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This project was funded by the United States Department of Energy, National Energy Technology
Laboratory, in part, through a site support contract. Neither the United States Government nor
any agency thereof, nor any of their employees, nor the support contractor, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade name, tfrademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
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« Methane reforming

« Microwave heating

o Catalysts/susceptors

« Conductive perovskites

« Fast failure performance screening
« Test results

« Efficiency gains

« Conclusions
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From Chae, Jung-il et al. Catalysts 10(1):99 2020 DOI: 10.3390/catal10010099

S. DEPARTMENT OF
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Dry reforming of methane (DRM): CO, + CH, — 2CO + 2H, (1:1 syngas)
Steam methane reforming (SMR): CH, + H,O — CO + 3H, (3:1 syngas)
Mixed reforming of methane (MRM): CO, + 2H,0O + 3CH, — 4CO + 8H,(2:1 syngas)

Commercially, only steam reforming is used due to ability fo run at lower temperature and
higher pressure

« CO, much softer oxidizing power than steam

 All 3 processes are spontaneous by 687 °C :g T
 For DRM, coking occurs below 860 °C S oo |
E 1100 + 10 atm
§ 1000 + 1.0 atm
§ o00 ___
i 0.6 atm
800 -+
700 . , , , ,
0 1 2 3 4 5

CO,ICH, feed ratio

Wang et al. Energy & Fuels 1996
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Conventional (Indirect) Heating
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Heat Transfer Between a Fire and a Hot Place

Tubular reactor

Combustion box

ure Profile

A. Conventional Heating

1 Yang et al. Nature Comm (2024)15:3848
2 Rapier, Robert. Forbes “Estimating the Carbon Footprint of H, Production June 6, 2020
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Conventional SMR reactors use
methane as both fuel and
reactant
« 8-10 kg CO, per kg H, with
~20% from heating?

Long startup and cool down times
due to reactor insulation

Difficult to scale down efficiently
due to heat fransfer

« Long fubes needed to ensure
middle of channel gets warm

 Many tubes due to low flow
rates to ensure enough
residence time




Distributed Electrified (Direct) Heating
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Warmth from Within

Energy efficiency / %

Heat flow Mass flow Heat flow Mass flow
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Conventional heating electrical heating
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T, temperature/°C

down

1 Yang et al. Nature Comm (2024) 15:3868

T

do

1 v 3 T
550 600 650 700 750

., temperature / °C

2Zheng et al. International Journal of Hydrogen Energy (2023) 48:14681-14696
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Recent papers have highlighted the
efficiency gains in endothermic
reactions by internally (directly) heating
the catalyst!

Heat losses found to grow ~linearly with
reactor tfemperature but ~independent
from the space velocity so overall
efficiency increases with flow rate?

Approaches range between direct
resistive (joule) heating the catalyst
bed, inductive heating, and microwave
heating
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Radiation Type  Radio Microwave Infrared Visible Ultraviolet  X-ray Gamma ray
Wavelength (m)  10° 107 10°,  05x10° 10° 107 107
Frequency (Hz)

4 12

108 10 10" 10' 10'® 10%°

10

« Microwaves are electromagnetic waves from ~10 cm to ~1 mm
« Lower frequency than infrared
« Infteract weakly with most matter allowing for wireless selective heating

« Microwave heating efficiency (suscep’ribili’ry) determined by the loss tangent:
we'+ o

tand = -
WE

« ¢’ and ¢’ are the imaginary and real permittivities, respectively, while ¢ is conductivity

« Materials with large tan é either have large €'’ /¢’ ratios (like strongly polar materials) or
large o/¢’ ratios (like salt solutions or graphite)
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Saving Time in the Lunchroom

Water: tand ~ 0.003 Saltwater: tané ~ 3 Graphite: tand ~ 0.25-1.5
(5.8Myqcl)

Dipolar materials have o Conductivity rises with
Conductivity improvements temperature causing

loss fangent to vary

large e''/¢’ ratio both raise o and lower ¢’

