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Abstract

Understanding the mechanisms of shock-induced pore collapse is of great interest
in various disciplines in sciences and engineering, including materials science,
biological sciences, and geophysics. However, numerical modeling of the complex
pore collapse processes can be costly. To this end, a strong need exists to develop
surrogate models for generating economic predictions of pore collapse processes.
In this work, we study the use of a data-driven reduced order model, namely
dynamic mode decomposition, and a deep generative model, namely conditional
generative adversarial networks, to resemble the numerical simulations of the pore
collapse process at representative training shock pressures. Since the simulations
are expensive, the training data are scarce, which makes training an accurate
surrogate model challenging. To overcome the difficulties posed by the complex
physics phenomena, we make several crucial treatments to the plain original form
of the methods to increase the capability of approximating and predicting the
dynamics. In particular, physics information is used as indicators or conditional
inputs to guide the prediction. In realizing these methods, the training of each
dynamic mode composition model takes only around 30 seconds on CPU. In
contrast, training a generative adversarial network model takes 8 hours on GPU.
Moreover, using dynamic mode decomposition, the final-time relative error is
around 0.3% in the reproductive cases. We also demonstrate the predictive power
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of the methods at unseen testing shock pressures, where the error ranges from
1.3% to 5% in the interpolatory cases and 8% to 9% in extrapolatory cases.

Keywords: pore collapse, shock physics, reduced order modeling, machine learning

1 Introduction

Shock-induced pore collapse is a phenomenon that occurs when a shock wave passes
through a porous material, causing the pores to collapse or deform. Figure 1 illus-
trates a shock-induced pore collapse process. At first, the shock approaches and travels
through the pore. The pore eventually deforms and develops into a high-temperature
profile after the interaction with the shock. This phenomenon has been observed and
studied in a variety of materials, including viscoelastic materials [1], nanoporous met-
als [2], sedimentary rocks [3], biological cells [4], and polymers [5]. The collapse of pores
can have a significant impact on the mechanical properties of the material, including
its strength, stiffness, and ductility. For example, in metals, shock-induced pore col-
lapse can lead to a reduction in ductility and toughness, which can make the material
more prone to brittle failure. In geological materials, pore collapse can affect the per-
meability and porosity of the material, which can have implications for groundwater
flow and oil recovery. Understanding the mechanisms of shock-induced pore collapse is
therefore of great interest in various disciplines in sciences and engineering, including
materials science, biological sciences and geophysics.

Fig. 1 Schematic diagram for illustration of shock-induced pore collapse process. At first, the shock
approaches and travels through the pore. The pore eventually deforms and develops into a high-
temperature profile after the interaction with the shock.

However, accurately analyzing the pore collapse dynamics is challenging due to
the complex and nonlinear nature of the deformation process. Traditional analytical
models, which rely on simplified assumptions about the material properties and pore
geometry, often fail to capture the true behavior of the system. Numerical methods is
a powerful alternative to obtain approximate solutions through computer simulation
in this scenario. For instance, the pore collapse processes can be accurately simulated
by the multi-physics hydro-code, ALE3D [6]. However, a single simulation takes up to
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1 week on 1024 cores. It is therefore desirable to develop efficient techniques for resem-
bling the dynamics in these computationally expensive simulations and predicting the
dynamics in unseen generic shock pressures.

Obtaining computationally economical prediction of complex physics phenomena
remains a demanding and challenging task in many applications in engineering and
science. In recent years, numerous research efforts have been devoted to develop sur-
rogate models, which work as simplified representation of the underlying physical
process and reduce the computational cost of simulating or analyzing the original sys-
tem. One important class of these surrogate models is the projection-based reduced
order models (ROMs), which aims to reduce the dimensionality by projecting high-
fidelity physics-based models onto low-dimensional structures, which are constructed
from compression of the representative snapshot solution data. The data compres-
sion techniques include linear approaches such as proper orthogonal decomposition
(POD) [7], balanced truncation [8], and reduced basis method [9], or nonlinear com-
pression approaches such as autoencoders (AE) [10–12]. Projection-based ROMs are
intrusive in the sense that they involve incorporating the reduced solution representa-
tion into the governing equations, physics laws, and numerical discretization methods,
such as finite element, finite volume, and finite difference methods. As a result, these
approaches are data-driven but also constrained by physics, requiring less data to
achieve the same level of accuracy. Surveys on the classical projection-based ROMs can
be found in [13, 14]. Linear subspace ROMs had been applied to various applications
which exhibit advection and transport phenomena, including Burgers equation and
Euler equations in small-scale [15–17], Navier–Stokes equations [18, 19], Lagrangian
hydrodynamics [20, 21]. porous media flow [22, 23], shallow water equations [24, 25],
Boltzmann transport problems [26], and wave equations [27–29].

Despite the successes of classical linear subspace projection-based ROMs in vari-
ous applications, it is important to note that these approaches are limited to the cases
where the intrinsic solution manifold can be represented by a low-dimensional sub-
space. This assumption is violated in problems with slow decay in the Kolmogorov
n-width in the solution manifold, such as advection-dominated problems characterized
by sharp gradients, moving shock fronts and turbulence, which hinders the practical
use of linear subspace projection-based ROMs in related applications. To address this
challenge, an alternative approach is to construct small yet accurate projection-based
reduced-order models by decomposing the solution manifold into submanifolds. Local
reduced-order models are constructed to approximate the solution within a specific
subset of the parameter-time domain in the offline phase, are assigned based on the
information of the parameter, time, and current system state in the online phase. The
concept of a local reduced order model was introduced in [30, 31], where unsupervised
clustering is used for the solution manifold decomposition. In [32, 33], windowed ROM
approaches were introduced to construct temporally-local ROMs which are small but
accurate within a short period in advection-dominated problems. In [20, 21], windowed
ROM approaches were developed for Lagrangian hydrodynamics by decomposing the
solution manifold decomposition based on physical time or more generally a suitably
defined physics-based indicator.
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A drawback of projection-based ROMs is that the implementation requires knowl-
edge of the underlying numerical methods used in the high-fidelity simulation.
Conversely, the class of non-intrusive surrogate models do not require access to the
source code of the high-fidelity physics solver, and they are solely based on data. With
the growing availability of data, there has been extensive research on non-intrusive
surrogate models of discrete dynamics, using different dimensionality reduction and
machine learning techniques. Similar to the projection-based ROMs, many non-
intrusive surrogate models construct low-dimensional structure for approximating the
solution manifold and approximate the dynamics in the low-dimensional latent code.
While the projection-based ROMs use the governing equations to derive the dynam-
ics in the low-dimensional latent space, non-intrusive surrogate models are purely
data-driven. For example, several approaches use linear compression techniques, to
construct a reduced subspace from snapshots, such as dynamic mode decomposition
(DMD) [34–37] which seeks the best-fit linear model, operator inference (OpInf) [38–
40] which seeks the best-fit polynomial model, and sparse identification of nonlinear
dynamics (SINDy) [41, 42] which seeks the best-fit sparse regression. With the recent
advancements in representation learning by neural networks, the idea of identifying
the best reduced discrete dynamic model within a certain family of functions can be
extended to nonlinear compression techniques, for example, parametric Latent Space
Dynamics Identification (LaSDI) [43, 44] and DeepFluids [45]. Besides dimensionality
reduction techniques, neural networks can also be used to approximate the nonlinear
operator in the dynamical system as non-intrusive surrogate models, such as Fourier
neural operator (FNO) [46, 47], deep operator network (DeepONet) [48], and other
relevant works [49–53], Moreover, recurrent neural network architecture can be used
to model complex dynamical systems with memory effects [54].

