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Abstract

Searching for biopolymers having a predefined func-
tion is a core problem of biotechnology, biochemistry
and pharmacy. On the level of RNA sequences and
their corresponding secondary structures we show
that this problem can be analyzed mathematically.
The strategy will be to study the properties of the
RNA sequence to secondary structure mapping that
is essential for the understanding of the search pro-
cess. We show that to each secondary structure s
there exists a neutral network consisting of all se-
quences folding into s. This network can be modeled
as a random graph and has the following generic
properties: it is dense and has a giant component
within the graph of compatible sequences. The neu-
tral network percolates sequence space and any two
neutral nets come close in terms of Hamming dis-
tance. We investigate the distribution of the orders
of neutral nets and show [10] that above a certain
threshold the topology of neutral nets allows to find
practically all frequent secondary structures.

1. Introduction

An RNA structure with a given shape or function is as-
sumed to be formed by many RNA sequences. Their dis-
tribution in sequence space is of particular importance
for the hardness of the corresponding search problem.
The structure of a biopolymer is defined only in the con-
text of some physical conditions. Minimum free energy
structures for example fulfill the thermodynamic condi-
tion of a molecular ground state, or kinetic structures
that are understood as the well defined outcome of a

controlled process of biopolymer formation. In an ab-
stract sense this means that one is interested in a (local)
point to point assignment of sequence space and shape
space. In general such a mapping will not be one-to-one:
many sequences may be mapped into the same struc-
ture. The degree of this redundancy will strongly de-
pend on the notion of structure applied. Structure in
X-ray crystallography is tantamount to a set of atomic
coordinates and at sufficiently high resolution structures
are unique in the sense that structures from different se-
quences will never coincide. Molecular biologists, how-
ever, commonly apply another, a coarse-grained notion
of structure when, for example, they say intuitively that
two proteins have the same structure. An appropriate
coarse grained notion of structure apparently is context
dependent and thus anything but trivial.

In this paper we are dealing with RNA molecules.
Secondary structures are used as appropriate examples
for structural coarse-graining. They are sufficiently sim-
ple to allow statistical analysis by means of conventional
combinatorics [9]. The relation between RINA sequences
and secondary structures is understood as a (non invert-
ible) mapping from sequence space into shape space [3,
5, 6]. RNA secondary structures distinguish only paired
and unpaired regions irrespective of the particular bases
at the individual positions (G, C, A, or U). Therefore
many different sequences the so called compatible se-
quences can meet the base pairing conditions as deter-
mined by a given secondary structure. For the biophysi-
cal alphabet the number of compatible sequences is read-
ily computed for any given secondary structure s, with u
unpaired bases and p base pairs to be 4* - 6. The num-
ber of compatible sequences is certainly substantially
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2.1 Density

. We shall discuss in this section the density property of

random graphs I'y, < Q7 where QF is a generalized
hypercube, i.e., the graph formed by all n-tuples of co-
ordinates ; contained in a finite set .4 (of cardinality o)
where each two tuples are neighbors when they differ in
exactly one coordinate.

Let H be a finite graph. A subgraph G < H is called
dense in H if and only if v[G] = v[H].

We will establish the existence of a “critical” A-
value, A* that has the following property: for A < A*
a.a.s. (asymptotically almost surely) no random graph
T’ is dense and for A > A* a.a.s. every random graph T,
is dense. We will call A\* the threshold value for the den-
sity property. For this purpose we consider the random
variable

Za(l'a) = [{v €v[Qq]|v & v[[n]} | (1)
that is defined on £, and counts the number of ver-
tices having no adjacent vertex v € v{I';]. We first
compute the asymptotic distribution of the following se-
quence of random variables (Z,) associated to the se-
quence of probability spaces (). For this purpose we
make use of the sieve formula [2] (p.17) that implies a
number of results about the convergence in distribution
for a sequence of integer valued random variables (Xy)-
Theorem 1. Let (X*')ie v be a sequence of non-negative
integer valued random variables such that

Yre N: lim E[X,], = E[X],
n—00
and
YmeN: rl_i+m E[X], »m/rl=0

Then we have the following convergence in distribution:
Xn — X.
Proof. (2, p.23] 4

