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Introduction

Background of the Process - Gasification

« Convert carbon-containing solid fuel to syngas for power generation and

for value-added chemicals (F-T synthesis, etc.)
« Reliable way to upcycle waste with emission conftrol

E Chemicals

] » El'j Flectricity
Ry e

Coal/Biomass/Plastics »

« Challenges

— Bulky

— Energy intensive
https://www.cbpengineering.com/wp-content/uploads/2013/02/Coal-gasification-plant.jog
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Introduction

Microwave Chemistry

Microwave: A type of
electromagnetic wave with a
frequency between 300 MHz to 300
GHz

Microwave Chemistry: Usage of
MW in a chemical reaction system,

either as a heating source or not
— Compact, modular design

— Scale-up or down flexibility

— Selective volume-based heating

— Rapid startup/shutdown

— Enhanced reaction rates: electrification
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(a)
120 - - 2500

« Tar Formation
— Lower tar percentage in the
microwave gasifier, but still at 9 wt.%.
— Negatively affect gasification
efficiency
— Causes clogging

O Gas || W Tar | | BEEEE Char || =)~ H2Efficiency
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Product Composition (%)
3

40 - . 500 « Tar Reduction methods:
— Carrying out the gasification in the
20 - 0 microwave reactor

— Using catalyst during gasification
— Applying after-process cleanup

H2 Production Efficiency (mmol/kWh)

Microwave , Thermal Thermal
700°C 700°C 950°C

A. Abedin, X. Bai, et al., 2023 Energy Conversion and Management, vol. 280, 116774, ISSN 0196-8904
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Objectives

Tar Reforming with MW

« Enables low-tar solid fuel gasification

— Microwave enhances in-situ tar conversion at mild femperature,

which can lower the tar content in the outlet

« AcCTts as affer-process syngas cleanup

— Compact, modular design makes this process versatile to
connect to other reactors

 Utilizes CO, for the production of value-added
chemicals
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Liquid Toluene from Syringe Pump, 0.025 mL/min
« Catalyst: 10 wt.% Fe-Al,O, T ——
— Ball-milled mixture of magnetite
and aluminag, reduced at 700 °C
under 20 vol% H, for 2 hours Thermal Furnace, 250 °C
— SIC-TiC pellets were used as bed
filler, heat tfransfer enhancer, 1 | S
and microwave absorber Metal Coil Tube e, Vaporized Toluene
. o Manual Sliding Short Microwave Input
d TempeI'CITUI'eS. 400‘700 C -Lu0Ek from Generator
(with 200-350 W of MW o Do
pOWGI’ in pUT) Autclilnla_lti]c_lE-H
Viewing Window g .
with an IR
Pyrometer (not
shown)

To Cold Trap and Analytical Instruments

X. Bai, et al., 2024 Fuel, Under Review
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CO, and Toluene Conversions
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X. Bai, et al., 2024 Fuel, Under Review




* = INATIONAL
Results: Effect of Temperature N=|ranon
TL TECHNOLOGY
Overall Comparison LABORATORY
MW CFB
(a) T y T T T y T b 100 T r | r T T 20
- Toluene COo, [ ( ) Toluene Co,

T - 160 —~ - —_
g E
g . E

- 16
~ Lo B = g
2 5 e 5
~ Q — Q
5 = : S
= g S L 12 S
g =
S 2 3 £
= 8 — - 8 Q
£ 9 = =
L Q 5 e
> = > =
5 - 2 S <
3 S

- i B 1 00 : | | .

400 500 600 700 700
Temperature (°C) Temperature (°C)
—=&— CO Production —#— H, Production —#®— CH, Production —#®— Benzene Production —=&— CO Production —%— H, Production —#— CH, Production —%— Benzene Production
MW: Microwave
X. Bai, et al., 2024 Fuel, Under Review CFB: Conventional fixed-bed

.S. DEPARTMENT OF

) ENERGY




Results: Energy Efficiency Analysis N =]|NATONAL

TL TECHNOLOGY
LABORATORY

Heating Mode Pt (kWh) H2 Energy CO Energy Power absorbed by
(Method — Temperature) Efficiency Efficiency material for tar
(mmol/kWh) (mmol/kWh) reforming (Psq)
Microwave — 400 °C 0.1105 195.2 240.7 Power delivered to material
- — ° (Pin = wad + I:)ref)
Microwave — 600 °C 0.1880 311.2 838.4
Microwave — 700 °C 0.2616 204.2 645.4 Energy fo power MW (Py)
Conventional — 600 °C 0.3776 7.822 8.636
Conventional — 700 °C 0.4987 24.56 31.68
« Absorption efficiency (Ng) _ Prwa  Pin — Prey
— Ratio of forwarded power (Py,4) and power input (P,). Mab ="p == " p_
— For a general lab-scale mono-mode system, >95% based P,
on the lab record. Pr = — where 1, = 0.85

 Electricity-to-generator efficiency (n,) e

— Ranges from 80%-90%, with a typical value of 85% [1].