Graphite or other metallic

Much higher tané in water Salty liquids like soup suscentors absorb
than air allows selective absorb microwaves . P :
: : : s efficiently and have higher
heating of dipolar water in much more efficiently ohase fransifion
the cup

temperatures than water
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Catalysts/Susceptors

Putting Microwave Hot Spots to Work

Catalysis takes place on heterogenous surfaces so those
are the only spofts that need 1o be hot

Metals make excellent microwave absorbers when they
are fine enough to absorb instead of reflecting
electromagnetic wave

Once metals sinter or melt, end up with a large metal
object in the microwave (which is microwave reflective)

Want materials that heat like metals but do not sinter or
melt like metals

Graphite heavily used as a microwave susceptor, but
conditions that remove coke also remove graphite

For efficiency, the same material absorbing microwaves
should be where catalysis occurs
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Conductive Graphite

(0] 25 50 75 100 125 150
Microwave Power (Watts)

Temperature (Celsius)




Methane Reforming Catalysts

Bringing Molecules Together

« CH,lis symmetric and tough to crack
« Generally, metals are used as active sites for
CH, to bind to
« CO,is also symmetric, but does present Lewis acid
sites
« Basic oxides are often used as active sites for
CO,

« Typical methane reforming catalysts are metals
(Pt, Ru, Ni, Co, etc.) on oxide supports with base
sites (Na, Ca, Sr, etc.) to promote CO, inferaction

#2%.  U.S. DEPARTMENT OF
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Making Oxygen Share

* The highest high temperature oxide conductivities belong to the perovskite family

« Perovskites have general form ABO; with A sites generally alkaline or rare earths and B
sites generally transition metals

« B sites make up the structure backbone with each metal octahedrally coordinated with
vertex sharing oxygen

* In the case of Sr doped LaCoO,, highest known oxide conductivity ~4,400 S/cm and ¢
melfing point of 1700 °C

A site
(La, Sr)

B site
(Co, Mn,
Fe, Ni, Cu)
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DRM with LSC N=[hRA
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That's CO, + CH, — 2CO + 2H, with La, 4Sr, ,C0O, rL

LABORATORY
« Underreducing conditions, La, gSry ,C0O;5 kicks out Co metal sites and adopts a layered
perovskite structure

« Under oxidizing conditions, catalyst can be converted back to parent perovskite

« When over-reduced, phase separation fo microwave inactive La,O; and SrO leads to
sinfering and to a catalyst that no longer heats efficiently

« Control of B site dopants effective for moderating phase transition temperatures

Initial Perovskite 15t Reduction 2"d Reduction Over Reduced

Y 1000 - Temperature
5 232 o 6 ’§ i -0-L.SC-Mn
W DA A z, 7, ® . - LSC-Fe
. o - -0-LSC
2 ABO, A,BO,+BO  ABO,+B A0, +2B 2 400 | .
O - ~@-LSC-Ni
9 200 -
£ - -0-L.SC-Cu
) o 9 o 0
A site B site Oxygen 0 20 40 60 80 100
(La or Sr) (Co, Mn, Fe, Ni, or Cu)

Microwave Power (Watts)
Marin et al. Applied Catalysis B 284 (2021) 119711
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« Starting with 1g La, gSry ,C0O; (LSC) and testing with 50:50 CO,:CH,
- Trying to find the least energy to convert a kg of CO, at 80-90% conversions
« If conversions below 90% of both CO, and CH,, applied power raised
« If conversions of CO, and CH, 2 90%, increase the flow rates and repeat
1000 - L - 100 LSC LSC
o 900 - L"* 100 | . . 50 ~ °
%0800 . k_,..r-’*m - 80 > g0 | o’.". S 40 -
£ 700 1 - 60 ¢ S ] ® e50sccm : 30 1 o
3 600 50 scem 100 200 s O 40 o) o
3 500 sccm | scem 40 8 R 40 | e 100 sccm O 20 1
] g N o)) ]
2 400 © O 20 i R, 10
€ 300 : g—m"\ (§) ] 200 sccm T 0
gzoo _'_'__,_.—'_'_'_\ o 0 T E 0 5 10 15
" 100 1 O 100 200 300 Space Velocity (L/ghr)
0 +—r—rrrr T -20 Watts

