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ABSTRACT.

Effective utilization of energy from renewable sources such as wind and solar requires the
development of long duration energy storage (LDES) systems that can accommodate intermittent
energy accrual. One option under investigation is the use of a redox flow battery (RFB). A
significant amount of work has explored aqueous RFB systems with a variety of inorganic and
organic carriers. However, moving to a nonaqueous solvent such as acetonitrile (MeCN) for RFB
provides a much larger electrochemical window, which could lead to increased energy density if
properly utilized. In this work, we investigate a series of 2,5-diphenyl-1,3,4-oxadiazole
(DiPhenOx) derivatives as anolytes for a redox flow battery. DiPhenOx has a low voltage redox
event that, while reversible by cyclic voltammetry, was determined to be irreversible during bulk
electrolysis. To improve cycling performance, we introduced various ester and cyano groups to
the phenyl rings of DiPhenOx using molecular engineering. We characterized these derivatives
spectroscopically and electrochemically to assess their feasibility for flow battery applications.
The ester derivatives with the best cycling performance were tested in a flow cell vs. ferrocene,
2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB) and thianthrene, which resulted in ~2
V, ~3 V and ~3 V redox flow batteries, respectively.

INTRODUCTION

Recent years have seen a growth in the use of renewable energy sources such as wind and
solar.[1,2] However, to use these intermittent energy sources more effectively, appropriate energy
storage technologies must be in place. In particular, LDES technologies are needed as evidenced
by the US DOE Grand Challenge.[3] While Li-ion batteries are by far the most well investigated,
they are best suited for short and medium duration energy storage, and cost is still limiting
deployment.[4] Efforts have been made in the area of pumped hydro, which is the least expensive
technology energy storage technology available in the United States.[5—7] However, pumped
storage hydropower has severe limitations due to topological requirements and building costs
which have stifled universal deployment of this technology.[8—10] Another option under
investigation for LDES are RFBs.[11,12] Non hybrid RFBs allow for the storage of energy in
various redox states of a molecule or polymer. These chemical species are stored in tanks, which
are separate from the cell that facilitates power.[12] This allows power and energy to be scaled
individually for any given application.

Significant research into aqueous RFBs has been done with both organic and inorganic
carriers.[13] Carriers such as V(acac)s;,[14-18] Fe chelates,[19—26] anthraquinone based
molecules,[27-33] and fluorenone based molecules[34,35] have been particularly promising.
Many of these RFBs utilize aqueous systems to capitalize on the cost effectiveness and
environmentally benign properties of water. However, the electrochemical stability window of
water is relatively small, often being cited as ~1.23 V, though windows of up to 1.7 V are
accessible if Pt electrodes are avoided.[13] In contrast, nonaqueous solvents often have an
electrochemical window exceeding 4 V.[36-38] Since the energy stored in a RFB is directly
related to the difference in voltage between the catholyte and anolyte, having a larger solvent
window opens the possibility of building a battery with a higher energy storage capacity.[12] A
variety of metal complexes, featuring Fe, Ni, Zn, Cr, and Mn among others, have been investigated
as carriers for NRFBs.[26,39-43] However, due to the high cost of many of these metals and
limited solubility and chemical stability in charged states in many cases, researchers have turned
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to organic compounds when looking for appropriate catholytes and anolytes.[44,45] A goal of our
research is to develop a charge carrier which could enable a >3 V Non-aqueous redox flow battery
(NRFB) that takes advantage of the larger electrochemical stability window of non-aqueous
solvents.

The compound 2,5-diphenyl-1,3,4-oxadiazole (DiPhenOx) could be a promising anolyte
carrier for a NRFB for a variety of reasons. First, it has good solubility in acetonitrile (MeCN) at
240(30) mM in pure MeCN without modification. Additionally, it exhibits a reductive wave at -
2.46 V vs Ag/Ag" in MeCN that is reversible when analyzed by cyclic voltammetry (CV). Herein
we report modification of the parent DiPhenOx, which was undertaken to improve its durability
for charge/discharge cycling. The modified compounds were then paired with an appropriate
catholytes to form a ~2 V or ~3 V NRFB. Additionally, the effect of these modifications on the
solubility of the molecules was investigated.

