

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-PROC-857831

Experimental and Kinetic modeling of soot formation in counterflow flames of surrogate fuel components: n-dodecane and iso-dodecane

T. Chatterjee, C. Saggese, X. Xue, G. Kukkadapu,
W. J. Pitz, S. W. Wagnon, C. J. Sung

December 1, 2023

CI#s 40th International Symposium - Emphasizing Energy
Transition
Milan, Italy
July 21, 2024 through July 26, 2024

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Experimental and Kinetic modeling of soot formation in counterflow non-premixed flames of surrogate fuel components: n-dodecane and iso-dodecane

Tanusree Chatterjee¹, Chiara Saggese¹, Xin Xue^{2,3}, Goutham Kukkadapu¹, William J. Pitz¹, Scott W. Wagnon¹, Chih-Jen Sung²*

¹*Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA*

²*Mechanical Engineering Department, University of Connecticut, Storrs, CT 06269, USA*

³*National Key Laboratory of Science and Technology on Aero-Engine Aerothermodynamics, Research Institute of Aero-Engine, Beihang University, Beijing, 100191, China*

**Corresponding Author Email: chatterjee2@llnl.gov*

Abstract

Normal dodecane (n-C12) and iso-dodecane (i-C12) are often used as components for surrogate mixtures of aviation and diesel fuels. Although studies have been performed to understand the combustion and spray behavior of dodecane isomers, the soot formation from the combustion of n- and i-C12 in non-premixed flames is not well studied. In this work, soot volume fraction (SVF) profiles of n- and i-C12 were measured across a wide range of strain rates and mixture conditions in a counterflow burner facility at the University of Connecticut. Neat and binary mixtures of n- and i-C12 were investigated to study the influence of alkane branching on soot formation. A soot model was developed and validated in this study by extending the detailed kinetic model developed at the Lawrence Livermore National Laboratory (LLNL) for the formation of polycyclic aromatic hydrocarbons (PAHs) to simulate soot formation and growth based on the discrete sectional method. Additional gas phase reactions forming pyrene and ring enlargement reactions were added to the existing PAH model. The LLNL kinetic model was validated with SVF data obtained in this work for n-C12 and i-C12 flames along with data available in literature for ethylene, iso-butene, n-heptane and iso-octane. The soot precursor reactions added in this work were found to play a critical role in simulating the experimentally observed non-linear trend of the peak SVF with increased branched alkanes. Reaction path analysis was conducted to illustrate the fuel structure effects on soot formation pathways in n- and i-C12 mixtures. In view of the satisfactory agreement between modeling results and experimental data, as well as capturing the non-linear variation in peak SVF with the alkane branching for the first time, further investigation within the framework of the soot model is discussed and critical insights are provided into the reaction pathways which require further attention.

Keywords: counterflow non-premixed flame; soot; dodecane isomers; surrogate fuel components; kinetic modeling

**Corresponding author.*

Information for Colloquium Chairs and Cochairs, Editors, and Reviewers

1) Novelty and Significance Statement

Normal dodecane (n-C12) and iso-dodecane (i-C12) are commonly used as diesel and jet fuel surrogates. Although soot formation from n-C12 has been studied previously in the literature, soot studies of its highly branched isomer, i-C12, and blends of large n-alkanes and iso-alkanes have been meager. This is the first experimental study to measure soot volume fraction (SVF) in counterflow (CF) flames of n-C12, i-C12, and their blends with an aim to better understand the effects of alkane branching on soot formation and provide new soot measurements for model validation. A new soot model is also proposed and comprehensively validated for the first time across a wide range of CF flames involving commonly used surrogates for real complex fuels. Using the validated model, this study provides critical insight into reactions playing a key role in simulating the experimentally observed non-linearity in peak SVF as alkane branching in the fuel blend increases.

2) Author Contributions

The authors should be identified by their initials and each author's contributions to the manuscript should be indicated by 2-3 words such as, for example, "designed research," "performed research," "analyzed data," "wrote the paper," etc.

- **T.C.** Data curation; formal analysis; investigation; validation; writing – original draft; writing – review & editing.
- **C.S.** Validation; data analysis; supervision; writing – review & editing
- **X.X.** Investigation; formal analysis; data curation; writing – original draft.
- **G.K.** Validation; data analysis; supervision
- **W.J.P.** Writing – review & editing.
- **S.W.W.** Funding acquisition; project administration; supervision; writing – review & editing.
- **C.J.S.** Conceptualization; funding acquisition; project administration; supervision; writing – review & editing.

3) Authors' Preference and Justification for Mode of Presentation at the Symposium

The authors strongly prefer **OPP** presentation at the Symposium, for the following reasons:

- This paper is deemed to have the potential of adding value to the community through a room-audience-level discussion.
- This OPP can focus on outcomes and results without requiring the inclusion of extensive background information.
- We approach the subject that is different to other related work and contextual information is not deemed essential.

1. Introduction

2 Soot particles resulting from the incomplete
3 combustion of hydrocarbons can lead to significant
4 health hazards as well as global warming [1]. Efforts
5 to mitigate these adverse effects have often taken the
6 form of increasingly stringent emissions standards to
7 reduce soot particulate matter. These stringent
8 standards have made it progressively more
9 challenging to achieve permissible levels of engine
10 out soot using existing devices, fuels, and approaches.

11 Low-lifecycle carbon and low-sooting fuels such
12 as renewable diesel and synthetic paraffinic kerosene
13 are widely viewed as viable fuels to help mitigate
14 adverse effects stemming from combustion
15 applications. However, one impediment to utilizing
16 combustion with low engine out soot is the inability
17 to design and optimize combustors using predictive
18 simulations of surrogate mixtures for sustainable
19 fuels. Although kinetic models have been developed
20 to simulate soot formation and growth at engine
21 conditions, many studies have focused on ethylene
22 (C_2H_4) as a fuel since it is a significant intermediate
23 formed during combustion [2-5]. Far fewer studies
24 have focused on soot formation during the
25 combustion of heavier fuel components and surrogate
26 mixtures for complex fuels.

