

LA-UR-24-27663

Accepted Manuscript

Oxadiazole derivatives as stable anolytes for >3 V non-aqueous redox flow battery

Jesse, Kate Ashley

Diaz Abad, Sergio

Van Pelt, Christopher Evan

Pentzer, Emily

Davis, Benjamin L.

Maurya, Sandipkumar

Provided by the author(s) and the Los Alamos National Laboratory (1930-01-01).

To be published in: Chemical Engineering Journal

DOI to publisher's version: 10.1016/j.cej.2024.153732

Permalink to record:

<https://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-24-27663>

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Journal Pre-proofs

Oxadiazole derivatives as stable anolytes for >3 V non-aqueous redox flow battery

Kate A. Jesse, Sergio Diaz Abad, Christopher E. Van Pelt, Emily Pentzer, Benjamin L. Davis, Sandip Maurya

PII: S1385-8947(24)05221-5

DOI: <https://doi.org/10.1016/j.cej.2024.153732>

Reference: CEJ 153732

To appear in: *Chemical Engineering Journal*

Received Date: 26 March 2024

Revised Date: 6 June 2024

Accepted Date: 3 July 2024

Please cite this article as: K.A. Jesse, S. Diaz Abad, C.E. Van Pelt, E. Pentzer, B.L. Davis, S. Maurya, Oxadiazole derivatives as stable anolytes for >3 V non-aqueous redox flow battery, *Chemical Engineering Journal* (2024), doi: <https://doi.org/10.1016/j.cej.2024.153732>

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Oxadiazole Derivatives as Stable Anolytes for >3 2 V Non-Aqueous Redox Flow Battery

3

4 *Kate A. Jesse,^a Sergio Diaz Abad, ^a Christopher E. Van Pelt,^b Emily Pentzer,^b Benjamin L. Davis,*
5 *^a* and Sandip Maurya ^a**

6 ^aMPA-11: Materials Physics Applications, Los Alamos National Laboratory, Los Alamos, NM,
7 87545, USA

8 *Email: smaurya@lanl.gov, bldavis@lanl.gov

9 ^bDepartment of Materials Science & Engineering, Texas A&M University, College Station, Texas
10 77843

11

12 KEYWORDS

13 Non-Aqueous Redox Flow Battery; Energy Storage; Organic Charge Carrier; Anolyte

14

15

16

17 **ABSTRACT.**

18 Effective utilization of energy from renewable sources such as wind and solar requires the
 19 development of long duration energy storage (LDES) systems that can accommodate intermittent
 20 energy accrual. One option under investigation is the use of a redox flow battery (RFB). A
 21 significant amount of work has explored aqueous RFB systems with a variety of inorganic and
 22 organic carriers. However, moving to a nonaqueous solvent such as acetonitrile (MeCN) for RFB
 23 provides a much larger electrochemical window, which could lead to increased energy density if
 24 properly utilized. In this work, we investigate a series of 2,5-diphenyl-1,3,4-oxadiazole
 25 (DiPhenOx) derivatives as anolytes for a redox flow battery. DiPhenOx has a low voltage redox
 26 event that, while reversible by cyclic voltammetry, was determined to be irreversible during bulk
 27 electrolysis. To improve cycling performance, we introduced various ester and cyano groups to
 28 the phenyl rings of DiPhenOx using molecular engineering. We characterized these derivatives
 29 spectroscopically and electrochemically to assess their feasibility for flow battery applications.
 30 The ester derivatives with the best cycling performance were tested in a flow cell vs. ferrocene,
 31 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB) and thianthrene, which resulted in ~2
 32 V, ~3 V and ~3 V redox flow batteries, respectively.

33 **INTRODUCTION**

34 Recent years have seen a growth in the use of renewable energy sources such as wind and
 35 solar.[1,2] However, to use these intermittent energy sources more effectively, appropriate energy
 36 storage technologies must be in place. In particular, LDES technologies are needed as evidenced
 37 by the US DOE Grand Challenge.[3] While Li-ion batteries are by far the most well investigated,
 38 they are best suited for short and medium duration energy storage, and cost is still limiting
 39 deployment.[4] Efforts have been made in the area of pumped hydro, which is the least expensive
 40 technology energy storage technology available in the United States.[5–7] However, pumped
 41 storage hydropower has severe limitations due to topological requirements and building costs
 42 which have stifled universal deployment of this technology.[8–10] Another option under
 43 investigation for LDES are RFBs.[11,12] Non hybrid RFBs allow for the storage of energy in
 44 various redox states of a molecule or polymer. These chemical species are stored in tanks, which
 45 are separate from the cell that facilitates power.[12] This allows power and energy to be scaled
 46 individually for any given application.

47 Significant research into aqueous RFBs has been done with both organic and inorganic
 48 carriers.[13] Carriers such as V(acac)₃,[14–18] Fe chelates,[19–26] anthraquinone based
 49 molecules,[27–33] and fluorenone based molecules[34,35] have been particularly promising.
 50 Many of these RFBs utilize aqueous systems to capitalize on the cost effectiveness and
 51 environmentally benign properties of water. However, the electrochemical stability window of
 52 water is relatively small, often being cited as ~1.23 V, though windows of up to 1.7 V are
 53 accessible if Pt electrodes are avoided.[13] In contrast, nonaqueous solvents often have an
 54 electrochemical window exceeding 4 V.[36–38] Since the energy stored in a RFB is directly
 55 related to the difference in voltage between the catholyte and anolyte, having a larger solvent
 56 window opens the possibility of building a battery with a higher energy storage capacity.[12] A
 57 variety of metal complexes, featuring Fe, Ni, Zn, Cr, and Mn among others, have been investigated
 58 as carriers for NRFBs.[26,39–43] However, due to the high cost of many of these metals and
 59 limited solubility and chemical stability in charged states in many cases, researchers have turned

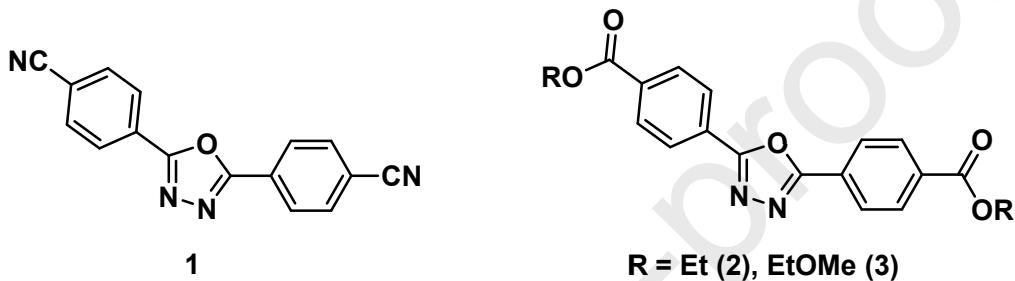
60 to organic compounds when looking for appropriate catholytes and anolytes.[44,45] A goal of our
 61 research is to develop a charge carrier which could enable a >3 V Non-aqueous redox flow battery
 62 (NRFB) that takes advantage of the larger electrochemical stability window of non-aqueous
 63 solvents.

64 The compound 2,5-diphenyl-1,3,4-oxadiazole (DiPhenOx) could be a promising anolyte
 65 carrier for a NRFB for a variety of reasons. First, it has good solubility in acetonitrile (MeCN) at
 66 240(30) mM in pure MeCN without modification. Additionally, it exhibits a reductive wave at -
 67 2.46 V vs Ag/Ag⁺ in MeCN that is reversible when analyzed by cyclic voltammetry (CV). Herein
 68 we report modification of the parent DiPhenOx, which was undertaken to improve its durability
 69 for charge/discharge cycling. The modified compounds were then paired with an appropriate
 70 catholytes to form a ~2 V or ~3 V NRFB. Additionally, the effect of these modifications on the
 71 solubility of the molecules was investigated.