In recent years, there has been growing research interests in dynamical modeling
[55, 56] and surrogate modeling [57, 58] of the shock compression of a hetero-
geneous material with machine learning techniques. In this work, we employ and
compare two data-driven and machine-learning based methods, namely dynamic mode
decomposition (DMD) and U-Net generative adversarial networks, to serve as effi-
cient non-intrusive surrogate models of the pore collapse dynamics. As illustrated
in Figure 2, these methods are used to model the recurrent discrete dynamics and
snapshot data from selected training shock pressure are used to train the model. Com-
position of the trained model is used to perform sequential prediction of the discrete
dynamics of the pore collapse process at a general shock pressure. We remark that,
since the simulations are expensive, the training data are scarce. To the best of our
knowledge, this is the first work in using data-driven non-intrusive surrogate model-
ing methods for the pore collapse process. In our current work, we aim to focus on a
restricted range of shock pressures to establish a foundational understanding of the
limitations of existing ROM approaches in the pore collapse dynamics with pressure-
dependent rates. We make several crucial treatments to the plain original form of
the methods in order to increase the capability of approximating and predicting the
dynamics. For enhancing DMD, we combine the idea of physics-indicated local ROM
in [20, 21] and parametric DMD with matrix manifold interpolation in [59–61]. On
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the other hand, for enhancing GAN, we combine the improved architecture with con-
ditional continuous input in [62] and the residual network structure for approximating
discrete dynamics (c.f. [53]).

Fig. 2 Schematics of non-intrusive surrogate models of the discrete dynamics of pore collapse. In
the offline phase, the snapshot data from training shock pressures are used as the input and the
output of the recurrence relation in the discrete dynamics, and dynamic mode decomposition or U-
Net generative adversarial networks are employed as functional approximation to model the relation.
In the online phase, composition of the trained model is used to perform sequential prediction of the
discrete dynamics of pore collapse process at a general shock pressure.

The rest of the paper is organized as follows. In Section 2, we present the details of
the material model. In Section 3, we describe the phenomenon of pore collapse process
and the physics-based high-fidelity simulations. Next, in Section 4 and Section 5, we
discuss the details of surrogate modeling by DMD and GAN, respectively. In Section 6,
we present some numerical results to test and compare the performance of the proposed
methods. Finally, a conclusion is given in Section 7.

2 Energetic Material Model

In this section, we discuss the constitutive models employed for the energetic material
properties, including the shear modulus, strength, melt curve, melt viscosity, unreacted
equation of state (EOS), and heat capacity. A similar material model is developed in
[58] with the exception that the strength model has been simplified in this work to
minimize shear localization effects for ease of training surrogate model.

2.1 Shear Modulus

MD predictions [63] for the Voigt-Reuss-Hill average shear modulus (GVRH) are fit to
the Steinberg-Guinan pressure- and temperature-dependent shear modulus model [64]
given by,

G(P, T ) = G0

[
1 + aPPη−1/3 − aT (T − 300)

]
(1)

where G0 is the shear modulus at ambient conditions, η is the compression, aP is
the pressure dependence coefficient, and aT is the temperature dependence coefficient.
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This model better accounts for elastic stiffening under shock conditions compared to
our previous use of a constant shear modulus. Model parameter values are shown
in Table 1. Shear modulus model calibration is completed prior to strength model
calibration since it is used in the latter.

Table 1 Steinberg-Guinan
shear modulus parameters

Parameter Value
G0 (GPa) 7.37
aP (GPa−1) 1848
aT (K−1) 3.67× 10−4

2.2 Strength

For the strength, we use the Johnson-Cook model [65] with a von Mises yield criterion.
It is an isotropic model with strain, strain-rate, and temperature dependencies that is
given by,

Y =

(
G(P, T )

G0

)[
(A+Bϵ̄np)

(
1 + C ln

(
˙̄ϵp
ϵ̇0

))(
1−

(
T − Troom

Tm − Troom

)m)]
(2)

where G(P,T )
G0

is the shear modulus factor, A and B are initial yield strength and
strain-hardening parameters, n is the strain-hardening coefficient, C is the strain-rate
coefficient, ϵ̇0 is the reference strain rate, ˙̄ϵp is the equivalent plastic strain rate, m is
the temperature dependence exponent, Troom is the room temperature, and Tm is the

melt temperature. The use of G(P,T )
G0

additionally accounts for the effects of pressure-
and temperature-dependent elasticity on strength.

The model is calibrated to strength measurements on high solid loading energetic
formulations and single crystal data. This includes split Hopkinson pressure bar data
in the ∼ 103 s−1 strain rate regime [66] and weak shock data in the ∼ 106 s−1 strain
rate regime [67, 68]. Johnson-Cook strength model parameters are shown in Table 2.
Parameter set differences with previous Johnson-Cook models [69] are primarily due

to the addition of G(P,T )
G0

. Reduced model fitting error is realized using a reference rate

of 2000 s−1 which is the rate of the split Hopkinson pressure bar measurements.

2.3 Melt Curve

Pressure-dependent melt curves are used in conjunction with the Johnson-Cook model
to describe the degradation of strength as the material approaches the melting temper-
ature. Accurate melt curves are important for predicting the plastic work and heating
which influences the hot spots. A Simon-Glatzel form [70] is fit to MD predictions of
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Table 2 Johnson-
Cook strength model
parameters

Parameter Value
A (MPa) 46.8
B (MPa) 46.8
n 0.1
C 1.8
ϵ̇0 (s−1) 2250
m 3
Troom 300

Kroonblawd & Austin [71]. It is given by,

Tm = Tm,ref

[
1 +

(
P − Pref

a

) 1
c

]
(3)

where Tm,ref is the melting point at the reference pressure (Pref) and a and c are fitting
parameters. Model parameters are shown in Table 3.

Table 3 Simon-
Glatzel melt curve
parameters based on
MD predictions of
Kroonblawd & Austin
[71]

Parameter Value
Tm,ref (K) 551
Pref (GPa) 0
a (GPa) 0.305
c 3.270

2.4 Melt Viscosity

A pressure- and temperature-dependent melt viscosity model informed by MD simu-
lations [71] replaces a constant viscosity used in the previous studies [69]. This change
improves viscous heating predictions in molten shear bands. The model is given by,

η(T, P ) = η0
(
1 +

P

P 0

)np

exp

[
Ta(P )

T

]
Ta(P ) = T ∗

M∑
n=0

an

(
P

P 0

)n (4)

Fitting parameters are shown in Table 4.
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Table 4 Shear viscosity
model parameters [71]

Parameter Value
η0 (mPa-s) 4.605× 10−4

P 0 (GPa) 1.190× 10−1

T ∗ (K) 293
np 1.330
M 2
a0 2.551× 101

a1 1.473× 10−1

a2 7.683× 10−4

2.5 Unreacted EOS

We use a modified form of the Murnaghan EOS for the unreacted energetic material
[72],

P =
K

n

[(
1

v

)n

− exp (−nα(T − T0))

]
(5)

where K is the bulk modulus, n is the derivative dK/dP , v is the relative volume,
α is the volumetric coefficient of thermal expansion, and T0 is the reference temper-
ature. When T = T0 for the isothermal case, the exponential term is unity and this
model reverts to the temperature independent form, K/n [(1/v)n − 1]. Parameters
were simultaneously fit to Hugoniot [73] and isothermal data [74–76] for the temper-
ature dependent and temperature independent forms of the model, respectively. The
bulk modulus is set to 21 GPa [76] which sufficiently fit a range of low and high
pressure data. Model parameters are shown in Table 5.