27 For instance, literature studies of reference
28 compounds such as n-heptane (n-C7), iso-octane (i-
29 C8), and toluene provide critical insights into the soot
30 formation of larger linear alkanes, branched alkanes,
31 and aromatics. These reference compounds are also
32 template species for larger, less volatile components
33 found in aviation and diesel fuels. While there are
34 many ways to study the fundamentals of soot
35 formation and growth for fuels, such as using sprays
36 [6] and premixed flames [7], the literature most
37 relevant to this work pertains to non-premixed flames.
38 A very recent example of a single-component fuel
39 includes the study of Zheng et al. [8] and Nobili et al.
40 [9] which investigated soot formation from n-C7 in
41 counterflow (CF) non-premixed flames by
42 performing both experiments and numerical
43 simulations. Also using co-flow non-premixed
44 flames, Kashif et al. [10, 11] and Consalvi et al. [12]
45 studied sooting tendencies of n-C7 and i-C8 binary
46 mixtures. These binary mixture studies agree well
47 with the broader literature which indicates that highly
48 branched alkanes typically produce more soot than
49 linear alkanes. Using CF non-premixed flames, Choi
50 et al. [13] investigated soot formation in binary
51 mixtures of n-C7, i-C8, and toluene. The authors
52 observed a synergistic effect on the formation of
53 polycyclic aromatic hydrocarbons (PAHs) as a
54 function of toluene ratio in the n-C7/toluene and i-
55 C8/toluene flames. Systematic investigations of
56 toluene primary reference mixtures on PAH/soot
57 formation have only been done recently by Park et al.
58 [14] and Kruse et al. [15] by performing both

59 experiments and kinetic modeling studies. For CF
60 flame of n-C7/i-C8, soot volume fraction (SVF)
61 increases non-linearly as i-C8 branching increases.
62 However, for n-C7/toluene and i-C8/toluene flames,
63 Park et al. [14] observed that, although PAHs show a
64 synergistic behavior, SVF increases monotonically as
65 toluene content in the mixture increases.

66 Measurements of and models for soot formation
67 from surrogate components of diesel and jet fuels,
68 such as n-dodecane and iso-dodecane, are sparser. n-
69 Dodecane (n-C12) is commonly used as a diesel and
70 jet fuel surrogate component to represent the linear
71 paraffins in complex fuels. In addition to being a
72 surrogate component for complex fuels, iso-dodecane
73 (i-C12; 2,2,4,6,6-pentamethylheptane) is also a
74 primary reference compound for cetane
75 measurements. Skeen and Yasutomi [6] studied soot
76 growth for n-C12 in a high-pressure constant-volume
77 spray chamber and observed that under high-pressure
78 pyrolyzing conditions, the maximum rate of soot
79 formation increases linearly with ambient
80 temperature. Furthermore, a critical temperature of
81 1550 K was observed above which the total soot mass
82 did not increase with ambient temperature. Using a
83 coflow non-premixed burner, Mitra et al. [16] studied
84 the growth of PAHs and young soot from n-C12. The
85 authors observed a rapid increase in PAHs when
86 young soot transitions to a mature one. Wang et al.
87 [17] proposed a reduced PAH mechanism for n-C12.
88 The proposed PAH model was validated with ignition
89 delays and species concentration profiles from shock
90 tubes and jet stirred reactors (JSR). To the authors'
91 knowledge, soot formation studies of n-C12 and i-C12
92 have not been previously performed in a CF non-
93 premixed flame.

94 In this study, new soot volume fraction
95 measurements from soot formation in non-premixed
96 flames of neat n-C12 and i-C12 were acquired using
97 the University of Connecticut CF burner facility.
98 Binary mixtures of n-C12 and i-C12 were also studied
99 to better understand how large linear and branched
100 alkanes directly relevant to sustainable aviation fuels
101 influence soot formation in non-premixed CF flames.
102 This is the first study to present SVF data from CF
103 soot formation flames of n-C12, i-C12, and their
104 binary mixtures. In addition, the LLNL model for
105 PAHs [18] was updated and paired with a new soot
106 model based on the discrete sectional method [19,20]
107 proposed in this work.

108 The developed soot model was then validated with
109 SVF data obtained in this work for n-/i-C12 flames.
110 Additional validations considered literature
111 measurements of SVF and soot precursors. Validation
112 efforts in this work invoked a wide range of CF soot
113 formation flames, including common surrogate fuel
114 components, such as n-C7 and i-C8, and their blends.
115 The use of n-C7 and i-C8 as additional validation
116 cases establishes support for the current
117 implementation of soot formation and growth rate

1 rules since n-C7 and i-C8 have similar molecular
2 features and intermediate species to the heavier n-C12
3 and i-C12 components. In addition, the reaction path
4 analysis provides a basis for the discussion of fuel
5 molecular structure effects on soot formation
6 pathways in CF non-premixed flames of n-C12 and i-
7 C12.