RESULTS AND DISCUSSION
Electrochemical characterization of DiPhenOx

Previous studies focused on chemiluminescence collected CV data on DiPhenOx.[46] We
were able to reproduce these data and observe a reversible reduction event at -2.46 V vs Ag/Ag*
for DiPhenOx in MeCN. This is an extremely low potential to observe a reversible reduction event
compared to other known organic anolytes.[47] As such, DiPhenOx piqued our interest as a
possible anolyte for RFB applications. The CV data for this reduction has a current ratio of i./i, =
0.92, which quantitatively supports that this reduction as reversible. However, when bulk cycled
in a symmetric H-cell, DiPhenOx showed a rapid decline in the utilization (electrons/molecule)
and in the coulombic efficiency within just a few charge/discharge cycles (Figure 3 and S 26),
indicating chemical degradation. Specifically, a coulombic efficiency of ~20% and greater than
80% loss in utilization for both the charge and discharge cycling was observed after 25 cycles. As
such, DiPhenOx is not a suitable anolyte for NRFB applications. However, we hypothesized that
with appropriate modifications, DiPhenOx could be stabilized to increase its durability to cycling,
and effectively utilized as an anolyte in a NRFB.

Synthesis of DiPhenOx derivatives

Stabilization of carriers in redox flow batteries can be achieved in a variety of ways. One
strategy is to extend the aromatic system in such a way as to stabilize the radical anion or cation.
Alternatively, the addition of electron withdrawing groups (EWG’s) or electron donating groups
(EDG’s) can be used to shift the potential of the reduction event to higher or lower potential.[42,48]
In this case, lessening the reduction potential of the anolyte by stabilizing the negative charge with
proximal EWGs should result in a more stable radical anion.[49] We decided to use this strategy,
and add EWG’s in the form of -CN or -(C=0)OR in the para position of the phenyl ring within
the compound. This modification extends the aromatic system by 2 or 3 atoms respectively and
introduces an electron EWG via resonance effects. 2,5-di(4-cyanophenyl)-1,3,4-oxadiazole (1) is
synthesized using an Ullman reaction between the aryl bromides of the 2,5-di(4-bromophenyl)-
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1,3,4-oxadiazole and Cu(CN) salt (Figure 1, Scheme S1).[50] The ester derivatives (2 and 3) were
prepared by oxidizing 2,5-di(4-methylphenyl)-1,3,4-oxadiazole with potassium permanganate,
forming the acid chloride, then reacting with an appropriate alcohol (Figure 1, Scheme S2).
Ethanol was chosen due to its wide availability and 2-methoxyethanol was selected in an effort to
increase the overall solubility of the final molecule, 3, via the addition of an ether group. The
incorporation of ether moieties, specifically polyethyleneglycol (PEG), has been shown to enhance
solubility in other organic systems in MeCN.[28,39,51-57] The identity and purity of the three
compounds were characterized by 'H and '*C nuclear magnetic resonance (NMR) and infrared
(IR) spectroscopy. The expected peak patterns were observed by NMR spectroscopy. Similarly,
the characteristic C=N and ester C=0 stretches were observed by IR spectroscopy (Figures S1-
S9).

o)
NC RO
| o | o o)
N-N N-N OR
1 R = Et (2), EtOMe (3)

Figure 1. Derivatives of DiPhenOx synthesized for electrochemical testing.

Cyclic voltammetry of 1, 2, and 3

Unlike the parent DiPhenOx, 1, 2, and 3 all exhibit two reduction events (Table 1, Figure
2). For all three, the first reduction (x) is reversible by CV with i./i, = 1+0.08, where a value of
1+0.1 would correspond to a reversible redox event. By the same criteria, the second reduction (y)
for 1 and 3 is also reversible (Table 1). Compound 2’s second reduction wave has a current ratio
of 0.89, right on the cusp of what is considered reversible. The potentials of these negative waves
are both positively shifted, as expected with the addition of EWG’s. Interestingly, the second
reduction (y) events for 2 and 3 occur at essentially identical potentials, suggesting this wave is
physical isolated or without resonance communication to the ether functionality. As such, the
effect of the ether moieties on solubility can be isolated from their effect on reduction potentials
in 2 and 3.
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Figure 2. CV data of 1, 2, and 3 compared to DiPhenOx. All CV were collected reductively in
MeCN at 1 mM concentration of the anolyte and 100 mM [TBA][PF¢] electrolyte with a scan rate
of 100 mV/s and a AgBF, concentration of 25 mM for the Ag/Ag* reference electrode. The (x)
refers to the first reductive event for each compound and (y) refers to the second reductive event
for 1, 2, and 3.

