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Background of the Process - Gasification

Introduction
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• Convert carbon-containing solid fuel to syngas for power generation and 

for value-added chemicals (F-T synthesis, etc.)

• Reliable way to upcycle waste with emission control

• Challenges
− Bulky

− Energy intensive

Coal/Biomass/Plastics

https://www.cbpengineering.com/wp-content/uploads/2013/02/Coal-gasification-plant.jpg
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Microwave Chemistry

Introduction
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• Microwave: A type of 

electromagnetic wave with a 

frequency between 300 MHz to 300 

GHz

• Microwave Chemistry: Usage of 

MW in a chemical reaction system, 

either as a heating source or not
− Compact, modular design

− Scale-up or down flexibility

− Selective volume-based heating

− Rapid startup/shutdown

− Enhanced reaction rates: electrification

https://www.mdpi.com/2076-3417/10/1/2



Microwave-Assisted Gasifier for Co-Gasification of Biomass and Mixed Plastics

Introduction
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A. Abedin, X. Bai, et al., 2023 Energy Conversion and Management, vol. 280, 116774, ISSN 0196-8904

• Tar Formation
− Lower tar percentage in the 

microwave gasifier, but still at 9 wt.%.

− Negatively affect gasification 

efficiency

− Causes clogging

• Tar Reduction methods: 
− Carrying out the gasification in the 

microwave reactor

− Using catalyst during gasification

− Applying after-process cleanup
oC oC oC



Tar Reforming with MW

Objectives
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• Enables low-tar solid fuel gasification
− Microwave enhances in-situ tar conversion at mild temperature, 

which can lower the tar content in the outlet 

• Acts as after-process syngas cleanup
− Compact, modular design makes this process versatile to 

connect to other reactors

• Utilizes CO2 for the production of value-added 
chemicals



Microwave-Assisted Reformer

Reactor Setup
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• Catalyst: 10 wt.% Fe-Al2O3 
− Ball-milled mixture of magnetite 

and alumina, reduced at 700 °C 
under 20 vol% H2 for 2 hours

− SiC-TiC pellets were used as bed 
filler, heat transfer enhancer, 
and microwave absorber

• Temperatures: 400-700 °C 
(with 200-350 W of MW 
power input)

X. Bai, et al., 2024 Fuel, Under Review



Results: Effect of Temperature
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CO2 and Toluene Conversions

MW: Microwave

CFB: Conventional fixed-bed

In MW:

• CO2 conversion was stable and slightly 
increased

• Toluene conversion was low at the 
beginning, then increased

In CFB:

• CO2 conversion was higher at the 
beginning, then decreased

• Toluene conversion was higher at the 
beginning (700 °C); consistent for the 
rest of the temperatures

X. Bai, et al., 2024 Fuel, Under Review



Results: Effect of Temperature
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Overall Comparison

X. Bai, et al., 2024 Fuel, Under Review

MW                                                                                CFB

MW: Microwave

CFB: Conventional fixed-bed



Results: Energy Efficiency Analysis
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Energy Consumption Comparison

Heating Mode 

(Method – Temperature) 

PT (kWh) H2 Energy 

Efficiency 

(mmol/kWh) 

CO Energy 

Efficiency 

(mmol/kWh) 

Microwave – 400 ℃ 0.1105 195.2 240.7 

Microwave – 500 ℃ 0.1016 585.5 1559 

Microwave – 600 ℃ 0.1880 311.2 838.4 

Microwave – 700 ℃ 0.2616 204.2 645.4 

Conventional – 600 ℃ 0.3776 7.822 8.636 

Conventional – 700 ℃ 0.4987 24.56 31.68 
 1 

𝑃𝑇 =
𝑃𝑖𝑛

𝜂𝑒
 where 𝜂𝑒 = 0.85 

𝜂𝑎𝑏 =
𝑃𝑓𝑤𝑑

𝑃𝑖𝑛
=

𝑃𝑖𝑛 − 𝑃𝑟𝑒𝑓

𝑃𝑖𝑛

Energy to power MW (PT)

Power delivered to material 
(Pin = Pfwd + Pref)

Power absorbed by 

material for tar 

reforming (Pfwd)

• Absorption efficiency (ηab)
− Ratio of forwarded power (Pfwd) and power input (Pin).

