Weak +
1.00 0.41* 0.21 0.27 0.10 0.21 0.25 0.17 -0.09 -0.27 0.18 -0.12 -0.06
Clay
Strong -
1.00 0.68* 0.32 0.17 -0.02 -0.06 -0.28 -0.09 -0.09 0.17 0.05 -0.13
Ca Moderate -
1.00 0.38* 0.23 0.01 -0.23 -0.47* 0.14 -0.07 0.19 0.06 -0.16
Mg
Weak -
1.00 0.51* 0.39* 0.03 0.10 -0.10 0.06 0.18 0.24 -0.23
Alpo
1.00 0.58* 0.48* -0.38* -0.62 -0.31 0.02 0.04 -0.03
Feno
1.00 0.59* -0.03 -0.57 -0.41 -0.13 0.19 0.25
AIDCB
Fepcs 1.00 -0.09 -0.89* -0.52* -0.47* -0.12 0.10
513C 1.00 0.07 0.35 -0.04 0.23 -0.11
O 1.00 0.60 0.67* 0.27 0.59
M-DNA 1.00 0.40 0.37 0.16
POSP 1.00 0.35 0.18
S0,z S 1.00 0.19
NO; N 1.00

Figure S2a. Correlations between soil organic carbon (SOC) characteristics and soil physical, chemical, and biological properties in
the A horizon of sites under arable land use. The symbol * indicates a significant correlation at p < 0.05. Abbreviations: SOC: soil
organic carbon content, Ni soil total nitrogen content, M-DNA: microbial DNA concentration, Ca: exchangeable cation, Mg:
exchangeable magnesium, Alao: ammonium oxalate extractable Aluminum, Feao: ammonium oxalate extractable iron, Alpce: dithionite
citrate bicarbonate extractable Aluminum; Fepcs: dithionite citrate bicarbonate extractable iron, NOs™ N: nitrate-nitrogen, PO,*:
phosphate-phosphorous, SO4%: sulphate-Sulphur. Strong positive (r > 0.5), moderate positive (0.3 < r < 0.5), weak positive (0 < r <
0.3); strong negative (r < -0.5), moderate negative (-0.3 = r = -0.5), weak negative (r < 0 to -0.3).
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soc N, pH silt  Clay Ca Mg Al Feno Aloca Feoce  &%C  Amc M-DNA POSP SO2zS NO; N

soc 027 [ 0.41* | 0.26 | 0.53* 052 | 0.12 0.48*  -0.08 | 0.44* | -0.03
N, 013  0.34* 0.8  0.45 0.41*  0.38*  -0.05 0.51*  0.02 0.41*  0.02
I Strong +
pH 024 016 -018  -019  -0.43* -0.38* -0.37* -0.28 0.04 012 | -0.40*  0.36*
silt 1.00  0.35* 0.54* 0.50*  0.47* 0.29 0.50* 0.34* 0.01 0.29 | 0.54* 0.04 0.36*  -0.01 Moderate +
Clay 1.00 0.41*  0.36* 032  0.16 026  -0.37 0.21 0.15 -0.20 Weak +
Ca 0.38*  0.35* 0.27 0.24 0.08  -0.05 0.39 0.18 0.04
I Strong -
Mg 052" g48*  036* 020 025 019 043 017 017
A 1.00 0.35* 003 | 0.38* -0.57 | 0.49*  -0.21 0.21 0.02 Moderate -
A0
Fero 0.35* - 0.47* - 023 [ -0.38* 049 -0.16 Weak -
1.00 0.31 0.07  -0.30 0.43 -0.03 0.17 -0.21
AIDCB
1.00 020  -0.62 0.03 0.1 -0.30
Fepcs
sc 1.00  -0.24 0.06 | <035 0.16 -0.21
1.00 -0.10 0.37 0.13 0.24
A4 C
1.00 0.09  -0.05 0.23
M-DNA
1.00 0.07 0.31
PO P
1.00 0.01
S0z S
1.00
NO; N
1295
1296
1297

