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Modeling Objectives2

Can we predict the processing 
conditions for this material?

Scanning Electron Microscope (SEM) images of Pu particles



Modeling Objectives

• 4 particle characteristics (e.g., color, texture, size)

• 3 process conditions (e.g., temperature, chemical characteristic, processing time)

• Given the measured particle characteristics, can we predict the exact conditions used 
to produce the material?

• Project framework:
• Process Pu under known conditions
• Measure resulting particle characteristics
• Fit forward model
• Inverse-predict test values, quantify uncertainty, and assess predictive accuracy

• Model framework combines:
• Functional data analysis (FDA)
• Inverse prediction
• Seemingly unrelated regression (SUR)
• Bayesian modeling
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Functional Data4 Empirical CDFs of four particle characteristics

Avg. 640 measurements of 
each particle characteristic 
per experimental run



Functional Inverse Prediction (FIP) framework5

1. Represent functional responses 
using basis functions

2. Fit forward model

4. Validate model

fPCA on empirical CDF

a) Particle Characteristics = f(Process Conditions) + ε
     Seemingly Unrelated Regression
b) Predict Processing Conditions
     P(Processing Conditions | Particle Characteristics)

Leave-one-out cross-validation

3. Fit inverse model

Process Condition = f(Particle Characteristics) + ε
Determine Particle Characteristics to use in Step 3
Stepwise regression & LASSO



Simulated Functional Data6

Use first two principal 
components (PCs) as 
response variables (4 total)



Functional Inverse Prediction (FIP)7

Model:

Standard priors on β and τ

Bayesian Implementation:



Simulated Data Results: FIP8

Model
Linear 0.044 0.479
Interaction 0.021 1.559
Quadratic 0.011 0.398
Sine 0.011 0.392



Seemingly Unrelated Regression (SUR)9



Seemingly Unrelated Regression10

Stacked

Covariance structure



Simulated Data with Correlated Errors11

Covariance structure

Correlated simulated data

Uncorrelated simulated data

Use first two PCs as 
response variables (4 total)



Simulated Data with Correlated Errors
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Correlated Simulated Data
Results: FIP with SUR
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Model
Interaction 0.141 0.602
Quadratic 0.171 0.782
Sine 0.171 0.893

Correlated errors



14 Can we predict the processing 
conditions for this material?

SEM images of Pu particles

• 4 particle characteristics (e.g., color, texture, size)
• 3 process conditions (e.g., temperature, chemical characteristic, processing time)



Functional Data15 Empirical CDFs of four particle characteristics

Avg. 640 measurements of 
each particle characteristic 
per experimental run



Implementation

• Forward model: Process Condition = f(Particle Characteristics) + ε
• Identify Particle Characteristics associated with each Process Condition
• Stepwise regression and LASSO
• e.g., Particle Characteristics 2 & 3 identified as important for Process Condition 1

• Inverse Model: Particle Characteristics = f(Process Conditions) + ε
• Bayesian implementation of SUR
• Y matrix: PCs of Particle Characteristics
• X Matrix: Process Conditions
• “Masking” matrix

• Four inverse models:
• Linear
• Quadratic
• 2 interaction models
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SUR results
17

Model Process Cond. 1 Process Cond. 2 Process Cond. 3

Linear 0.996 0.589 0.958

Quadratic 0.974 0.525 0.883

Interaction (sparse) 1.014 0.592 1.097

Interaction (full) 1.162 0.450 0.987

RMSEs for best model. A value of 1 indicates parity with mean-only model.
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