Table 5 Murnaghan EOS
parameters

Parameter Value
ρ0 (g/cc) 1.90
n 4.48
K (GPa) 21.0 [66]
α (K−1) 1.31× 10−4 [77]
T0 (K) 298

2.6 Heat Capacity

We use an Einstein oscillator heat capacity model to obtain accurate temperatures for
the unreacted explosive which is given by,

Cp(T )

R
=

N∑
i=1

Ai

(
Θi

T

)2
exp

(
Θi

T

)(
exp

(
Θi

T

)
− 1

)2 (6)

where oscillators are specified in pairs (Ai,Θi). We fit the model to lower temper-
ature heat capacity measurements [78] shown in Table 6 and the Dulong-Petit high
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temperature limit at 3000K. The limit is typically calculated as 3NAR/MHMX where
NA is the number of atoms (= 28), R is the universal gas constant, and MHMX is
the molecular weight of HMX (= 296.155 g/mol). However, based on [77], we subtract
eight degrees-of-freedom based on eight C-H bonds stretching because those are very
high vibrational frequencies and not highly populated, i.e., don’t contribute signifi-
cantly to storing heat. This modifies the equation to 3(NA − 8)R/MHMX which gives
2.12 J/g-K. This limit is taken at a temperature of 3000K [77]. Model parameters are
shown in Table 7.

Table 6 HMX heat
capacity measurements
[78].

T (K) Cp (J/g-K)
310 1.052
375 1.201
440 1.351

Table 7 Einstein oscillator
parameters

Parameter Value
A1 4.822× 101

Θ1 (K) 1.528× 103

A2 2.881× 101

Θ2 (K) −3.750

3 ALE3D simulations of pore collapse

In this section, we describe the pore collapse problem and the details of the ALE3D
simulations. The domain consists of an impact region and an energetic grain region
of interest used for surrogate modeling training. The size of the energetic grain is 10
µm by 10 µm with a central circular pore whose diameter is 1 µm. Prescribed ini-
tial velocities are assigned to the impact region, under 2D plane strain conditions and
symmetry conditions on the upper and lower boundaries of the domain. A range of 11
to 15 GPa of shock loading pressures is applied. The pore collapse simulation is per-
formed with the multi-physics arbitrary Lagrangian Eulerian finite element hydrocode,
ALE3D [6], coupled with LLNL’s thermochemical code Cheetah to handle the equation
of states. The numerical zone size and time step size used in this study are 25 nm and
2.5 ns respectively, and the computational domain is decomposed into 537200 zones.
Figure 3 depicts some selected representative snapshots of temperature fields of reso-
lution 128×128 in a subsampled spatial region of interest, which is a square with side
length 1.6 µm around the pore and comprised of 16384 zones, at different shock pres-
sures ranging from 11 to 15 GPa, and time instances ranging from 0.8 to 1.4 µs. Each
row corresponds to the same shock pressure and each column corresponds to same
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time instance. It can be observed that, with higher shock pressure, the pore collapse
takes place at an earlier time and a faster rate, and the resultant peak temperature is
higher.

Pressure = 11 GPa. Time = 0.8000 s.

500

1000

1500

2000

2500

Pressure = 11 GPa. Time = 0.9500 s.

500

1000

1500

2000

2500

Pressure = 11 GPa. Time = 1.1000 s.

500

1000

1500

2000

2500

Pressure = 11 GPa. Time = 1.2500 s.

500

1000

1500

2000

2500

Pressure = 11 GPa. Time = 1.4000 s.

500

1000

1500

2000

2500

Pressure = 12 GPa. Time = 0.8000 s.

500

1000

1500

2000

2500

Pressure = 12 GPa. Time = 0.9500 s.

500

1000

1500

2000

2500

Pressure = 12 GPa. Time = 1.1000 s.

500

1000

1500

2000

2500

Pressure = 12 GPa. Time = 1.2500 s.

500

1000

1500

2000

2500

Pressure = 12 GPa. Time = 1.4000 s.

500

1000

1500

2000

2500

Pressure = 13 GPa. Time = 0.8000 s.

500

1000

1500

2000

2500

Pressure = 13 GPa. Time = 0.9500 s.

500

1000

1500

2000

2500

Pressure = 13 GPa. Time = 1.1000 s.

500

1000

1500

2000

2500

Pressure = 13 GPa. Time = 1.2500 s.

500

1000

1500

2000

2500

Pressure = 13 GPa. Time = 1.4000 s.

500

1000

1500

2000

2500

Pressure = 14 GPa. Time = 0.8000 s.

500

1000

1500

2000

2500

Pressure = 14 GPa. Time = 0.9500 s.

500

1000

1500

2000

2500

Pressure = 14 GPa. Time = 1.1000 s.

500

1000

1500

2000

2500

Pressure = 14 GPa. Time = 1.2500 s.

500

1000

1500

2000

2500

Pressure = 14 GPa. Time = 1.4000 s.

500

1000

1500

2000

2500

Pressure = 15 GPa. Time = 0.8000 s.

500

1000

1500

2000

2500

Pressure = 15 GPa. Time = 0.9500 s.

500

1000

1500

2000

2500

Pressure = 15 GPa. Time = 1.1000 s.

500

1000

1500

2000

2500

Pressure = 15 GPa. Time = 1.2500 s.

500

1000

1500

2000

2500

Pressure = 15 GPa. Time = 1.4000 s.

500

1000

1500

2000

2500

Fig. 3 Selected representative snapshots of temperature fields at different shock pressures (11–15
GPa, row-wise) and time instances (0.8–1.4 µs, column-wise). With higher shock pressure, the pore
collapse takes place at an earlier time.