1298  Figure S2b. Correlations between soil organic carbon (SOC) characteristics and soil physical, chemical, and biological properties in
1299  the A horizon of sites under native prairie land use. The symbol * indicates a significant correlation at p < 0.05. Abbreviations: SOC:
1300 soil organic carbon content, N:i: soil total nitrogen content, M-DNA: microbial DNA concentration, Ca: exchangeable cation, Mg:
1301  exchangeable magnesium, Alao: ammonium oxalate extractable Aluminum, Feao: ammonium oxalate extractable iron, Alpcs: dithionite
1302 citrate bicarbonate extractable Aluminum; Fepcs: dithionite citrate bicarbonate extractable iron, NOs  N: nitrate-nitrogen, PO4*:
1303  phosphate-phosphorous, SO sulphate-Sulphur. Strong positive (r > 0.5), moderate positive (0.3 < r < 0.5), weak positive (0 < r <
1304  0.3); strong negative (r < -0.5), moderate negative (-0.3 = r 2 -0.5), weak negative (r < 0 to -0.3).
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1305
1306

1307
1308
1309
1310
1311
1312
1313

soc N, pH Silt Clay Ca Mg Alpo Feno Alpcg Fepce 513C A% C M-DNA PO,*P S0,~S NOj; N

soc 1.00 0.82* -0.26 0.35* 0.25 -0.04 -0.12 0.33* 0.20 0.21 0.02 0.65* 0.73 0.54* 0.02 -0.36* -0.15
N 1.00 -0.40* 0.23 0.22 -0.29 -0.04 0.31* 0.13 0.26 0.05 0.55* 0.498 0.48* 0.09 -0.26 -0.12
't
Strong +
1.00 -0.23 -0.53* 0.52* 0.13 -0.49* -0.55* -0.54* -0.44* -0.27 -0.16 -0.19 -0.27 0.48* 0.17
pH
Moderate +
1.00 0.12 -0.19 0.05 0.25 0.56* 0.36* 0.32* 0.27 0.36 0.26 0.41* -0.05 0.12
silt
1.00 -0.17 0.06 0.42* 0.37* 0.23 0.05 0.41* 0.05 -0.06 -0.02 -0.28 -0.14 Weak +
Clay
1.00 -0.11 -0.28 -0.41* -0.37* -0.32* 0.03 0.49 -0.15 -0.33* 0.17 0.03
Ca Strong -
1.00 0.13 0.18 -0.02 -0.06 -0.03 -0.25 -0.11 -0.15 0.27 0.35
Mg
Moderate -
Al 1.00 0.47* 0.45* 0.29 0.49* -0.03 -0.09 0.34* -0.51% -0.39*
AO
Fe 1.00 0.55* 0.54* 0.15 0.22 0.06 0.34* -0.21 0.13 Weak -
AO
1.00 0.79* 0.31* 0.48 0.09 0.16 -0.25 -0.21
Alpcg
1.00 -0.03 0.27 -0.07 0.15 -0.29 0.01
Fepcs
. 1.00 0.87* 0.28 0.05 -0.29 -0.28
we 1.00 0.35 -0.33 -0.16 0.80*
A
1.00 -0.09 -0.23 -0.14
M-DNA
1.00 -0.27 -0.03
PO P
1.00 0.50*
S02S
1.00
NO; N

Figure S2c. Correlations between soil organic carbon (SOC) characteristics and soil physical, chemical, and biological properties in
the B horizon of sites under arable land use. The symbol * indicates a significant correlation at p < 0.05. Abbreviations: SOC: soil
organic carbon content, Ni soil total nitrogen content, M-DNA: microbial DNA concentration, Ca: exchangeable cation, Mg:
exchangeable magnesium, Alao: ammonium oxalate extractable Aluminum, Feao: ammonium oxalate extractable iron, Alpce: dithionite
citrate bicarbonate extractable Aluminum; Fepcs: dithionite citrate bicarbonate extractable iron, NOs™ N: nitrate-nitrogen, PO,*:
phosphate-phosphorous, SO4%: sulphate-Sulphur. Strong positive (r > 0.5), moderate positive (0.3 < r < 0.5), weak positive (0 < r <
0.3); strong negative (r < -0.5), moderate negative (-0.3 = r = -0.5), weak negative (r < 0 to -0.3).
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1314
1315