Corollary 1. Let p = p(n) be a bounded, non-negative
function on IN and assume a sequence of non-negative
integer valued random variables (X;); v to be given.
Suppose for an arbitrary natural number r we have

. 3 T

,,IEI;IOE[X"]" " =0.
Then the following convergence holds in distribution:
d(Xn, Py) =0,

where P, is the Poisson measure.
Lemma 1. Suppose

o= Em O™ (1 — XYt 2 2. 1 f0V 11 f AN

In particular we have
; 7 — _ o—B
Jlim p,{Zn =0} =¢7¥,

and X
lim E[Z,] =a" (1 - /\)”""'1 .
n-—4o0

Finally, for p = 0o and £ € N holds
Jim po{Zn 24} =1.

The following theorem shows that A* := 1— “Va~1
is a threshold value for the density property of random
induced subgraphs as introduced in the basic model.
Above X* a.a.s. all subgraphs are dense and below A*
a.a.s. none of them.

Theorem 2. Let A* := 1 — *Va~! then for A > \*
holds
nl-i-)nolo B {Tn isdense in QL } =1

and for A < A\* we have

nlirxgo B, {T, is dense in Q% } =0.

2.2 Connectivity and Giant Components

Let G be a finite graph. Being connected is an equiva-
lence relation on v[(G] and there exist maximal subsets
V C v[G] consisting of connected vertices. A component
of G is then the induced subgraph G’ = G{V] of such a
maximal connected subset of vertices. If V = @, G[f] is
called a trivial component. If G is disconnected we shall
investigate the so called sequence of components, i.e., the
list of orders of the maximal connected subgraphs of G
into which G can be decomposed.

Given a graph G, the sequence of components of G is the
ordered tuple (| A;|)1<i<|q), Where each &; is a compo-
nent of G and |X;| > |Xi41|. We call a component
X < G a giant component if and only if | X | > 2|G|.
The key idea in the proof of the connectivity theorem
bases on the following observation (formulated as lemma
2 below). A.a.s. each pair of vertices v,v' € v[I'y] with
d(v,v') = k, for fixed natural number k, is connected by
apathinT,.

For this purpose we refer to a certain family of indepen-
dent paths in Q2. Le. for v,v' € v[Q}] with d(v,v') = k
we write v, v’ as v = (21, ..., Tk, Th+1, ..., Tn) and

v = (z},..., %) Tk41, .., Tn). Then for v; € H{v} N
Bi4i(v') we set

/ /

gl ={z. . 22 . ’ore » )
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2.1 Density

» We shall discuss in this section the density property of

random graphs T, < Q% where Q7 is a generalized
hypercube, i.e., the graph formed by all n-tuples of co-
ordinates z; contained in a finite set A4 {of cardinality a)
where each two tuples are neighbors when they differ in
exactly one coordinate.

Let H be a finite graph. A subgraph G < H is called
dense in H if and only if v[G] = v[H].

We will establish the existence of a “critical” A-
value, A* that has the following property: for A < A*
a.a.s. (asymptotically almost surely) no random graph
T, is dense and for A > A* a.a.s. every random graph I'y
is dense. We will call A\* the threshold value for the den-
sity property. For this purpose we consider the random
variable

Zn(Tn) == |{v € v[QG]lv & v[Ta]}| (1)
that is defined on 2, and counts the number of ver-
tices having no adjacent vertex v € v[I';]. We first
compute the asymptotic distribution of the following se-
quence of random variables (Z,,) associated to the se-
quence of probability spaces (©2,,). For this purpose we
make use of the sieve formula [2] (p.17) that implies a
number of results about the convergence in distribution
for a sequence of integer valued random variables (X,).
Theorem 1. Let (X,) ie IV be a sequence of non-negative
integer valued random variables such that

Vre N: lim E[X,], = E[X],
n—00
and
Vme IN: rl_i)m E[X],.»™/rl=0

Z:hen we have the following convergence in distribution:
X, — X.
Proof. [2,p.23],

