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ABSTRACT

This report presents the measured performance of four advanced residential ground-source heat
pump (GSHP) systems. The GSHP systems were developed by WaterFurnace International to
minimize the need for electric resistance backup heating and featured multiple spéed
compressors, supplemental water heating, and at most sites, multiple-speed fans. Detailed data
collected for a complete year starting in June 1994 shows that the advanced design is capable
of maintaining comfort without the use of electric resistance backup heating. In comparison
with a conventional air-source heat pump, the advanced-design GSHP reduced peak heating
demand by more than 12 kilowatts (kW) per residence and provided energy savings. The
report describes the cooling and heating season operation of the systems, including estimated
seasonal efficiency, hours of operation, and load profiles for average days and peak days. The
electrical energy input, cooling output, and efficiency are presented as a function of return air

temperature and ground loop temperature.
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SUMMARY

INTRODUCTION

GEOMET Technologies (GEOMET) installed monitoring systems and collected a full year of detailed
data on the performance of four advanced-design residential ground-source heat pumps (GSHPs). The
data and analysis provided by this project support the further development of advanced GSHP systems,

and may assist in promoting energy savings and comfort advantages, with accurate measured results.

The New York State Energy Research and Development Authority (NYSERDA), Central Hudson Gas
and Electric Company, the New York State Electric and Gas Company, WaterFurnace International, Inc.
(the Sponsors), and a New York State ground loop manufacturer had previously entered into research
agreements to design, develop, and demonstrate an advanced GSHP system capable of meeting 100
percent of a residential home’s heating requirement without electric resistance heating. Four GSHP
systems were installed by WaterFurnace at four demonstration sites selected by the Sponsors.

GEOMET designed and installed monitoring systems at these four sites.

This report presents analysis of a full year of detailed monitoring data from the four sites. It also
provides an overview of the measured system performance, a basis for understanding variations in
performance among the four sites, and comparisons to the performance of a typical air-source heat pump

system.
SITE CHARACTERISTICS

The four sites provided diverse characteristics of occupancy, structure, system installation, and type of
ground field, as summarized on Table S-1. Two of the sites were new construction and two of the sites
were existing houses where the new GSHP system replaced an existing heating system. Two types of
ground field designs were tested. Horizontal ground loop systems were used in the new construction

and vertical well systems were used for the retrofit installations. Also shown are the




design heating load and the design cooling load engineering estimates prepared prior to the

installation of the GSHP systems.

l Table S-1. Site Characteristics
Site No. J Location Installation Ground Loop Engineering‘Des‘ign Thermal
City Type Length/Type Load Estimates (Btu/hr)
Heating Cooling
Site 1 Hyde Park | Retrofit 560’ Vertical 40,000 17,500
2 Wells @ 280°
Site 2 Rhinebeck | New 480’ Horizontal 43,871 31,216
Construction | Slinky @ 5°-6’
Site 3 Ithaca Retrofit 560 Vertical 55,000 20,000
' 2 Wells @ 280’
Site 4 Stillwater | New 700’ Horizontal 61,098 42,431
Construction | 6-Pipe @ 2’-6’

SUMMARY OF RESULTS

Table S-2 provides a summary of results from the four test sites. This table shows the

electrical energy input, thermal output, and iefﬁciency for cooling and heating modes of

operation. - As shown, the adVanced-design heat pump systems satisfied the primary design

objective by supplying the heating demands of three of the four sites without the use of

electric resistance backup heating. The use of electric resistance backup heat at Site 2 was

insignificant and does not indicate a design problem with the system. The heating capacity of

the heat pump system at this site was equivalent to those of the other three sites. However,

the heating requirements of this house exceeded the design capacity of the heat pump, and so

electric resistance backup was required. The engineering estimate underestimated actual

demand. A larger-capacity GSHP system would have eliminated the use of electric resistance

backup.

Overall, the heating and cooling efficiencies calculated from the long-term monitored data are

less than rated efficiencies calculated from short-term laboratory tests of the systems. This is

due to differences in definitions of efficiency as well as differences in test conditions.




Table S-2. Performance Summary

End Use Input, Qutput, and Efficiency Site 1 Site 2 Site 3 Site 4
Heating { Electric Resistance Backup _
(kWh) 0.00 823 0.00 0.00
Total Input (kWh) | 5,131 10,547 6,062 8,161
Thermal Qutput (MBtu) 38,541 68,098 | 42,699 54,691
Water Heating (MBtu) 7,216 11,349 | 11,399 16,566
cop 2.61 2.21 2.61 2.56
Cooling { Total Input (kWh) 1,012 77 187 2,189
Output (MBtu) 9,749 873 '2’403 22,405
Cooling SEER (Btu/Watt) 9.63| 1139| 12.84| 1019
Water Heating (MBtu) 887 118 563 3,522

Standard laboratory tests provide a measure of the steady-state (continuously operating)

efficiency of the systems. Field measurements include periods of changing temperatures and

intermittent operation that have the expected result of lowering the efficiency. Laboratory-

rated efficiencies also exclude pump energy from the calculation of heating coefficient of

performance (COP) and cooling seasonal energy efficiency ratio (SEER) for GSHP systems.

The seasonal heating and cooling efficiencies shown above include pump energy and so may

be expected to be lower than seasonal efficiency values estimated from laboratory tests.

The cooling SEERs shown by the table are the total seasonal output in British thermal units

(Btu) divided by the total electrical input in Watt-hours (Watt-hrs). The supplemental water

heating provided by the desuperheater during cooling mode operation is not included in the

calculation of cooling season efficiency since this thermal energy is a useful byproduct of the

cooling process that would have to be discharged to the ground loop if not recovered for water

heating.




The seasonal heating efficiency is shown as the coefficient of performance (COP). The COP is
calculated as the total seasonal thermal output in Btu, including space heating and water heating,
divided by the total electrical energy input converted to thermal equivalent Btus. The average COP
includes the supplemental water heating provided by the desuperheater since, in the heating mode,

this energy could be used for space heating if it were not transferred to the domestic water.

Differences between laboratory and field tcsting can als§ be attributed to customer behavior and site-
specific conditions. For example, at Site 4, the data showed unusually low return air temperatures in
the cooling mode. A subsequent site visit found both supply and return registers located at the floor
level in most rooms, a configuration that allows some cool supply air to bé directly returned to the
fan-coil unit without completely mixing with the room air. The low temperature of the return air in

this case lowers the cooling efficiency of the GSHP system.

The variation of seasonal efficiency is also explained in part by the relative energy use of the
auxiliary system components, including the distribution air fan, the ground loop circulation pump,
and associated control systems. Energy consumption for thc;se auxiliaries ranges from 29 to 45
percent of the total system energy input. In general, systems with lower auxiliary energy use have a
higher overall SEER. For example, the averége seasonal cooling efficiency at Site 1 may have been
reduced by the customer's choice to run the fan continuously rather than allowing the fan to be

automatically cycled on and off under control of the thermostat.
CONCLUSIONS
The analysis of these data shows that properly sized advanced design GSHP systems can eliminate

the use of electric resistance backup heating for typical residences in New York State and thus

substantially reduce peak electric energy demands.




Section 1

INTRODUCTION

GEOMET collected and analyzed detailed data on the performance of four advanced-design
residential ground-source heat pump (GSHP) system. This report provides a presentation of results
for a full year of monitoring from the four sites. The advanced design GSHP systems maintained
comfortable conditions without the use of significant electric resistance backup heating. Information
provided by this project will enable the project sponsors to promote the energy savings and comfort

advantages of these systems.