Next, we introduce some notations and dimensionless quantities to simplify the
discussion. Let D = [Pmin, Pmax] denote the range of applied shock pressure measured
in GPa, [0, Tf] be the temporal domain measured in ns, and Ω ⊂ R2 be the spatial
computational domain with length scale in nm. In the numerical simulations, the
discrete temperature fields are defined in square sub-zones with equal length hx in
Ω, at a uniform time increment ∆t. To focus on the pore collapse dynamics, the
domains are subsampled. The spatial region of interest Ωobs = [xmin, xmax]

2 ⊂ Ω
is chosen around the pore, and the time interval of interest is denoted by T (P ) =
[t(0)(P ), t(0)(P ) + m∆t] ⊂ [0, Tf] for a shock pressure P ∈ D. It is important to
note that, since the dynamics is advective and transport in nature and the traveling
speed of the shock varies with shock pressure, in order to capture the corresponding
physics phenonemena, the initial time t(0)(P ) must be adjusted depending on the
shock pressure P .
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We end this section by describing the data sampling for constructing reduced
order models. We denote the resolution of the spatial region of interest Ωobs by Nx =
(xmax−xmin)/hx. The discrete temperature fields are represented as matrices T (t;P ) ∈
RNx×Nx or vectors T (t;P ) ∈ RN2

x , depending on the surrogate modeling approach

under consideration. The samples of temperature fields T k
i = T (t

(k)
i ;Pi) are measured

at training shock pressures Dtrain = {Pi}NP
i=1 ⊂ D and time instances t

(k)
i = t(0)(Pi) +

k∆t for 0 ≤ k ≤ m within the time interval Ti = T (Pi). Our goal is to construct
reduced order models from the training samples to resemble the numerical simulations
of pore collapse process, and make predictions of the temperature fields T̃ (t;P ) in the

time interval of query t ∈ T̃ (P ), given the initial condition T (0)(P ) = T (t(0)(P );P ),
at generic shock pressures P ∈ D \ Dtrain. In the rest of this paper, we will introduce
techniques to overcome the difficulties posed to surrogate modeling by the advective
and transport nature of the dynamics.

4 Dynamic mode decomposition

Dynamic mode decomposition (DMD) was introduced in [34] as a numerical technique
for extracting discrete dynamical features from a sequence of sample data and further
studied in [35, 36]. We will given a brief overview of DMD in Section 4.1 in the context
of numerical simulation data. Next, in Section 4.2, we will discuss a specific approach
of modifying DMD to tackle the challenges from the nature of advective and transport
of the shock front. In Section 4.3, we will introduce the predictive procedure of DMD
on generic shock pressure P ∈ D, which is in general unseen in the training samples.

4.1 Offline stage: serial DMD

We start the offline procedure in DMD with the sequence of samples {T (k)
i }mk=0 at

a particular training shock pressure Pi ∈ Dtrain. The samples {T (k)
i }mk=0 are repre-

sented as vectors in RN2
x . DMD seeks a linear transformation Ai ∈ RN2

x×N2
x which

approximates the discrete dynamics

T
(k+1)
i ≈ AiT

(k)
i for all 0 ≤ k < m. (7)

The input snapshot matrix S−
i and the output snapshot matrix S+

i of the linear
recurrence relation are

S−
i =

[
T

(0)
i ,T

(1)
i , · · · ,T (m−1)

i

]
∈ RN2

x×m,

S+
i =

[
T

(1)
i ,T

(2)
i , · · · ,T (m)

i

]
∈ RN2

x×m.
(8)

Performing rank-r truncated singular value decomposition (SVD) on S−
i yields

S−
i = UiΣiV

⊤
i , (9)
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where Ui ∈ RN2
x×r,Σi ∈ Rr×r,Vi ∈ Rm×r, and r ≤ rank(S−) ≤ min{m,N2

x}.
We remark that the reduced dimension r is assumed to be identical for all training
parameters in Dtrain. Then we define the reduced discrete dynamical system by

Âi = U⊤
i S

+
i ViΣ

−1
i ∈ Rr×r, (10)

and perform the spectral decomposition on Âi, i.e.,

ÂiXi = XiΛi, (11)

where Xi ∈ Cr×r consists of the eigenvectors of Âi and Λi ∈ Cr×r is the diag-
onal matrix containing the DMD eigenvalues. The DMD basis is then given by
Φi = UiXi ∈ CN2

x×r. Then the DMD modes (Φi,Λi) are used for reproductive

approximation T̃DMD(t;Pi) of the dynamics at the shock pressure Pi, which is given

by: for t ∈ Ti = [t
(0)
i , t

(m)
i ],

T̃DMD(t;Pi) = ΦiΛ
t−t

(0)
i

∆t
i Φ†

iT
(0)
i . (12)

4.2 Offline stage: windowed DMD

Section 4.1 presented a serial DMD, in which the high-fidelity temperature fields are
represented by ROM subspaces. However, the advective-dominated nature of the tem-
perature field implies the weak linear dependence among the snapshots. As a result,
there is no intrinsic low-dimensional subspace that can universally approximate the
solution manifold comprised of all the solutions over the temporal domain. In math-
ematical terms, the manifold of temperature field in a single shock pressure has slow
decay in the Kolmogorov n-width. As a result, maintaining accuracy over longer simu-
lation times requires large-dimensional reduced subspaces. Moreover, the storage and
computational burden associated with a large number of high-fidelity snapshot samples
can be significant for SVD computations.

To address this challenge, we construct small yet accurate local projection-based
reduced-order models to approximate the solution within a specific subset of the
parameter-time domain in the offline phase, assign these ROMs based on the informa-
tion of the parameter, time, and current system state in the online phase. The concept
of localization has been well studied in the literature [20, 21, 32, 33]. The rationale
is to decompose the solution manifold into submanifolds where the Kolmogorov n-
width decays fast with respect to the subspace dimension, within which we can collect
snapshots with strong linear dependence, which enables us to build accurate multi-
ple low-dimensional approximating subspaces. The key ingredient of localization is
a suitable indicator for clustering and classification. During the offline phase, each
reduced-order model is constructed from a small subset of snapshot samples to ensure
a low-dimensional representation. In the online phase, these reduced-order models are
utilized within specific subsets of the parameter-time domain where they can provide
accurate approximations.
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Following [21], the windowed DMD framework employed in this paper entails a
decomposition of the solution manifold by a displacement-based indicator which are
efficient in clustering solution manifold describing transport dynamics. We describe
the general framework of indicator-based decomposition of the solution manifold from
which we will derive two practical examples later in this section. Let Ψ : RN2

x ×
R+ × D → R be an indicator which maps the triplet (T , t, P ) to a real value in the

range [Ψmin,Ψmax]. For any P ∈ D, we assume Ψ(T (0)(P ), t(0)(P ), P ) = Ψmin, and
Ψ(T (t, P ), t, P ) is increasing with time t. The range of the indicator is partitioned into
J subintervals, i.e.,

Ψmin = Ψ0 < Ψ1 < · · · < ΨJ−1 < ΨJ = Ψmax. (13)

In the training phase, at a given training parameter Pi ∈ D, instead of directly
assembling all the snapshot samples into huge snapshot matrices as in (8), the FOM

states are first classified into J groups. Given the samples {T (k)
i }mk=0 at a shock pres-

sure Pi ∈ Dtrain and a group index 1 ≤ j ≤ J , we denote by G(j)
i the subset of temporal

indices whose corresponding snapshot belongs to the j-th group, i.e.,

G(j)
i =

{
0 ≤ k < m : Ψ

(
T

(k)
i , t

(k)
i , Pi

)
∈ [Ψj−1,Ψj)

}
, (14)

and denote K
(j−1)
i = minG(j)

i and m
(j)
i = |G(j)

i |. Then m =
∑J

j=1 m
(j). Consequently,

by extending K
(J)
i = m and taking τ

(j)
i = t

K
(j)
i

for 0 ≤ j ≤ J , the time interval

Ti = [t
(0)
i , t

(m)
i ] at the shock pressure Pi is partitioned into J subintervals, i.e.,

t
(0)
i = τ

(0)
i < τ

(1)
i < · · · < τ

(J−1)
i < τ

(J)
i = t

(m)
i . (15)

For 1 ≤ i < NP and 1 ≤ j ≤ J , we define the snapshot submatrices by

S
(j),−
i =

[
T

(k)
i

]
k∈G(j)

i

∈ RN2
x×m

(j)
i ,

S
(j),+
i =

[
T

(k+1)
i

]
k∈G(j)

i

∈ RN2
x×m

(j)
i .