Corollary 1. Let p = p(n) be a bounded, non—negative
function on IN and assume a sequence of non-negative
integer valued random variables (X;);.pv to be given.
Suppose for an arbitrary natural number r we have

» gt r —

nlgl(r)loE[Xn],. u=0.
Then the following convergence holds in distribution:
d(X,.,P,) =0,

where P, is the Poisson measure.
Lemma 1. Suppose

pi= lim (| QG |(1 - 2)™*!) € Ry U{0} U {0}

ezists. Then for p < oo the random variables Z, con-
verge in distribution to a Poisson distributed random
variable, i.e.,

£
i s = =FE -n
nl_l_)nolopn{Z,. ={}= et (2)

In particular we have
nl_i_)ngol‘n{zﬂ =0} =¢7¥,

and R
lim E[Z,] =" (1= N1,

n—0o0

Finally, for p = oo and £ € IN holds
Sim po{Zn 26} =1.

The following theorem shows that A* := 1— Vot
is a threshold value for the density property of random
induced subgraphs as introduced in the basic model.
Above A* a.a.s. all subgraphs are dense and below A*
a.a.s. none of them.
Theorem 2. Let \* :=
holds

1— “Va-l then for A > X*

,,l,i_,“gol‘n{rn isdensein Q0 } =1
and for A < A* we have

ILm B, {Tn is dense in Q3 } =0

2.2 Connectivity and Giant Components

Let G be a finite graph. Being connected is an equiva-
lence relation on v{G] and there exist maximal subsets
V C v[G] consisting of connected vertices. A component
of G is then the induced subgraph G’ = G{V] of such a
maximal connected subset of vertices. If V = 0, G[f] is
called a trivial component. If G is disconnected we shall
investigate the so called sequence of components, i.e., the
list of orders of the maximal connected subgraphs of G
into which G can be decomposed.

Given a graph G, the sequence of components of G is the
ordered tuple (| X; |)1<i<)e|, Where each Xj; is a compo-
nent of G and |X;| > |AX;41]. We call a component
X < G a giant component if and only if | X | > 2|G|.
The key idea in the proof of the connectivity theorem
bases on the following observation (formulated as lemma
2 below). A.a.s. each pair of vertices v,v' € v[[';] with
d(v,v') = k, for fixed natural number k, is connected by
apathinT,,.

For this purpose we refer to a certain family of indepen-
dent paths in Q7%. Le. for v, v € v[Q4) with d(v,v") =k
we write v, v’ as v = (21, ..., Tk, Tk41, ..., Zn) and

v = (2},..., 2%, Tk+1,---,Zn). Then for v; € J{v} N
By 4x(v') we set

95 (V1) 1= (21, o0y Tjy Tiq, o0 Ty Tk Ly ooy By +ony Tn)
0<j<k & #2, 3)
and inspect gi(vi) = v1, go(v1) € Bi(v') N By (v).
We introduce the random variable Y:": that counts the

(independent) paths in the random graph T', connecting
the vertices v, v’ having distance k.

-3-
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Lemma 2. Let k be a natural number, Q7 a generalized
‘hypercube and T, < Q% a random graph with A > 1 —

« *Wa~1. Then limp—oo p,{T} = 1 where

T :={Ty|Vv,v' € v[Q%], d(v,v') =k :
3u, €0{v}, v} € ('} : Ty >0}

n,d{vy,v

Fig. 1: An illustration for the proof of lemma 2. For given
v,v" € v[QR] each pair of vertices (vg‘),ui(’)) leads to “suffi-
ciently many” independent pairwise disjoint paths in II{Q%).

Now we are prepared to state the connectivity the-
orem:
Theorem 3. Let Q7 a generalized hypercube and T'y, <
Q7% a random induced subgraph. Then
{ 1 for A>1- “Va-!