BACKGROUND

The New York State Energy Research and Development Authority NYSERDA), Central Hudson
Gas and Electric Company. and the New York State Electric and Gas Company (the Sponsors)
previously entered into a research agreement with WaterFurnace International and a New York State
ground Joop manufacturer to design, develop. and demonstrate an advanced GSHP system capable of
meeting 100 percent of a residential home's heating requirement without electric resistance heating.
Four GSHP systems were installed by WaterFurnace at demonstration sites selected by the Sponsors.
GEOMET designed and installed monitoring systems at these four sites and collected data for one

year.
GOALS AND OBJECTIVES
The project goals and objectives were to:

1. Design and install monitoring equipment at four GSHP demonstration sites.
2. Collect and analyze data from the four GSHP sites.

3. Evaluate and document the performance of the four GSHP demonstration sites.




Section 2
TECHNICAL APPROACH

GEOMET selected and installed instrumentation and monitoring systems to collect detailed
data on the operation of four GSHP systems. The monitoring systems were installed in 1994,
and consistent data was collected from all four sites from June 1994 through June 1995.
Figure 2-1 provides a schematic illustration of a typical GSHP system, showing approximate
locations of instruinents used to measure various parameters. This section of the report

documents the organization of the data and the presentation of results.
ORGANIZATION OF THE DATA

Table 2-1 lists measured and calculated parameters recorded at 15-minute intervals and other
data stored in a database. The table also shows the equations to calculate heating and cooling

output and efficiency.

The electrical input to the components of the system, including the ground loop pump, the
supply air fan, and the compressor were monitored. Detailed data on the thermal performance
of the system were also collected, including ground loop flow rates, entering and leaving
ground loop temperatures, entering and leaving forced air temperatures, and entering and
leaving water temperatures at the desuperheater. The terms "entering” and "leaving” are
relative to the heat pump system; for example, the entering water temperature refers to the
temperature of water from the ground loop entering the heat exchanger of the heat pump
system. Similarly, entering air temperature refers to the temperature of return air from the

house entering the air coil of the heat pump system.

Data were collected from each site via a telephone modem and automatically added to a data

file for each site. Each week the raw data files were edited and the data added to a database

that was maintained for each site.
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Table 2-1. GSHP Monitored and Calculated Parameters and Other Data Included in Database

Unit - Site number & logger software number in use
DAY - Julian day

TIME - Hr:Min

EWT - Entering water temperature in °F

LWT - Leaving water temperature in °F

EAT - Entering air temperature in °F

LAT - Leaving air temperature in °F

GAT - Grill supply air temperature in °F

9. EDWT - Entering desuperheater water temperature in °F
10. LDWT - Leaving desuperheater water temperature in °F
11. IAT - Indoor air temperature in °F

12. OAT - Outdoor air temperature in °F

13. IRH - Indoor relative humidity (%)

14. CE - Energy consumed by the compressor (Watts)

15. OTRE - Energy consumed by the fan, pump, controls & resistance heat (Watts)
16. PE - Energy consumed by the ground loop pump (Watts)
17. FE - Energy consumed by the indoor fan (Watts)

N

18. DSST - Desuperheater status, fractional on-time
19. FSTL - Indoor fan status in low speed, fractional on-time
20. FSTM - Indoor fan status in medium speed, fractional on-time

21. FSTH - Indoor fan status in high speed, fractional on-time
22. GLWF - Ground loop water flow (Gallons)

23. DHWEF - Domestic hot water flow (Gallons)

24, DHWE - Domestic hot water energy (Wh)

25. CESTL - Compressor status in low speed, fractional on-time
26. CESTH - Compressor status in high speed, fractional on-time

Performance Factor Calculations:

A NETBTU (Btu/hr) = GLWF*Cp*8.33*4*(EWT-LWT)

B. CEBTU (Btu/hr) = CE*3.413

C. HEATBTU (Btwhr) = (NETBTU+CEBTU), If NETBTU > 0)

D. COOLBTU (Btwhr) = -NETBTU-CEBTU + DSBTU, If WNETBTU < 0)
E. HCOP = (HEATBTU+DSBTU)/CEBTU

F. CCOP = COOLBTU/CEBTU CEER = COOLBTU/CE

G. DSBTU (Btwhr) = DSGPM*60*8.33* (LDWT-EDWT), If (DSST > 0)
Where

Cp = 0.916 Bww/lb °F (water /antifreeze ground loop heat transfer medium)
Conversion Factor 8.33 lb/gal _
DSGPM = Average flow rate in gallons per minute flowing through the desuperheater
Site one = 0.8313 gpm.
Site two =1.6914 gpm.
Site three = 1.2048 gpm,
Site four = 1.1662 gpm.
Note: All the energy values are in Brwh




SITE CHARACTERISTICS

The four sites provided diverse characteristics with regard to occupancy, structure, system

installation, and the type of ground field. These are summarized on Table 2-2. As shown,

two of the sites were new construction and two were existing houses in which the GSHP

system replaced an existing heating system. Horizontal ground loop systems were used in the

new construction and vertical well-type systems were used for the retrofit installations. The

design heating load and the design cooling load shown on the table are engineering estimates

that were prepared prior to the installation of the systems.

Additional details on the sites and the GSHP systems are included in Appendix A.

Table 2-2. Site Characteristics
Site No. || Location Installation Ground Loop Design Design
City Type Length/Type Heating Cooling
Load Load

Site 1 Hyde Park | Retrofit 560" Vertical 40,000 17.500
. 2 Wells @ 280’ Btwhr Btw/ hr

Site 2 Rhinebeck | New 480" Horizontal 43,871 31,216
Construction | Slinky @ 5°-6¢’ Btu/hr Bw/hr

Site 3 Ithaca Retrofit 560" Vertical 55,000 20,000
2 Wells @ 280° Btu/hr Btw/hr

Site 4 Stillwater New 700’ Horizontal 61,098 42,431
Construction | 6-Pipe @ 2’-6’ Btwhr Btu/hr

ORGANIZATION OF THE ANALYSIS AND RESULTS

The data have been analyzed to provide a graphic presentation of the results for each site and

the calculation of total energy consumption and seasonal energy efficiency. Four types of

analysis are presented:




Annual and Monthly Summaries: These are provided by several tables and
figures that show the total energy inputs and outputs, as well as average
efficiencies and temperatures. Daily average outside air temperatures are also
provided.

Average and Peak Day Load Profiles and Average Temperatures: These
figures provide an aggregation of the data by the 24 hours of the day. Peak
day load profiles include the top five hottest and coolest days from the cooling
and heating season respectively for the peak day profiles.

Heating and Cooling Performance Analysis: This is presented as a graphic
analysis of efficiency as a function of the ground loop water temperature, the
entering air temperature, and the average on-time per cycle. These results are
also presented as a cross tabulation of efficiency as a function of both
groundwater temperature, cycling effects, and compressor speed

Energy Analysis Comparison of Air Source and Ground Source Systems:
The energy use of the advanced GSHP systems estimated using the “bin
method,” where the average performance is estimated for each five-degree
range of outside temperature. Each five-degree range is considered as a bin.
The energy use is calculated from the number of hours in each temperature bin
using long-term weather data. Energy use for a typical air source system was
developed by a computer simulation.







Section 3

PRESENTATION OF RESULTS

A graphic format has been used where possible to present aggregations of data. In general, graphs or
tables, as appropriate, are shown for each site. These graphs and tables are proceeded by a brief
narrative section to describe them and point out the highlights of the results. However, the goal of
the presentation of results is to provide a sufficient compilation of data to provide comprehensive

data short of the complete 15-minute interval data.

ANNUAL SUMMARIES

Table 3-1 shows a summary of results for the four sites. The parameters shown on the table are

defined and described below:

. Site ID: Site identification.

. Start Date: First date for which there is data.

. End Date: Last date for which there is data.

. Avg Outside Temp: Average Outside Air Temperature. Abbreviated as OAT. Note

that the average temperatures at Sites 1 and 2 in the Poughkeepsie area are warmer
than those of Sites 3 and 4 in Ithaca and Stillwater, respectively.