1316
1317
1318
1319
1320
1321
1322

soc N, pH silt Clay Ca Mg Alyo Feno Alpcs  Fepcs 51C A“C M-DNA  POSP  SOZS NOy N

soc 1.00 - -0.36* 0.17 0.05 -0.12 -0.35* 0.35* 0.08 0.13 0.07 0.33* 0.20 0.42* -0.34* 0.02 -0.01
N, 1.00 -0.45* 0.16 0.03 -0.37* -0.51* 0.43* 0.02 0.23 0.13 0.31* 0.15 0.37 -0.18 0.01 -0.02
" 1.00 -0.17 -0.23 0.38* -0.51% - -0.35* -0.47* -0.04 -0.74 -0.20 0.02 0.44* 0.22 I Strong +
p!
1.00 -0.42* -0.45* 0.04 0.04 0.07 0.26 -0.10 -0.79 0.31 0.44* 0.16 0.02 Moderate +
silt
1.00 0.12 0.45* 0.13 0.18 0.25 0.17 -0.03 0.53 0.25 -0.18 -0.14 0.01
Clay Weak +
ca 1.00 0.44* 0.41*  -0.42* -0.27* - 0.05 -0.42 -0.35 -0.16 0.30* 0.23
Mg 1.00 -0.22 -0.13 0.14 -0.27 -0.18 0.34 -0.41* -0.06 0.12 0.09 I Strong -
Al 1.00 0.48* 0.48* 0.29 0.37 0.50* 0.17 -0.03 -0.14
A0 Moderate -
Feno 1.00 0.52* 0.04 0.75 0.21 -0.09 -0.17 0.17
Weak -
Alpes 1.00 0.52* 0.02 0.19 0.11 0.03 0.05 0.24
Feoce 1.00 -0.05 -0.04 0.27 0.02 0.02 -0.25
N 1.00 0.57 0.36 -0.38* 0.34* 0.35
513C
1.00 -0.03 -0.77 -0.56 0.53
A1 C
1.00 0.11 0.33 0.14
M-DNA
1.00 0.03 -0.02
PO P
1.00 0.46*
SO2S
1.00
NO; N

Figure S2d. Correlations between soil organic carbon (SOC) characteristics and soil physical, chemical, and biological properties in
the B horizon of sites under native prairie land use. The symbol * indicates a significant correlation at p < 0.05. Abbreviations: SOC:
soil organic carbon content, Ni: soil total nitrogen content, M-DNA: microbial DNA concentration, Ca: exchangeable cation, Mg:
exchangeable magnesium, Alao: ammonium oxalate extractable Aluminum, Feao: ammonium oxalate extractable iron, Alpce: dithionite
citrate bicarbonate extractable Aluminum; Fepcs: dithionite citrate bicarbonate extractable iron, NOs™ N: nitrate-nitrogen, PO,
phosphate-phosphorous, SO4%: sulphate-Sulphur. Strong positive (r > 0.5), moderate positive (0.3 < r < 0.5), weak positive (0 < r <
0.3); strong negative (r < -0.5), moderate negative (-0.3 = r = -0.5), weak negative (r < 0 to -0.3).
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1323

1324
1325
1326
1327
1328
1329
1330

soc N, pH silt Clay ca Mg Alyo Feno Alpcs Fencs &3¢ AMC M-DNA PO/#P SO2zS NO; N

soc  1.00 0.66* -0.08 0.17 0.16 -0.03 0.15 0.18 0.09 0.13 -0.07 0.31* 0.37 0.36* -0.04 0.17 -0.12
N, 1.00 -0.39* 0.29* 0.31* 0.15 0.19 0.35* 0.23* 0.22* 0.03 0.09 0.06 -0.02 0.20* -0.28* -0.16
1.00 -0.29* -0.47* 0.31* -0.04 -0.29* -0.62* -0.56* -0.41* 0.12 -0.29 -0.03 -0.64* 0.44* 0.29* Strong +
pH
1.00 -0.01 -0.21* 0.15 0.22 0.39* 0.35* 0.45* -0.35* -0.02 -0.07 0.28* -0.32* -0.16 Moderate +
silt
1.00 0.15 0.42* 0.32* 0.47* 0.30* 0.13 -0.16 0.12 0.11 0.28* -0.21* 0.01
Clay Weak +
1.00 0.04 -0.27 -0.12 -0.26* -0.09 -0.17 0.31 0.16 -0.38* 0.41* 0.54*
Ca Strong-
1.00 0.36 0.22* 0.22* 0.21* -0.26* -0.42 0.19 -0.07 0.18 0.06
Mg
Moderate-
1.00 0.30* 0.44* 0.1 -0.01 0.04 -0.04 0.36* -0.43* -0.45*
Alno
1.00 068 WozzW .03 o0t 042 | 046  -029*  -0.01 Weak -
Fexo
1.00 0.74* -0.11 0.08 -0.24 0.45* -0.32* -0.22
AIDCB
1.00 -0.35* 0.14 0.15 0.27* -0.31* -0.03
Fepce
1.00 0.02 0.12 -0.22* 0.09 -0.27*
513C
1.00 -0.32 0.14 0.15 0.29
At4C
1.00 -0.10 -0.19 -0.11
M-DNA
1.00 -0.35% -0.31*
PO P
1.00 0.70*
SO S
1.00
NO,; N