72

73 RESULTS AND DISCUSSION

74 *Electrochemical characterization of DiPhenOx*

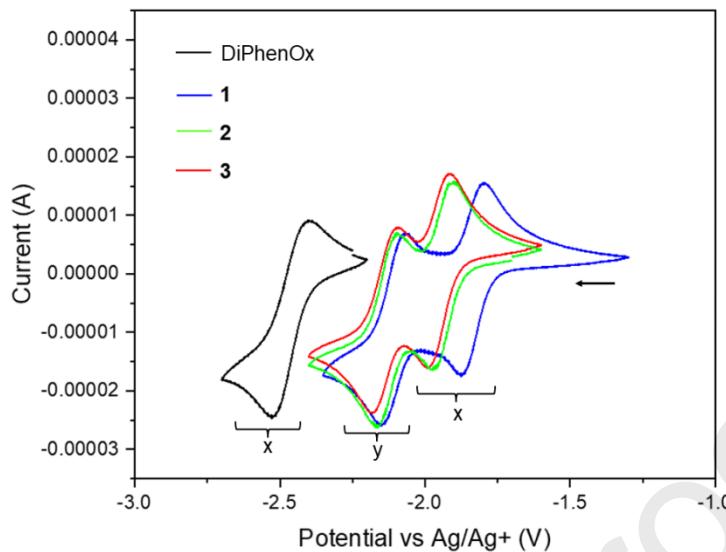

75 Previous studies focused on chemiluminescence collected CV data on DiPhenOx.[46] We
 76 were able to reproduce these data and observe a reversible reduction event at -2.46 V vs Ag/Ag⁺
 77 for DiPhenOx in MeCN. This is an extremely low potential to observe a reversible reduction event
 78 compared to other known organic anolytes.[47] As such, DiPhenOx piqued our interest as a
 79 possible anolyte for RFB applications. The CV data for this reduction has a current ratio of $i_c/i_a =$
 80 0.92, which quantitatively supports that this reduction as reversible. However, when bulk cycled
 81 in a symmetric H-cell, DiPhenOx showed a rapid decline in the utilization (electrons/molecule)
 82 and in the coulombic efficiency within just a few charge/discharge cycles (Figure 3 and S 26),
 83 indicating chemical degradation. Specifically, a coulombic efficiency of ~20% and greater than
 84 80% loss in utilization for both the charge and discharge cycling was observed after 25 cycles. As
 85 such, DiPhenOx is not a suitable anolyte for NRFB applications. However, we hypothesized that
 86 with appropriate modifications, DiPhenOx could be stabilized to increase its durability to cycling,
 87 and effectively utilized as an anolyte in a NRFB.

88

89 *Synthesis of DiPhenOx derivatives*

90 Stabilization of carriers in redox flow batteries can be achieved in a variety of ways. One
 91 strategy is to extend the aromatic system in such a way as to stabilize the radical anion or cation.
 92 Alternatively, the addition of electron withdrawing groups (EWG's) or electron donating groups
 93 (EDG's) can be used to shift the potential of the reduction event to higher or lower potential.[42,48]
 94 In this case, lessening the reduction potential of the anolyte by stabilizing the negative charge with
 95 proximal EWGs should result in a more stable radical anion.[49] We decided to use this strategy,
 96 and add EWG's in the form of -CN or -(C=O)OR in the *para* position of the phenyl ring within
 97 the compound. This modification extends the aromatic system by 2 or 3 atoms respectively and
 98 introduces an electron EWG via resonance effects. 2,5-di(4-cyanophenyl)-1,3,4-oxadiazole (**1**) is
 99 synthesized using an Ullman reaction between the aryl bromides of the 2,5-di(4-bromophenyl)-

100 1,3,4-oxadiazole and Cu(CN) salt (Figure 1, Scheme S1).[50] The ester derivatives (**2** and **3**) were
 101 prepared by oxidizing 2,5-di(4-methylphenyl)-1,3,4-oxadiazole with potassium permanganate,
 102 forming the acid chloride, then reacting with an appropriate alcohol (Figure 1, Scheme S2).
 103 Ethanol was chosen due to its wide availability and 2-methoxyethanol was selected in an effort to
 104 increase the overall solubility of the final molecule, **3**, via the addition of an ether group. The
 105 incorporation of ether moieties, specifically polyethyleneglycol (PEG), has been shown to enhance
 106 solubility in other organic systems in MeCN.[28,39,51–57] The identity and purity of the three
 107 compounds were characterized by ^1H and ^{13}C nuclear magnetic resonance (NMR) and infrared
 108 (IR) spectroscopy. The expected peak patterns were observed by NMR spectroscopy. Similarly,
 109 the characteristic C≡N and ester C=O stretches were observed by IR spectroscopy (Figures S1–
 110 S9).


111

112 Figure 1. Derivatives of DiPhenOx synthesized for electrochemical testing.

113

114 *Cyclic voltammetry of **1**, **2**, and **3***

115 Unlike the parent DiPhenOx, **1**, **2**, and **3** all exhibit two reduction events (Table 1, Figure
 116 2). For all three, the first reduction (x) is reversible by CV with $i_c/i_a = 1 \pm 0.08$, where a value of
 117 1 ± 0.1 would correspond to a reversible redox event. By the same criteria, the second reduction (y)
 118 for **1** and **3** is also reversible (Table 1). Compound **2**’s second reduction wave has a current ratio
 119 of 0.89, right on the cusp of what is considered reversible. The potentials of these negative waves
 120 are both positively shifted, as expected with the addition of EWG’s. Interestingly, the second
 121 reduction (y) events for **2** and **3** occur at essentially identical potentials, suggesting this wave is
 122 physical isolated or without resonance communication to the ether functionality. As such, the
 123 effect of the ether moieties on solubility can be isolated from their effect on reduction potentials
 124 in **2** and **3**.

125

126 Figure 2. CV data of **1**, **2**, and **3** compared to DiPhenOx. All CV were collected reductively in
 127 MeCN at 1 mM concentration of the anolyte and 100 mM [TBA][PF₆] electrolyte with a scan rate
 128 of 100 mV/s and a AgBF₄ concentration of 25 mM for the Ag/Ag⁺ reference electrode. The (x)
 129 refers to the first reductive event for each compound and (y) refers to the second reductive event
 130 for **1**, **2**, and **3**.

131

132 Table 1. Summary of CV data collected in MeCN with 1 mM of anolyte and 100 mM of
 133 [TBA][PF₆] at 100 mV/s. Scans were collected reductively as shown by the black arrow. Potentials
 134 are referenced to Ag/Ag⁺ in MeCN. Current ratios i(c)/i(a) are shown in parenthesis.

$E_{1/2}$	DiPhenOx	1	2	3
1 st reduction (x)	-2.46 (0.92)	-1.84 (0.94)	-1.94 (1.02)	-1.94 (0.92)
2 nd reduction (y)	--	-2.12 (0.96)	-2.13 (0.89)	-2.14 (1.04)

135

136 *Kinetic parameters for **1**, **2**, and **3***

137 Rotating Disk Electrode (RDE) experiments were conducted on DiPhenOx, **1**, **2**, and **3**
 138 using a 3-electrode cell. The experiments were conducted in MeCN with 500 mM
 139 triethylammonium tetrafluoroborate ([TEA][BF₄]) as the supporting electrolyte. For compounds
 140 **1**, **2**, and **3**, each redox event was analyzed individually by identifying the inflection point between
 141 the two events on the RDE voltammogram to separate the data. By separating the events, we can
 142 find kinetic insight into why the first reduction (x) of **1**, **2**, and **3** exhibits improved performance

143 compared to DiPhenOx and compared to cycling over both events (x and y) of **1**, **2**, and **3**. The
 144 diffusion coefficients were calculated using the Levich equation and the standard rate constant and
 145 charge transfer coefficient were calculated with the Koutecký -Levich equation.[58]