. Avg Indoor Temp: Average Indoor Air Temperature. Abbreviated as IAT. Note
_that Site 2 has the lowest IAT, despite very little use of air conditioning.

. Avg Indoor RH: Average Indoor Relative Humidity. Abbreviated as IRH.
. Total System kWh: Total electrical energy consumption of the GSHP system in

kWh. Sites 2 and 4 appear roughly equal in this respect, although at Site 2 virtually
all the energy is used for heating, while Site 4 shows a balance of heating and
cooling energy.

. Compressor kWh: Total electrical energy consumption of the compressor in kWh.




Table 3-1. Summary of Annual Data (totals) from Four GSHP Sites

Site ID 1 2 3 4

Start Date 5-Jun-94 5-Jun-94 5-Jun-94 5-Jun-94
End Date 4-Jun-95 4-Jun-95 4-Jun-95 4-Jun-95
Avg Outside Temp 52.6 51.2 48.3 46.7
Avg Indoor Temp 75.3 68.2 69.8 73.5
Avg Indoor RH 43.4 49.0 49.9 393
Total System kWh 6,306 10,764 6.380 10,552
Compressor kWh 4.252 6,971 4831 7,014
Pump kWh 796 1,124 884 1,092
Fan kWh 995 1,640 350 1,837
Miscellaneous kWh 263 367 311 609
Backup Heat kWh - 662 - -
Heating kWh 5.131 10,547 6,062 8,161
Heating MBtu 38,541 68,098 42,699 54,691
Heating Mode/DHW MBtu 7,216 11,349 11,399 16,566
Heating COP 2.61 221 2.61 2.56
Cooling kWh 1,012 77 187 2,198
Cooling MBtu 9.749 873 2,403 22,405
Cooling SEER 9.63 11.39 12.84 10.19
Cooling Mode/DHW Mbtu 887 118 563 3,522
Loop Gallons 1,275,181 1,305,339 1,273,573 1,833,203
Avg Loop EWT 44.37 35.36 ' 39.80 43.11
Avg Loop LWT 42 30 36 41
Runtime Hrs 1.666.8 2.224.8 1,864.7 2,413.2
Comp Low Spd Hrs 1,735.5 1,697.9 1,803.0 2,160.6
Comp High Spd Hrs 9 714 115 373
Fan Low Speed Hrs 0 262 319 1,328
Fan Medium Speed Hrs 0.0 1.655.8 1,751.6 1,707.3
Fan High Speed Hrs 2,669 737 128 424
DHW Resistance kWh 5,075 1,784 69 -
Desuperheater DHW MBtu 8.108 11,467 11,967 20,100
DHW Gallons 26,719 15,788 - -




Pump kWh: Total electrical energy consumption of the ground loop pump, in kWh.
Pumping energy appears related to the type of ground loop. Sites 1 and 3, which
have lower measured pump energy use than sites 2 and 4 have vertical well-type
systems. The combination of pump efficiency and ground loop design may warrant
further study

Fan kWh: Total electrical energy consumption of the forced air distribution system
fan, in kWh. Note that Site 1 has a single-speed fan, while Sites 2, 3, and 4 have
multi-speed fans with an electronically commutated motor (ECM). Sites 2 and 4
also have zoned systems in which zone dampers are actuated under the control of
separate zone thermostats to restrict the flow of air to a zone when the zone setpoint
is satisfied. However, the zone control was not coordinated with the fan controls.
As the dampers restricted the flow of air, the ECM fan controls would respond by
increasing the fan speed to maintain the total air flow volume. Fan efficiency would
be improved by reducing the fan speed when air flow is restricted by a zone damper.
The potential advantages of ECM fan control were probably not achieved at Sites 2
and 4 due to the interaction of fan speed and zone-damper control systems. Site 3
used an ECM motor without zone damper controls and had the lowest fan energy
use. Further development and testing are recommended to optimize forced air
distribution system fan motor and zone-damper controls.

Miscellaneous kWh: Total electrical energy consumption of the GSHP system
controls and the desuperheater pump. A method to reduce the miscellaneous
standby losses of the control system is worthy of further consideration. For
example, at Site 2, more than one percent of the annual total energy is consumed by
miscellaneous controls during periods when the system is neither heating or cooling.

Backup Heat kWh: Total electrical energy consumption of electric resistance backup
heat, in kWh. There was no use of electric resistance backup heating at three of the
four sites.

- Heating kWh: The total electrical energy use of the system during all periods (15-
minute intervals) when the system was operating in the heating mode.

Heating MBtu: The total space heating output of the system in 1000s of Btu
(MBtu).

Heating Mode/DHW MBtu: The total water heating output of the desuperheater
during all periods when the system was operating in a heating mode.

Heating COP: Heating Coefficient of Performance (COP). Calculated here as the
total heating MBtu plus Heating Mode/DHW MBtu divided by the Btu equivalent
of the Compressor electrical energy input. As defined here, heating COP is a
measure of the overall heating season average efficiency of the systems, including
pump, fan, miscellaneous, and backup heat kWh. It should be noted that the Air
Conditioning and Refrigeration Institute (ARI) standard rating does not include
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pump energy and is measured under steady-state laboratory conditions.
Desuperheater water heating is included in this efficiency calculation because it
is assumed that this energy would have contributed to the total space heating if
not used for water heating. The COP values for Sites 1, 3, and 4 are roughly
equal, at approximately 2.6.

Cooling kWh: The total electrical energy use of the system during all
periods when the system was operating in the cooling mode.

Cooling MBtu: The total space cooling output of the system in 1000s of
Btus (MBtu).

Cooling SEER: Cooling Seasonal Energy Efficiency Ratio (SEER) in Btu per
Watt. Calculated as the Cooling MBtu divided by the Cooling kWh. As
calculated, the SEER is a measure of the total system performance, including
pump, fan, and miscellaneous electrical energy consumption. Desuperheater
thermal energy output is not included, since this energy is considered a useful
byproduct of the cooling process.

Cooling Mode/DHW MBtu: The total water heating output of the
desuperheater during all periods when the system was operating in a cooling
mode.

Loop Gallons: Total flow through the ground loop system in gallons.

Avg Loop EWT: Average ground loop entering water temperature (EWT).
Where entering is used consistently to indicate flow into the GSHP system.

Avg Loop LWT: Average ground loop leaving water temperature (LWT).
Where leaving is used consistently to indicate flow leaving the GSHP system.

Runtime Hrs: Runtime Hours is the total on-time (time of operation) of the
system when actively heating or cooling

Comp Low Spd Hrs: Compressor low-speed hours of operation.

Comp High Spd Hrs: Compressor high-speed hours of operation.

Fan Low Speed Hrs: Fan low-speed hours of operation.

Fan Medium Speed Hrs: Fan medium-speed hours of operation.

Fan High Speed Hrs: Fan high-speed hours of operation.

DHW Resistance kWh: Domestic Hot Water (DHW) resistance energy
consumption in kWh. The electrical energy input to the conventional electric
resistance water heaters was measured at Sites 1, 2, and 3.




. Desuperheater DHW MBtu: Total desuperheater thermal contribution to domestic
hot water, in MBtu.

. DHW Gallons: Total domestic hot water consumption. Flow meters were installed
on the cold water side of the domestic water heaters at Sites 1 and 2.