Figure S2e. Correlations between soil organic carbon (SOC) characteristics and soil physical, chemical, and biological properties in
the C horizon of sites under arable land use. The symbol * indicates a significant correlation at p < 0.05. Abbreviations: SOC: soil
organic carbon content, Ni soil total nitrogen content, M-DNA: microbial DNA concentration, Ca: exchangeable cation, Mg:
exchangeable magnesium, Alao: ammonium oxalate extractable Aluminum, Feao: ammonium oxalate extractable iron, Alpce: dithionite
citrate bicarbonate extractable Aluminum; Fepcs: dithionite citrate bicarbonate extractable iron, NOs~ N: nitrate-nitrogen, PO,
phosphate-phosphorous, SO4%: sulphate-Sulphur. Strong positive (r > 0.5), moderate positive (0.3 < r < 0.5), weak positive (0 < r <
0.3); strong negative (r < -0.5), moderate negative (-0.3 = r = -0.5), weak negative (r < 0 to -0.3).

65



1331
1332

1333
1334
1335
1336
1337
1338
1339

soc N, PH Silt Clay Ca Mg Al Feno Al Feocs  3%C AtC M-DNA POSP SO2S NOy N

soc 1.00 0.52% 0.10 0.37* 0.08 0.32* 0.28*  0.26* 0.06 -0.07 0.09 0.41* 0.23 0.34* -0.21 -0.18 -0.01
N, 1.00 -0.16 0.37* 0.07 0.08 0.31* 0.34* 0.16 0.12 0.09 0.37* 0.21 0.41* 0.17 -0.30* -0.09
pH 1.00 0.20 0.15 057 0.37* 0.02 -0.29* -0.25* -0.12 0.02 -0.53* -0.40* 0.17 0.30* 0.11
Strong +
si 1.00 0.25*  0.41* | 0.74* @ 0.50* 0.25% 0.22* 0.36* 0.04 -0.46* -0.11 0.26* -0.05 0.02
it
Moderate +
o 1.00 | .54 0.54*  0.50* 0.24* 0.41*  0.35* -0.10 0.39 0.07 0.26* 0.18 -0.09
ay
1.00 * * N . o o q * 3
ca 0.49 0.31 0.01 0.01 0.15 0.16 0.26 0.12 0.24 0.38 0.03 Weak +
1.00 [HO:59¢ 0.25% 025  0.30% -0.01 -0.56* -0.19 0.36* 0.15 -0.06
Mg Strong -
1.00 0.49* 0.49*  0.43* 0.02 -0.06 -0.10 0.43* 0.16 -0.19
Alxo Moderate -
1.00 0.50* 0.79* -0.17 -0.06 -0.04 0.32* -0.02 -0.20
Fexo
Weak -
1.00 0.53* -0.13 -0.21 0.04 0.42 -0.12 -0.16
AIDCB
1.00 -0.21 -0.17 -0.07 0.15 0.02 -0.18
Fepcs
1.00 0.13 0.32* -0.21* -0.02 0.06
513C
1.00 0.67* -0.32 0.13 0.08
AMC
1.00 0.15 -0.22 -0.07
M-DNA
1.00 -0.15 -0.19
POSP
1.00 0.05
S0 S
1.00
NO;- N