146 From the RDE experiments, the diffusion coefficient of DiPhenOx was found to be 1.64×10^{-5} cm 2 s $^{-1}$, while the average diffusion coefficient for **1**, **2**, and **3** was found to be 7.52×10^{-6} cm 2 s $^{-1}$, 7.48×10^{-6} cm 2 s $^{-1}$, and 7.61×10^{-6} cm 2 s $^{-1}$ respectively (Table 2). The decrease in
 147 diffusion coefficient from DiPhenOx to **1**, **2**, and **3** can be explained by the increase in molar mass
 148 and change in solubility caused by the molecular modification, as discussed below. The standard
 149 rate constant (k^0) and the charge transfer coefficient (α) were calculated using the Koutecký -
 150 Levich equation. DiPhenOx and the first reduction (x) of **1**, **2**, and **3** had k^0 of similar magnitude
 151 while α exhibited some variation (Table 3). These k^0 values are larger than several common
 152 inorganic species such as V $^{3+}$ /V $^{2+}$ (4×10^{-7} cm s $^{-1}$) and Fe $^{3+}$ /Fe $^{2+}$,[59] but are on a similar order to
 153 or slightly better than several organic based redox active species.[60–62] The transfer coefficient
 154 for DiPhenOx and the first reduction (x) of **1** and **2** were within the acceptable range of the ideal
 155 value of 0.5. Conversely, **3**'s value of 0.89 deviates outside of this range. This is interesting as **3**
 156 performed better during bulk electrolysis testing (*vide infra*). The standard rate constant and charge
 157 transfer coefficient for the second reduction (y) reaction of **1**, **2**, and **3** differ greatly from
 158 DiPhenOx as well as their respective first reduction (x) reaction. The k^0 of the second reduction
 159 (y) reaction of **1**, **2**, and **3** dramatically increased while the charge transfer coefficient dropped
 160 below 0.2 for all derivatives. To fully understand the implications of these results requires more
 161 experiments planned for the future. In cases involving larger values of α , approaching or exceeding
 162 1, it has been found that the limiting step is the adsorption of the molecule on to or off the electrode,
 163 rather than the transfer of electrons.[63,64] We have been unable to locate reports on the case of
 164 decreasing values of α . However, it can be speculated that the rate limiting step of the second
 165 reduction (y) reaction proceeds through a different mechanism as compared to DiPhenOx and the
 166 first reduction (x) reactions. This may contribute to the poor cyclability of the second reduction
 167 (y) reaction (see bulk electrolysis data and flow cell data). Future studies will focus on
 168 investigating these interesting kinetic parameters.
 169

170
 171
 172 Table 2. Levich Analysis. Data collected in MeCN with 1 mM of anolyte and 500 mM of
 173 [TEA][BF $_4$] at 10 mV/s. Scans were collected reductively. Potentials are referenced to Ag/Ag $^+$ in
 174 MeCN.

Complex	1 st Reduction (x) Diffusion Coefficient (D $_{o'}^{\circ}$) [cm 2 s $^{-1}$]	2 nd Reduction (y) Diffusion Coefficient (D $_{o'}^{\circ}$) [cm 2 s $^{-1}$]	Average Diffusion Coefficient (D $_{o'}^{\circ}$) [cm 2 s $^{-1}$]
DiPhenOx	1.64×10^{-5}	N/A	1.64×10^{-5}

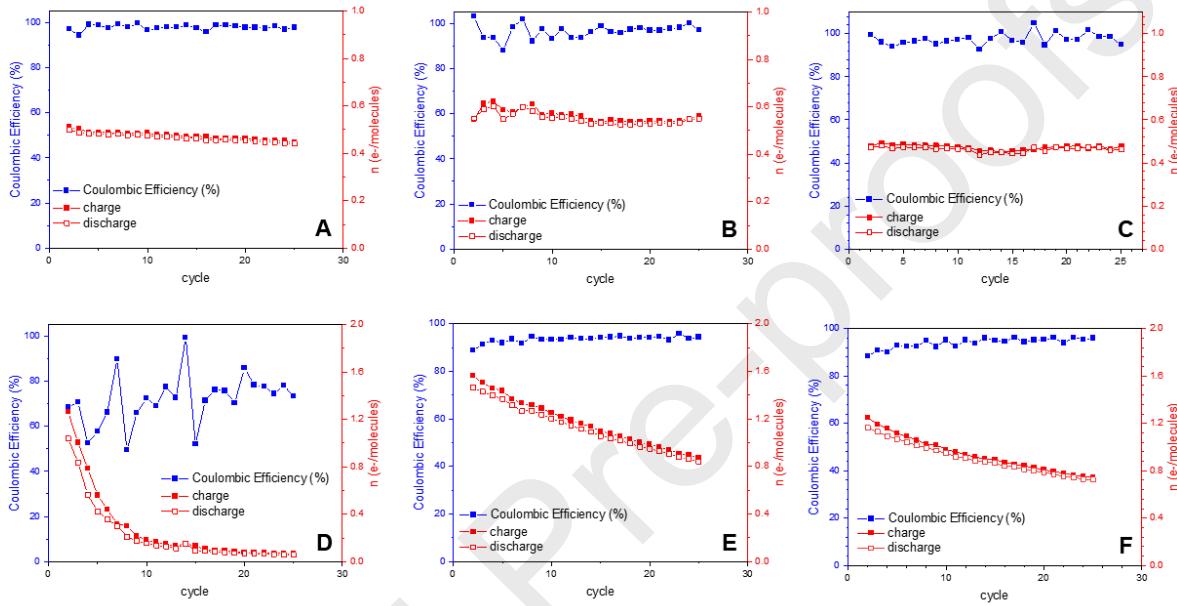
1	8.27 x 10 ⁻⁶	6.77 x 10 ⁻⁶	7.52 x 10 ⁻⁶
2	7.83 x 10 ⁻⁶	7.13 x 10 ⁻⁶	7.48 x 10 ⁻⁶
3	7.90 x 10 ⁻⁶	7.38 x 10 ⁻⁶	7.61 x 10 ⁻⁶

175

176

177 Table 3. Koutecký-Levich Analysis. Data collected in MeCN with 1 mM of anolyte and 500 mM
 178 of [TEA][BF₄] supporting electrolyte at 10 mV/s. Scans were collected reductively. Potentials are
 179 referenced to Ag/Ag⁺ in MeCN.

Complex	1 st Reduction (x) Standard Rate Constant (k^0) [cm s ⁻¹]	2 nd Reduction (y) Standard Rate Constant (k^0) [cm s ⁻¹]	1 st Reduction (x) Charge Transfer Coefficient (α)	2 nd Reduction (y) Charge Transfer Coefficient (α)
DiPhenOx	0.093	N/A	0.66	N/A
1	0.046	0.255	0.57	0.096
2	0.084	0.376	0.68	0.19
3	0.069	0.357	0.89	0.080


180

181

182 *Bulk Electrolysis of **1**, **2**, and **3***

183 Bulk electrolysis experiments were conducted on DiPhenOx, **1**, **2**, and **3** using a symmetric
 184 H-cell where each side contained an equimolar solution of the anolyte (Figures 3 and S 23-26). In
 185 all cases, the modified compounds showed increased durability to cycling as compared to
 186 DiPhenOx. Both **2** and **3** were extremely stable when the first reduction (x) potential was cycled,
 187 with Coulombic efficiencies at 100% and no observable decrease in utilization values for charge
 188 or discharge cycles. Compound **1** was less durable, with Coulombic efficiencies just below 100%

189 and a decrease of 0.22% and 0.49% in the utilization per cycle for charge and discharge
 190 respectively. However, **1** still showed a substantial improvement over DiPhenOx which exhibited
 191 a Coulombic efficiency of ~20% and greater than 80% loss in utilization for both the charge and
 192 discharge cycling by the termination of the experiment. When cycling the first and second
 193 reduction (x and y), **1**, **2**, and **3** all showed significant degradation over the course of 25 cycles,
 194 with the most dramatic decreases observed for **1**. Both **2** and **3** showed a ~50% decrease in
 195 utilization for the charge and discharge cycling in 25 cycles, while **1** had a >80% decrease in
 196 utilization within 10 cycles.

197

198 Figure 3. Bulk electrolysis data for **1** (A and D), **2** (B and E), and **3** (C and F) at 1 mM in MeCN
 199 with 100 mM supporting [TBA][PF₆] at 1 mA. A-C show cycling through the first redox event (x)
 200 (~50% SOC) while D-F show cycling through both redox events (x and y) (~100% SOC). The first
 201 cycle is not shown as it does not display representative charge and discharge behavior.

202 These data clearly demonstrate that while incorporating EWG's result in an additional
 203 reduction event as compared to the parent molecule, only the first of these reduction events (x) in
 204 **2** and **3** is stable to long-term cycling in a bulk electrolysis experiment. Therefore, the
 205 incorporation of ester moieties in **2** and **3** results in greater stabilizing effects for both reductions
 206 as compared to the incorporation of a cyano group in **1**. As evident from Figure 3 and S23-26, **3**
 207 shows good utilization for first reduction at ~50% state-of-charge (SOC). Therefore, **3** was further
 208 examined in flow cell and related discussions in next section.