(16)

By carrying out the truncated SVD as discussed in Section 4.1 with the pair of snapshot

matrices (S
(j),−
i ,S

(j),+
i ), we obtain the modal discrete dynamical system (U

(j)
i , Â

(j)
i ) ∈

RN2
x×rj × Rrj×rj by

S
(j),−
i = U

(j)
i Σ

(j)
i

[
V

(j)
i

]⊤
,

Â
(j)
i =

[
U

(j)
i

]⊤
S
(j),+
i V

(j)
i

[
Σ

(j)
i

]−1

.

(17)

Again, it is assumed that the reduced dimension rj is identical for all training parame-
ters in Dtrain. Then we perform eigenvalue decomposition as in Section 4.1 and obtain
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the DMD modes (Φ
(j)
i ,Λ

(j)
i ) ∈ CN2

x×rj × Crj×rj by

Â
(j)
i X

(j)
i = X

(j)
i Λ

(j)
i ,

Φ
(j)
i = U

(j)
i X

(j)
i ,

(18)

which are used for the DMD reproductive approximation T̃DMD(t;Pi) at the shock

pressure Pi given by: iteratively for 1 ≤ j ≤ J , for t ∈ [τ
(j−1)
i , τ

(j)
i ],

T̃DMD(t;Pi) = Φ
(j)
i

[
Λ

(j)
i

] t−τ
(j−1)
i
∆t

[
Φ

(j)
i

]†
T̃DMD(τ

(j−1)
i ;Pi), (19)

where T̃DMD(τ
(j−1)
i ;Pi) is set to be the initial state T

(0)
i if j = 1, and is obtained

from DMD approximation in the previous time subinterval for j > 1. We remark that
if J = 1, it reduces to the serial DMD as discussed in Section 4.1.

We end this subsection with two practical choices of the indicator Ψ for the decom-
position of solution manifold. One natural choice is the time windowing (TW) DMD,
where we use the physical time as the indicator, i.e., Ψ(T , t, P ) = (t − t(0)(P ))/∆t.
In this case, Ψmin = 0 and Ψmax = m, and the temporal partition (15) is actually an

affine transformation of indicator range partition (13), i.e. τ
(j)
i = t

(0)
i + Ψj∆t, for all

1 ≤ j ≤ J .
Inspired by [21], another choice of indicator-based decomposition of solution mani-

fold that is applicable to pore collapse process is the distance windowing (DW) DMD,
where we use the horizontal translation distance of the primary shock as the indi-
cator. Among the N2

x sub-zones, we select Nx sub-zones on the bottom boundary
x2 = xmin as markers, and collect their indices into a subset I. Then the indicator of
shock distance is defined as the number of markers whose temperature values exceed
the temperature threshold Tthreshold, which is the critical value distinguishing between
the dark background temperature and the bright hot temperature as illustrated in
Figure 1, i.e.,

Ψ(T , t, P ) =
∣∣{s ∈ I : e⊤s T > Tthreshold}

∣∣ .
In this case, Ψmin ≥ 0 and Ψmax = Nx.

4.3 Prediction stage

For parametric DMD prediction at a generic shock pressure P ∈ D, we construct an
appropriate temporal partition and use corresponding DMD models for approximation
in each of temporal subintervals. More precisely, for 1 ≤ j ≤ J , we need to determine
the temporal subinterval endpoint τ (j)(P ) ∈ R by scalar-valued interpolation, and the

modal discrete dynamical system (U(j)(P ), Â(j)(P )) ∈ RN2
x×rj × Rrj×rj by matrix-

valued interpolation, with the interpolating points as the training shock pressures in
Dtrain and the interpolating values in the database obtained at the training shock
pressures as described in Section 4.2, i.e.,

DB(j) =
{(

Pi, τ
(j)
i ,U

(j)
i , Â

(j)
i

)}NP

i=1
⊂ Dtrain × R× RN2

x×rj × Rrj×rj . (20)
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We adopt the radial basis functions (RBF) interpolation method. We choose an
infinitely smooth radial basis function φ : [0,∞) → [0,∞), and define the interpolation
matrix B ∈ RNP×NP by

Bi,i′ = φ (∥Pi − Pi′∥) for all 1 ≤ i, i′ ≤ NP .

The scalar-valued interpolant of the temporal subinterval endpoint τ (j)(P ) ∈ R is
given by the linear combination

τ (j)(P ) =

NP∑
i=1

ω
(j)
i φ (∥P − Pi∥) , (21)

where the weights ω(j) = (ω
(j)
1 , ω

(j)
2 , . . . , ω

(j)
NP

)⊤ ∈ RNP are defined by solving Bω(j) =

τ (j) = (τ
(j)
1 , τ

(j)
2 , . . . , τ

(j)
NP

)⊤ ∈ RNP , which is derived from

τ (j)(Pi) = τ
(j)
i for all 1 ≤ i ≤ NP . (22)

The interpolated values form a partition for the time interval of query T̃ (P ) =
[τ (0)(P ), τ (J)(P )] ⊆ T (P ), i.e.,

τ (0)(P ) < τ (1)(P ) < · · · < τ (J−1)(P ) < τ (J)(P ). (23)

It remains to describe the matrix-valued interpolation. For a comprehensive dis-
cussion on the theory and practice of interpolation on a matrix manifold in the context
of linear subspace reduced order models, the reader is referred to [59–61]. Here, we
present only the necessary details of RBF interpolation of DMD matrix components
at a generic shock pressure P ∈ D. The first step is identify a reference training shock
pressure index 1 ≤ iref(P ) ≤ NP by

iref(P ) = argmin
1≤i≤NP

|P − Pi|. (24)

Next, we rotate the reduced order operator to enforce the consistency in the gener-
alized coordinate system. For 1 ≤ i ≤ NP , we perform SVD of the matrix product[
U

(j)
i

]⊤
U

(j)
iref(P ), i.e.,

[
U

(j)
i

]⊤
U

(j)
iref(P ) =

[
Y

(j)
i (P )

]⊤
Γ
(j)
i (P )Z

(j)
i (P ). (25)

Then we define the rotation matrix Q
(j)
i (P ) ∈ Rrj×rj by

Q
(j)
i (P ) =

[
Y

(j)
i (P )

]⊤
Z

(j)
i (P ), (26)
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which is the solution to the classical orthogonal Procrustes problem. The matrix-valued
interpolant of the modal discrete dynamical system (U(j)(P ), Â(j)(P )) ∈ RN2

x×rj ×
Rrj×rj is then given by the linear combination

U(j)(P ) = U
(j)
iref(P ) +

NP∑
i=1

F
(j)
i (P )φ (∥P − Pi∥) ,

Â(j)(P ) = Â
(j)
iref(P ) +

NP∑
i=1

G
(j)
i (P )φ (∥P − Pi∥) .