Table 1. Summary of CV data collected in MeCN with 1 mM of anolyte and 100 mM of
[TBA][PF¢] at 100 mV/s. Scans were collected reductively as shown by the black arrow. Potentials
are referenced to Ag/Ag* in MeCN. Current ratios i(c)/i(a) are shown in parenthesis.

=P DiPhenOx 1 2 3
1st reduction (x) | -2.46 (0.92) | -1.84 (0.94) | -1.94 (1.02) | -1.94 (0.92)
2nd reduction (y) - -2.12 (0.96) | -2.13 (0.89) | -2.14 (1.04)

Kinetic parameters for 1, 2, and 3

Rotating Disk Electrode (RDE) experiments were conducted on DiPhenOx, 1, 2, and 3
using a 3-electrode cell. The experiments were conducted in MeCN with 500 mM
triethylammonium tetrafluoroborate ([TEA][BF,]) as the supporting electrolyte. For compounds
1, 2, and 3, each redox event was analyzed individually by identifying the inflection point between
the two events on the RDE voltammogram to separate the data. By separating the events, we can
find kinetic insight into why the first reduction (x) of 1, 2, and 3 exhibits improved performance
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compared to DiPhenOx and compared to cycling over both events (x and y) of 1, 2, and 3. The
diffusion coefficients were calculated using the Levich equation and the standard rate constant and
charge transfer coefficient were calculated with the Koutecky -Levich equation.[58]

From the RDE experiments, the diffusion coefficient of DiPhenOx was found to be 1.64x
10~ cm? s'!, while the average diffusion coefficient for 1, 2, and 3 was found to be 7.52 x 1063
cm? sl 7.48 x 105 cm? s7!, and 7.61 x 10° 5 cm? s°! respectively (Table 2). The decrease in
diffusion coefficient from DiPhenOx to 1, 2, and 3 can be explained by the increase in molar mass
and change in solubility caused by the molecular modification, as discussed below. The standard
rate constant (k) and the charge transfer coefficient (o) were calculated using the Koutecky -
Levich equation. DiPhenOx and the first reduction (x) of 1, 2, and 3 had £? of similar magnitude
while o exhibited some variation (Table 3). These &’ values are larger than several common
inorganic species such as V3*/V2* (4 x 107 cm s!) and Fe3*/Fe?*,[59] but are on a similar order to
or slightly better than several organic based redox active species.[60—62] The transfer coefficient
for DiPhenOx and the first reduction (x) of 1 and 2 were within the acceptable range of the ideal
value of 0.5. Conversely, 3’s value of 0.89 deviates outside of this range. This is interesting as 3
performed better during bulk electrolysis testing (vide infra). The standard rate constant and charge
transfer coefficient for the second reduction (y) reaction of 1, 2, and 3 differ greatly from
DiPhenOx as well as their respective first reduction (x) reaction. The £? of the second reduction
(y) reaction of 1, 2, and 3 dramatically increased while the charge transfer coefficient dropped
below 0.2 for all derivatives. To fully understand the implications of these results requires more
experiments planned for the future. In cases involving larger values of o, approaching or exceeding
1, it has been found that the limiting step is the adsorption of the molecule on to or off the electrode,
rather than the transfer of electrons.[63,64] We have been unable to locate reports on the case of
decreasing values of a.. However, it can be speculated that the rate limiting step of the second
reduction (y) reaction proceeds through a different mechanism as compared to DiPhenOx and the
first reduction (x) reactions. This may contribute to the poor cyclability of the second reduction
(y) reaction (see bulk electrolysis data and flow cell data). Future studies will focus on
investigating these interesting kinetic parameters.