Figure S2f. Correlations between soil organic carbon (SOC) characteristics and soil physical, chemical, and biological properties in the
C horizon of sites under native prairie land use. The symbol * indicates a significant correlation at p < 0.05. Abbreviations: SOC: soll
organic carbon content, Ni soil total nitrogen content, M-DNA: microbial DNA concentration, Ca: exchangeable cation, Mg:
exchangeable magnesium, Alao: ammonium oxalate extractable Aluminum, Feao: ammonium oxalate extractable iron, Alpce: dithionite
citrate bicarbonate extractable Aluminum; Fepcs: dithionite citrate bicarbonate extractable iron, NOs™ N: nitrate-nitrogen, PO,
phosphate-phosphorous, SO4%: sulphate-Sulphur. Strong positive (r > 0.5), moderate positive (0.3 < r < 0.5), weak positive (0 < r <
0.3); strong negative (r < -0.5), moderate negative (-0.3 = r = -0.5), weak negative (r < 0 to -0.3).
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1340
1341

1342

Horizon mgt_intensity pH

-0.898 -0.655 -0.548 -0.057 -0.170 0.043
-val: 0.00 -val: 0.00 -val: 0.00/ p-val 0.02 p-val 0.00 /p-val: 0.36

-0.449 -0.422 -0.461
p-val: 0.00J p-val: 0.00 \p-val: 0.00

J
AO0AL AOFe DCBAI Mg Silt DCBFe

-0.235

Carbonl4 DNA Carbonl3

0.791 0.096 0.075 -0.029
p-val: 0.00 -val: 0.00 /' p-val: 0.01 p-val 0.25
Y
STN SocC

1343
1344
1345
1346

1347
1348
1349
1350
1351

1352

1353

1354

Figure S3. Structural equation model measuring the impact of management intensity and soil horizon on SOC and other soil
biogeochemical properties and how these variables interact with each other to produce the overall effect on SOC storage. Boxes
indicate variables. An arrow represents a causal relationship (P < 0.05). The arrow direction indicates the direction of effect. Numbers
beside arrows are standardized path coefficients. GFI = 0.568, and CFl = 0.580. All the data was log-transformed for normality.
Abbreviations: mgt_intensity: management intensity, carbon 14; A™C, carbon 13; 5'*C, DNA: microbial DNA.
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1355  Table S1. Site names, locations, climatic conditions, vegetation, and management practices, parent material, soil type, and dominant
1356  soil orders in arable and native prairie sites studied to evaluate the impact of land use on soil organic carbon (SOC) stocks.
1357  Abbreviations: MLRA = Major land resource areas of the United States, MAT = Average annual temperature (range), MAP = Average
1358  annual precipitation (range).

1359
Sites name Location Latitude Longitude MLRA  MAT (°C) MAP (mm) Vegetation & Soil texture Soil order  Parent
(dec. °N) (dec. °W) management material
practices

Native prairies sites

Derrhouse Grand Island  40.73135 -98.56863 71 9-11 560-750 Prairies in this Loamy Sand  Entisols Loess
location support and
short, mid, and tall Mollisols

grasses, e.g., big
bluestem, little
bluestem,
switchgrass, Indian
grass, side oats
grama, blue grama,
western
switchgrass, needle
and thread, prairie
sand reed, sand

bluestem

Pearl Harbor Ambherst 40.875022 -99.195397 Loam

Marie Ratzlaff  Aurora 40.737911 -97.881464 75 10-12 590-800 Prairies in these Loam Mollisols Loess
locations support
mid and tall

grasses, e.g., big
bluestem, little
bluestem,
switchgrass, Indian
grass, side oats
grama, western

wheatgrass
Philips Philips 40.919625  -98.207931 Sandy-loam
Wildcat Wachiska 40.16765 -96.526783 Sandy loam
or sandy
clay loam
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Belz

Norfolk

41.953158

-97.262828

102C 6.6-10.6 620-790

Prairie support little
bluestem, big
bluestem,
switchgrass,
western
wheatgrass,
Side oats grama,
Porcupine, green
needlegrass, and
western
wheatgrass