0 15 30 45 60 75 90 105 120 135 150 165 180
Time (minutes .
—~Carbon Dioxide —Meghane ~)Temp —Wattage 248 kWh/kg COQ
conversion at 12 Lg'hr!
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1000 - LSC-Mn (.10%) ; - 100 LSC-Mn 10% LSC-Mn 10%
, 900 - _ 100 - 40 -
£ 800 - ‘W . 80 . .: o® > ®
S 700 - (N . 5 ] S 30 -
? 600 - § § O 60 e 50 sccm o ®
E 500 | 50scem ‘ 100 sccm 200 sccm 40§ ﬁ 40 ] . 100 scerm 8 20 - °
£ 400 - ‘ g’ O T D10 -
£ 300 - /J P07 O 20 200sccm &
g 200 + - ' : 0 O | | : : : , 5 O — T T T T T T T
" 100 _,_#—ﬂ‘;LL—-'_’“‘_ 0 100 200 300 0 10 20
0 +—+—r—r—rrr—r—r -20 Watts Space Velocity (L/ghr)

0 15 30 45 60 75 90 105 120 135 150 165

Time (minutes)
—~Carbon Dioxide -—Methane - Temp —Wattage

16.0 kWh/kg CO, conversion at 12 Lg'hr!

U.S. DEPARTMENT OF




° ® )
Fast Failure Performance Screening N=|NAronac
TL TECHNOLOGY
LABORATORY
LSC-Mn,Ni (40,20%) LSC-Mn,Ni (40,20%) LSC-Mn,Ni (40,20%)
1000 - - 100 -
@ 900 - WWWW 100 ] R o0 ® o0 : o © E 25 -+
£ 800 | - z 801 * 50 sccm 820 1@
2 00 - 50 100 200 300 400 o . R
2 600 - sccm  scem scem scem scem - 60 ,§ % 60 ® 100 sccm o) o ®
§ 500 A g VPSP - 40 g 2 40 ] 200 sccm O 10 ~ o O
2 a00 | [ [ S o PN U S O - ® 300 sccm g 5 -
& 300 e " 20 % O 20 - e 400 sccm s 04—
S 200 - ] 2
g 100 |\ L — - S o———————— ¥ 0 10 20 30
o ] 20 0 100 200 300 space Velocity (L/ghr)
0 15 30 45 60 75 Watts

Time (minutes)

—~Carbon Dioxide -—Methane - Temp —MW Power ° 10.0 kWh/kq COg COﬂverSiOﬂ OT ]2 Lg‘]hl”]
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Test Results La, ¢Sr, ,C0, 4Mn, 4Niy ,O, N = |NATIONAL

Conventional (Indirect) Heating

100 ~

90 +

80 +

70 +

60 +

% Conversion

30 .

10

0

40-5

20 H.

10 g powder La, ¢Sr,,Co, sMn, 4Niy, ,O catalyst thermal DRM

f 800 sccm Z
e
r !
r
o - f Tube Furnace DRM
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0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00

Time Elapsed (hours)

——C02 conv ——CH4 conv - Temperature
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LSC-Mn,Ni (40,20%)

Conventional
5 80 1
] ) - P
: ° 8 60 -
I ® 200 sccm 8N40 - Py
i ® 400 sccm 0 20 A o
_ V4
l 800 sccm § 0 —
0 500 1000 Os 2V| 'T4L ) é
Watts pace Velocity (L/ghr)

In a conventional tube furnace reactor, only 20.3
kWh/kg CO, conversion at 4.8 Lg'hr!