Table 2. Levich Analysis. Data collected in MeCN with 1 mM of anolyte and 500 mM of
[TEA][BF,] at 10 mV/s. Scans were collected reductively. Potentials are referenced to Ag/Ag" in
MeCN.

Average
Complex 15t Reduction (x) Diffusion 2nd Reduction (y) Diffusion Diffusion
P Coefficient (D, ) [cm?s™'] Coefficient (D,") [cm?s™!] Coefficient

(Do) [em?s™']

DiPhenOx 1.64 x 10 N/A 1.64 x 10
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1 8.27 x 10¢ 6.77 x 10 7.52 x 10
2 7.83x 10 7.13 x 10¢ 7.48 x 10
3 7.90 x 10 7.38 x 10 7.61 x 10

Table 3. Koutecky-Levich Analysis. Data collected in MeCN with 1 mM of anolyte and 500 mM
of [TEA][BF,4] supporting electrolyte at 10 mV/s. Scans were collected reductively. Potentials are
referenced to Ag/Ag* in MeCN.

I Reduction (x) | 2™ Reduction (y) 15t Reduction (x) | 2" Reduction (y)
Complex Standard Rate Standard Rate Charge Transfer Charge Transfer
p g g
Constant (k) [cm | Constant (k%) [cm Coefficient (c) Coefficient (a)
s s
DiPhenOx 0.093 N/A 0.66 N/A
1 0.046 0.255 0.57 0.096
2 0.084 0.376 0.68 0.19
3 0.069 0.357 0.89 0.080

Bulk Electrolysis of 1, 2, and 3

Bulk electrolysis experiments were conducted on DiPhenOx, 1, 2, and 3 using a symmetric
H-cell where each side contained an equimolar solution of the anolyte (Figures 3 and S 23-26). In
all cases, the modified compounds showed increased durability to cycling as compared to
DiPhenOx. Both 2 and 3 were extremely stable when the first reduction (x) potential was cycled,
with Coulombic efficiencies at 100% and no observable decrease in utilization values for charge
or discharge cycles. Compound 1 was less durable, with Coulombic efficiencies just below 100%
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and a decrease of 0.22% and 0.49% in the utilization per cycle for charge and discharge
respectively. However, 1 still showed a substantial improvement over DiPhenOx which exhibited
a Coulombic efficiency of ~20% and greater than 80% loss in utilization for both the charge and
discharge cycling by the termination of the experiment. When cycling the first and second
reduction (x and y), 1, 2, and 3 all showed significant degradation over the course of 25 cycles,
with the most dramatic decreases observed for 1. Both 2 and 3 showed a ~50% decrease in
utilization for the charge and discharge cycling in 25 cycles, while 1 had a >80% decrease in
utilization within 10 cycles.
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Figure 3. Bulk electrolysis data for 1 (A and D), 2 (B and E), and 3 (C and F) at 1 mM in MeCN
with 100 mM supporting [TBA][PF¢] at 1 mA. A-C show cycling through the first redox event (x)
(~50% SOC) while D-F show cycling through both redox events (x and y) (~100% SOC). The first
cycle is not shown as it does not display representative charge and discharge behavior.

These data clearly demonstrate that while incorporating EWG’s result in an additional
reduction event as compared to the parent molecule, only the first of these reduction events (x) in
2 and 3 is stable to long-term cycling in a bulk electrolysis experiment. Therefore, the
incorporation of ester moieties in 2 and 3 results in greater stabilizing effects for both reductions
as compared to the incorporation of a cyano group in 1. As evident from Figure 3 and S23-26, 3
shows good utilization for first reduction at ~50% state-of-charge (SOC). Therefore, 3 was further
examined in flow cell and related discussions in next section.