ﬂl_i_)r{)xo P {Tr is connected} =

(4

Remark. A related result in the special case of the
Boolean hypercube can be found in {2]. The correspond-
ing subgraphs A, are constructed as follows: We set
v[Ap] := v[Q3] as vertex set and the edge set e[A,] is
obtained by independent random choices with probabil-
ity p in the edge set ¢[Q%]. Then the idea of the proof
is to establish an edge boundary of possible components
using an isoperimetric inequality due to Harper, Bern-
stein, and Row [7, 2]. For Boolean hypercubes Ajtai,
Komléds and Szemerédi 1982 proved the following related
result: for random subgraphs A, of Q% obtained by edge
selections, there exists a component of order g2" with
constant g € IRy if p=c/n and ¢ > 1 [1].

Finally, for any positive A a.a.s. there exists a giant
component in random induced subgraphs T, < Q%.
Theorem 4. Let 0 < A < 1. Then we have

nli)rrol<> #.{Cn has a giant component} = 1.

3. Sequence Structure Maps Via Random
Graphs

0 for A<1-— "Va-l.

3.1 Neutral Networks of Secondary Structures

A pairing rule I is a symmetric relation in 4 x A. Fol-
lowing [15] a secondary structure s w.r.t. II is a vertex-
labeled graph on n vertices (z1,...,Z,) with an adja-
cency matrix A fulfilling

(1) aipi=1lforl<i<n—-1;

(2) For each i there is at most a single k #i—-1,i+1

such that a; x = 1 and [z;, zx] € II;

(3) Haj=ay=1landi<k<jtheni<l<j.

We call an edge (z;,2k), i — k| # 1 a bond or base
pair. A vertex z; connected only to #;_1 and z;4; shall
be called unpaired. The number of base pairs and the
number of unpaired bases in a secondary structure s are
p(s) and u(s), respectively. The size of the alphabet is
o and the number of distinct base pairs is given by 3.

We proceed by constructing the preimage of a fixed
secondary structure as a random induced subgraph of
the graph of compatible sequences. Let s be a secondary
structure and

O(s) := {[t, k) jas e =1, k#£i £ 1}

its set of contacts. Then a vertex z € v[Q7%] is said to be
compatible to s if and only if V[i, j] € I(s) : [zi,z;] € I
i.e. the coordinates z; and z; are in II for all pairs
[¢,7] € TI(s). We denote the set of all compatible se-
quences by C[s]. Finally the graph of compatible se-
quences w.r.t. the secondary structure s, is given by

— u(s {s)
Cls] == Q4 x QB

Neutral Network: Let T, < Q% and T, < QF be
random subgraphs with underlying parameters Ay and X,
as introduced in the basic model. Then we set T'p[s] =
Ty x Ty,

P, (Tnls]) = py 5 (Tw) X pyp 5, (Tp) s

and py 5 is a probability measure and T'y[s] < C[s].

We can think of the neutral network, T',[s], to be
obtained by selecting the coordinates vy, v, of the ver-
tex (v, v2) € v[C[s]] with the probabilities A, and X,.
This process leads to the vertex set V) C C[s] whose
induced subgraph C[s][Vi,,»,] is

u:Ap

Cals] =Ty xTp.

The theory presented in the previous chapter im-
plies for neutral networks of secondary structures den-
sity and conmnectivity if both factors I'y, and I', are dense
and connected.



3.2 Complete Mappings

+ Once we know how to construct a neutral network I',[s]
we order the set of secondary structures S, and define a
complete mapping by iterating the construction process
of the corresponding neutral network w.r.t. the ordering.
Thereby we obtain w.r.t. a given A parameter a complete
sequence to structure mapping.
Let C* : S, — P(v[@?]) and 7 : S, = N be two map-
pings such that j < ¢ = r(s;) > r(s;). A mapping
f:9% — 8, is called C*-map if and only if

(*): flv)=s = wveC'[s].
A mapping fr : QF — Sy is called C*-random-map if
and only if f. is given by

7 (s0) 1= Tu[s0]
“H(si) :=Tnlsi] \ U [Talsi] N Tals;]] -

J<i
Distribution of Preimages
Different & -, A ~Values
10° T ~r oL T MR
— 02
— 0.4
-—- 06
\\\\ —— 08
10° F = t——— —_——10 i

8ize of Preimage
3

10°

100000

Fig. 2: We report here the Jogarithm of the sizes of the neu-
tral networks f~(s} obtained by a C*-random map and A
parameters A = 0.2,0.4,0.6,0.8,1.0. The corresponding neu-
tral networks are ordered on the x-axis by the logarithm of
their orders. Note that the rank of the secondary structure
s does not necessarily coincidence with the size of the corre-
sponding preimage | f~'(s)].