8

9 2. Experimental specification

10 Two aerodynamically-converging opposing
11 nozzles of 10 mm exit diameter with a separation
12 distance of 11 mm were placed opposed to each other.
13 Both fuel and oxidizer streams were diluted with
14 nitrogen before flowing into the bottom and top
15 nozzles, respectively. A shroud of nitrogen gas was
16 used to isolate the resulting flame from the ambient
17 air. The flow system and the CF burner were
18 maintained at a temperature of 473 ± 2 K to prevent
19 condensation of pre-vaporized fuel. The laser-induced
20 incandescence (LII) technique was combined with the
21 light extinction (LE) method to measure the soot
22 volume fraction profiles in CF sooting flames. In the
23 LE measurements, a continuous He-Ne laser beam
24 with a wavelength of 632.8 nm was used and a
25 refractive index (m) of 1.57-0.56i was adopted for the
26 current study, which is widely used in literature, as
27 discussed in [21]. For the current experiments, the
28 standard deviation of the LE measurements is less
29 than 5% based on three consecutive runs, while the
30 standard deviation of the LII measurements is less
31 than 18% based on 40 LII images. To study how the
32 alkane branching effect influences soot formation in
33 non-premixed CF flames, several binary mixtures of
34 i-C12 and n-C12 at liquid volume ratios of 25/75,
35 50/50, 75/25, 90/10, and 95/5 were considered. The
36 mixture compositions and corresponding notations
37 are summarized in Table 1. Further details of the
38 experimental specifications and test conditions are
39 provided in the SM (Discussion 1).

40

41 Table 1: Test conditions for i-C12 (2,2,4,6,6-
42 pentamethyheptane) and n- C12 blends studied.

X_F	X_{O_2}	Z_{st}	K (s ⁻¹)
0.138	0.50	0.237	200-500
0.117	0.45	0.238	
0.100	0.40	0.236	200

43 X_F : fuel mole fraction in the fuel stream; X_{O_2} : oxygen mole
44 fraction in the oxidizer stream; Z_{st} : stoichiometric mixture
45 fraction < 0.5 (soot formation flame); K : global strain rate

46 3. Kinetic model development and numerical 47 simulation

48 The current work extends the detailed kinetic
49 model developed at LLNL for the formation of PAHs
50 [18] to soot formation and growth. The developed
51 soot model is based on the discrete sectional method.
52 Following a similar methodology as Saggese et al.

53 [19], heavy PAHs and soot particles are discretized
54 into 20 sections of lumped species, i.e., BIN_n with
55 $n=1-20$, with carbon atoms ranging from 20 in BIN1
56 to 10^7 in BIN20. For all BIN_n, only one
57 hydrogenation level is considered which greatly
58 reduces the number of species and reactions in the
59 model. The primary soot reaction classes and their
60 related references for the kinetic parameters used in
61 this study are summarized in Table 2.

62

63 Table 2: Main soot reaction classes.

Soot reaction classes	References
1. HACA H abstraction from BIN(M) C ₂ H ₂ addition to BIN(R)	C ₆ H ₅ +H/CH ₃ from [22] C ₆ H ₅ +OH from [23] C ₆ H ₅ +C ₂ H ₂ from [24]
2. Soot inception PAH(R/M)+PAH(R/M) BIN _i (i<5) + BIN _j (j<5)	BIN+BIN from [20] C ₆ H ₅ +C ₆ H ₅ from [27] C ₆ H ₅ +C ₆ H ₆ from [28]
3. Surface growth RSR + BIN (R/M) PAH (R) + BIN (R/M) BIN _i (i<5) + BIN _j (j>5)	BIN+BIN from [20] C ₃ H ₃ +C ₆ H ₅ from [25] C ₃ H ₃ +C ₆ H ₆ from [26] C ₆ H ₅ +C ₆ H ₅ from [27] C ₆ H ₅ +C ₆ H ₆ from [28]
4. Particle coalescence and aggregation BIN _i (i>5) + BIN _j (j>5)	BIN+BIN from [20]

64 R=radical; M=molecule; RSR=Resonance stabilized
65 radicals: C₃H₃, i-C₄H₉, i-C₄H₃, C₅H₅, C₃H₅-A, C₇H₇, C₉H₇;
66 PAH=polycyclic aromatic hydrocarbons: A1-A4.

67

68 It is well known that the H-atom abstraction
69 (H+BIN_n), acetylene addition to BIN radicals
70 (C₂H₂+BIN_nJ) (i.e., HACA) reaction class plays a
71 critical role in soot inception and growth [19,20]. In
72 the LLNL model, rate parameters for HACA are
73 based on theoretical studies [22-24] using benzene
74 (C₆H₆) and phenyl radicals (C₆H₅) as reference
75 aromatics. To consider the effect of the size of the soot
76 particle on rate parameters of C₂H₂ addition to BIN
77 radicals, the A-factors have been scaled according to
78 the size of the particle [22]. In addition to C₂H₂, odd
79 carbon numbered resonance stabilized radicals
80 (RSRs) are also known to play critical role in soot
81 formation and growth [14]. Reactions involving
82 propargyl (C₃H₃) radicals were found to be highly
83 sensitive to SVF in the sensitivity analysis performed
84 in this study (Fig. SM1). In the proposed model, rate
85 constants for RSR+BIN_nJ reactions are based on a
86 recent theoretical study by Mebel and coworkers [25]
87 involving C₆H₅ and C₃H₃. To consider the change in
88 collision frequency with the increasing diameter of
89 soot particles and aggregates, the A-factors have been

1 scaled for surface growth reactions according to the
2 methodology proposed by Pejpichestakul et al. [4].
3 Reactions of PAH addition to BIN radicals also
4 contribute significantly to soot inception and growth
5 [19,20]. In this study, rate constants for surface
6 growth reactions involving light PAH radicals up to
7 pyrene (A4) are based on theoretical studies involving
8 self-reaction of phenyl radicals (i.e., $C_6H_5 + C_6H_5$)
9 [27]. Rate constants for surface growth involving
10 heavy PAHs, i.e., BIN1-4 and soot particles (BIN5-
11 12)/aggregates (BIN13-20) are based on Ref. 20. Rate
12 constants for soot reaction class 4 i.e., particle
13 coalescence and aggregation which involves
14 interactions only between soot particles and soot
15 aggregates are also based on Ref. 20. Interactions only
16 between heavy PAHs (BIN1-4) result in the first soot
17 particle i.e., BIN5 called soot inception (soot reaction
18 class 2). Rate constants for interactions between
19 heavy PAHs (BIN1-4) are also based on Ref. 20. Soot
20 inception reaction class also includes interactions
21 between light PAHs leading to form BIN1 and/or
22 BIN2. Rate constants for interactions between light
23 PAHs are based on analogy to reactions: $C_6H_5 + C_6H_5$
24 from [27] and $C_6H_5 + C_6H_6$ from [28].