Annual Electrical Energy Inputs

Figure 3-1 shows the annual electrical energy inputs for for the total system including: backup heat,
the fan, the compressor, the ground loop pumps and miscellaneous. These data are presented as a
stacked column for each site where the stacked segments of each column represent the energy use by
each of the submetered system components. The chart shows a considerable variation of total
system energy consumption between the four sites. Variations of energy use by the compressor are
related to variations of total heating and cooling thermal output, as expected. The difference in fan
energy consumption at the various sites 1s greater than expected. In particular, Site 3 fan energy use
1s significantly less than the other sites. The uniqué configuration of the fan system at Site 3, where
an efficient ECM fan motor is used without zone damper control, may explain the apparent
efficiency. Energy consumed by miscellaneous system components and pumps does not show a

significant variation between sites.

Annual Thermal Energy Qutputs

The wide variation of cooling energy shown in Figure 3-2 is primarily a function of occupant
behavior. The lowest cooling use (at Site 2) is the result of the occupants’ simply choosing not to
run the system. The relativelyv high use at Site 4 1s the result of the occupants’ choosing to use the air

conditioning to maintain an especially cool inside temperature.

Figure 3-2 also indicates the relative importance of the supplemental water heating provided by the
desuperheaters. At Sites 1 and 4, the desuperheater output is almost equal to cooling energy;
whereas, at Sites 2 and 3, the desuperheater output is significantly greater than the cooling energy
output. Overall, the supplemental water heating provided by the GSHP systems appears to be more
important than the air conditioning, since the water would otherwise have been heated by electric -

resistance water heaters, at a much lower efficiency than that of the heat pump system.
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The desuperheater energy output at Site 3 benefits from a unique configuration of the domestic water
heating system, where the desuperheater 1s connected to a separate preheat tank. Cold water flows
first to the preheat tank, where it may be preheated by the desuperheater, and then to the main
domestic water heating tank. The temperature in the preheat tank is cool compared to the main tank,
which is heated by electric resistance elements. The ﬁreheat tank system can absorb more energy
from the desuperheater because the preheat tank temperature is cooler than the main water heater
tank. At the other sites, there are no preheat tanks and the desuperheater is connected directly to the

main domestic water heating tank.
MONTHLY SUMMARIES

Graphs of Monthly Heating and Cooling Energy

Selected monthly energy use has also been graphed in Figures 3-3(1) through 3-3(4). These graphs
show the total monthly energy use with a combination of stacked columns and lines. The stacked
columns show the total monthly energy use as the combination of backup resistance heat, fan energy,
compressor energy, pump energy, and miscellaneous/control energy use. Total cooling and heating
energy are shown as lines marked by dots and triangles, respectively. The monthly data show a
cooling season of only three months (June July and August) at Sites 1 to 3 with some cooling in
September, too, at Site 4. In general, the heating seasons extended from October through May at all

four sites.

Tables 3-2(1) through 3-2(4) provide monthly summaries for Sites 1 to 4, respectively. These tables

present the same parameters presented in Table 3-1, except that the data are totalized or averaged on

a monthly basis. These tabular summaries are provide here primarily for reference.
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At Site 2 (see Figure 3-3[2]) the data show the use of electric resistance backup heat, primarily in the
month of February. To investigate why backup heating was only required at Site 2, selected data
from each site for February have been extracted and are shown in Table 3-3. However, review of this
monthly average data does not at first glance provide a satisfactory reason for the problems at Site 2.
Outdoor temperatures and ground loop temperatures at Site 2 are comparable to conditions at the
other sites and these temperatures are warmer than at Site 4, which did not require backup heat.
Although the indoor temperature at Site 2 was maintained at a very cool 63 °F, the house required
12,651 MBtu of heat energy, and the heating demand exceeded the heating capacity of the

compressor, requiring the use of the backup heat.

The question is why the efficiency of Site 4 was so much greater than at Site 2, although the total
thermal outputs are equivalent and the-ground loop temperatures are colder and the indoor
temperatures warmer. The average COPs, including all thermal outputs and mputs, are 1.66 at Site 2
and 2.31 at Site 4. However, these heating thermal outputs and COPs provide an overall measure,
including the energy use, and, if appropriate, the heat output, of all of the components of the heat-
pump system, including pumps, fans, and backup heat. To provide a more precise comparison, the
net thermal output COPs of the compressor are calculated, where net thermal output includes both
space heating and desuperheater water heating, but does not include fan heat or backup heating.

Thus recalculated, the net thermal output of the compressor and its efficiency at Site 4 are both
greater than at Site 2. Other factors may explain these differences in performance. However, a more

detailed analysis of this issue exceeds the specific scope of this project report.

Graphs of Average Ground Loop and Outside Air Temperatures

Figures 3-4(1) through 3-4(4) show the average temperatures entering and leaving the ground loop
and the average air temperature. These temperatures are plotted together to provide a general basis
for the comparison of ground-coupled systems with air-source systems. To provide more detail
Figures 3-5(1) through 3-5(4) show the same temperatures averaged on a daily basis and plotted only
for the days when the system was operated. Gaps in the plot of entering water temperature indicate

days when the system was turned off.




Table 3-3. February Summary Data from Four Sites "
Site ID | 1 2 3 4 |
Avg Qutside Temp 27.1 24.6 22.3 15.0
| Avg Indoor Temp 74.2 63.3 70.8 75.0
Total System kWh 1,096 2,705 1,323 1,778
Compressor kWh 785 1,632 1,015 1,282
Pump kWh 148 221 178 166
Fan kWh 131 359 84 269
Controls kWh 31 - 54 45 61
Backup Heat kWh 0 439 0 0
Heating kWh 1,094 2,705 1,319 1,776
Heating MBtu 8,264 12,651 9,617 11,059
Heating Mode/DHW 1,200 2,656 1,891 2,952
MBtu
Heating COP 2.53 1.66 2.56 2.31
Avg Loop EWT 37.11 29.94 34.82 27.87
Avg Loop LWT 33 24 31 23
Comp Low Spd Hrs 317 211 306 227
Comp High Spd Hrs 6 276 69 154
| Avg percent on 58% 86% 67% 84%
Net Thermal Output 9,015 12,584 11,221 13,092
Net COP 3.36 226 324 2.99
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In general, these figures show that the ground-loop water temperatures are not constant but
tend to mimic outside air temperature. At first, this may seem surprising, since the
temperature of undisturbed ground is relatively constant. However, the GSHP effectively
couples the ground field to the outside air via the air-conditioned space. During the heating
season, thermal energy is transported from the ground to the house to balance the loss of
energy from the house to the outside air. This process cools the ground just as if the ground
were in direct contact with the outside air. During the cooling season, the thermal flows are

reversed as the temperature of the ground field is increased by the operation of the heat pump.

The type of ground field affects the relationship between outside air temperature profiles and
ground loop temperature profiles. For the vertical systems (Sites 1 and 3) the profiles of air
and loop temperatures are symmetrical. For the horizontal systems (Sites 2 and 4) the loop
temperatures show a lag of two to three months relative to outside air temperatures. The lag
occurs because the temperature effect of the outside air is delayed as it penetrates from the
ground surface to the nominal six-foot depth of the horizontal ground loop systems. The
horizontal field temperatures are affected both directly by the operation of the heat pump and
indirectly as the effects of temperatures at the surface are delayed by the thermal diffusivity of
the ground. Because of their greater depth, the temperatures of the vertical systems are not so
much a function of delayed thermal effects at the surface as of the operation of the heat pump

system.