− For a general lab-scale mono-mode system, >95% based 

on the lab record.

• Electricity-to-generator efficiency (ηe)
− Ranges from 80%-90%, with a typical value of 85% [1].

[1] A. Santhoshkumar, R. Anand, 5 - Microwave-assisted fast pyrolysis of hazardous waste engine oil into green fuels, in: K. Azad 

(Ed.) Advances in Eco-Fuels for a Sustainable Environment, Woodhead Publishing, 2019, pp. 119-155. X. Bai, et al., 2024 Fuel, Under Review



Results: Characterizations
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X-Ray Diffraction



Results: Characterizations
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Surface Area and Microscopic Imaging

Sample Name Heating Mode  

(Method – Temperature) 

BET Surface Area 

(m2/g) 

Al2O3 Fresh N/A 128.0 [39] 

10 wt.% Fe/Al2O3 N/A 110.0 

MW-400 ℃ 10wt.% Fe/Al2O3 Microwave – 400 ℃ 42.2 

MW-500 ℃ 10wt.% Fe/Al2O3 Microwave – 500 ℃ 36.0 

MW-600 ℃ 10 wt.% Fe/Al2O3 Microwave – 600 ℃ 31.8 

MW-700 ℃ 10wt.% Fe/Al2O3 Microwave – 700 ℃ 27.9 

CFB-400 ℃ 10wt.% Fe/Al2O3 Conventional – 400 ℃ 103.6 

CFB-500 ℃ 10wt.% Fe/Al2O3 Conventional – 500 ℃ 100.1 

CFB-600 ℃ 10 wt.% Fe/Al2O3 Conventional – 600 ℃ 79.7 

CFB-700 ℃ 10wt.% Fe/Al2O3 Conventional – 700 ℃ 52.4 
 1 

MW-400 °C                         MW-500 °C 

MW-600 °C                         MW-700 °C 

X. Bai, et al., 2024 Fuel, Under Review

CFB-700 °C



Results: Characterizations
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Carbon Deposition Analysis

MW                                                                                CFB

X. Bai, et al., 2024 Fuel, Under Review

MW: Microwave
CFB: Conventional fixed-bed



Results: Stability Test
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8-hour Continuous Run (500 °C)

X. Bai, et al., 2024 Fuel, Under Review



Discussion: Reaction Pathway
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X. Bai, et al., 2024 Fuel, Under Review

• Dehydrogenation/decomposition
− Initial hydrogen formation

• Initial toluene hydrodemethylation 

(HDM)

− Requires hydrogen to initiate

• Aromatics hydrogenolysis

• Methane dry reforming
− Syngas production

• Boudouard reaction



Discussion: Microwave-Material Interaction
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X. Bai, et al., 2024 Fuel, Under Review

• “Hot-spots”
− ~100-290 °C higher than the 

bulk, depending on the 

material
− 78-124 °C temperature 

difference in this case

• Synergy between 

electromagnetic field and 

“Hot-spots”
− Toluene hydrodemethylation

− Aromatics hydrogenolysis
− π-electron polarization of the 

benzene ring



• By using a low-cost Fe-Al2O3 catalyst with state-of-the-art microwave reactor 
design, dry reforming of toluene, as a model compound of tar, can be 
achieved with:
− >80% of CO2 and toluene conversions at 500 °C

− 3 hours continuous operation without significant deactivation, 8 hours maximum lifespan

− Co-production of crystallized carbon species

• Reactions involved in the process include:
− Toluene hydrodemethylation (initial)

− Aromatics hydrogenolysis

− Boudouard reaction

− Methane dry reforming

• Microwave irradiation not only provides selective heating, but also initiates 
electron polarization which triggers certain reactions under mild conditions

Conclusion
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Results: Effect of Temperature
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Product Distribution

X. Bai, et al., 2024 Fuel, Under Review



Results: Effect of Temperature
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Product Distribution

X. Bai, et al., 2024 Fuel, Under Review
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