209

210 *Flow cell testing*

211 Because bulk electrolysis cycling of compounds **2** and **3** revealed limited degradation when
 212 cycled at 50% SOC, we decided to further investigate these compounds in flow cell experiments.
 213 The flow cell cycling experiments utilizing **2** as the anolyte and ferrocene as the catholyte exhibited

unusual behavior. Despite increasing the SOC from 50% to 100%, we failed to observe a cumulative charge-dependent voltage profile. This failure to observe a charge or discharge voltage plateau is attributed to the electron transfer kinetics of the electrode for **2** (Figures S32-33). Additionally, **2** experienced a capacity loss of 27.1% over 200 cycles at 50% SOC, corresponding to a 0.136% capacity loss per cycle (Figure S32). This capacity loss exceeded that observed for **3** under identical conditions, where **3** exhibited a capacity loss of 9.13% over 200 cycles at 50% SOC, equating to a 0.045% capacity loss per cycle (Figure 4). Given the complex charge/discharge behavior displayed by **2** during flow cycling and its greater capacity loss compared to **3** under similar conditions, **3** was selected for subsequent flow cell cycling experiments.

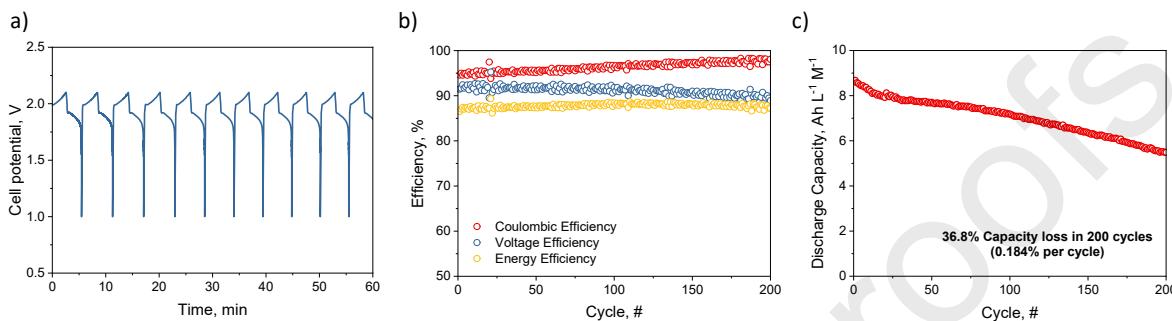

Flow cell cycling to the first reduction (x) of compound **3** is shown in Figure 4. In order to evaluate the stability and cyclability of **3** in flow cell conditions, it was cycled versus known and highly reversibly ferrocene as catholyte until 50% SOC.[65] As demonstrated in Figure 5, the stability showed in the bulk electrolysis experiments is also reflected in the flow cell data. A stable Coulombic efficiency of ~96 % was obtained over 200 cycles (Figure 5b). Voltage and energy efficiencies also showed an excellent stability with values as high as ~91 % and ~88 % respectively among the best reported for non-aqueous RFBs.[26] The stable efficiency indicates the reversibility of **3** in flow battery cycling conditions. Capacity degradation poses a significant challenge for all RFBs, but it becomes particularly pronounced in asymmetric nonaqueous organic batteries. In these systems, the inability to regenerate organics and the need for extensive separation and purification exacerbates the problem. Consequently, it challenges the advantages of broader electrochemical stability window offered by nonaqueous solvents. Fortunately, compound **3** exhibits just 9.13% capacity loss, equivalent to 0.045% per cycle over 200 cycles. This impressive performance further solidifies its promise as a redox-active species for NRFBs. It should also be noted that the capacity fade indicates possible crossover and side reactions degrading redox active species in both cases it is irreversible for compound **3**.

Figure 4. Cycling performance of NRFB using **3** as anolyte and ferrocene as catholyte. The cut-off voltage was 1.0 – 2.05 V (~ 50% SOC for the first reduction event). a) Potential vs. time plot; b) Coulombic, voltage and energy efficiencies; c) discharge capacity (2.5 mM compound **3** and 5 mM ferrocene in 250 mM [TEA][BF₄] used as anolyte and catholyte. The current density was 2.5 mA cm⁻²).

Furthermore, cycling up to 100% SOC for **3** could enable non-aqueous RFBs to achieve higher energy density. Thus, compound **3** was cycled up to 2.10 V (~ 99% SOC) as illustrated in Figure 5. Cycling at a high SOC resulted in a slightly lower Coulombic efficiency, which gradually

248 increased over time from around 95% to about 98% (Figure 5b). Voltage and energy efficiencies
 249 remained mostly stable, with values around 90% for VE and 87% for EE, similar to those reported
 250 for 50% SOC. After 200 cycles, a total discharge capacity loss of 36.8% (0.184% per cycle) was
 251 observed. As expected, discharge capacity experienced significant degradation (Figure 5c) due to
 252 possibility of accessing second reduction event which was shown to be electrochemically
 253 irreversible.

254

255 Figure 5. Cycling performance of NRFB using **3** as anolyte and ferrocene as catholyte. The cut-
 256 off voltage was 1.0 – 2.10 V (~ 100% SOC for the first reduction event). a) Potential vs. time plot;
 257 b) Coulombic, voltage and energy efficiencies; c) discharge capacity (2.5 mM compound **3** and 5
 258 mM ferrocene in 250 mM [TEA][BF₄] used as anolyte and catholyte. The current density was 2.5
 259 mA cm⁻²).

260 The potential outcome of molecular engineering on DiPhenOx was enhancing its redox
 261 potential, cycling capability and solubility, potentially resulting in increased energy density in
 262 NRFBs. The DiPhenOx showed only one reduction event (Figure 2), and that did not cycle at 50%
 263 and 100% SOC (Figure S29 and S30), where the cell lost virtually all capacity in less than 25
 264 cycles. These findings align well with the bulk electrolysis experiment. Cyano and ester derivatives
 265 of DiPhenOx have shown two distinct reduction events. Both of them are relatively more stable
 266 than the parent molecule, as evidenced from bulk electrolysis and flow cell cycling, which is a
 267 positive outcome of molecular engineering. Therefore, to assess the extent of reversibility of the
 268 second reduction (y) event in **3**, it was cycled between 1.0 V – 2.35 V, which corresponds to 50%
 269 SOC for the second reduction (Figure S28). The cell exhibited an initial coulombic efficiency of
 270 approximately 92%, which increased to about 96% in the first 50 cycles and stabilized. However,
 271 for the voltage and energy efficiencies, there was a considerable decrease from around 92% and
 272 84% to 75% and 73%, respectively. This provides clear evidence of degradation (*vide infra*) of
 273 compound **3** when cycled for the second reduction event (Figure S34). Moreover, capacity
 274 retention was poor, and the cell lost 90.9% of discharge capacity in 200 cycles, which correlates
 275 well with the bulk electrolysis of compound **3**.

276 The relatively stable cycling of **3** at 50% SOC through the first negative wave makes it
 277 promising anolyte candidate for a > 3 V NRFB if coupled with appropriate and stable catholyte.
 278 Therefore, two literature reported catholytes, namely thianthrene (E_{1/2}: 0.92 V vs Ag/Ag⁺) and 2,5-
 279 Di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB, E_{1/2}: 0.72 V vs Ag/Ag⁺), were coupled
 280 with **3** and analyzed in NRFB cell.[46,66] The energy efficiencies and capacity decay rates for
 281 thianthrene and DBBB are presented in Figure 6 and S31, respectively. As expected, compound **3**
 282 exhibits good cycling behavior with both catholytes, with energy efficiencies hovering around

283 85% for thianthrene and approximately 90% for DBBB. It is worth noting that the capacity decay
 284 rates were 1.12% and 0.46% per cycle, respectively, for thianthrene and DBBB.

285

286 Figure 6. Cycling performance of NRFB using **3** as anolyte and thianthrene as catholyte. The cut-
 287 off voltage was 1.0 – 3.0 V (~ 50% SOC for the first reduction event). a) Potential vs. time plot;
 288 b) Coulombic, voltage and energy efficiencies; c) discharge capacity (2.5 mM compound **3** and 5
 289 mM thianthrene in 250 mM [TEA][BF₄] used as anolyte and catholyte. The current density was
 290 2.5 mA cm⁻²).