25 The existing PAH model from LLNL [18] was
26 updated by adding new lumped reactions involving
27 C_9H_7 and C_7H_7 radicals to form pyrene ($C_{16}H_{10}$, A4)
28 based on the study by Park et al. [14]. New ring
29 enlargement reactions involving phenanthrene (A3)
30 and pyrene (A4) radicals were added to form BIN1.
31 The newly added reactions play a critical and sensitive
32 role in CF of i-C12 and i-C8 flames studied in this
33 work.

34 Simulations of SVF were performed using the
35 unsteady counterflow non-premixed flame code
36 developed at LLNL [29], with constant Lewis number
37 approximations for each species. Applying a constant
38 Lewis number approximation reduces the wall time of
39 simulations by as much as a factor of 10 compared to
40 using mixture-averaged transport approach for CF
41 flames calculations involving large surrogate
42 components, such as n-C12 and i-C12. Effects of
43 thermophoresis and particle diffusivity coefficients
44 computed through a Stokes–Cunningham correlation
45 on simulations of SVF are provided in Figs. SM2-3.
46 Thermophoresis typically shifts the SVF peak towards
47 the fuel side, while utilizing Stokes–Cunningham
48 diffusivity coefficients changes the shape of the SVF
49 profile as well as increasing peak SVF. Reaction path
50 analysis was performed with CHEMKIN Pro [30] to
51 facilitate discussion of fuel molecular structure effects
52 on SVF.

53 4. Results and Discussion

54 4.1. Experimental results and model validation 55 studies

56 A selection of the experimental results along with
57 the corresponding simulations of SVF from the CF

58 flame of neat n-C12, i-C12, and their binary mixtures
59 are shown in panels a) and b) of Fig. 1. Additional
60 SVF measurements and validations from this work are
61 provided in the SM (Fig. SM4). As expected, it can be
62 seen that the peak SVF along the centerline and the
63 overall soot loading increase with higher
64 concentrations of i-C12 in the fuel blend.
65 Furthermore, it can be observed that as K increases,
66 peak SVF decreases as expected due to the reduction
67 in characteristic residence time within the flame.
68 These observations are consistent with literature
69 studies comparing soot formation for linear and
70 branched alkanes [14,15]. A more thorough
71 discussion of fuel molecular structure effects on SVF
72 is provided in Section 4.2. It can also be observed
73 from Fig. 1(a) that peak SVF values increase non-
74 linearly as a function of i-C12 content in the fuel
75 blend. In particular, when the i-C12 concentration is
76 greater than 90% in the blend, peak SVF exhibits a
77 stronger non-linear increase. This non-linearity in
78 peak SVF data has already been reported by Park et
79 al. [14] for CF non-premixed flames of i-C8 and n-C7
80 blends, as shown in Fig. 1c. Simulations using the
81 LLNL model can capture the non-linear increase of
82 peak SVF with iC12 content reasonably well across
83 the wide range of strain rates considered in this study.
84 The LLNL model also captures the non-linear trend in
85 peak SVF for n-C7/i-C8 blends reported by Park et al.
86 [14], as seen in Fig 1c. The simulation is also able to
87 qualitatively capture the strain rate dependence with
88 peak SVF.

89 Figure 1b compares the spatially resolved SVF
90 profiles along the centerline of flame. The x axis is the
91 distance from the fuel nozzle normalized to the
92 location of the peak SVF in i-C12. The peak values of
93 each SVF curve were observed to occur at
94 approximately 3.96 mm from the fuel nozzle,
95 suggesting that the location of peak LII signal is
96 independent of i-C12/n-C12 blending ratio when
97 keeping Z_{st} constant. Furthermore, the overall
98 thickness of the SVF profiles appears similar for all
99 fuel blends, as K is kept constant. It can be observed
100 from Fig. 1b that the simulated SVF profile matches
101 well with the data.

102 Regarding quantitative agreement, the simulations
103 tend to overpredict SVF of C12 mixtures by a factor
104 of 5 for all conditions studied in this work. In addition
105 to the validations against SVF data obtained in this
106 study for n-i-C12, the LLNL model was also
107 validated with literature data for CF flames of n-C7
108 and i-C8, which are common surrogate fuel
109 components and have similar molecular structures to
110 n-C12 and i-C12, respectively. From validation
111 studies shown in Figs. 1c and SM5-6, it can be
112 observed that simulations predict peak SVF for CF
113 flames of n-C7 and i-C8 within a factor of 3. The
114 LLNL model was also validated with the SVF data
115 available in literature for C_2H_4 counterflow flames,
116 which have been commonly used in the literature to

1 validate soot models. These validations for C₂H₄ 2 mixtures are provided in the SM (Fig. SM7) and the 3 LLNL model underpredicts the SVF data for C₂H₄ 4 flames by as much as a factor of 4.

5 While evaluating the LLNL model for quantitative 6 agreement of SVF, it is notable that there exists a 7 systematic uncertainty in SVF measurements using 8 the LE technique. This uncertainty is of a factor 3 9 stemming from the assignment of the refractive index 10 value used to convert raw signals to SVF while 11 calibrating the LII signals against LE measurements 12 [3,15,21,31,32]. It has also been discussed in the 13 literature that the choice of diagnostic wavelength 14 potentially introduces additional systematic bias into 15 SVF measurements [31]. As addressed in Section 3, 16 decisions regarding the exclusion of thermophoretic 17 effects and estimation of particle diffusivity 18 coefficients can also influence the simulated SVF of 19 CF flames. Therefore, in this work quantitative 20 agreement of simulations with SVF measurements 21 within a factor of 5 was considered reasonably 22 accurate.