Flow cell testing

Because bulk electrolysis cycling of compounds 2 and 3 revealed limited degradation when
cycled at 50% SOC, we decided to further investigate these compounds in flow cell experiments.
The flow cell cycling experiments utilizing 2 as the anolyte and ferrocene as the catholyte exhibited
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unusual behavior. Despite increasing the SOC from 50% to 100%, we failed to observe a
cumulative charge-dependent voltage profile. This failure to observe a charge or discharge voltage
plateau is attributed to the electron transfer kinetics of the electrode for 2 (Figures S32-33).
Additionally, 2 experienced a capacity loss of 27.1% over 200 cycles at 50% SOC, corresponding
to a 0.136% capacity loss per cycle (Figure S32). This capacity loss exceeded that observed for 3
under identical conditions, where 3 exhibited a capacity loss of 9.13% over 200 cycles at 50%
SOC, equating to a 0.045% capacity loss per cycle (Figure 4). Given the complex charge/discharge
behavior displayed by 2 during flow cycling and its greater capacity loss compared to 3 under
similar conditions, 3 was selected for subsequent flow cell cycling experiments.

Flow cell cycling to the first reduction (x) of compound 3 is shown in Figure 4. In order to
evaluate the stability and cyclability of 3 in flow cell conditions, it was cycled versus known and
highly reversibly ferrocene as catholyte until 50% SOC.[65] As demonstrated in Figure 5, the
stability showed in the bulk electrolysis experiments is also reflected in the flow cell data. A stable
Coulombic efficiency of ~96 % was obtained over 200 cycles (Figure 5b). Voltage and energy
efficiencies also showed an excellent stability with values as high as ~91 % and ~88 % respectively
among the best reported for non-aqueous RFBs.[26] The stable efficiency indicates the
reversibility of 3 in flow battery cycling conditions. Capacity degradation poses a significant
challenge for all RFBs, but it becomes particularly pronounced in asymmetric nonaqueous organic
batteries. In these systems, the inability to regenerate organics and the need for extensive
separation and purification exacerbates the problem. Consequently, it challenges the advantages
of broader electrochemical stability window offered by nonaqueous solvents. Fortunately,
compound 3 exhibits just 9.13% capacity loss, equivalent to 0.045% per cycle over 200 cycles.
This impressive performance further solidifies its promise as a redox-active species for NRFBs. It
should also be noted that the capacity fade indicates possible crossover and side reactions
degrading redox active species in both cases it is irreversible for compound 3.
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Figure 4. Cycling performance of NRFB using 3 as anolyte and ferrocene as catholyte. The cut-
off voltage was 1.0 — 2.05 V (~ 50% SOC for the first reduction event). a) Potential vs. time plot;
b) Coulombic, voltage and energy efficiencies; ¢) discharge capacity (2.5 mM compound 3 and 5
mM ferrocene in 250 mM [TEA][BF,] used as anolyte and catholyte. The current density was 2.5
mA cm?2).

Furthermore, cycling up to 100% SOC for 3 could enable non-aqueous RFBs to achieve
higher energy density. Thus, compound 3 was cycled up to 2.10 V (~ 99% SOC) as illustrated in
Figure 5. Cycling at a high SOC resulted in a slightly lower Coulombic efficiency, which gradually
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increased over time from around 95% to about 98% (Figure 5b). Voltage and energy efficiencies
remained mostly stable, with values around 90% for VE and 87% for EE, similar to those reported
for 50% SOC. After 200 cycles, a total discharge capacity loss of 36.8% (0.184% per cycle) was
observed. As expected, discharge capacity experienced significant degradation (Figure 5¢) due to
possibility of accessing second reduction event which was shown to be electrochemically
irreversible.
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Figure 5. Cycling performance of NRFB using 3 as anolyte and ferrocene as catholyte. The cut-
off voltage was 1.0 —2.10 V (~ 100% SOC for the first reduction event). a) Potential vs. time plot;
b) Coulombic, voltage and energy efficiencies; ¢) discharge capacity (2.5 mM compound 3 and 5
mM ferrocene in 250 mM [TEA][BF,] used as anolyte and catholyte. The current density was 2.5
mA cm?).