In particular any RNA folding map is a C*-map
setting C*[s] := C[s] since the neutral networks are con-
structed a priori in the graph of compatible sequences.
We will assume that C* = C and then the recursion

reads in the particular case of T's[s] = C[s]:

f—l(s"o) C[ ]
FHsr) =Cs,]\U

J<i

[si] N C[s;]]

It turns out that the random maps in secondary struc-
tures as defined above have a few large preimages and
many small ones as reported in figure 2. This obser-
vation fits in the computational results about RNA se-
quence structure maps that exhibit a characteristic rank
order function known as a generalized Zipf’s Law:

¥() = a(l +4/8)7°,

as shown by extensive numerical calculations [13, 14].
Here a is a normalization constant, b is the number of
frequent structures and ¢ describes the power-law decay
for rare structures.

4. Searching in Shape Space

~ ’
~ .
s~_@__‘v

. Neutral mutations on the walk

€ Pointmutations

Fig. 3: A random walk on a neutral network. From each
step (black) all point mutant sequences (grey} are formed
and mapped into their corresponding secondary structures.
Thereby, step by step, shape space is searched by w.r.t. one
neutral network.

The time evolution of a population of asexually replicat-
ing molecules on a flat landscape can be described by
a random walk. On more complex fitness landscapes a
selective pressure drives the population towards sites of
higher fitness. In the simplest case one may think of
one or few fit structures. Then the populations searches
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“along one neutral network” [4] until sequences of an-
other network corresponding to a fitter structure are
" found T'see fig. 3).

The key question [10] is: to what extend is the shape
space searched by a population diffusing [11] on a fixed
neutral network? Here the following result {12, 11] gives
some insight, implying that any two neutral networks
that are dense and have a giant component come close
in sequence space and therefore allow for transitions from
one network to the other [4]. Practically all other struc-
tures are found forming one error mutants with respect
to a fixed neutral net. Explicitly the result reads

Theorem 5. [Intersection-Theorem] Let II be a non-
empty pairing rule on A and s and s' be arbitrary (non-
empty) secondary structures. Then we have w.r.t. II

Cls] A C[s'| £ 0.

The topology of neutral networks (following the pre-
dictions of random graph theory) plays therefore a cru-
cial role in the optimization process. Only the existence
of a giant component in the net and its density guar-
antee that any other net can be reached. In the tables
shown in appendix A, we report the existence of those
giant components.

Finally we discuss the so called search capacity of
our mappings. This means to a fixed A parameter we
compute the size of the preimage of those secondary
structures that are found by a random walk of the par-
ticular (fixed) neutral network. Passing the critical pa-
rameter A = 0.5 for density and connectivity, the shape
space is searched effectively by a random walk on the
corresponding neutral network. For the small sequence
length considered in the computer experiments, it turns
out that below A = 0.5 it is difficult to perform a random
walk on the network lasting sufficiently many steps.

Fractions of neutral neighbors can be determined
numerically by RNA folding based on sequences. over an
AUGC alphabets [3, 9, 8]. These fractions turn out
to be characteristically above the critical values derived
from random graph theory, and therefore indicate how
well suited nature is for optimization on secondary struc-
tures.

Covering Ability of Neutral Walks
Performed for Chainlength 25, binary Alphabet

Pecentage of Sequence Space

~—— Mean No of Structures

%02 02 0.4 058 08 1.0
Auh

Fig. 4: We compute the percentage of the preimage of those
secondary structures that are found by a random walk of one
particular (fixed) neutral network. “Found” means that from
each sequence realized in the walk we map all sequences of
Hamming distance one and thereby obtain a stepwise increas-
ing family of structures realized w.r.t. the random walk on
the chosen network.
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Rank T Structure Yoy tp Sequence of Components