23 To the best of authors' knowledge, this is the first 24 study to capture both the experimentally observed 25 non-linear trend and the absolute value of peak SVF 26 for n-alkane and highly branched alkane flames 27 reasonably well. For example, although Park et al. 28 [14] in their study used the soot model from Wang et 29 al. [33] to simulate the non-linear trend in peak SVF 30 for n-C7/i-C8 mixtures, their model comparisons only 31 showed normalized SVF data. Furthermore, although 32 the latest soot model published by Nobili et al. [20] 33 can capture peak SVF for n-C7/i-C8 mixtures in CF 34 flames within a factor of 3, it is not able to capture the 35 non-linear trend in peak SVF reported by Park et al. 36 [14]. Comparisons illustrating this point are provided 37 in the SM (Fig. SM8).

38 In addition to SVF validations, the LLNL model 39 was validated with measurements of smaller 40 intermediate species including PAHs under similar 41 flame conditions. Validations of the LLNL model for 42 species from CF flames of n-C7, i-C8, C₂H₄, and iso- 43 butene (i-C4) are provided in the SM (Figs. SM9-13). 44 iso-Butene was included since it is one of the primary 45 intermediates in both i-C8 and i-C12 flames. To the 46 best of our knowledge, there is no speciation data 47 available for CF flames of n-C12 and i-C12 which 48 could further validate modeled pathways to soot 49 formation. The LLNL model can simulate the mole 50 fraction of small gas phase species reasonably well for 51 all CF flames studied in this work (within a factor of 52 2), while overpredicting the mole fraction of C₆H₆. 53 However, other aromatics such as toluene, styrene, 54 naphthalene, phenanthrene etc. are captured 55 reasonably well (within a factor of 3) for all flames. 56 Taken together, these comprehensive validations 57 demonstrate an effort to evaluate and improve the 58 LLNL model using a wide range of CF flame

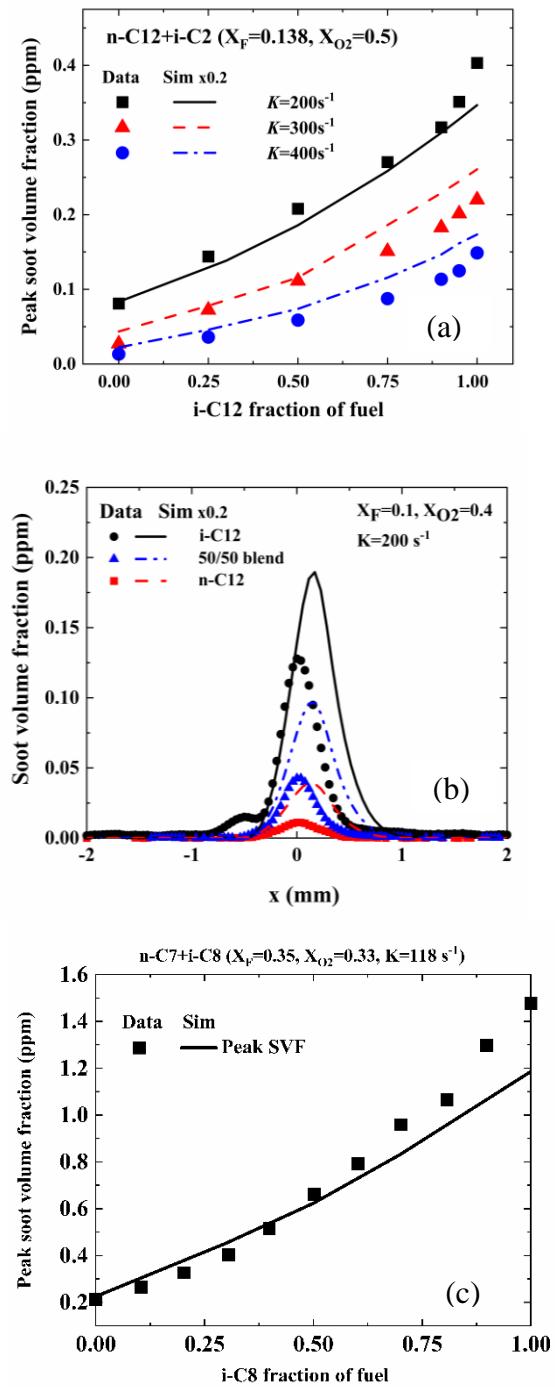


Figure 1. Comparison of SVF measurements and simulations for: a) i-C12 and n-C12 flames vs i-C12 liquid volume fraction in the fuel blend; b) i-C12 and n-C12 flames along the centerline; c) i-C8 and n-C7 flames vs i-C8 fraction in the fuel blend.

1 conditions and mixtures, including common surrogate
2 components sharing structural similarities.

3

4.2 Chemical kinetic analysis and discussion of 5 alkane branching influence on SVF

6 Rate of production analysis (ROPA) using
7 CHEMKIN Pro [30] was performed to identify the
8 differences in reaction pathways for PAH formation
9 in CF flames of n-/i-C12 mixtures. Fig. 2 shows the
10 simplified ROPA for benzene (C₆H₆, A1),
11 naphthalene (C₁₀H₈, A2), phenanthrene (C₁₄H₁₀, A3)
12 and pyrene (C₁₆H₁₀, A4). A detailed ROPA for A1-A4
13 is provided in the SM (Figs. SM14-15). To identify
14 possible reasons for the non-linear increase in SVF as
15 i-C12 content increases, the evolution of critical
16 intermediates (C1-C9) along with PAH/soot
17 precursors were investigated. Additional simulations
18 were run to identify reactions which play a critical
19 role in simulating the experimentally observed non-
20 linear trend in SVF.