Loam or clay
loam or silt
loam

Mollisols

Loess

Nine-mile

Pokorny
Prairie pine
Fricke

Lincoln

Midland
Lincoln
Fall city

40.86986

41.61277
40.844422
40.151422

-96.80563

-97.11305
-96.567278
-95.539531

106 9.8-13.3 730-1040

Prairies in these Loam

locations support

big bluestem, little

bluestem,

switchgrass,

Indian grass,

porcupine grass,

side oats grama,

switchgrass, and

some wildrye
Silt loam
Loam
Loam or silt
loam

Mollisols,
Alfisols,
and
Entisols

Loess

Zorinsky

Omaha

41.21543

-96.16649

107 6.7-13.4 700-1120

Prairies in this area  Silt loam
support tall grasses

and short grasses,

e.g., blue grama,

mubhly, lovegrass,

wheatgrass, little

bluestem, big

bluestem, Indian

grass, and

wild rye.

Mollisols
and to a
lesser
degree
Alfisol and
Entisols

Loess

Eddyville

Eddyville

41.014392

-98.624322

Arable sites

71 9-11 560-750

69

Corn, soybean,
alfalfa, and seed
crops were
commonly grown in
these areas.

Sandy clay
loam or loam

Entisols
and
Mollisols

Loess



Crops received
water through
precipitation
(somewhat erratic)
and irrigation
(gravity and lateral-
move pivot
irrigation systems.

Sites were under
no-till, mulch-till
and were fertilized.

Cover crops
commonly grown
were cereal rye,
ryegrass, hairy
vetch, wheat,
cowpea, and oat

Pearl Harbor Amherst 40.87485 -99.19735
Knorr-Holden  Scottsbluff 41.944 -103.70041
Wildcat Wachiska 40.164144  -96.525508 75 10-12 590-800 Crops commonly Sandy loam  Mollisols Loess

70

grown were wheat or sandy
and sorghum, but clay loam
predominantly corn

and soybean.

Precipitation was
moderate,
somewhat erratic,
and was the source
of water for grain
crops. In Clay
Center and Philips,
crops were irrigated
using sub-surface
drip and center
pivot irrigation
methods.

Cover crops
commonly grown
were cereal rye,



Clay Center

Philips

Harvard

Philips

40.5743

40.922722

-98.129056

-98.215613

ryegrass, hairy
vetch, wheat,
cowpea, radish,
and mixed.

Sites were under
no-till and fertilized.

Clay loam or
loam

Sandy loam
or sandy
clay loam

Dairyland

Pokorny

Firth

Midland

40.55361

41.611606

-96.54539

-97.110539

106

10-13

71

730-1040

Crops grown were Loam Mollisols,

corn, soybean, and Alfisols,

alfalfa. and
Entisols

Precipitation is

generally adequate

for crop production

in these areas

except in Dairyland,

where crops were

irrigated (center-

pivot irrigation)

Cover crops
commonly grown
were cereal rye,
ryegrass, hairy
vetch, wheat,
cowpea, radish,
and mixed.

sites were under Silt loam
no-till (except

Rogers Memorial,

under reduced

tillage-chisel plow)

and fertilized.

Loess



1360
1361
1362

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377

Mead Ithaca 40.85163 -96.46545 Silt loam or
clay loam
Rogers Lincoln 40.85163 -96.46545 Silt loam or
Memorial clay loam
Glacier Creek  Omaha 41.3455 -96.1414 107B 6.7-13.4 700-1120  Major arable crops  Silt loam Mollisols Loess
grown were corn and, toa
and soybean. lesser
degree,
Precipitation is the Alfisol and
main source of Entisols

moisture for crops.

Cover crops
include ryegrass,
hairy vetch, wheat,
cowpea, radish,
and cereal rye.

The site was under

no-till, mulch-till,
and fertilized

F# USDA-NRCS (2022).
* For MAT and MAP, values are 30-year averages (1981-2010) based on the PRISM data set
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1378
1379
1380
1381
1382

1384
1385
1386
1387
1388
1389
1390

Table S2. Range, mean, and standard error of soil available nitrate-N (N-NOs), phosphate-P P-PO.), and sulphate-S (S-SO4)
concentrations across arable and native prairie sites for A, B, and C horizons. Significant differences between land uses at p <0.05
for each horizon are denoted by different letters.