Efficiency improves with flow rate, but faster flow
rates require much hotter side walls to keep
catalyst bed at temperature

Back pressure gradually rose forcing a test end
after 10 hours with catalyst heavily sintered and
coked up




% Conversion

Test Results La, Sr, ,C0, 4Mn, 4Ni, ,O, N=[Eey
Microwave (Direct) Heating TLlissonaroiy

100 ~

90 1

80 1

70 4

60 4

50 1

40 -

30 4

20 1

10 A

10 g powder Lag ¢Sr, ,Co, ,Mn, ,Nij ,05 catalyst microwave DRM

FWWM

i

_,_r'_

Mlcr0w§>ve DRM

-

.

v

1:00 1:30 2:00 2:30 3:00 3:30 4:00

Elapsed Time (hours:minutes)

s CO2 cony ssss=(CH4 cony  ==mEP (Watts)
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r 300

F 250
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Microwave Forward Power (Watts)
(@]

F 150

g

- 50

100 1

CO, % conv
N A O O
o O O O

10 g LSC-Mn,Ni (40,20%) LSC-Mn,Ni (40,20%)

Microwave 80 -
1 3@ >
® 200 sccm S 60 A
1@ ® 400 sccm 6
1 * 600 sccm O 40 -
800 sccm ®)
» 1000 sccm %‘ 20 -
T T T I. .IIQOIO sI(:Clrr]I 1 E O B .
0 500 1000 c 2 4 6 8
Waltts Space Velocity (L/ghr)

In @ microwave reactor, only 2.4 kWh/kg CO,
conversion at 4.8 Lg'hr' ~10x better efficiency
Efficiency improves with flow rate and higher flow
rates were achievable with internally heated
catalyst

Ran catalyst for over 40 hours on stream before
back pressure ran high
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Working Smarter, Not Harder
Carbon Dioxide Conversion Efficiency vs Space Carbon Dioxide Conversion Efficiency vs Feed Rate 100 - Peak % Efficiency

™ 100 - Velocity w 100 1 N
o o QO 90 -
O g O 90 - v
=] ] =] 4
2 2 & 80
80 - v 807 =
g. 70 8_ 70 A (] 70 A
8 8 & ®
Z 60 - L 60 4 o 60 1
9 2 = ®
£ E 01 L 50 1
P € 40 £ o
> > o 40 -
2 ? 30 S
£ E 2 30 -
E g 2] g 20

_: -
z = 10 - b [ J
l S £ 107

0 500 1000 1500 2000 » 94+ -+
GHSV (Lgthr?) Reactant Feed Rate (sccm) 0 500 1000 1500 2000
—@—-10g LSCMN granule —e—1g LSCMN 40:40:20 —8—1g LSCMN 40:40:20 —@—3g LSCMN 40:40:20 Reactant Flow Rate (ml/min)
—8—3g LSCMN 40:40:20 —@—7g LSCMN 40:40:20 —8-10 g LSCMN granule —@-7g LSCMN 40:40:20

«  Thermodynamic efficiency calculated assuming that at 100% only energy used is for dry
reforming reaction enthalpy (+247 kJ/mol CO,)

« Like other internally heated endothermic reactions, efficiency improving with flow rate
« Efficiency improving with flow rate even while keeping within the same space velocity range
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Variable Methane Reforming

1:1 to 3:1 Syngas Ratios

LSCMN 40:40:20 Hydrogen Production LSCMN 40:40:20 CO Production
Efficiency i Efficiency N
®SMR 7g
100 - ® SMR 7¢g
o ] © MRM 7g
Y ® MRM 7g
° LDJD 0® ® DRM 7g
o~
T .. ® DRM 7g = o
[o]4} ® _E °
< o’ 2 %,
£ = 0%
E ® .o e ap
) o y
S e
[}
18.24 kWh/kg H,
10 T T T TTTTT T T ™1 1 T T TrrTTTT !
100 1000 100 1000