291 Upon post-mortem analysis using CV of the electrolytes after the cycling test, it was found
 292 that the capacity decay was due to the chemical degradation of the anolytes (Figure S34). Cycling
 293 of **3** at 50% SOC for the first reduction event was the least detrimental, while running cycling tests
 294 at ~100% SOC was highly detrimental to **3**. However, electrolyte balance was not affected, as the
 295 ferrocene peak current at positive potential did not change significantly. In contrast, accessing the
 296 second reduction event resulted in the complete degradation of the anolyte, evident from the loss
 297 of peak current and redox features. It also affected the electrolyte balance, with ferrocene
 298 permeating into the anolyte from the catholyte, as indicated by increased peak currents in the
 299 anolyte. Similar degradation trends were observed when **3** was cycled with thianthrene and DBBB
 300 (Figure S 35). Thianthrene and DBBB themselves underwent degradation along with **3** at the
 301 reduction potential. Therefore, the relatively higher capacity decay rate is also attributed to the
 302 degradation of both thianthrene and DBBB when subjected to higher reduction potential in
 303 NRFBs. However, further study is needed to clearly identify the mode of degradation.

304

305 *Effect of Modification on Solubility*

306 While a clear improvement to the durability during cycling can be seen upon modification
 307 of DiPhenOx, this modification unfortunately also results in decreased solubility. While DiPhenOx
 308 has a reasonable solubility of 240 (30) mM in MeCN, **1**, **2**, and **3** have solubilities of 5.8(2) mM,
 309 2.2(1) mM, and 2.7(3) mM in MeCN respectively (Tables S1-8 and Figures S13-16, see SI for
 310 experimental details). Although it is worth noting that the addition of an ether group in **3** results in
 311 a slight improvement in solubility over **2**, this increase is not nearly as large as the increases seen
 312 with other anolytes that incorporate PEG moieties.[39,52–55] Even **1**, the most soluble of the three
 313 derivatives, has extremely low saturation level. As such, extension of the aromatic system seems
 314 to both stabilize the charged form of the anolytes and decrease their solubility. Future studies on
 315 these anolytes should focus on modifying the stable **2** and **3** derivatives to increase solubility.

316 Potential directions include the addition of even longer PEG chains or the incorporation of charged
 317 groups such as sulfates or quaternary amines. Another possible research direction is into
 318 asymmetric DiPhenOx derivatives. Asymmetry in anolytes is shown to increase solubility,[20,28]
 319 though these molecules can be synthetically challenging to make.

320 While the challenge of lower solubility must be addressed for **2** and **3** for their use as
 321 anolytes in NRFBs, it is important to note that compound **3** demonstrates one of the lowest
 322 reduction voltages (-2.46 V vs Ag/Ag⁺) among similar low-voltage carrier anolytes, with their
 323 ability to undergo extensive cycling with minimal capacity loss (Table 4). Achieving >3 V NRFB
 324 is a significant accomplishment, making DiPhenOx derivatives a promising advancement in the
 325 molecular engineering of carrier molecules for NRFBs.

326 Table 4. A summary of the physical and electrochemical properties of anolytes with negative
 327 potentials reported in literature:

Anolyte	Potential (V vs. Ag/Ag ⁺)	Solubility in MeCN (M)	Supporting Electrolyte in Flow Cell	Stability	Catholyte
DiPhenOx	-2.46	0.24(3)*	TEABF ₄	not tested in a flow cell	N/A
1	-1.84 and -2.12	0.0058(2)	TEABF ₄	not tested in a flow cell	N/A
2	-1.94 and -2.13	0.0022(1)	TEABF ₄	capacity retention of 72% over 200 cycles	Ferrocene
3	-1.94 and -2.14	0.0027(3)	TEABF ₄	capacity retention of 90.87% over 200 cycles	Ferrocene
9-fluorenone ¹	-1.64	2	TEATFSI	capacity retention of 50% over 50 cycles	2,5-di-tert-butyl-1-methoxy-4-[2'-methoxyethoxy]benzene (DBMMB)
benzophenone ²	-2.16	4.3	TEAPF ₆	stable over 7 cycles	tetramethyl-1-piperidinyloxy (TEMPO)
4,4'-dimethylbenzophenone ³	-2.26	0.8	TEAPF ₆	Average Coulombic efficiency of 72% over 95 cycles	2,5-Di-tert-butyl-1,4-dimethoxybenzene (DBB)
4,4'-dimethoxybenzophenone ³	-2.37	0.09	TEAPF ₆	not tested in a flow cell	N/A
2-methylbenzophenone ⁴	-2.26	miscible	TEAPF ₆	Average Coulombic efficiency of 95% over 50 cycles	2,5-di-tert-butyl-1-methoxy-4-[2'-methoxyethoxy]benzene (DBMMB)
3-methylbenzophenone ⁵	-2.18	miscible	TEAPF ₆	stable over 30 cycles	1,4-di-tert-butyl-2-methoxy-5-(2-methoxyethoxy)benzene (DBMMB)
azobenzene ⁶	-1.69	0.7	TEAPF ₆	Capacity retention of 70.8% over 80 cycles	PEG3-phenothiazine

328
 329 *standard deviation given in parentheses; ¹[67]; ²[68]; ³[69]; ⁴[70]; ⁵[71]; ⁶[72]

330
 331 **CONCLUSIONS**

332 While initial CV experiments suggested that DiPhenOx should perform well as an anolyte in a
 333 NRFB, testing in bulk electrolysis and flow cell experiments demonstrated that this molecule is
 334 not durable to cycling. We employed a molecular engineering approach to modify the parent
 335 DiPhenOx in order to stabilize the charged states of the molecule. Our findings indicate that
 336 incorporating ester groups in the para position of the arene rings resulted in a highly durable
 337 anolyte at the expense of solubility. The addition of a cyano group resulted in a DiPhenOx

338 derivative that was more stable to cycling than DiPhenOx itself but showed clear degradation
 339 during cycling experiments and low solubility. Moreover, we showed that coupling the ester
 340 derivatives with high potential-containing positive electrolytes resulted in >3 V NRFBs. Future
 341 work will focus on increasing the solubility and electrochemical stability of compounds **2** and **3**.

342 ASSOCIATED CONTENT

343 **Supporting Information.** Additional description of general methods, synthesis, characterization,
 344 spectroscopy, solubility, and electrochemical measurements.

345 Author Contributions

346 The manuscript was written through contributions of all authors. All authors have given approval
 347 to the final version of the manuscript.

348 ACKNOWLEDGMENT

349 This work was supported by the Laboratory Directed Research and Development (LDRD) program
 350 of Los Alamos National Laboratory (LANL) under project number 20210680ECR. Los Alamos
 351 National Laboratory is operated by Triad, LLC, for the National Nuclear Security Administration
 352 of the U.S. Department of Energy (Contract No. 89233218NCA000001). Two authors are
 353 supported by the TAMU-LANL Collaborative Research Program.

354

355 REFERENCES

- 356 [1] O. Comstock, Today in Energy EIA expects renewables to account for 22 % of U . S .
 357 electricity generation in 2022, August 16 (2022).
 358 <https://www.eia.gov/todayinenergy/detail.php?id=53459>.
- 359 [2] P. Leung, X. Li, C. Ponce De León, L. Berlouis, C.T.J. Low, F.C. Walsh, Progress in redox
 360 flow batteries, remaining challenges and their applications in energy storage, RSC Adv 2
 361 (2012) 10125–10156. <https://doi.org/10.1039/c2ra21342g>.
- 362 [3] Water Power Technologies Office, Pumped Storage Hydropower | Department of Energy,
 363 (n.d.). <https://www.energy.gov/eere/water/pumped-storage-hydropower> (accessed March
 364 17, 2024).
- 365 [4] R. Shan, J. Reagan, S. Castellanos, S. Kurtz, N. Kittner, Evaluating emerging long-duration
 366 energy storage technologies, Renewable and Sustainable Energy Reviews 159 (2022)
 367 112240. <https://doi.org/10.1016/j.rser.2022.112240>.
- 368 [5] R. Cairns, This giant “water battery” under the Alps could be a game- changer for renewable
 369 energy in Europe, CNN (2022) Accessed on August 19, 2022.
 370 <https://www.cnn.com/2022/08/01/world/water-battery-switzerland-renewable-energy-climate-science-hnk-spc-intl/index.html>.