Land use Horizon  Depth ranges (cm) N-NO; (mg kg?') P-POs(mgkg')  S-SO,(mg kd3p3
(upper and lower)
Arable A 1.7-47 1.0-115 2.9-26
0-12-38 9+19a 35+56a 10+0.8a
n=33 n=33 n=33
Native prairie A 0.2-10 1.0-34 1.3-22
0-17-38 3+04b 10+15b 11+07a
n=33 n=33 n=33
Arable B 0.3-31 1.0-81 1.3-55
12-28-170 5+1.0cd 15+2.7Db 13+1.7a
n=40 n=40 n=40
Native Prairie B 0.1-7.6 1.0-52 1.7-55
17-28-176 1.0+02e 12+1.8Db 82+13a
n=41 n=41 n=41
Arable C 0.3-35 1.0-93 1.3-48
28-170-300 5+09d 24+26¢C 11+10a
n=87 n=87 n=87
Native Prairie C 0.2-8.8 1.0-57 1.2-53
28-176-300 09+01f 16+14c 9+09a
n=80 n=80 n=80

n: total number of samples utilized for analysis from all A, B, and C horizons in arable and native prairie sites.
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1391  Table S3. Mean and standard error of soil organic carbon (SOC) stocks for individual arable (n=11) and native prairie (n=11) sites,
1392  showing the amount of SOC stored in 0-50, 50-100, 100-200, and 200-300 cm depth increments, as well as the cumulative value for
1393  the entire 0-300 cm depth. The mean values presented are site-specific and were derived from three replicated cores per site, with a
1394  total of 11 sites for each land use type.

1395
1396
Land use
SOC (kg m?)

Arable Depth (cm) 0-50 50-100 100-200 200-300 0-300
Dairyland 10+1.0 22+03 40+0.8 34+0.3 19+0.1
Pokorny 88111 7.8+£0.9 11+18 6.8+1.2 35+01
Glacier creek 27101 1.9+£03 34+£04 3.5+£04 11+0.1
Knorr-holden 27+0.2 1.2+£05 1.1+0.1 0.9+01 59101
Roger’s memorial 6.8+1.3 40+14 42+14 3.0£01 18+0.3
Pearl harbor 57+0.7 3.2+£0.7 3.3£0.2 24+01 14 £ 0.1
Wildcat 11+£19 40+14 58+1.0 42 +0.1 25+0.3
Philips 87+19 6.3+23 6.8+1.7 3.2+0.3 25+04
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Mead

Eddyville

Clay center

Native prairie

Nine-mile

Pokorny

Zorinsky

Derrhouse

Prairie pine

Pearl harbor

Wildcat

Depth (cm)

11+0.1

3.9+£0.2

52+14

0-50

12+0.9

17+£1.9

7.8+0.7

40+0.2

9.7+0.9

8.4+26

9.7+0.3

9515

3.5+0.3

34+20

SOC (kg m?)

50-100

48+0.6

8.5+17

2804

0.8+0.2

53%+1.0

89+1.0

75

8.1+1.8

6.5+0.7

3.0+£0.5

100-200

3.7+0.5

5717

4712

0.6 +0.1

45+0.8

6.4+0.3

8.9+4.0

5.1+0.8

5.5+0.5

26+0.2

200-300

28+13

42+1.0

4006

0.5+0.02

3.1+£0.2

34+0.9

5.7+3.9

34+0.3

19+ 01

14+04

0-300

23+0.2

20+0.2

23+x04

33+1.0



Philips 10+1.2

Fricke 11 +£0.9

Belz 10+04

Marie Ratzlaff 86+1.3

1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
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1420
1421
1422
1423
1424
1425

Table S4. Mean and standard error of soil total nitrogen (N;) stocks for individual arable (n=11) and native prairie (n=11) sites,
showing the amount of N; stored in 0-50, 50-100, 100-200, and 200-300 cm depth increments, as well as the cumulative value for the
entire 0-300 cm depth. The mean values presented are site-specific and were derived from three replicated cores per site, with a

total of 11 sites for each land use type.