[1] A. Santhoshkumar, R. Anand, 5 - Microwave-assisted fast pyrolysis of hazardous waste engine oil into green fuels, in: K. Azad
(Ed.) Advances in Eco-Fuels for a Sustainable Environment, Woodhead Publishing, 2019, pp. 119-155. X. Bai, et al., 2024 Fuel, Under Review
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Results: Characterizations N
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Results: Characterizations

Surface Area and Microscopic Imaging
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o
Sample Name Heating Mode BET Surface Area MW-400 °C
(Method — Temperature) (m?/g) @  lpm
Al203 Fresh N/A 128.0 [39]
10 wt.% Fe/Al,O3 N/A 110.0
MW-400 °C 10wt.% Fe/Al>,O3 Microwave — 400 °C 422 |
MW-500 °C 10wt.% Fe/Al2O3 Microwave — 500 °C 360 |
MW-600 °C 10 wt.% Fe/Al,O3 Microwave — 600 °C 31.8 |
MW-700 °C 10wt.% Fe/Al>Os3 Microwave — 700 °C 279 V¥V
CFB-400 °C 10wt.% Fe/Al>,O3 Conventional — 400 °C 103.6 |
CFB-500 °C 10wt.% Fe/Al,03 |  Conventional — 500 °C 1001 |
CFB-600 °C 10 wt.% Fe/Al,O3 | Conventional — 600 °C 79.7 |
CFB-700 °C 10wt.% Fe/Al>Os Conventional — 700 °C 524 &

@]
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L o - Ay .
(\[e] Carb_on"l\l:an‘ou‘és OF Cartgg,_nﬂ:ibers Obser\‘/;eﬁ_i‘ﬁ thig“é’egion
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i, et al., 2024 Fuel, Under Review
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Discussion: Reaction Pathway
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Dehydrogenation/decomposition
— Initial hydrogen formation
Inifial foluene hydrodemethylation
(HDM)
— Requires hydrogen to initiate
Aromatics hydrogenolysis

Methane dry reforming
— Syngas production
Boudouard reaction




Discussion: Microwave-Material Interaction
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« "Hof-spots”

— ~100-290 °C higher than the

bulk, depending on the MW 400 MW 500
. Mean Mean
ma Terl a | Outer Ellipse (°C) - Outer Ellipse (°C) S0ges
— /8-124 °C temperature Mean _— Mean <02
. . . Inner Ellipse (°C) T Inner Ellipse (°C) o
difference in this case Mo M
Temperature (°C) 524.0 Temperature (°C) S78.4
MW 600 MW 700
. Mean Mean
Ellipse,1 Outer Ellipse (°C) 64435 Outer Ellipse (°C) 628
* Synergy befween ‘ Rflan o - o
. . Inner Ellipse (°C) - Inner Ellipse (°C) -
electromagnetic field and - v —
- Temperature (°C) 690.6 Temperature (°C) 7791

"Hot-spots”
— Toluene hydrodemethylation
— Aromatics hydrogenolysis
— Tr-electron polarization of the
benzene ring

X. Bai, et al., 2024 Fuel, Under Review
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« By using a low-cost Fe-Al,O, catalyst with state-of-the-art microwave reactor
design, dry reforming of toluene, as a model compound of tar, can be
achieved with:

— >80% of CO, and toluene conversions at 500 °C
— 3 hours continuous operation without significant deactivation, 8 hours maximum lifespan
— Co-production of crystallized carbon species

« Reactions involved in the process include:
— Toluene hydrodemethylation (initial)
— Aromatics hydrogenolysis
— Boudouard reaction
— Methane dry reforming

« Microwave irradiation not only provides selective heating, but also initiates
electron polarization which friggers certain reactions under mild conditions
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