(27)

Here, for 1 ≤ ℓ1 ≤ N2
x and 1 ≤ ℓ2 ≤ rj , the (ℓ1, ℓ2)-entry of the weights F

(j)
i (P ) ∈

RN2
x×rj , denoted by f

(j)
ℓ1,ℓ2

(P ) =
(
[F

(j)
i (P )]ℓ1,ℓ2

)NP

i=1
∈ RNP , are defined by solving

Bf
(j)
ℓ1,ℓ2

(P ) =

([
U

(j)
i Q

(j)
i (P )−U

(j)
iref(P )

]
ℓ1,ℓ2

)NP

i=1

∈ RNP . (28)

Similarly, for 1 ≤ ℓ1, ℓ2 ≤ rj , the (ℓ1, ℓ2)-entry of the weights G
(j)
i (P ) ∈ Rrj×rj ,

denoted by g
(j)
ℓ1,ℓ2

(P ) =
(
[G

(j)
i (P )]ℓ1,ℓ2

)NP

i=1
∈ RNP , are defined by solving

Bg
(j)
ℓ1,ℓ2

(P ) =

([
Q

(j)
i (P )⊤Â

(j)
i Q

(j)
i (P )− Â

(j)
iref(P )

]
ℓ1,ℓ2

)NP

i=1

∈ RNP . (29)

As in Section 4.1, we perform eigenvalue decomposition and obtain the DMDmodes
(Φ(j)(P ),Λ(j)(P ) ∈ CN2

x×rj × Crj×rj by

Â(j)(P )X(j)(P ) = X(j)(P )Λ(j)(P ),

Φ(j)(P ) = U(j)(P )X(j)(P ).
(30)

With the initial condition T̃DMD(t
(0)(P );P ) = T (0)(P ), the DMD prediction

T̃DMD(t;P ) is then given by: iteratively for 1 ≤ j ≤ J , for t ∈ [τ (j−1)(P ), τ (j)(P )],

T̃DMD(t;P ) = Φ(j)(P )
[
Λ(j)(P )

] t−τ(j−1)(P )
∆t

[
Φ(j)(P )

]†
T̃DMD(τ

(j−1)(P );P ),

(31)

where T̃DMD(τ
(j−1);P ) is set to be the initial state T (0)(P ) if j = 1, and is obtained

from DMD approximation in the previous time subinterval for j > 1.

As a final remark, for all 1 ≤ i ≤ NP , we have iref(Pi) = i, which impliesQ
(j)
i (Pi) =

Irj . Thanks to (22), we have τ (j)(Pi) = τ
(j)
i for all 0 ≤ j ≤ J , and U(j)(Pi) = U

(j)
i

and Â(j)(Pi) = Â
(j)
i for all 1 ≤ j ≤ J . Therefore, (31) actually reproduces (19) at the

training shock pressures Pi ∈ Dtrain.
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5 Continuous conditional generative adversarial
network

Generative adversarial network (GAN) was introduced in [79] as a deep learning
method that learns a parametrized representation by random latent codes for a set
of training data in an unsupervised manner and allows fast sampling from the dis-
tribution represented by the dataset. In the original work [79], GAN formulates a
two-player minimax game with a binary classification score as an optimization prob-
lem, and trains two artificial neural networks, the discriminator and the generator,
simultaneously to optimize the objective function in opposing ways. These networks
compete with each other, with one aiming to maximize the objective function and the
other aiming to minimize it. In [80], deep convolutional generative adversarial network
(DCGAN) is developed by for image generation tasks by utilizing deep convolutional
architectures in GAN. GANs have been successfully applied to different scientific appli-
cations, including subsurface applications in porous media [62], geological modeling in
[81, 82], and geostatistical inversion in [83].

In this section, we introduce a GAN-based dynamical prediction scheme for the
numerical simulation data. Our method is based on residual network structure and
modified from [62] which adopts several recent improvements to GAN, including batch-
based critic architecture [84] and U-Net generator architecture [85] in pix2pix [86] for
the image-to-image translation task, earth mover distance as loss function in Wasser-
stein GAN [87], and continuous conditional generator input [88]. In Section 5.1, we
will discuss the details of the neural network. In Section 5.2, we will introduce the
predictive procedure of GAN on generic shock pressure P ∈ D, which is in general
unseen in the training samples.

5.1 Offline stage

We begin the discussion of the offline procedure in the continuous conditional gener-
ative adversarial network (CcGAN) approach with data preprocessing. We represent

the sampled data of the temperature fields T
(k)
i as matrices in RNx×Nx , and define

the residual as
R

(k)
i = T

(k+1)
i − T

(k)
i ∈ RNx×Nx . (32)

The training data are normalized by: for 1 ≤ i ≤ NP and 0 ≤ k < m,

t
(k)

= k/(m− 1) ∈ [0, 1],

P i = (Pi − Pmin)/(Pmax − Pmin) ∈ [0, 1],

T
(k)

i = T
(k)
i /(Tmax − Tmin) ∈ [0, 1]Nx×Nx ,

R
(k)

i = R
(k)
i /(RSymbolmax −RSymbolmin) ∈ [0, 1]Nx×Nx ,

(33)
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where

Tmax = max
1≤i≤NP ,0≤k<m

T
(k)
i ,

Tin = max
1≤i≤NP ,0≤k<m

T
(k)
i ,

RSymbolmax = max
1≤i≤NP ,0≤k<m

R
(k)
i ,

RSymbolin = max
1≤i≤NP ,0≤k<m

R
(k)
i .

(34)

Then the labelled paired training dataset is given by

Sin =
{(

t
(k)

, P i,T
(k)

i

)
: 1 ≤ i ≤ NP and 0 ≤ k < m

}
,

Sout =
{
R

(k)

i : 1 ≤ i ≤ NP and 0 ≤ k < m
}
,

(35)

Given the normalized datasets (Sin,Sout), the goal is to learn a generator G⋆ :
R× R× RNx×Nx → [0, 1]Nx×Nx which approximates the discrete dynamics

R
(k)

i ≈ G⋆
(
t
(k)

, P i,T
(k)

i

)
for all 1 ≤ i ≤ NP and 0 ≤ k < m.

In the GAN framework, the generator G⋆ is learnt through optimizing the function
G to minimize a objective functional which measures the distance of the generator
distribution and the groundtruth distribution in a certain metric. The generator G is
set to compete with another neural network D : R × R × RNx×Nx → R, called the
critic. The two functions have opposite objectives, as the critic aims to distinguish the
generator distribution from the groundtruth distribution, while the generator aims to
fool the discriminator. In our work, the overall objective has three components. First,
we use the earth mover distance in [87], as the competing objective, which is formally
defined as

LWGAN(D,G) =

NP∑
i=1

m−1∑
k=0

D
(
t
(k)

, P i,R
(k)

i

)
−

D
(
t
(k)

, P i, G
(
t
(k)

, P i,T
(k)

i

))
.