Reactant Feed Rate (sccm) Reactant Feed Rate (sccm)
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As LSC-Mn,Ni (40,20%) was developed for
performance with dry reforming methane,
catalyst also suitable for mixed and steam

reforming

Dry Reforming Methane (CO, + CH, —» 2CO +

2H,) 1:1 syngas

Mixed Reforming Methane (in our case, CO, +
2H,0 + 3CH, — 8H, + 4CO) 2:1 syngas
Steam Methane Reforming (CH, + H,O — 3H,

+ CO) 3:1 syngas

For all 3, efficiency has been improving with

reactant feed rate
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« High temperature endothermic reactions such as dry
reforming methane run more efficiently with higher flow
rates

« Directly heating of catalyst bed from within allows for
better temperature uniformity and stability at high gas
flow rates

« LSC optimized for microwave absorption and dry
reforming stability with incorporation of Mn and Ni for
overall formula Lag gSry ,C 0 4MNg 4Nig ,O4

« Catalyst found to be suitable for microwave dry, mixed,
and steam reforming conditions
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Lag gSr,€0p 4Mn, ,Niy ,0, catalyst regeneration XRD 100 . -
90 - ®
80 - °
N A A —Ground and calcined 12 ] °
> hrs = 70 - b
‘@ = ] °
£ A N A \ —Calcined 24 hrs, no S 0 °
ks grinding < | ® LSCMN re-ground and re-calcined
~N
= S 4 e
S ®
2 —Used LSCMN 6 day MW- 30 ® LSCMN re-calcined
DRM endurance test o 1
- == LSCMN 40:40:20 average peak
A Al A —Fresh LSCMN 10 1 efficiency 95 kg CO,/1000 kWh
20 25 30 35 40 45 50 0 T ' ' T ' T T ' T '
0 100 200 300 400 500
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reacon SOmMe elementary reactions of SMR on Ni(111)

CH,+2*=CHf +H*

CHf +*=CH$ +H*

CHY +* = CH*+H*

CH +* =C* +H*

CH* + OH* = CH;OH * +*

CH% +OH* = CH,OH*+*

CH"+ OH"=CHOH"+~

C*+OH"=2COH"+"*

CHf +0* = CH:0*+*

CH% + 0* =2 CHO*+*

CH*+0*=CHO" +*

Cr+0*=Co"+*

CH4OH" + * = CH,0H" + H"

CH,OH™ + " = CHOH™ + H”
CHOM® + * = COH" +H*
CHOH" +* 2 CH,0" + H*

CH,OH" +* = CH,0" + H*

CHO™+*=CO" +H"

CHO*+ 0O* =HCO0*™"

c0°+0t

2 OH" +H"

OH*+* 20" +H*

9

0*=0H"+O0H"
CO*+OH* = COOH" +*
COOH*+*=2COf +H*

HCOO* H*

®

Hy+2" = H* +H*

CoO+*=Co"

*

CH,OH + * = CHy0H"

' H,0") CH" + OH"

C'COH'+H'

N=
TL

Methane reforming composed of many elementary
steps to strip H, from CH, and oxidize carbon back
into a leaving group (CO and CO,)

CO, and H,0 closely interrelated by the water-gas
shift reaction CO + H,0 = CO, + H,

* Note: WGSR also not an elementary reaction

Ratio of CO, and H,0O oxidizers use control the ratio
of H,:CO in product mix but elementary steps are
the same either way

Very complex microkinetics: thermodynamics
treatment relied on for reforming reactions
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COH’+0H“——‘C0
HCOH" + OH"——‘HCO'+
H,COH® + OH‘=H2C0'+

Changming Ke, Reaction Chemistry & Engineering 2020(5) 10.1039/C9RE00460B

CHOH™ + " = CHO" +H*
COH™ + "= CO" +H"
CH,0" +* = CH,0" + H*

CH,0" +* = CHO" + H"
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