21 The ROPA shows that primary pathways for A1-
22 A4 formation remain similar for both n-C12 and i-
23 C12. Benzene (A1) is primarily formed via ring
24 expansion reactions preceded by addition of methyl
25 radicals to cyclopentadienyl radical in both flames.
26 Once formed, benzene undergoes H-atom abstraction
27 to form phenyl radicals which react with allyl radical
28 (C₃H₅-A) to form indenyl (C₉H₈) which undergoes
29 ring enlargement reactions via H-atom abstraction and
30 addition of methyl radicals to form naphthalene
31 (C₁₀H₈, A2). Phenyl radicals also react with other
32 intermediate species (CH₃, C₂H₄, C₂H₂, C₄H₆) to form
33 naphthalene (A2). A2 is also formed through another
34 major pathway involving propargyl (C₃H₃) and
35 fulvenallenyl (C₇H₅) radicals which is primarily
36 formed via reactions involving only C₂H₂ and C₃H₃.
37 From Fig. SM16(a) it can be observed that while the
38 mole fraction of C₂H₂ reduces as alkane branching
39 increases, the mole fraction of C₃H₃ increases. Similar
40 conclusion was also made by Park et al. [14] in their
41 study on CF flames of n-C7 and i-C8. The increased
42 mole fraction of C₃H₃ with alkane branching leads to
43 a higher percentage of A2 formed via fulvenallenyl
44 and propargyl pathway in i-C12 flame. Similar to A2,
45 phenanthrene (A3) is also formed via similar ring
46 enlargement and ring closure reactions involving
47 benzene, naphthalene and intermediate species such
48 as CH₃, C₂H₂, C₃H₃, C₅H₅. A3 thus formed undergoes
49 H-atom abstraction and subsequent C₂H₂ addition
50 (HACA) to form pyrene (A4). Pyrene is also formed
51 via newly added pathways involving two RSRs,
52 indenyl (C₉H₇) and benzyl (C₇H₇) radicals [14] (R1:
53 C₉H₇+C₉H₇=>A4+C₂H₂+H₂; R2: C₉H₇+C₇H₇=>A4+
54 2H₂). As i-C12 content increases, the percentage of
55 A4 formed via R1 and R2 increases. Among PAHs,
56 only A4 shows significant non-linearity as branching
57 increases (Fig. SM16(b)). Park et al. [14] also
58 observed in their experiments that larger PAHs such

59 as pyrene exhibit a non-linear increase with i-C8
60 blending ratio. From Fig. SM16(a), it is observed that
61 mole fractions of indenyl and benzyl radicals increase
62 non-linearly with i-C12 blending ratio which possibly
63 explains the non-linear increase in mole fraction of
64 A4. Additional simulations were performed by
65 removing R1 and R2 to further confirm the role of
66 C₇H₇ and C₉H₇ in A4 formation as alkane branching
67 increases (Figs. SM17-18). It has been observed from
68 these simulations that without R1 and R2 in the LLNL
69 model, the model is no longer able to simulate the
70 non-linear evolution of pyrene as alkane branching
71 increases. Furthermore, it has been observed that
72 without R1 and R2 in the model, the rate of increase
73 in A4 with alkane branching reduces significantly and
74 is lower than smaller PAHs which would contradict
75 experimental observations made by Park et al. [14]. In
76 addition, from Fig. 3 it can be observed that without
77 R1 and R2 in the LLNL model, simulations fail to
78 capture the non-linearity observed during experiments
79 in the evolution of peak SVF with alkane branching.
80 Newly added ring enlargement reactions involving A3
81 and A4 were also found to be important in predicting
82 the non-linearity accurately. From Fig. 3 it can be
83 observed that removing all the newly added gas phase
84 PAH reactions from the model leads to significant
85 reduction in simulated peak SVF for i-C12 flame and
86 changes the peak SVF profile to be almost linear with
87 alkane branching. It is to be noted that there is no
88 significant effect of newly added gas phase PAH
89 reactions on simulated SVF for n-C12 flame. Similar
90 observations were also made for CF flame of n-C7, i-
91 C8 and their blends. Given the importance of the
92 additional soot precursor reactions in capturing the
93 non-linear trends in peak SVF, further experimental
94 and theoretical studies of these reactions and their
95 related potential energy surfaces are necessary.

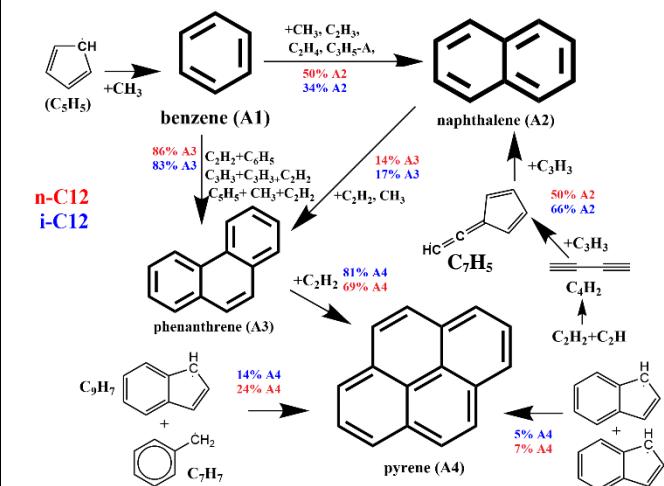


Figure 2. Reaction path analysis for A1-A4 in CF flames of
neat n-C12 and i-C12 at 1300 K (X_F=0.138, X_{O2}=0.5, K=200 s⁻¹).

Figure 3. Simulations of peak SVF with and without additional soot precursor reactions, see main text for details.