(36)

Second, we use the gradient penalty in [89] as a regularizer to weakly enforce the
1-Lipschitz continuity in the critic, which is given by

LLip(D) =

NP∑
i=1

m−1∑
k=0

(∥∥∥∇TD
(
t
(k)

, P i, ε
(k)
i R

(k)

i

+(1− ε
(k)
i )G

(
t
(k)

, P i,T
(k)

i

))∥∥∥
2
− 1

)2

,

(37)
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where ε
(k)
i ∼ U(0, 1) is independent and identically distributed. Third, we use the

absolute distance as the reconstruction objective, which is defined as

Lrecon(G) =

NP∑
i=1

m−1∑
k=0

∣∣∣R(k)

i −G
(
t
(k)

, P i,T
(k)

i

)∣∣∣ . (38)

The optimization problem is then formulated as

min
G∈G

max
D∈D

LWGAN(D,G) + µLipLLip(D) + µreconLrecon(G), (39)

where µLip > 0 and µrecon > 0 are regularization parameters which control the tradeoff
between the three components in the overall objective, G is a class of neural networks
with the U-Net architecture, and D is a class of convolutional neural networks. The
generator and the critic are trained simultaneously and the objective functional is
dynamic to each of them in the training process. In our work, we use the adaptive
moment estimation (ADAM) method [90] to update the critic D and the generator G
in alternating direction.

5.2 Prediction stage

After sufficient training, the generator G⋆ can serve as a global surrogate model for
predicting the temperature field. At a generic shock pressure P ∈ D, with the ini-
tial condition T̃GAN(t

(0)(P );P ) = T (0)(P ), for 0 ≤ k < m, the GAN prediction

T̃GAN(t
(k+1)(P );P ) ∈ RNx×Nx is iteratively given by

T̃GAN(t
(k+1)(P );P ) = T̃GAN(t

(k)(P );P )+

(Rmax −Rmin)G
⋆
(
t
(k)

, P ,T
(k)

GAN(P )
)
,

(40)

where

P = (P − Pmin)/(Pmax − Pmin),

T
(k)

GAN(P ) = T̃GAN(t
(k)(P );P )/(Tmax − Tmin).

(41)

6 Numerical experiments

In this section, we present some numerical results to test the performance of our
proposed methods when applied to the numerical simulation data for the pore collapse
process.

6.1 Problem specification

In our numerical experiments, the bounds of the range D of applied shock pressure are
Pmin = 11 and Pmax = 15, and the spatial region of interest Ωobs is a square which is
partitioned into N2

x = 1282 square sub-zones with equal length hx = 25. In order to
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depict the pore collapse process, explained in Figure 1, we choose m = 180, ∆t = 2.5,
and t(0)(P ) = 0.9875 − 0.0125P , as the initial time of the time interval of interest
T (P ) for the shock pressure P ∈ D. Figure 3 depicts some selected representative
snapshots of temperature fields at different shock pressures ranging from 11 to 15
GPa, in the corresponding time interval of interest. Each row corresponds to the same
shock pressure. Unlike Figure 3, the snapshots in the same column do not correspond
to the same time instance.
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Fig. 4 Selected representative snapshots of temperature fields at different shock pressures (11–15
GPa, row-wise) in the corresponding time interval of interest, which is adjusted to depict the pore
collapse process. Unlike Figure 3, the snapshots in the same column do not correspond to same time
instance.

6.2 Methodology specification

In this subsection, we discuss the details of the surrogate modeling approaches in
performing the numerical experiments.

We first discuss the details about DMD in Section 4. We use the DW-DMD
approach described in Section 4.2. with J = 20 and rj ≡ 9, and we use Gaussian
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functions in RBF interpolation. All the DMD results are generated using the imple-
mentation in libROM 1 on Quartz in Livermore Computing Center2, on Intel Xeon
CPUs with 128 GB memory, peak TFLOPS of 3251.4, and peak single CPU mem-
ory bandwidth of 77 GB/s. The training of each local DMD model takes around 30
seconds on CPU.

Next, we discuss the details about CcGAN in Section 5. The U-Net generator
architecture is presented in Figure 5. Following [62], we take µLip = 10 and µrecon = 500
in the objective (39). All the CcGAN results are generated on Lassen in Livermore
Computing Center3, on Intel Power9 CPUs with 256 GB memory and NVIDIA V100
GPUs, peak TFLOPS of 23,047.20, and peak single CPU memory bandwidth of 170
GB/s. With a batch size 6 and 2000 epoches, the training of global CcGAN model
takes 8 hours on GPU.
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Fig. 5 U-Net generator architecture used in the examples presented in Section 6.

6.3 Prediction and performance evaluation

In the remaining of this section, we will present numerical results with various training
combinations of surrogate modeling approaches and training shock pressures Dtrain.
In Figure 6, we show the comparison of some selected groundtruth snapshots and the
corresponding surrogate model approximations at P = 12, with each row corresponds
to:

1. groundtruth snapshots from simulation data,
2. reproductive predictions with local DW-DMD and Dtrain = {12},
3. interpolatory predictions with parametric DW-DMD and Dtrain = {11, 13, 15},
4. extrapolatory predictions with local DW-DMD and Dtrain = {13},
5. reproductive predictions with local CcGAN and Dtrain = {12},
6. reproductive predictions with global CcGAN and Dtrain = {12, 14},
7. interpolatory predictions with global CcGAN and Dtrain = {11, 13, 15}, and
8. extrapolatory predictions with local CcGAN and Dtrain = {13},

and each column corresponds to a time instance tk(P ) ∈ T̃ (P ), with k ∈
{10, 50, 90, 130, 170}, in the time interval of query. The reproductive cases will be fur-
ther explained in Section 6.4, and the interpolatory and extrapolatory cases will be

1GitHub page, https://github.com/LLNL/libROM.
2High performance computing at LLNL, https://hpc.llnl.gov/hardware/platforms/quartz
3High performance computing at LLNL, https://hpc.llnl.gov/hardware/platforms/lassen
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further explained in Section 6.5. It can be seen that the approximations from DMD, in
the second row to the fourth row, in general better captures the pore collapse process
and resembles the simulation data in the first row.

Next, we will introduce some performance metric which allows us to investigate
and compare the methods and training combination further. To evaluate the accuracy
of the prediction, we compute the relative error between the high-fidelity simulation
data T and the reduced order model approximation T̃ , i.e., T̃DMD or T̃GAN, at testing
shock pressure P ∈ D and time instance t ∈ T̃ (P ) by:

ε(t;P ) =
∥T (t;P )− T̃ (t;P )∥

∥T (t;P )∥
,

where ∥ · ∥ denotes the vector Euclidean norm in RN2
x , or equivalently the matrix

Frobenius norm in RNx×Nx .

6.4 Reproductive cases

As a first experiment, we test the accuracy of surrogate modeling approaches in repro-
ductive cases, where the testing shock pressure is identical to that used in one of the
training shock pressures, i.e., P ∈ Dtrain.

Figure 7 shows the comparison of reproductive accuracy using local DW-DMD
and local CcGAN, in terms of the evolution of relative error (in logarithmic scale),
with Dtrain = {12} and Dtrain = {13} respectively. In both cases, local DW-DMD
produces more stable reproductive results, where the relative error stays below 1.2%
in the whole time interval of query, and terminates at around 0.3% at final time. On
the other hand, although local CcGAN is able to produce around 0.2% error in each
time step, the error accumulates quickly and rises to 32% and 22% at the final time
of query with Dtrain = {12} and Dtrain = {13} respectively.