372 [6] R. Uria-Martinez, M. Johnson, S. Rui, U.S Hydropower Market Report - Water power
 373 technologies office, Office of Energy Efficiency & Renewable Energy (2021).
 374 <https://doi.org/10.2172/1763453>.

375 [7] M. Mann, V. Putsche, B. Shrager, Grid energy storage supply chain deep dive assessment,
 376 U. S. Department of Energy Response to Executive Order 14017, "America's Supply
 377 Chains" (2022) 1–58. <https://doi.org/10.2172/1871557>.

378 [8] J.P. Hoffstaedt, D.P.K. Truijen, J. Fahlbeck, L.H.A. Gans, M. Qudaih, A.J. Laguna, J.D.M.
 379 De Kooning, K. Stockman, H. Nilsson, P.T. Storli, B. Engel, M. Marence, J.D. Bricker,
 380 Low-head pumped hydro storage: A review of applicable technologies for design, grid
 381 integration, control and modelling, *Renewable and Sustainable Energy Reviews* 158 (2022)
 382 112119. <https://doi.org/10.1016/j.rser.2022.112119>.

383 [9] M.R.N. Vilanova, A.T. Flores, J.A.P. Balestieri, Pumped hydro storage plants: a review,
 384 *Journal of the Brazilian Society of Mechanical Sciences and Engineering* 42 (2020) 1–14.
 385 <https://doi.org/10.1007/s40430-020-02505-0>.

386 [10] G. Ardizzon, G. Cavazzini, G. Pavesi, A new generation of small hydro and pumped-hydro
 387 power plants: Advances and future challenges, *Renewable and Sustainable Energy Reviews*
 388 31 (2014) 746–761. <https://doi.org/10.1016/j.rser.2013.12.043>.

389 [11] R. Chen, D. Bresser, M. Saraf, P. Gerlach, A. Balducci, S. Kunz, D. Schröder, S. Passerini,
 390 J. Chen, A Comparative Review of Electrolytes for Organic-Material-Based Energy-
 391 Storage Devices Employing Solid Electrodes and Redox Fluids, *ChemSusChem* 13 (2020)
 392 2205–2219. <https://doi.org/10.1002/cssc.201903382>.

393 [12] T.C. Palmer, A. Beamer, T. Pitt, I.A. Popov, C.X. Cammack, H.D. Pratt, T.M. Anderson,
 394 E.R. Batista, P. Yang, B.L. Davis, A Comparative Review of Metal-Based Charge Carriers
 395 in Nonaqueous Flow Batteries, *ChemSusChem* 14 (2021) 1214–1228.
 396 <https://doi.org/10.1002/cssc.202002354>.

397 [13] G.L. Soloveichik, Flow Batteries: Current Status and Trends, *Chem Rev* 115 (2015) 11533–
 398 11558. <https://doi.org/10.1021/cr500720t>.

399 [14] L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G.
 400 Graff, J. Liu, Z. Yang, A stable vanadium redox-flow battery with high energy density for
 401 large-scale energy storage, *Adv Energy Mater* 1 (2011) 394–400.
 402 <https://doi.org/10.1002/aenm.201100008>.

403 [15] V. Murugesan, Z. Nie, X. Zhang, P. Gao, Z. Zhu, Q. Huang, L. Yan, D. Reed, W. Wang,
 404 Accelerated design of vanadium redox flow battery electrolytes through tunable solvation
 405 chemistry, *Cell Rep Phys Sci* 2 (2021) 100323. <https://doi.org/10.1016/j.xcrp.2021.100323>.

406 [16] Z. Huang, A. Mu, L. Wu, B. Yang, Y. Qian, J. Wang, Comprehensive Analysis of Critical
 407 Issues in All-Vanadium Redox Flow Battery, *ACS Sustain Chem Eng* 10 (2022) 7786–
 408 7810. <https://doi.org/10.1021/acssuschemeng.2c01372>.

409 [17] K.J. Kim, M.S. Park, Y.J. Kim, J.H. Kim, S.X. Dou, M. Skyllas-Kazacos, A technology
 410 review of electrodes and reaction mechanisms in vanadium redox flow batteries, *J Mater*
 411 *Chem A Mater* 3 (2015) 16913–16933. <https://doi.org/10.1039/c5ta02613j>.

412 [18] J.D. Saraidaridis, C.W. Monroe, Nonaqueous vanadium disproportionation flow batteries
 413 with porous separators cycle stably and tolerate high current density, *Journal of Power*
 414 *Souces* 412 (2019) 384–390. <https://doi.org/10.1016/j.jpowsour.2018.11.058>.

415 [19] B. Zhang, B.R. Schrage, A. Frkonja-Kuczyn, S. Gaire, I.A. Popov, C.J. Ziegler, A. Boika,
 416 Zwitterionic Ferrocenes: An Approach for Redox Flow Battery (RFB) Catholytes, *Inorg*
 417 *Chem* 61 (2022) 8117–8120. <https://doi.org/10.1021/acs.inorgchem.2c00722>.

418 [20] X. Li, P. Gao, Y.Y. Lai, J.D. Bazak, A. Hollas, H.Y. Lin, V. Murugesan, S. Zhang, C.F.
 419 Cheng, W.Y. Tung, Y.T. Lai, R. Feng, J. Wang, C.L. Wang, W. Wang, Y. Zhu, Symmetry-
 420 breaking design of an organic iron complex catholyte for a long cyclability aqueous organic
 421 redox flow battery, *Nat Energy* 6 (2021) 873–881. [https://doi.org/10.1038/s41560-021-00879-6](https://doi.org/10.1038/s41560-021-

 422 00879-6).

423 [21] Y. Zhen, C. Zhang, J. Yuan, Y. Zhao, Y. Li, A high-performance all-iron non-aqueous redox
 424 flow battery, *Journal of Power Souces* 445 (2020) 1–8.

425 [22] T.N. Pham-Truong, Q. Wang, J. Ghilane, H. Randriamahazaka, Recent Advances in the
 426 Development of Organic and Organometallic Redox Shuttles for Lithium-Ion Redox Flow
 427 Batteries, *ChemSusChem* 13 (2020) 2142–2159. <https://doi.org/10.1002/cssc.201903379>.

428 [23] I.A. Popov, N. Mehio, T. Chu, B.L. Davis, R. Mukundan, P. Yang, E.R. Batista, Impact of
 429 Ligand Substitutions on Multielectron Redox Properties of Fe Complexes Supported by
 430 Nitrogenous Chelates, *ACS Omega* 3 (2018) 14766–14778.
 431 <https://doi.org/10.1021/acsomega.8b01921>.

432 [24] X. Wei, L. Cosimescu, W. Xu, J.Z. Hu, M. Vijayakumar, J. Feng, M.Y. Hu, X. Deng, J.
 433 Xiao, J. Liu, V. Sprenkle, W. Wang, Towards high-performance nonaqueous redox flow
 434 electrolyte via ionic modification of active species, *Adv Energy Mater* 5 (2015) 1–7.
 435 <https://doi.org/10.1002/aenm.201400678>.

436 [25] Z. Zhao, B. Zhang, B.R. Schrage, C.J. Ziegler, A. Boika, Investigations into aqueous redox
 437 flow batteries based on ferrocene bisulfonate, *ACS Appl Energy Mater* 3 (2020) 10270–
 438 10277. <https://doi.org/10.1021/acsael.0c02259>.

439 [26] S. Sharma, G.A. Andrade, S. Maurya, I.A. Popov, E.R. Batista, B.L. Davis, R. Mukundan,
 440 N.C. Smythe, A.M. Tondreau, P. Yang, J.C. Gordon, Iron-iminopyridine complexes as
 441 charge carriers for non-aqueous redox flow battery applications, *Energy Storage Mater* 37
 442 (2021) 576–586. <https://doi.org/10.1016/j.ensm.2021.01.035>.

443 [27] A.W. Lantz, S.A. Shavalier, W. Schroeder, P.G. Rasmussen, Evaluation of an Aqueous
 444 Biphenol- and Anthraquinone-Based Electrolyte Redox Flow Battery, *Applied Energy*
 445 *Materials* 2 (2019) 7893–7902. <https://doi.org/10.1021/acsael.9b01381>.