2 5. Conclusion

3 Soot formation from the combustion of n-C12 and
 4 i-C12 was studied in counterflow non-premixed
 5 flames. This work is the first experimental study to
 6 measure SVF in CF flames of n-C12 and i-C12 which
 7 are commonly used as diesel and aviation surrogate
 8 fuel components. Soot volume fractions were
 9 measured for several global strain rates and fuel
 10 loadings for a fixed stoichiometric mixture fraction.
 11 The role of linear and branched fuel structures on the
 12 formation of soot was investigated using several
 13 binary mixtures of n-C12 and i-C12. As expected, the
 14 measurements show that peak SVF for n-C12, i-C12,
 15 and their binary mixtures decrease with increasing
 16 global strain rate. This work demonstrates that peak
 17 SVF increases non-linearly with i-C12 content,
 18 agreeing with the observations of Park et al. [14] for
 19 n-C7 and i-C8 which share similar structural features.
 20 To simulate these measurements, the PAH model
 21 previously developed at LLNL was extended to model
 22 soot formation. New reactions involving indenyl,
 23 benzyl, propargyl, and methyl radicals forming
 24 pyrene and heavier PAHs were added to the PAH
 25 submodel. These reactions were observed to play a
 26 critical role in CF flames of highly branched alkanes
 27 such as i-C12 and i-C8. The LLNL soot model
 28 coupled with the updated PAH model was validated
 29 with the data obtained in this work for CF flames of
 30 n- and i-C12.
 31 Additional experimental data available from
 32 literature was used to comprehensively validate the
 33 model for CF flames of n-C7, i-C8, C₂H₄, and iso-
 34 butene mixtures. Comparisons show that the LLNL
 35 model can capture the data qualitatively well across a
 36 wide range of strain rates and mixture conditions.

37 Regarding quantitative agreement, the simulated SVF
 38 is typically within a factor of 5. Given the systematic
 39 uncertainty of a factor of 3 associated with SVF
 40 measurements, simulations of SVF within a factor of
 41 5 can be considered reasonably accurate. More
 42 importantly, the current LLNL model with the newly
 43 added soot precursor reactions is able to capture, for
 44 the first time, the non-linear variation in peak SVF
 45 with the alkane branching. Furthermore, using the
 46 validated model developed in this work, this study
 47 provides important insights into the reaction pathways
 48 which require further investigation to bridge
 49 quantitative gaps that remain in accurately predicting
 50 soot formation for surrogate fuel components of
 51 aviation and diesel fuels.

52

53 Acknowledgements

54 This work was performed under the auspices of the
 55 U.S. Department of Energy by LLNL under Contract
 56 DE-AC52-07NA27344 as part of the Decarbonization
 57 of Off-Road, Rail, Marine, and Aviation program
 58 sponsored by the DOE Office of Energy Efficiency
 59 and Renewable Energy Vehicles Technologies Office
 60 with managers Gurpreet Singh and Kevin Stork.

61

62 Supplementary materials

63 Experimental data, kinetic model with
 64 thermodynamic and transport files, additional model
 65 validation studies and discussion.

66 References

- 67 [1] T. C. Bond et al., Bounding the role of black
 68 carbon in the climate system: A scientific assessment,
 69 J. Geophys. Res. Atmos 18 (2013) 5380–5552.
- 70 [2] Y. Wang, S.H. Chung, Soot formation in laminar
 71 counterflow flames, Prog. Energy Combust. Sci. 74
 72 (2019) 152–238.
- 73 [3] K. Gleason, F. Carbone, A. Gomez, Effect of
 74 temperature on soot inception in highly controlled
 75 counterflow ethylene diffusion flames, Combust.
 76 Flame 192 (2018) 283–294.
- 77 [4] W. Pejpichestakul, A. Frassoldati, A. Parente, T.
 78 Faravelli, Soot Modeling of Ethylene Counterflow
 79 Diffusion Flames, Combust. Sci. Technol. 191 (2019)
 80 1473–1483.
- 81 [5] X. Xue, P. Singh, C.J. Sung, Soot formation in
 82 counterflow non-premixed ethylene flames at
 83 elevated pressures, Combust. Flame 195 (2018) 253–
 84 266.
- 85 [6] S.A. Skeen, K. Yasutomi, Measuring the soot
 86 onset temperature in high-pressure n-dodecane spray
 87 pyrolysis, Combust. Flame 188 (2018) 4 83–4 87.
- 88 [7] A. D’Anna, A. Ciajolo, M. Alfe, B. Apicella, A.
 89 Tregrossi, Effect of fuel/air ratio and aromaticity on
 90 the molecular weight distribution of soot in premixed
 91 n-heptane flames, Proc. Combust. Inst 32 (2009) 803–
 92 810.

1 [8] D. Zheng, A. Nobili, A. Cuoci, M. Pelucchi, X.
2 Hui, T. Faravelli, Soot formation from n-heptane
3 counterflow diffusion flames: Two-dimensional and
4 oxygen effects, *Combust. Flame* 258 (1) (2023)
5 112441.

6 [9] A. Nobili, D. Zheng, M. Pelucchi, A. Cuoci, A.
7 Frassoldati, X. Hui, et al., Oxygen effects on soot
8 formation in H₂/n-heptane counterflow flames,
9 *Combust. Flame* 253 (2023) 112821.

10 [10] M. Kashif, P. Guibert, J. Bonnety, G. Legros,
11 Sooting tendencies of primary reference fuels in
12 atmospheric laminar diffusion flames burning into
13 vitiated air, *Combust. Flame* 161 (2014) 1575–1586.

14 [11] M. Kashif, J. Bonnety, A. Matynia, P. Da Costa,
15 G. Legros, Sooting propensities of some gasoline
16 surrogate fuels: Combined effects of fuel blending
17 and air vitiation, *Combust. Flame* 162 (2015) 1840–
18 1847.

19 [12] J.L. Consalvi, F. Liu, J. Contreras, M. Kashif, G.
20 Legros, S. Shuai, J. Wang, Numerical study of soot
21 formation in laminar coflow diffusion flames of
22 methane doped with primary reference fuels,
23 *Combust. Flame* 162 (2015) 1153–1163.