The temperature plots also show that during the coldest weather, the ground loop temperatures
are significantly warmer than outside air temperatures. The warmer temperature of the ground
field relative to the air temperatures allows the ground-coupled systems to operate with greater
efficiency and capacity than air-source systems during the coldest weather. However, as
shown by data from all four sites, there are significant periods during the heating season when
the ground temperature is colder than the air temperature. During these periods, an air-source
system could theoretically operate more efficiently. From the comparison of ground loop and
outside air temperatures, it can be anticipated that ground-coupled systems will provide
superior performance during peak load conditions of very cold outside air temperatures.
However, based on the examination of these monthly temperatures, ground coupling does not
provide an unequivocal thermal source temperature advantage under typical heating secason

conditions.
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During the cooling season, temperatures of the ground field are cooler than outside air temperatures

most of the time at most of the sites. Other factors being equal, these cooler temperatures will allow
a ground-coupled heat pump to operate with greater efficiency and capacity than an air-source system
during the cooling season in general and during periods of hot weather in particular. However, a
primary reason that the ground temperatures remain cool is that the cooling load, and thus the
quantity of heat rejected to the ground field is small compared to the thermal demand of the heating
season. Site 4, which used the most cooling energy, shows the effect of operation of the system in
the cooling mode on the ground loop temperatures. There are significant periods of time during the
latter half of the cooling season at this site (see Figures 3-4[4] and 3-5[4] when the ground
temperature has also been raised by the operation of the system to point that it exceeds the air
temperature. With air temperatures cooler than the ground field temperature, a heat pump could

theoretically operate more efficiently using the outside air as its thermal sink.
HEATING AND COOLING SEASON LOAD PROFILES

Load profiles, showing the average demand of an appliance as a function of the time of day, are often
used by utilities as a basis for demand-side management (DSM) planning and evaluation and as input
for end-use forecasting models. Load profiles for these purposes should be based on a representative
sample of customers. Since this is a familiar format, load profiles have been prepared for weekdays,
weekend days, and five selected peak days for each of the four sites. It should not be assumed that
these profiles are necessarily representative of the potential performance of GSHP systems used by

any other group of utility customers.

Figures 3-6(1) through 3-6(4) provide heating season load and temperature profiles for average and
peak days for each of the four sites. Figures 3-7(1) through 3-7(4) provide the comparable profiles

for the cooling season. Each figure includes four charts.

H Average Day Input Demand kW and Output Thermal MBH*
) Peak Day Input Demand kW and Output Thermal MBH

3) Average Day Temperatures including
- Air Coil Entering Air Temperature (EAT)
- Qutside Air Temperature (OAT)
- Ground Loop Entering Water Temperature (EWT)

*MBH denotes 1000 Btu per hour.
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@ Peak Day Temperatures
- Air Coil Entering Air Temperature (EAT)
- Outside Air Temperature (OAT)
- Ground Loop Entering Water Temperature (EWT)

Values are averaged by time-of-day. In addition, the load profile graphs use two vertical
axes; the left axis indicates input demand in kW, and the right axis indicates thermal output in
MBH. The left and right scales have a one-to-ten relationship, so that overlapping input and
output profiles indicate an EER of approximately 10. Average energy input in kW should be
read from the left-hand axis, and thermal heating or cooling output in MBH should be read

from the right-hand axis.

The average winter day load profiles show a peak demand from 1.5 kW to 2.0 kW. Average
peak day load profiles vary from 3.5 to 4.5 kW. As noted previously, the peak day load
profiles average the five coldest days to provide a single profile from a larger number of
GSHP systems. As such, the profiles do not show the maximum individual customer demand.
The average day temperature profiles show that the outside air temperature is typically cooler
than the entering ground loop water temperature in the morning and warmer than the ground
loop temperature in the afternoon. Peak day temperature profiles show the advantage of
ground coupling where the ground loop temperature provides a source of energy for the heat

pump that is 20 to 30 °F warmer than the outside air temperature.

The average summer day load profiles show that the average day loads are insignificant,
except at Site 4, where the average day electrical load reaches a high of over one kW in the
afternoon. The average day temperature profile at Site 4 shows that the ground loop is
generally cooler than the outside air temperature during hours with an air conditioning load.
The peak day load profiles are highly variable both in terms of magnitude and time of peak.
For example, Site 1 shows a peak of about 2.0 kW at 18:00, while Site 4 shows a peak of
almost 3.5 kW at 22:00. Site 2 shows approximately 2 hours of operation in the morning,
with the system turned off during the middle of the day, and approximately two hours of

operation in the afternoon.
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SYSTEM PERFORMANCE

A heat pump moves heat from a source that is cooled to a heat sink that is warmed. The
closer the source temperature is to the sink temperature, the higher the potential efficiency of
the system. In the heating mode, the ground is the source and the room space is the sink. In

the cooling mode, the room space is the source and the ground is the sink.

From engineering principles, the performance of a GSHP system is a function of ground loop
water temperature, the temperature of the air heating/cooling coil, the compressor speed, the
fan speed, and the effect of cycling. As entering loop water temperature is increased, cooling
output and efficiency are expected to decrease. In contrast, as entering air temperature is

increased, cooling capacity and efficiency are expected to increase.

Other factors that are expected to affect the system efficiency include the compressor speed,
the fan speed and the affect of on/off cycling. Low-speed compressor operation is expected to
be more efficient than high-speed operation. However, low-speed operation may not provide
sufficient capacity. Increased fan speed and air velocity may improve the thermodynamic
efficiency by increasing the heat transfer at the air coil, but at the expense of increased fan
energy. In general, cycling is expected to provide less-efficient operation than the steady

continuous operation of the compressor.

The performance factors that have been monitored are presented as three series of graphs for

each site showing:

Heating and cooling efficiency as a function of the loop temperature entering
the heat exchanger at the heat pump,

Heating and cooling efficiency as a function of the entering air temperature at
the heating/cooling air coil of the heat pump, and

Heating and cooling efficiency as a function of the average duration of
compressor on-time per cycle in minutes.
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In general the data show heating efficiencies with the average COPs ranging from 2.5 to 3 under
typical conditions at most sites. Cooling efficiencies are found to be much more variable, with EERs

ranging from 8 to 15.

Performance as a Function of Entering Water Temperatures

Figures 3-8(1) through 3-8(4) show daily average heating and cooling efficiencies as as a function of
the average daily entering ground loop water temperature. Heating COP values should be read from
the left vertical axis and cooling SEER values should be read from the right vertical axis. The scales
of the right and left vertical axes have been selected so that heating COP and cooling EER are
directly comparable. For example, a heating COP of 5 is equal to an EER of 17.07 Btu per Watt.

The entering ground loop water temperatures are shown by a common horizontal axis.

The COP values at all four sites show that heating COP is only weakly dependent on the entering
water temperature. Data from all sites show a gradual increase in COP with increasing water
temperatures. The cooling EER shows a non-intuitive response to water temperature at Sites 1 and
2, where the efficiency appears to increase with warmer ground loop water temperature. From the
second law of thermodynamics, the maximum theoretical efficiency of an air conditioner is decreased

with increasing temperature of the thermal sink, in this case the ground loop.

Performance as a Function of Entering Air Temperatures

As with the entering water temperatures. the entering air temperatures, as shown in Figure 3-9(1)
through 3-9(4), do not appear to have a significant or consistent effect on heating or cooling
efficiencies. From the second law of thermodynamics, one would expect that heating efficiency
would be decreased and cooling efficiency would be increased with increasing temperatures of
entering air. The scatter plot of heating efficiencies should have a negative slope (increasing with
entering air temperatures) and cooling efficiencies should have a positive slope. The actual data do
not show a significant pattem. At Site 1 and 3, both heating and cooling efficiencies show a slight
positive slope. At Site 2, heating shows the expected negative slope but average air conditioning

efficiency increases at higher entering air temperatures. Only at Site 4 do the heating and cooling
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efficiencies show the expected tendencies for decreasing heating efficiencies and increasing
cooling efficiencies associated with increasing entering air temperature. Note that Site 4 also
shows that the entering air temperatures are lower in the cooling mode than in the heating
mode. This is simply a function of the customer's choice to maintain cooler temperatures in
the summer than in the winter. The cooler summer setpoint temperatures in conjunction with
a system of return air grills at the baseboard level result in a relatively cool entering air

temperature causing a lower cooling efficiency.