Land use

Arable

Dairyland

Pokorny

Glacier creek

Knorr-holden

Roger’s memorial

Pearl harbor

Wildcat

Philips

Depth (cm)

0-50

09+0.1

0.6+0.1

0.3 +0.01

0.3+0.02

0.6+0.1

0.5+0.1

09+0.1

09+0.1

N: (kg m?)
50-100

0.3+0.02

0.3+0.02

0.2+0.03

0.2+0.03

0.4+0.1

0.3+0.1

0.4+0.1

77

100-200

0.5+0.1

0.6 +0.1

0.4 £0.04

0.1+0.01

0.5+0.1

0.4 +£0.01

0.7+0.1

0.9+0.1

200-300

0.5+0.1

0.5+0.1

0.5+0.03

0.09+0.01

0.5+0.01

0.5+0.04

0.7+0.1

0.6 £0.04

0-300

2.2+0.01

1.9 +0.01

1.4 +0.01

0.6 £0.004

2.1+0.02

1.7 £ 0.01

2.8+0.01

3.1+0.03



Mead

Eddyville

Clay center

Native prairie

Nine-mile

Pokorny

Zorinsky

Derrhouse

Prairie pine

Pearl harbor

Wildcat

0.8 +0.03

0.4 £0.01

0.5+0.1

Depth (cm) 0-50

09+0.1

1.4+01

0.7+0.1

0.4 £0.02

0.8+0.1

06+0.2

0.5+0.1

0.7+0.1

0.2 £0.01

0.4+0.1

N: (kg m?)
50-100

0.7+0.1

0.2 +£0.02

0.15+0.01

0.3+0.03

0.4+0.1

0.2+0.1

78

0.6 +0.1

0.4 £0.04

0.4 £0.04

100-200

0.3+0.03

0.6+0.1

0.4 £0.04

0.2+0.1

0.5+0.1

0.5+0.1

0.4+0.1

0.5+0.1

0.4 £0.04

0.5+0.1

200-300

0.3 +0.01

0.6+0.1

0.4 £0.01

0.2+0.1

0.4 £0.02

0.4 £0.01

0.4+0.1

2.6 £0.01

1.4 +0.01

1.8 +0.02

0-300

2.0+0.01

3.5+0.01

1.8 +0.01

0.9 +£0.01

2.1+0.01

2.0+0.04

1.6 + 0.004



1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445

Philips

Fricke

Belz

Marie Ratzlaff

1.2+0.3

09+0.1

0.9 +£0.04

0.4+0.1

0.2+0.03

0.4 £0.02

0.4+0.1

79

0.5+0.1

0.4 +£0.01

0.4 +£0.02

0.6+0.1

0.4+0.1

0.4 £0.02

0.4+0.1

2901

1.9 +0.01

2.1+£0.004

2.1+0.02
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1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466

Figure S5. Summary of the mean and standard error of soil organic carbon (SOC) and total nitrogen (N;) stocks for the 11 arable and
11 native prairie sites, showing the amount of SOC and N; stored in the 0-50 cm, 50-100 cm, 100-200 cm, and 200-300 cm depth
increments, as well as the total amount in the 0-300 cm depth range.

Land use Depth (cm)
SOC (Kg m'z) 0-50 50 -100 100 -200 200 -300 0-300
Arable sites (n=11) 7.0+0.9 43+0.7 53+0.8 3.7+04 203127
Native prairie sites (n=11) 99109 46+0.7 50+£0.6 3.6+£05 23.2+24
STN (Kg m'z) 0-50 50 -100 100 -200 200 -300 0-300
Arable sites (n=11) 0.6+0.1 0.4+0.1 0.5+0.1 0.5+0.1 20+0.2
Native prairie sites (n=11) 09+01 04101 0.5+01 04101 22+0.2
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1467

1468  Table S6. Summary of range, mean, standard error, and sample size (n) (humber of measurements per horizon and land use type)
1469  for A™C of bulk soil organic carbon across, showing the radiocarbon ages across A, B, and C horizons in arable and native prairie
1470  soils. BP signifies "before present.”

1471

Land use
Ac (%o) (**C age in years BP)

Horizons A B C

(1102 + 240 yrs.) (6415 + 1502 yrs.) (11933 £ 920 yrs.)
Arable n=9 n=6 n=18

. . (190 + 48 yrs.) (5161 £ 1224 yrs.) (11930 + 1046 yrs.)
Native prairie n=10 n=6 n=22
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