The potential outcome of molecular engineering on DiPhenOx was enhancing its redox
potential, cycling capability and solubility, potentially resulting in increased energy density in
NRFBs. The DiPhenOx showed only one reduction event (Figure 2), and that did not cycle at 50%
and 100% SOC (Figure S29 and S30), where the cell lost virtually all capacity in less than 25
cycles. These findings align well with the bulk electrolysis experiment. Cyano and ester derivatives
of DiPhenOx have shown two distinct reduction events. Both of them are relatively more stable
than the parent molecule, as evidenced from bulk electrolysis and flow cell cycling, which is a
positive outcome of molecular engineering. Therefore, to assess the extent of reversibility of the
second reduction (y) event in 3, it was cycled between 1.0 V —2.35 V, which corresponds to 50%
SOC for the second reduction (Figure S28). The cell exhibited an initial coulombic efficiency of
approximately 92%, which increased to about 96% in the first 50 cycles and stabilized. However,
for the voltage and energy efficiencies, there was a considerable decrease from around 92% and
84% to 75% and 73%, respectively. This provides clear evidence of degradation (vide infra) of
compound 3 when cycled for the second reduction event (Figure S34). Moreover, capacity
retention was poor, and the cell lost 90.9% of discharge capacity in 200 cycles, which correlates
well with the bulk electrolysis of compound 3.

The relatively stable cycling of 3 at 50% SOC through the first negative wave makes it
promising anolyte candidate for a > 3 V NRFB if coupled with appropriate and stable catholyte.
Therefore, two literature reported catholytes, namely thianthrene (E;: 0.92 V vs Ag/Ag") and 2,5-
Di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB, E;: 0.72 V vs Ag/Ag"), were coupled
with 3 and analyzed in NRFB cell.[46,66] The energy efficiencies and capacity decay rates for
thianthrene and DBBB are presented in Figure 6 and S31, respectively. As expected, compound 3
exhibits good cycling behavior with both catholytes, with energy efficiencies hovering around
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85% for thianthrene and approximately 90% for DBBB. It is worth noting that the capacity decay
rates were 1.12% and 0.46% per cycle, respectively, for thianthrene and DBBB.
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Figure 6. Cycling performance of NRFB using 3 as anolyte and thianthrene as catholyte. The cut-
off voltage was 1.0 — 3.0 V (~ 50% SOC for the first reduction event). a) Potential vs. time plot;
b) Coulombic, voltage and energy efficiencies; ¢) discharge capacity (2.5 mM compound 3 and 5
mM thianthrene in 250 mM [TEA][BF,] used as anolyte and catholyte. The current density was
2.5 mA cm?).

Upon post-mortem analysis using CV of the electrolytes after the cycling test, it was found
that the capacity decay was due to the chemical degradation of the anolytes (Figure S34). Cycling
of 3 at 50% SOC for the first reduction event was the least detrimental, while running cycling tests
at ~100% SOC was highly detrimental to 3. However, electrolyte balance was not affected, as the
ferrocene peak current at positive potential did not change significantly. In contrast, accessing the
second reduction event resulted in the complete degradation of the anolyte, evident from the loss
of peak current and redox features. It also affected the electrolyte balance, with ferrocene
permeating into the anolyte from the catholyte, as indicated by increased peak currents in the
anolyte. Similar degradation trends were observed when 3 was cycled with thianthrene and DBBB
(Figure S 35). Thianthrene and DBBB themselves underwent degradation along with 3 at the
reduction potential. Therefore, the relatively higher capacity decay rate is also attributed to the
degradation of both thianthrene and DBBB when subjected to higher reduction potential in
NRFBs. However, further study is needed to clearly identify the mode of degradation.

Effect of Modification on Solubility

While a clear improvement to the durability during cycling can be seen upon modification
of DiPhenOx, this modification unfortunately also results in decreased solubility. While DiPhenOx
has a reasonable solubility of 240 (30) mM in MeCN, 1, 2, and 3 have solubilities of 5.8(2) mM,
2.2(1) mM, and 2.7(3) mM in MeCN respectively (Tables S1-8 and Figures S13-16, see SI for
experimental details). Although it is worth noting that the addition of an ether group in 3 results in
a slight improvement in solubility over 2, this increase is not nearly as large as the increases seen
with other anolytes that incorporate PEG moieties.[39,52—-55] Even 1, the most soluble of the three
derivatives, has extremely low saturation level. As such, extension of the aromatic system seems
to both stabilize the charged form of the anolytes and decrease their solubility. Future studies on
these anolytes should focus on modifying the stable 2 and 3 derivatives to increase solubility.
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Potential directions include the addition of even longer PEG chains or the incorporation of charged
groups such as sulfates or quaternary amines. Another possible research direction is into
asymmetric DiPhenOx derivatives. Asymmetry in anolytes is shown to increase solubility,[20,28]
though these molecules can be synthetically challenging to make.