Figure 8 shows a similar comparison with Dtrain = {12, 14} and Dtrain =
{11, 13, 15} respectively. We remark that the final-time error of DMD at the repro-
ductive cases remains unchanged at around 0.3% when adding more training shock
pressures, as explained in Section 4.3. On the other hand, the final-time error of
global CcGAN improves to 16% with Dtrain = {12, 14} and remains at 22% with
Dtrain = {11, 13, 15} respectively.

6.5 Predictive cases

In this subsection, we test the accuracy of surrogate modeling approaches in predictive
cases, where the testing shock pressure is not one of the training shock pressures, i.e.,
P ∈ D \ Dtrain.

We begin with some results in the interpolatory cases, i.e., P ∈
(minDtrain,maxDtrain) \ Dtrain. Similar to Figure 8, we compare the relative error at
P = 12 with Dtrain = {11, 13, 15}, and at P = 13 with Dtrain = {11, 13, 15} respec-
tively. In the former case, the relative error of parametric DW-DMD is higher than
that of global CcGAN in an earlier stage, but eventually becomes lower. Through-
out the whole time interval of query, the relative error of parametric DW-DMD stays
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Fig. 6 Selected snapshots and predictions of temperature fields at 12GPa. Each row corresponds to:
1. groundtruth snapshots from simulation data, 2. local DW-DMD and Dtrain = {12}, 3. parametric
DW-DMD and Dtrain = {11, 13, 15}, 4. local DW-DMD and Dtrain = {13}, 5. local CcGAN and
Dtrain = {12}, 6. global CcGAN and Dtrain = {12, 14}, 7. global CcGAN and Dtrain = {11, 13, 15},
and 8. local CcGAN and Dtrain = {13}.
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Fig. 7 Relative error (in logarithmic scale) of reproductive cass at testing shock pressure P = 12
with Dtrain = {12} (left), and at testing shock pressure P = 13 with Dtrain = {13} (right), using
local DW-DMD (in blue) and local CcGAN (in red).
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Fig. 8 Relative error (in logarithmic scale) of reproductive cases at testing shock pressure P = 12
with Dtrain = {12, 14} (left), and at testing shock pressure P = 13 with Dtrain = {11, 13, 15} (right),
using parametric DW-DMD (in blue) and global CcGAN (in red).

below 9% and 4.3% and terminates at around 4.7% and 1.3% at final time, in the for-
mer and the latter case respectively. Meanwhile, the relative error of global CcGAN
accumulates to 20% at the final time of query in both cases.
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Fig. 9 Relative error (in logarithmic scale) of interpolatory cases at testing shock pressure P = 12
with Dtrain = {11, 13, 15} (left), and at testing shock pressure P = 13 with Dtrain = {12, 14} (right),
using parametric DW-DMD (in blue) and global CcGAN (in red).
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Next, we will present some results in extrapolatory cases, i.e., P ∈ D \
(minDtrain,maxDtrain). Figure 10 shows the comparison of extrapolatory accuracy at
P = 15 using local DW-DMD and local CcGAN, in terms of the relative error of
the temperature field over time, with Dtrain = {12} and Dtrain = {13} respectively.
The relative error of DW-DMD attains a maximum of 15% and 12% over time and
terminates at 10% and 7% at final time with Dtrain = {12} and Dtrain = {13} respec-
tively. Meanwhile, the relative error of CcGAN attains the maximum 15% and 23%
at the final time, with Dtrain = {12} and Dtrain = {13} respectively. Unlike the DW-
DMD results which shows the extrapolatory accuracy deteriorates as the testing shock
pressure is farther away from the training shock pressure, the extrapolatory accuracy
of CcGAN is unstable with the distance between testing shock pressure P and the
training shock pressure P1.
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Fig. 10 Relative error (in logarithmic scale) of extrapolatory case at testing shock pressure P = 15
with Dtrain = {12} (left) and Dtrain = {13} (right), using local DW-DMD (in blue) and CcGAN (in
red).

Figure 11 shows the comparison of reproductive and extrapolatory accuracy at var-
ious testing shock pressure P ∈ {11, 12, 13, 14, 15} in terms of the relative error of the
temperature field at the final time of query, using local DW-DMD and local CcGAN
with respect to different training shock pressure P1 ∈ Dtrain. It can be observed that
with DW-DMD, the relative error at the reproductive case is always around 0.3%,
while the error at the extrapolatory case increases as the testing shock pressure is
farther away from the training shock pressure, which is a common phenomenon for
parametric reduced order models. The relative error attains the maximum of 12%,
when |P − P1| = 4, in our testing cases. Meanwhile, the error with CcGAN is always
above 10% and unstable with the distance between testing shock pressure P and the
training shock pressure P1. With Dtrain = {12}, the relative error goes up to 45% at
P = 14.

Figure 12 shows the comparison of reproductive, interpolatory and extrapolatory
accuracy at various testing shock pressure P ∈ {11, 12, 13, 14, 15} in terms of the
relative error of the temperature field at the final time of query, using parametric DW-
DMD with 12 ∈ Dtrain and 13 ∈ Dtrain respectively. The error at the newly added
training shock pressures is also reduced to around 0.3%, and the error at the predictive
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Fig. 11 Relative error at various testing shock pressures, using local DW-DMD (left) and CcGAN
(right) with various training shock pressure in Dtrain.

cases are also reduced in general, which ranges from 1.3% to 5% in the interpolatory
cases and 8% to 9% in extrapolatory cases.
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Fig. 12 Relative error at various testing shock pressures, using parametric DW-DMD with 12 ∈
Dtrain (left) and 13 ∈ Dtrain (right).

Figure 13 shows a similar comparison using global CcGAN. While adding more
training shock pressures and enriching the training datasets in global CcGAN makes
an improvement in the overall solution accuracy, the error is always around 20%, which
is still a lot higher than the parametric DW-DMD by comparing to the same case in
Figure 12.

7 Conclusion

In this paper, we propose two data-driven surrogate modeling approaches for compu-
tationally economical prediction of complex physics phenomena in shock-induced pore
collapse processes. The surrogate models are built based on dynamic mode decom-
position and U-Net generative adversarial networks, and modified to overcome the
challenges of data scarcity and pressure-dependent advective and transport dynam-
ics. The shock pressure is incorporated in the construction of the surrogate models,
by means of parametric interpolation in dynamic mode decomposition and condi-
tional input in generative adversarial networks, respectively. Moreover, windowing is
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Fig. 13 Relative error at various testing shock pressures, using global CcGAN with 12 ∈ Dtrain

(left) and 13 ∈ Dtrain (right).

used in dynamic mode decomposition for efficient dimensionality reduction by further
localizing reduced order models in time.

In our numerical realization of these surrogate models, the training of dynamic
mode composition is much more efficient than generative adversarial network. More-
over, dynamic mode decomposition produces more stable approximation and accurate
prediction for the whole pore collapse processes at unseen shock pressures. Although
the generative model was outperformed by dynamic mode decomposition in this study,
it will be interesting to see how the advances of cutting-edge neural network approaches
can make improvements in efficiency and accuracy to dynamic surrogate modeling
of data-scarce large-scale applications with advective and transport phenomena like
pore collapse processes. In the meantime, some physics-guided data-driven approach
with simpler machine learning methods, like the local distance windowing dynamic
mode decomposition, will serve as a powerful tool for these applications. In our future
research plan, we will expand our study to encompass higher pressure regimes and
post-collapse mechanisms.
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