Performance as a Fuhction of Averagse Compressor On-Time

When the setpoint at the master thermostat is satisfied, the system is cycled off. When
additional heating or cooling is needed, the system is cycled on. The actual rate of cycling is
a compiex function of thermostat deadband, heating and cooling system capacity, the weather,
and the transient thermal response of the house. Each time the compressor starts or stops,
potential thermal and mechanical losses are expected to adversely affect the average efficiency
of the system. To investigate the effect of cycling of performance, the daily average heating
and cooling efficiency was plotted as a function of the daily average on-time per cycle, where
the daily average on-time per cycle is calculated as the total on-time in minutes divided by the
total number of on/off cycles during the day.

The data from Site 1 (Figure 3-10[1]), show a clear correlation of short on-cycles with lower
efficiency during cooling. It appears that the effect is most significant when the compressor
operates for an average of less than 10 minutes per cycle. Heating efficiency appears to be
unaffected by cycling at all four sites. Similar observations may be made about the data from
Site 2 (Figure 3-10{2]), although infrequent use of cooling at this site limits the available data.
Site 3 data (Figure 3-10[3]), show a contrary pattern, where the highest average cooling
efficiencies are associated with average runtimes of less than 10 minutes per cycle. Cooling

. efficiencies at Site 4 show a slight but probably insignificant trend of lower efficiencies
associated with longer average on-times. In general, the effects of cycling and temperatures
tend to obscure one another where the mild temperatures conducive to a high thermodynamic
efficiency are associated with mild thermal loads and increased cycling. Conversely, peak-load
periods combine extreme temperatures which are expected to lower efficiencies with thermal

loads that more closely match capacities, increasing runtimes and reducing cycling losses.
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Section 4

COMPARISON WITH CONVENTIONAL AIR-SOURCE
HEAT PUMP PERFORMANCE

Based on monitored data on the GSHP systems, estimates of air-source heat pump data, and long-
term weather data from Air Force Manual 88-29, Engineering Weather Data, for weather stations at
the Albany and Newberg/Stewart airports, a comparison was made for the four sites between energy

usage for the GSHP system and a typical air-source heat pump.

The analysis assumes that supplemental water heating from the desuperheaters of the GSHP systems
effectively reduces the electrical energy input to the conventional electric water heater at the site. The

air-source system is assumed not to have a desuperheater.

Table 4-1 lists the equipment efficiency ratings used in comparison. Electricity is assumed to be the
only fuel with an average cost of $0.10 per kWh. Electric resistance water heating is assumed to

have an efficiency of 100 percent with a conversion factor of 3.413 Btu per Watt.

Table 4-1. Equipment Efficiency Ratings

Function Air-Source Heat Pump System Ground-Source Heat Pump System
Heating 3.2COP at47°F 2.7 COP at ARI 330-hi
3.2 COP at ARI 330-lo
Cooling ‘ 10 EER at 95°F 14.0 EER at ARI 330-lo
Water Heating Electric Resistance Desuperheater

Electric Resistance

Table 4-2 provides the results of the comparison and a simplified cost/benefit analysis. Because the
annual energy use has been normalized by long-term weather data, the values shown in the table are
not the same as the values shown elsewhere in this report that are based only on the actual monitored

data. The table shows projected operating cost for ground-source and air-source given the actual -

space heating, space cooling and water heating requirements from the four test sites. Operating costs




Table 4-1 Site 1 Site 2 Site 3 Site 4
System Cost Comparison | Hyde Park, NY | Rhinebeck, NY ithaca, NY Stillwater, NY
Annual Space Heating
(MBtu) 50.5 89.1 49.7 54 1
Annual Space Cooling
(MBtu) 11.5 1.0 8.9 26.9
Annual Water Heating
(MBtu) 9.8 9.8 14.2 20.8
GEOMET calculated
ground-source operating
costs
Heating $565 $1,045 $550 $602
Cooling $105 $1 $65 $215
Water Heating $96 $131 $131 $176
Total $766 $1,177 $746 $993
WaterFurnace Energy
Analysis (WFEA) projected
ground-source costs
Heating $485 $885 $477 $535
Cooling $80 $7 $59 $182
Water Heating $151 $180 $253 $369
Total $716 $1,072 $789 -$1,086

Actual GSHP costs vs.
WFEA projected ground-

Operating costs
6.8% higher than

Operating costs
9.8% higher than

Operating costs
5.3% lower than

Operating costs
8.5% lower than

source costs projected projected projected projected
WFEA projected air-
source operating costs
Heating $803 $1.421 $809 $904
Cooling $132 $25 $113 $252
Water Heating $288 $288 $417 $606
Total $1,223 $1,734 $1,339 $1,762
Estimated Annual Savings
Heating $318 $536 $332 $369
Cooling $52 $18 $54 $70
Water Heating $137 $108 $164 $237
Total $507 $662 $550 $676
Percent Reduction 41% 38% 41% 38%




for the four sites were calculated by GEOMET and by WaterFurnace for both ground-source and air-
source systems. The projected operating cost for the ground-source systems shows a very good
agreement between the operating costs projected by the WaterFurnace Energy Analysis (WFEA)
computer program and the GEOMET projections based on the monitored data. Air source heat
pump operating costs have been projected using the WFEA program. These operating cost results
are equivalent to an average Heating Season Performance Factor (HSPF) of 6 Btu per Watt and a
SEER of 11 Btu per Watt for the air-source system performance. Estimated savings for the ground-
source sytem are shown as the difference in costs projected by the WFEA program. Annual savings
are estimated from $507 to $676 for the four test sites.

Typical system costs for ground source systems are estimated to be approximately $14,500 per site.
For comparison, the cost of an air source system is estimated to be approximately $8000. The
difference in cost is $6500. The cost savings estimated for the four sites provides a simple payback

of from 10 to 13 years.

However it should be noted that the ground-source approach provides several advantages in addition
to energy cost savings. Ground source system are expected to have a longer useful life than air
source systems because none of the system components are exposed to the weather. With an air
source system the compressor is typically located outdoors with the air-source heat exhanger. Also
because air source system must be located outdoors they may require valuable yvard space and are
often a source of noise pollution. In comparison, a ground source system requires less space and -

operates much more quietly.

Ground-source systems are expected to provide a greater degree of thermal comfort. The monitored
system results showed that space temperatures and more importantly supply air temperatures were
maintained such that none of the test participants complaimned of discomfort or cold drafts, problems

that are often associated with air-source systems.

Finally the monthly operating costs of a ground-source system would be more predictable than for an
air source system. During very cold weather both the efficiency and capacity of an air-source system
are degraded and much of the heating energy is provided by inefficicent electric resistance backup

heaters. The heating cost of an air-source system for a very cold month is therfore significantly

4-3




higher than for a month with more moderate temperatures. The monthly heating costs for a ground-

source system would be much less variable and easier to budget.
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Section 5
CONCLUSIONS

The report documents the successful demonstration of advanced GSHP systems designed to
eliminate the need for electric resistance backup heating. Four residential sites were monitored for a
full year for energy use and system performance. The analysis of these data shows that an advanced-
design GSHP system can efficiently maintain comfort with minimum outdoor temperatures of -25°F
and average monthly temperatures of 15°F without the use of backup resistance heat. On average,
the GSHP systems provided approximately a 40 percent reduction of energy consumption and costs

as well as an average demand reduction of over 12 kW, compared to a typical air-source heat pump.

The data show that the advantages of a GSHP system are most apparent during peak heating and
cooling conditions when the ground loop provides a moderate temperature heating source or cooling
sink as compared to outside air temperatures. For example, during peak heating conditions, the
ground loop systems operated with temperatures more than 30°F warmer than outside air
temperatures. This moderate-temperature source of thermal energy allows the ground source systems
to operate with a higher efficiency and a higher capacity than an air-source heat pump, eliminating
the need for backup heating. However, under muld conditions, the difference between outside air-
temperatures and ground loop temperatures is small and there are a significant number of hours
during the heating season when the outside air temperature is warmer than the ground loop

temperature.