While the challenge of lower solubility must be addressed for 2 and 3 for their use as
anolytes in NRFBs, it is important to note that compound 3 demonstrates one of the lowest
reduction voltages (-2.46 V vs Ag/Ag") among similar low-voltage carrier anolytes, with their
ability to undergo extensive cycling with minimal capacity loss (Table 4). Achieving >3 V NRFB
is a significant accomplishment, making DiPhenOx derivatives a promising advancement in the
molecular engineering of carrier molecules for NRFBs.

Table 4. A summary of the physical and electrochemical properties of anolytes with negative
potentials reported in literature:

. P Supporting
Potential (V vs. Solubility in > o
Anolyte Ag/Agt) MeCN (M) Electrolyte in Stability Catholyte
Flow Cell
DiPhenOx -2.46 0.24(3)* TEABFa not tested in a flow cell N/A
1 -1.84and -2.12  0.0058(2) TEABFa not tested in a flow cell N/A
i tenti f 72% 200
2 1.94and 213 0.0022(1) TEABF, ~ Capacity retention of 72% over Ferrocene
cycles
i tenti T 90.87%
3 194and-2.14  0.0027(3) TEag,  Capacity retention o o over Ferrocene
200 cycles
9. fluorenona’ 164 5 TEATESI capacity retention of 50% over 50  2,5-di-tert-butyl-1-methoxy-4-[2'-
) e cycles methoxyethoxy]benzene (DBMMB)
benzophen0n82 -2.16 4.3 TEAPFs stable over 7 cycles tetrameth?fT\éll\;lpP\gt)erld\nyloxy
4.4'- Average Coulombic efficiency of 2,5-Di-tert-butyl-1,4-
dimethylbenzophenone® -2.26 08 TEAPFs 72% over 95 cycles dimethoxybenzene (DBB)
4,4 -
dimethoxybenzophenonea -2.37 0.09 TEAPFs not tested in a flow cell N/A
. S Average Coulombic efficiency of 2,5-di-tert-butyl-1-methoxy-4-[2'-
4
2-methylbenzophenone 2.9 [nivasic TEAPFs 95% over 50 cycles methoxyethoxy]benzene (DBMMB)
Y . 1,4-di-tert-butyl-2-methoxy-5-(2-
5 ’
3-methylbenzophenone -2.18 miscible TEAPFs stable over 30 cycles methoxyethoxy)benzene (DBMMB)
1 1 0y
azobenzene® -1.69 0.7 TEAPFs Capacity retention of 70.8% over PEG3-phenothiazine

80 cycles

*standard deviation given in parentheses; '[67]; 2[68]; 3[69]; 4[70]; °[71]; °[72]

CONCLUSIONS

While initial CV experiments suggested that DiPhenOx should perform well as an anolyte in a
NRFB, testing in bulk electrolysis and flow cell experiments demonstrated that this molecule is
not durable to cycling. We employed a molecular engineering approach to modify the parent
DiPhenOx in order to stabilize the charged states of the molecule. Our findings indicate that
incorporating ester groups in the para position of the arene rings resulted in a highly durable
anolyte at the expense of solubility. The addition of a cyano group resulted in a DiPhenOx
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derivative that was more stable to cycling than DiPhenOx itself but showed clear degradation
during cycling experiments and low solubility. Moreover, we showed that coupling the ester
derivatives with high potential-containing positive electrolytes resulted in >3 V NRFBs. Future
work will focus on increasing the solubility and electrochemical stability of compounds 2 and 3.
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e Stable derivatives of DiPhenOx are synthesized and characterized as anolytes.

e Cyano and ester groups improve electrochemical stability of parent molecule.

e Adding an ester group does not always increase solubility in non-aqueous solutions.

e DiPhenOx derivatives paired with catholytes enable >3 V non-aqueous redox flow battery.