446 [28] W. Wang, W. Xu, L. Cosimescu, D. Choi, L. Li, Z. Yang, Anthraquinone with tailored
 447 structure for a nonaqueous metal-organic redox flow batter, Chemical Communications 48
 448 (2012) 6669–6671. <https://doi.org/10.1039/c2cc32466k>.

449 [29] Y. Zhen, C. Zhang, J. Yuan, Y. Li, Anthraquinone-based electroactive ionic species as
 450 stable multi-redox anode active materials for high-performance nonaqueous redox flow
 451 batteries, J Mater Chem A Mater 9 (2021) 22056–22063.
 452 <https://doi.org/10.1039/d1ta04546f>.

453 [30] Y. Zhen, C. Zhang, Y. Li, Coupling Tetraalkylammonium and Ethylene Glycol Ether Side
 454 Chain To Enable Highly Soluble Anthraquinone-Based Ionic Species for Nonaqueous
 455 Redox Flow Battery, ACS Appl Mater Interfaces 14 (2022) 17369–17377.
 456 <https://doi.org/10.1021/acsami.2c01569>.

457 [31] Z. Li, T. Jiang, M. Ali, C. Wu, W. Chen, Recent Progress in Organic Species for Redox
 458 Flow Batteries, Energy Storage Mater 50 (2022) 105–138.
 459 <https://doi.org/10.1016/j.ensm.2022.04.038>.

460 [32] M. Wu, M. Bahari, E.M. Fell, R.G. Gordon, M.J. Aziz, High-performance anthraquinone
 461 with potentially low cost for aqueous redox flow batteries, J Mater Chem A Mater 9 (2021)
 462 26709–26716. <https://doi.org/10.1039/d1ta08900e>.

463 [33] E.F. Kerr, Z. Tang, T.Y. George, S. Jin, E.M. Fell, K. Amini, Y. Jing, M. Wu, R.G. Gordon,
 464 M.J. Aziz, High Energy Density Aqueous Flow Battery Utilizing Extremely Stable,
 465 Branching-Induced High-Solubility Anthraquinone near Neutral pH, ACS Energy Lett
 466 (2022) 600–607. <https://doi.org/10.1021/acsenergylett.2c01691>.

467 [34] R. Feng, Z. Xin, V. Murugesan, A. Hollas, Y. Chen, Y. Shao, E. Walter, N.P.N. Wellala, L.
 468 Yan, K.M. Rosso, W. Wang, Reversible ketone hydrogenation and dehydrogenation for
 469 aqueous organic redox flow batteries, Science (1979) 3722 (2021) 836–840.
 470 <https://doi.org/10.1126/science.abd9795>.

471 [35] J. Rodriguez, C. Niemet, L.D. Pozzo, Fluorenone Based Anolyte for an Aqueous Organic
 472 Redox-Flow Battery, ECS Meeting Abstracts MA2019-01 (2019) 453–453.
 473 <https://doi.org/10.1149/ma2019-01/3/453>.

474 [36] D.P. Leonard, Z. Wei, G. Chen, F. Du, X. Ji, Water-in-Salt Electrolyte for Potassium-Ion
 475 Batteries, ACS Energy Lett 3 (2018) 373–374.
 476 <https://doi.org/10.1021/acsenergylett.8b00009>.

477 [37] M.V. Holland-Cunz, F. Cording, J. Friedl, U. Stimming, Redox flow batteries—Concepts
 478 and chemistries for cost-effective energy storage, Frontiers in Energy 12 (2018) 198–224.
 479 <https://doi.org/10.1007/s11708-018-0552-4>.

480 [38] R.M. Darling, K.G. Gallagher, J.A. Kowalski, S. Ha, F.R. Brushett, Pathways to low-cost
 481 electrochemical energy storage: A comparison of aqueous and nonaqueous flow batteries,
 482 Energy Environ Sci 7 (2014) 3459–3477. <https://doi.org/10.1039/c4ee02158d>.

483 [39] P.J. Cabrera, X. Yang, J.A. Suttil, K.L. Hawthorne, R.E.M. Brooner, M.S. Sanford, L.T.
 484 Thompson, Complexes containing redox noninnocent ligands for symmetric, multielectron
 485 transfer nonaqueous redox flow batteries, *Journal of Physical Chemistry C* 119 (2015)
 486 15882–15889. <https://doi.org/10.1021/acs.jpcc.5b03582>.

487 [40] J.A. Suttil, J.F. Kucharyson, P.J. Cabrera, B.R. James, R.F. Savinell, M.S. Sanford, L.T.
 488 Thompson, Metal acetylacetone complexes for high energy density non-aqueous redox
 489 flow batteries, *Journal of Material Chemistry A* 3 (2015) 7929–7938.
 490 <https://doi.org/10.1039/c4ta06622g>.

491 [41] T. Chu, I.A. Popov, G.A. Andrade, S. Maurya, P. Yang, E.R. Batista, B.L. Scott, R.
 492 Mukundan, B.L. Davis, Linked Picolinamide Nickel Complexes as Redox Carriers for
 493 Nonaqueous Flow Batteries, *ChemSusChem* 12 (2019) 1304–1309.
 494 <https://doi.org/10.1002/cssc.201802985>.

495 [42] G.A. Andrade, I.A. Popov, C.R. Federico, P. Yang, E.R. Batista, R. Mukundan, B.L. Davis,
 496 Expanding the potential of redox carriers for flow battery applications, *J Mater Chem A*
 497 Mater 8 (2020) 17808–17816. <https://doi.org/10.1039/d0ta04511j>.

498 [43] K.A. Jesse, S.D. Abad, C. Studvick, G.A. Andrade, S. Maurya, B.L. Scott, R. Mukundan,
 499 I.A. Popov, B.L. Davis, Impact of Pendent Ammonium Groups on Solubility and Cycling
 500 Charge Carrier Performance in Nonaqueous Redox Flow Batteries, *Inorg Chem* 62 (2023).
 501 <https://doi.org/10.1021/acs.inorgchem.3c02396>.

502 [44] J. Luo, B. Hu, M. Hu, Y. Zhao, T.L. Liu, Status and Prospects of Organic Redox Flow
 503 Batteries toward Sustainable Energy Storage, *ACS Energy Lett* 4 (2019) 2220–2240.
 504 <https://doi.org/10.1021/acsenergylett.9b01332>.

505 [45] J.M. Cameron, C. Holc, A.J. Kibler, C.L. Peake, D.A. Walsh, G.N. Newton, L.R. Johnson,
 506 Molecular redox species for next-generation batteries, *Chem Soc Rev* 50 (2021) 5863–5883.
 507 <https://doi.org/10.1039/d0cs01507e>.

508 [46] C.P. Keszthelyi, H. Tachikawa, A.J. Bard, Electrogenerated Chemiluminescence. VIII. The
 509 Thianthrene-2,5-Diphenyl-1,3,4-oxadiazole System. A Mixed Energy-Sufficient System, *J*
 510 *Am Chem Soc* 209 (1972) 1522–1527. <https://doi.org/10.1021/ja00760a014>.

511 [47] N.G. Connelly, W.E. Geiger, Chemical Redox Agents for Organometallic Chemistry, *Chem*
 512 *Rev* 96 (1996) 877–910. <https://doi.org/https://doi.org/10.1021/cr940053x>.

513 [48] M.R. Gerhardt, L. Tong, R. Gómez-Bombarelli, Q. Chen, M.P. Marshak, C.J. Galvin, A.
 514 Aspuru-Guzik, R.G. Gordon, M.J. Aziz, Anthraquinone Derivatives in Aqueous Flow
 515 Batteries, *Adv Energy Mater* 7 (2017). <https://doi.org/10.1002/aenm.201601488>.

516 [49] J. Zhang, J. Huang, L.A. Robertson, R.S. Assary, I.A. Shkrob, L. Zhang, Elucidating Factors
 517 Controlling Long-Term Stability of Radical Anions for Negative Charge Storage in
 518 Nonaqueous Redox Flow Batteries, *Journal of Physical Chemistry C* 122 (2018) 8116–
 519 8127. <https://doi.org/10.1021/acs.jpcc.8b01434>.

520 [50] B.P. Das, R.A. Wallace, D.W. Boykin, Synthesis and Antitrypanosomal Activity of some
 521 Bis(4-Guanylphenyl) Five- and Six-Membered Ring Heterocycles, *J Med Chem* 23 (1980)
 522 578–581. <https://doi.org/10.1021/jm00179a022>.