24 [13] B.C. Choi, S.K. Choi, S.H. Chung, Soot
25 formation characteristics of gasoline surrogate fuels in
26 counterflow diffusion flames, *Proc. Combust. Inst* 33
27 (2011) 609–616.

28 [14] S. Park, Y. Wang, S.H. Chung, S.M. Sarathy,
29 Compositional effects on PAH and soot formation in
30 counterflow diffusion flames of gasoline surrogate
31 fuels, *Combust. Flame* 178 (2017) 46–60.

32 [15] S. Kruse, A. Wick, P. Medwell, A. Attili, J.
33 Beeckmann, H. Pitsch, Experimental and numerical
34 study of soot formation in counterflow diffusion
35 flames of gasoline surrogate components, *Combust.*
36 *Flame* 210 (2019) 159–171.

37 [16] T. Mitra, T. Zhang, A.D. Sediako, M.J. Thomson,
38 Understanding the formation and growth of
39 polycyclic aromatic hydrocarbons (PAH) and young
40 soot from n-dodecane in a sooting laminar coflow
41 diffusion flame, *Combust. Flame* 202 (2019) 33–42.

42 [17] H. Wang, Y. Ra, M. Jia, R.D. Reitz,
43 Development of a reduced n-dodecane-PAH
44 mechanism and its application for n-dodecane soot
45 predictions, *Fuel* 136 (2014) 25–36.

46 [18] G. Kukkadapu, S.W. Wagnon, W.J. Pitz, N.
47 Hansen, Identification of the molecular-weight
48 growth reaction network in counterflow flames of the
49 C₃H₄ isomers allene and propyne. *Proc Combust*
50 *Inst.*, 38 (2021) 1477–1485.

51 [19] C. Saggese, S. Ferrario, J. Camacho, A. Cuoci,
52 A. Frassoldati, E. Ranzi, H. Wang, Tiziano Faravelli,
53 Kinetic modeling of particle size distribution of soot
54 in a premixed burner-stabilized stagnation ethylene
55 flame, *Combust. Flame* 162 (2015) 3356–3369.

56 [20] A. Nobili, A. Cuoci, W. Pejpichestakul, M.
57 Pelucchi, C. Cavallotti, T. Faravelli, Modeling soot
58 particles as stable radicals: a chemical kinetic study
59 on formation and oxidation. Part I. Soot formation in
60 ethylene laminar premixed and counterflow diffusion
61 flames, *Combust. Flame* 23 (2022) 112073.

62 [21] P. Singh, X. Hui, C.J. Sung, Soot formation in
63 non-premixed counterflow flames of butane and
64 butanol isomers, *Combust. Flame* 164 (2016) 167–
65 182.

66 [22] A. S. Semenikhin, A. S. Savchenkova, I. V.
67 Chechet, S. G. Matveev, Z. Liu, M. Frenklach, A. M.
68 Mebel. Rate constants for H abstraction from
69 benzo(a)pyrene and chrysene: a theoretical study.
70 *Phys. Chem. Chem. Phys.*, 19 (2017) 25401–25413.

71 [23] T. Seta, M. Nakajima, A. Miyoshi, High-
72 Temperature Reactions of OH Radicals with Benzene
73 and Toluene, *J. Phys. Chem. A* 110 (2006) 5081–
74 5090.

75 [24] A. M. Mebel, Y. Georgievskii, A. W. Jasper, S.
76 J. Klippenstein. Temperature- and pressure-
77 dependent rate coefficients for the HACA pathways
78 from benzene to naphthalene. *Proceedings of the*
79 *Combustion Institute* 36 (2017) 919–926.

80 [25] A. N. Morozov, A. M. Mebel, Theoretical study
81 of the reaction mechanism and kinetics of the phenyl
82 + propargyl association, *Phys. Chem. Chem. Phys.*, 22
83 (2020) 6868.

84 [26] V. V. Kislov, A. M. Mebel, Ab Initio G3-
85 type/Statistical Theory Study of the Formation of
86 Indene in Combustion Flames. I. Pathways Involving
87 Benzene and Phenyl Radical, *J. Phys. Chem. A* 111
88 (2007) 111, 3922–3931.

89 [27] R. S. Tranter, S. J. Klippenstein, L. B. Harding,
90 B. R. Giri, X. Yang, J. H. Kiefer. Experimental and
91 Theoretical Investigation of the Self-Reaction of
92 Phenyl Radicals. *J. Phys. Chem. A* 114 (2010) 8240–
93 8261.

94 [28] J. Park, S. Burova, A. S. Rodgers, M. C. Lin.
95 Experimental and Theoretical Studies of the C₆H₅ +
96 C₆H₆ Reaction. *J. Phys. Chem. A* 103 (1999) 9036–
97 9041.

98 [29] S. Lapointe, R. A. Whitesides, and M. J.
99 McNenly, Sparse, iterative simulation methods for
100 one-dimensional laminar flames, *Combust. Flame*
101 204 (2019) 23–32

102 [30] CHEMKIN-PRO, Reaction Design, Inc San
103 Diego, CA, 2011.

104 [31] E. Quadarella, J. Guo, H.G. Im, A consistent soot
105 nucleation model for improved prediction of strain
106 rate sensitivity in ethylene/air counterflow flames,
107 *Aerosol Sci Technol.* 56 (2022) 7 636–654.

108 [32] K. Wan, X. Shi, H. Wang, Quantum confinement
109 and size resolved modeling of electronic and optical
110 properties of small soot particles, *Proc Combust Inst.*
111 38 (2021) 1517–1524.

112 [33] Y. Wang, A. Raj, S.H. Chung, Soot modeling of
113 counterflow diffusion flames of ethylene-based
114 binary mixture fuels, *Combust. Flame* 162 (2015)
115 586–596.

116