The advanced GSHP systems in this demonstration included additional features such as supplemental
domestic water heating, electronically commutated motors (ECMs) for the supply air fans, and zone
temperature control using automatic dampers in branch zone ducts. Of these features, supplemental
water heating using a desuperheater made the greatest contribution to the total energy savings. At
some sites, the thermal output of the desuperheater was greater than the total thermal energy used for
cooling. The advantages of ECM motors and zone controls are not clearly apparent from the data,
but it appears that there is an opportunity of optimize the interaction of fan and zone damper

controls.




The advanced-design GSHP systems operated reliably and there were no significant problems
repdrted by the residents of the test sites. The only significant barrier to the adoption of this
technology is the first cost of the system, in particular, the cost the ground field installation. It is
anticipated that the cost of the ground field installation may be reduced if the number of experienced
installers is increased. Given the considerable reduction of peak heating demand, electric utilities
should consider promoting the system and providing financial incentives to increase the market

penetration of this energy-efficient and environmentally clean heating and cooling technology.




Appendix A

SITE SPECIFIC INSTALLATION DETAIL




WaterFurnace International, Inc.
9000 Conservaton Way

Fort Wayne, IN 46809
219478L0O0P (5667)

FAX 219-478-3029

Don Cade/Steve Stoltz
GEOMET Technologies, Inc.
20251 Century Bivd.
Germantown, MD 20874

Gentlemen,

I have enclosed for your reference some additional information on each of the
NYSERDA project jobsites. Blower/motor data for each unit is included.

If | can be of any further assistance please feel free to call.

Sincerely,

5o

Yohn Berg
Test Engineer
WaterFurnace International, Inc.




UNIVERSAL PSC 1/2 HP MOTOR AT 230 VOLTS
(Hyde Park, NY site)

ESP FAN TAP RPM WATTS cAv
0.0 Lo 757 387 993
0.5 Lo 1007 305 903
0.0 MED 881 448 1162
0.5 MED 1044 337 988
0.0 HI 1050 524 1412
0.5 HI 11156 410 1131

3/?5’ MED SPEED TAP Fon HERTING/ COOLING

ESP: external static pressure
RPM: revolutions per minute
CFM: cubic feet per minute




GE ECM 1/2 HP MdTOR AT 230 VOLTS
(ithaca and Stiliwater, NY sites)
FAN TAP RPM WATTS CcAM

291 39 669
698 128 594

322 46 766
727 159 714

362 64 887
711 173 854

387 77 955
723 ‘ 196 927

423 103 1051
726 223 999

461 135 1158
734 253 1101

514 180 1301
760 -305 1233

542 223 1405
802 364 1320

595 303 1545
755 385 1426

626 364 1649
819 475 1502

660 437 1767
831 - 523 1555

3/)5 er(uj"y vg—c‘ SPUJ +t«f£. S‘f’f”wa‘{”r:(“ 7,",“

ESP: external static pressure i’”‘ aco 0?
RPM: revolutions per minute
CFM: cubic feet per minute




- GE ECM 1 HP MOTOR AT 230 VOLTS
(Rhinebeck, NY site)

ESP FAN TAP RPM WATTS CAM
0.0 1 336 48 772
0.5 1 692 151 : 788
0.0 : 2 415 86 1008
0.5 2 725 219 LV 1061

A
0.0 3 493 135 W 1200
0.5 3 763 —> 297 1263 <—
0.0 4 519 162 ¢ ﬂ 1291
0.5 4 785 345 2t 1369
0.0 5 557 197 ( 1401
0.5 5 806 399 O 1472
0.0 6 601 243 1496
0.5 6 830 ~—> 455 1569 _ .
0.0 7 652 316 4%//? 1644
0.5 7 858 541 - 1704
0.0 8 717 430 .~ 1820
0.5 8 900 > 665 M 1860 .
0.0 ' 9 811 640 v 2074
0.5 9 956 876 2076
0.0 , 10 872 816 2248
0.5 10 974 955 2142
0.0 11 : .
0.5 11 . . .

3/1§ Currl_j’}\/ u<,1_¢| QPO,ZJ- ’}h?f 3, G, 8 (»7 c/unéc>

ESP: external static pressure
RPM: revolutions per minute
CFM: cubic feet per minute




The field test sites selected for the NYSERDA demonstration program are as

follows.

LOCATION TYPE OF INSTALLATION RESIDENT
Hyde Park, N.Y. Retrofit R. Maeder
Ithaca, N.Y. Retrofit S. Berg
Rhinebeck, N.Y. New Construction C. Freni

Stillwater, N.Y. New Construction B. Carpenter

All four of the units involved are Northern 36's. The blower housing, blower motor and
emergency electric heat for the units varied with application.

The! Control board[dip switch settings for all units is as follows:

Switch No, Position
T Normal
2 Northern 2-Speed
3 No 2nd Stage Cooling
4 No 3rd Stage Heating
S ACC relay with compressor
(Except Ithaca site air cleaner cycling
with fan)
6 Normal

~J

Loop freeze protection




APPLICATION

Job Site: v Hyde Park, N.Y.
Heat Loss: - 40,006
Heat Gain: - 17,500
Unit: ATVNO36A110CRT / EP0007
Estimated Annual Cost: $1,058 (based on .10/Kwh)
Ground Loop Information: 560" vertical bore 1.25" PE (2-280" boreholes)
Homeowner: Ron Maeder (CHG&E)
Dealer: Kool Temp (Mike Veeter)
Electric Service: Central Hudson Gas & Electric
Emergency Heat: 10 kw

—— pgs—
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» As Built Site Plan e 02€ o  WYDERK , wv

——

Company: i Date: ... .
Cedified GSC technician: uy Fﬁ | GSC number: _
Address:
City: State: Zip: Phone

Directions to job site: ' ' Instructions

1. Please select the type of loop instalied.

2. Draw the GCL as Installed. Locate the GCL to propenrty lines,
existing structures, & or other permanent land marks.

3. Provide a profile view of the site.

4. Atlach Site Survey or locate all applicable items from the

Site Survey Checklist.
aQzpi
Pe Geothermal Closed Loop System

0 Backhoe Q) Trench As Built Site Plan

Width =
Depth =

P ——

Q 4 Pipeor Q 6 Pipe

P TSR §

Width = _
D'epth =

Q Other

Width =
Depth =

t

Q I Pair Vertical

Backfill = ___

Q Pond

SCALE

Determine:
N Profile S w Profite E

Number of coils =

Coillength =

Depth installed =




Test Site: Hyde Park, New York EP0007

Design Specifications

° Model #: ATVNO36A110CRT

° Serial #: EP0007

° Chassis: 45, right return, topflow

° Compressor: Copeland CTN1-0501, serial #92J52819A, WFI #34P511B01

° Air side heat exchanger: Heatcraft 3CY-1403D, 28x25, lanced fin, rifled tube,
WFI #61P505C01

° Liquid side heat exchanger: Koax-K60, WFI #621507A01

° Reversing valve: Ranco V-4, WFI #33P503B01 )
° Expansion valve: Alco RAEB4, 20% bleed, WF! #33P534B07

° Blower housing: Morrison 9x7 regular, WFI #53P500B01

° Blower motor: Magnetek/Universal 1/2 hp psc, WFl #14P510B01

° DHW heat exchanger: Turbotec DTUSFSC-48, WFI #621516B01

° Control box assembly: WF{ #135521B01

> Control board: Northern 2-speed

° Electric heater: 10 kw, WFI #EAM/L10




APPLICATION

~ Job Site:
Heat Loss:
Heat Gain:
Unit:

Estimated Annual Cost:

Ground Loop Information:

Homeowner:
Dealer:
Electric Service:

Emergency Heat:

Ithaca, N.Y.