523 [51] J. Noack, N. Roznyatovskaya, T. Herr, P. Fischer, The Chemistry of Redox-Flow Batteries,
 524 *Angewandte Chemie - International Edition* 54 (2015) 9776–9809.
 525 <https://doi.org/10.1002/anie.201410823>.

526 [52] P.J. Cabrera, X. Yang, J.A. Suttil, R.E.M. Brooner, L.T. Thompson, M.S. Sanford,
 527 Evaluation of Tris-Bipyridine Chromium Complexes for Flow Battery Applications: Impact
 528 of Bipyridine Ligand Structure on Solubility and Electrochemistry, *Inorg Chem* 54 (2015)
 529 10214–10223. <https://doi.org/10.1021/acs.inorgchem.5b01328>.

530 [53] M. V. Makarova, A. V. Akkuratov, M.E. Sidel'tsev, K.J. Stevenson, E.I. Romadina, Novel
 531 Ethylene Glycol Substituted Benzoxadiazole and Benzothiadiazole as Anolytes for
 532 Nonaqueous Organic Redox Flow Batteries, *ChemElectroChem* 9 (2022) 1–7.
 533 <https://doi.org/10.1002/celc.202200483>.

534 [54] E.I. Romadina, I.A. Volodin, K.J. Stevenson, P.A. Troshin, New highly soluble
 535 triarylamine-based materials as promising catholytes for redox flow batteries, *J Mater Chem*
 536 A Mater 9 (2021) 8303–8307. <https://doi.org/10.1039/d0ta11860e>.

537 [55] E.I. Romadina, D.S. Komarov, K.J. Stevenson, P.A. Troshin, New phenazine based anolyte
 538 material for high voltage organic redox flow batteries, *Chemical Communications* 57 (2021)
 539 2986–2989. <https://doi.org/10.1039/d0cc07951k>.

540 [56] H. Cruz, N. Jordão, P. Amorim, M. Dionísio, L.C. Branco, Deep Eutectic Solvents as
 541 Suitable Electrolytes for Electrochromic Devices, *ACS Sustain Chem Eng* 6 (2018) 2240–
 542 2249. <https://doi.org/10.1021/acssuschemeng.7b03684>.

543 [57] B. Chen, S. Mitchell, N. Sinclair, J. Wainright, E. Pentzer, B. Gurkan, Feasibility of
 544 TEMPO-functionalized imidazolium, ammonium and pyridinium salts as redox-active
 545 carriers in ethaline deep eutectic solvent for energy storage, *Mol Syst Des Eng* 5 (2020)
 546 1147–1157. <https://doi.org/10.1039/d0me00038h>.

547 [58] H. Wang, S.Y. Sayed, E.J. Luber, B.C. Olsen, S.M. Shirurkar, S. Venkatakrishnan, U.M.
 548 Tefashe, A.K. Farquhar, E.S. Smotkin, R.L. McCreery, J.M. Buriak, Redox Flow Batteries:
 549 How to Determine Electrochemical Kinetic Parameters, *ACS Nano* 14 (2020) 2575–2584.
 550 <https://doi.org/10.1021/acsnano.0c01281>.

551 [59] A.Z. Weber, M.M. Mench, J.P. Meyers, P.N. Ross, J.T. Gostick, Q. Liu, Redox flow
 552 batteries: A review, *J Appl Electrochem* 41 (2011) 1137–1164.
 553 <https://doi.org/10.1007/s10800-011-0348-2>.

554 [60] T. Hagemann, J. Winsberg, A. Wild, U.S. Schubert, Synthesis and Electrochemical Study
 555 of a TCAA Derivative – A potential bipolar redox-active material, *Electrochim Acta* 228
 556 (2017) 494–502. <https://doi.org/10.1016/j.electacta.2017.01.055>.

557 [61] B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin, X. Chen, A.
 558 Aspuru-Guzik, R.G. Gordon, M.J. Aziz, A metal-free organic-inorganic aqueous flow
 559 battery, *Nature* 505 (2014) 195–198. <https://doi.org/10.1038/nature12909>.

560 [62] T. Janoschka, N. Martin, M.D. Hager, U.S. Schubert, An Aqueous Redox-Flow Battery
 561 with High Capacity and Power: The TEMPTMA/MV System, *Angewandte Chemie -*
 562 *International Edition* 55 (2016) 14427–14430. <https://doi.org/10.1002/anie.201606472>.

563 [63] N.A. Shaheen, W. Dean, D. Penley, B. Kersten, J. Rintamaki, M.B. Vukmirovic, B.E.
 564 Gurkan, R. Akolkar, Electro-Oxidation of Nitroxide Radicals: Adsorption-Mediated
 565 Charge Transfer Probed Using SERS and Potentiometry, *J Electrochem Soc* 169 (2022)
 566 053511. <https://doi.org/10.1149/1945-7111/ac7082>.

567 [64] R. Guidelli, R.G. Compton, J.M. Feliu, E. Gileadi, J. Lipkowski, W. Schmickler, S. Trasatti,
 568 Defining the transfer coefficient in electrochemistry: An assessment (IUPAC Technical
 569 Report), *Pure and Applied Chemistry* 86 (2014) 245–258. <https://doi.org/10.1515/pac-2014-5026>.

571 [65] Y. Ding, Y. Zhao, Y. Li, J.B. Goodenough, G. Yu, A high-performance all-metallocene-
 572 based, non-aqueous redox flow battery, *Energy Environ Sci* 10 (2017) 491–497.
 573 <https://doi.org/10.1039/c6ee02057g>.

574 [66] F.R. Brushett, J.T. Vaughey, A.N. Jansen, An all-organic non-aqueous lithium-ion redox
 575 flow battery, *Adv Energy Mater* 2 (2012) 1390–1396.
 576 <https://doi.org/10.1002/aenm.201200322>.

577 [67] X. Wei, W. Xu, J. Huang, L. Zhang, E. Walter, C. Lawrence, M. Vijayakumar, W.A.
 578 Henderson, T. Liu, L. Cosimbescu, B. Li, V. Sprenkle, W. Wang, Radical Compatibility
 579 with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery,
 580 *Angewandte Chemie* 127 (2015) 8808–8811. <https://doi.org/10.1002/ange.201501443>.

581 [68] X. Xing, Y. Huo, X. Wang, Y. Zhao, Y. Li, A benzophenone-based anolyte for high energy
 582 density all-organic redox flow battery, *Int J Hydrogen Energy* 42 (2017) 17488–17494.
 583 <https://doi.org/10.1016/j.ijhydene.2017.03.034>.

584 [69] Y. Huo, X. Xing, C. Zhang, X. Wang, Y. Li, An all organic redox flow battery with high
 585 cell voltage, *RSC Adv* 9 (2019) 13128–13132. <https://doi.org/10.1039/c9ra01514k>.

586 [70] X. Xing, Q. Liu, W. Xu, W. Liang, J. Liu, B. Wang, J.P. Lemmon, All-Liquid Electroactive
 587 Materials for High Energy Density Organic Flow Battery, *ACS Appl Energy Mater* 2 (2019)
 588 2364–2369. <https://doi.org/10.1021/acsaelm.8b01874>.

589 [71] X. Xing, Q. Liu, B. Wang, J.P. Lemmon, W.Q. Xu, A low potential solvent-miscible 3-
 590 methylbenzophenone anolyte material for high voltage and energy density all-organic flow
 591 battery, *J Power Sources* 445 (2020). <https://doi.org/10.1016/j.jpowsour.2019.227330>.

592 [72] X. Wang, J. Chai, A. Lashgari, J.J. Jiang, Azobenzene-Based Low-Potential Anolyte for
593 Nonaqueous Organic Redox Flow Batteries, *ChemElectroChem* 8 (2021) 83–89.
594 <https://doi.org/10.1002/celc.202001035>.

595

596

597 • Stable derivatives of DiPhenOx are synthesized and characterized as anolytes.
598 • Cyano and ester groups improve electrochemical stability of parent molecule.
599 • Adding an ester group does not always increase solubility in non-aqueous solutions.
600 • DiPhenOx derivatives paired with catholytes enable >3 V non-aqueous redox flow battery.

601

602

603

604

605

606