1) 1494359) ... ((...-((.--2)).)) ] 0.823 | 0.854 | 1494359
2| 1471814 .((.((....})...))eeoe.. 0.795 | 0.858 | 1471810, 4x1
31 1180817 (((ro)))oiriiins 0.599 | 0.487 | 1180665, 2, 1501
4] 1131781 (O (e 1)) 0.736 | 0.723 | 1131775, 6x1
5| 895743 {(eeee))eee{(-r)) ] 0.726 | 0.499 | 829839, 65886,2,16x1
6| 811332} ..(((((..cr... )).)).. | 0.862] 0.871 | 811332
71 769357 .(((......))((.....)). | 0.852| 0.825 | 769357
8| 7647311 ..((...--(((--)))-)... | 0.880 ] 0.826 | 764731
9 676878 ...((..)).((-......)).. | 0.608] 0.501 | 676783, 95x1

10 577625] ((....... N(((...r))). | 0.740 | 0.723 | 577616, 9x1

sequences contained in the neutral net.

Tab. 1: Mapping parameters Ay, = Ap == 0.9, ptu, p are the percentages of unpaired and paired segments of

Rank T Structure Hu Hp Sequence of Components
1] 3466927 ....... () I 0.567 | 0.618 | 3466927
2] 1339085] ..o {(..)-.- 0.409 | 0.306 | 1337547, 2% 3,30x 2,1472x1
3| 718788 ...((..((----))-)) 0.5614 | 0.576 | 718747, 2,39x1
4! 650290 ...(((-)))eeeeenne 0.357 | 0.305 ] 646820, 6,5,14x 3,165x 2, 3087x1
51 6420041 ((....((-ronee ). 105001 0513 642025, 2,671
6| 606699 (o)) )) e 0.456 | 0.553 | 606464, 6x 2,223x1
7] 596554} ..{(.ere))eerivemnnnne 0.230 | 0.237 | 570539, 10,3x 7,7x 6,20x 5,
' 56x 4,277x 3,1618x 2,21551x1
8| 575245) ......... ({(eeren. 1)) 0.313 | 0.336 | 569428, 6x 4,25x 3,280x 2,5158x1
91 500107 (o)) eee ) ] 0,456 | 0303 499841, 5x 2,256x%1
10| 447051 .......... (0 ) o 0.333 | 0.000 | - 443329,4,15x 3,122x 2,3429x1

Tab. 2: Mapping parameters Ay = Ap = 0.6 (see also caption of tab. 1)




’
Rank r
IT| Structure g Hp Sequence of Components

- ':‘ ; 16040531 ....... ({cnee )Y oo 0.387 | 0.481 § 1604009, 18x 2,8x1
E : 1241;38,37 .......... (39 ) oo 0.279 | 0.349 | 1008832, 4,6x 3,169x 2,2675x1
41 ()t 0.209 | 0.000 | 327019, 301123,2x 8,2x 7,4x 6,
9% 5,53x 4,215x 3,1299x 2,
176281
4} 511011y ... ({ ))... | 0244} 0.311| 506282, 2x 6,5,8x 4,41x 3,

274x 2,4009%1
5| 484477 .((-..((.))-n)).. | 0.351 | 0.555 | 484319, 3x 11,2x 10,8,2x 7,

6,2x 2,73x1

6| 471135| ........ (((cveeee ). |} 0270 0.219 359724, 107579,9,5, 8% 4,
29%x 3,206x 2,3287x1

71 440221 ... (99 ) e 0.170 | 0.193 | 413333, 9,8,4x 7,9x% 6,
29x 5,143x 4,411x 3,2060x 2,
20719x1

S 225080 e (o((ceee]))) e | 0.368 | 0.467 | 330454, 44442, Tx 7,.4>< 6,111x1

3837 ... ((O)) e 0.272 | 0.181 274624, 85356,6,5,8x 4,

41x 3,212x 2,3267x1

10 315083 {(.{({........ D) R 0.248 | 0.443 313124, 2x 7,3x 5,4,13x 3,

97x 2,1693x1

Tab. 3: Mapping parameters A, = Ap = 0.4 (see also caption of tab. 1)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express ot implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Goverament or any agency thereof.
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