55,000

20,000

ATVNO36A110CLTX / EP0010

$1,342 (based on .10/Kwh)

560’ vertical bore 1.25" PE (2-280’ boreholes)
Stu Berg (NYSEG)

Kool Temp (Mike Veeter)

New York State Electric & Gas

20 kw




Test Site: lthaca, New York | EP0O0O10

Design Specificati
° Model #: ATVNO36A110CLTX

° Serial #: EP0010

° Chasslxs: 45, left return, topflow

° Compressor: Copeland CTN1-0501, serial #93103929A, WFI#34P511B01

° Air side heat exchanger: Heatcraft 3CY-1403D, 28x25, lanced fin, rifled tube,
WFI #61P505C01

°‘Liquid side heat exchanger: Koax-K60, WFI #621507A01

° Reversing valve: Ranco V-4, WFI| #33P503B01

° Expansion valve: Alco RAEB4, 20% bleed, WFI #33P534B07

° Blower housing: Morrison 11x10 tight, WFI #53P501B01

° Blower motor: G.E. 1/2 hp ICM1, long shatt, WFI #14P503B01

© DHW heat exchanger: Turbotec DTUSFSC-48, WFI #621516B01
° Control box assembly: WFI #135521B01

° Control board: Northern 2-speed

° Electric heater: 20 kw, WFI #EAL20




e - — i, —— e

m As Built Site Plan /:/-c”m’é flome ﬁﬁﬂm/ Ny -

Company: — Date: . —— .
Certified GSC technician: __;V 'F & GSC number:

Address:

City: State: - oo e ZiPY s e PO e

Directions to job site:

1. Please select the type of loop installed.
2. Draw the GCL as Installed. Locate the GCL to property lines,

existing structures, & or other permanent land marks.
3. Provide a profile view of the site.

4. Attach Site Survey or focate all applicabie items from the

Site Survey Checklist.

Q 2 Pipe

Q 4 Pipeor Q 6 Pipe

Q I Pair Vertical

Backiill =

Q Pond

Number of coils =

Coil length =

Depth installed =

Geothermal Closed Loop System
As Built Site Plan

Determine:
N

Prolile

SCALE _____ = —

S W Protile 3




APPLICATION

Job Site:

Heat Loss:

Heat Gain:
Unit:

Estimated Annual Cost:

Ground Loop Information:

Homeowner:
Dealer:
Electric Service:

Emergency Heat:

NOTES:

Rhinebeck, N.Y.

43871 (Main & second level, excluding
basement)

31216

ATVNO36A110CLTX / EP0006
$1,221 (based on .10/Kwh)

480’ of horizontial slinky at 5'-6" depth
Charlie Freni (CHG & E)

Kool Temp (Mike Veeter)

Central Hudson Gas & Electric

20 kw

The 580’ of 6-pipe trench would have resulted in 3480 of 3/4" pipe in the trench. Site
layout would not allow this much length of trench so a horizontally-layed slinky loop
was installed. Trench length was shortened to 480’, however the 3/4" pipe length was
increased to 4800'. Soil consisted of a wet sand/clay mixture, which is ideal for a
slinky installation.




» As Built Site Plan

PHINE BES py

Company:

FREN . Homl

Date: _

-JF8

Certified GSC technician:

GSC number:

Address:

Phone

City: State:

Zip:

Directions to job site:

instructions

1. Please select the type of loop installed.
Draw the GCL as Instalied. Locate the GCL to property lines.

existing structures, & or other permanent land marks.
Provide a profile view of the site.

Attach Site Survey or locate all applicable items from the

Site Survey Checklist.

Q 2 Pipe
Q Backhoe Q Trench

Geothermal Closed Loop System
As Built Site Plan

Depth =

— p—

Q Other

Width =

Depth =

:Q I Pair Vertical

Backfill = __

QO Pond

Determine:
N

Profile

SCALE

Profile

Number of coils =

Coil fength =

Depth instalied =

TE‘




Test Site: Rhinebeck, New York : EP0006

Desian Specifica
° Model #: ATVNO36A110CLTX

° Serial #: EP0006

© Chassis: 45, left return, topflow

° Compressor: Copeland CTN1-0501, serial #92L22214A, WFI #34P511B01

° Air side heat exchanger: Heatcraft 3CY-1403D, 28x25, lanced fin, rifled tube,
WF{ #61P505C01

° Liquid side heat exchanger: Koax-K60, WFI #62!50.71\01-

° Reversing valve: Ranco V-4, WFI #33P503BO1

° Expansion valve: Alco RAEB4, 20% bleed, WFI| #33P534B07

° Blower housing: Morrison 11x10 tight, WFI #53P501B01

° Blower motor: G.E. 1.0 hp ICM1, WFI #14P501B01

° DHW heat exchanger: Turbotec DTUSFSC-48, WF1 #621516B01
° Control box assembly: WFI #135521B01

° Contrdl board: Northern 2-speed

° Electric heater: 20 kw, WF1 #EAL20




APPLICATION

_ Job Site:
Heat Loss:
Heat Gain:
Unit:

Estimated Annuat Cost:

Ground Loop Information:

Homeowner:
Dealer:
Electric Service:

Emergency Heat:

NOTE:

Stillwater, N.Y.

61098 (including basement)
42431

ATVNO36A110CLTX / EPOO11
$1,456 (based on .10/Kwh)
700’ horizontal 6-pipe *

Bill Carpenter (home-builder)
Kool Temp (Mike Veeter)

New York State Electric & Gas

20 kw

Trench length was increased from 580" up to 700’ after the trench was observed to be
dryer than expected.




STHL WATER

i —-
4P RARIARR, As Built Site Plan WJ‘J%
7

ol 777
/

Company: Date: _ .
Certified GSC technician: :)/ FB GSC number: _
Address: - _
City:. State: Zip: Phone
H i i o fastructions
Directions to job site: 1. Please select the type of loop instalied.
2. Draw the GCL as Instalied. Locate the GCL to property lines.
: existing structures. & or other permanent land marks.
3. Provide a profile view of the site.
4. Attach Site Survey or iocate all applicable items from the
Site Survey Checklist.
Geothermal Closed Loop System
O 2 Pipe As Built Site Plan
0 Backhoe o0 Trench

ey 4

Width =
Depth =

P 1 Pair Vertical

Backfill =

Pond

Number of coils =

Coil length =

Depth installed =

1
1

t
i

U ST I

Determine:
N Profile

;L SCALE = ____

S w Profile E




Test Site: Stillwater, New York , EP0OO11

Desian Specificatl
° Model #: ATVNO36A110CLTX

° Serial #: EP0O11

© Chassis: 45, left return, topflow

° Compresspr: Copeland CTN1-0501, serial #93103883A, WFI #34P51’1BO1

° Air side heat exchanger: Heatcraft 3CY-1403D, 28x25, lanced fin, rifled tube,
WFI #61P505C01

° Liquid side heat exchanger: Koax-K60, WF1 #621507A01

° Reversing valve: Ranco V-4, WFI #33P503B01

° Expansion valve: Alco RAEB4, 20% bleed, WFI #33P534B07

° Blower housing: Morrison 11x10 tight, WF1 #53P501B01

° Blower motor: G.E. 1/2 hp ICM1, long shaft, WFI #14P503B01

° DHW heat exchanger: Turbotec DTUSFSC-48, WFI #621516B01
© Control box assembly: WF! #135521B01

¢ Control board:. Nerthern 2-speed

° Electric heater: 20 kw, WFI #EAL20




