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2 ‘ Modeling Objectives

Can we predict the processing
conditions for this material?

Scanning Electron Microscope (SEM) images of Pu particles I



* 4 particle characteristics (e.g., color, texture, size)
« 3 process conditions (e.g., temperature, chemical characteristic, processing time)

« Given the measured particle characteristics, can we predict the exact conditions used
to produce the material?

* Project framework:
*  Process Pu under known conditions

« Measure resulting particle characteristics
« Fit forward model
* Inverse-predict test values, quantify uncertainty, and assess predictive accuracy

* Model framework combines:
« Functional data analysis (FDA)

* Inverse prediction
*  Seemingly unrelated regression (SUR)
- Bayesian modeling

|
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4 ‘ Functional Data

Particle Characteristic 1

Empirical CDFs of four particle characteristics

Particle Characteristic 3

Avg. 640 measurements of
each particle characteristic
per experimental run

Particle Characteristic 2

Particle Characteristic 4




5 | Functional Inverse Prediction (FIP) framework

Process Condition = f(Particle Characteristics) + €

_ Determine Particle Characteristics to use in Step 3

Stepwise regression & LASSO

a) Particle Characteristics = f(Process Conditions) + €
_ Seemingly Unrelated Regression
b) Predict Processing Conditions

P(Processing Conditions | Particle Characteristics)

_ Leave-one-out cross-validation



s | Simulated Functional Data
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7 1 Functional Inverse Prediction (FIP)

Model: Principal Component k € {1, 2} from
Kk y response variable y,,q € {1, 2} and
Yq,i = 180(,-1{ + )81qu1,,; + ﬁqu.xz,i + €q.i observationi € {1, ..., 20}

Bayesian Implementation:

For inverse-predicting x; ; and x;
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Sine model, x,
251

s | Simulated Data Results: FIP
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JAGS estimate

y;q{,i - g(Xqﬁq) + Eg,i

Linear model: By + B1x1 + B2x5
Interaction model: By + f1x1 + B2x3 + f3x1X2 05
Quadratic model: B, + B1x; + fox; + f3x? + Pax3 05 10 s 20 25
Sine model: By + B1x1 + Box; + P3xs + P4 sin(xy) Sine model, x,
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Model | RMSEx; | RMSEx;

Linear 0.044 0.479
Interaction 0.021 1.559
Quadratic  0.011 0.398
Sine 0.011 0.392
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s 1 Seemingly Unrelated Regression (SUR)

« Generalization of simple linear regression

» Looks like multiple regression
« Responseis n x Q matrix ¥ composed of Q response variables
Yypq=1,..0

 Each response variable y, has its own regression equation

» Possibly (usually) different predictors, different regression
functions (e.g. linear, quadratic) associated with each regression
equation

- Error terms across regression equations are allowed to be correlated
» For response vectors y,and y,

* cor(¥4i,Yq;) = 0 Observations within a response are independent
* cor(yqi,¥ri) # 0 Observations across responses can be correlated




0 I Seemingly Unrelated Regression

Vg =XgBq+€q Yqisnxl

XqisnXp,
: pq IS the number of predictors in regression equation q
BqglSpg*x1
€gisn X1 Covariance structure
Stacked cov(eqi,€4;) = 0 for i # j observation
tacke cov(€qi €ri) # 0 for q # r regression
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n@Q x nQ block matrix whose blocks are diagonal matrices



1 1 Simulated Data with Correlated Errors @i

Covariance structure Uncorrelated simulated data
t €[—4,4],n = 150

x{ €]0.5,2.4],n = 20

x, € [0.1,2],n = 20

Cov(eq,;,eqj) =0 for i # j observation
COU(Eqi,qu) =1 for i = j observation
cov(€qi, €ri) = 0.9 for q # r regression

y1 =0, xq)

C[op =1 o045,=009 Y2 = xysin (x,t)

> g1 =09 09, =1

O=X® I, Correlated simulated data
€4~MVN(0, )

Yi=Yi1té Use first two PCs as
VY2 =Y2 + €7 response variables (4 total)



| Simulated Data with Correlated Errors
12
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Interaction model estimates for X,

13 1 Correlated Simulated Data T
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B Can we predict the processing
conditions for this material?

4 particle characteristics (e.g., color, texture, size)
3 process conditions (e.g., temperature, chemical characteristic, processing time)

SEM images of Pu particles |



15 ‘ Functional Data

Particle Characteristic 1

Empirical CDFs of four particle characteristics

Particle Characteristic 3

Avg. 640 measurements of
each particle characteristic
per experimental run

Particle Characteristic 2

Particle Characteristic 4




- Forward model: Process Condition = f(Particle Characteristics) + €
« ldentify Particle Characteristics associated with each Process Condition
« Stepwise regression and LASSO
- e.g., Particle Characteristics 2 & 3 identified as important for Process Condition 1

* Inverse Model: Particle Characteristics = f(Process Conditions) + €
« Bayesian implementation of SUR
* Y matrix: PCs of Particle Characteristics
« X Matrix: Process Conditions
«  “Masking” matrix

 Four inverse models:
* Linear

* Quadratic
2 interaction models

I
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| SUR results

RMSEs for best model. A value of 1 indicates parity with mean-only model.

m Process Cond. 1 Process Cond. 2 Process Cond. 3

Linear 0.996 0.589 0.958
Quadratic 0.974 0.525 0.883
Interaction (sparse) 1.014 0.592 1.097
Interaction (full) 1.162 0.450 0.987

Process Condition 2
true value (black), posterior median (blue) and 95% ClI

value
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i
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e I Conclusions

« Functional inverse prediction (FIP) framework successfully extended to Seemingly
Unrelated Regression (SUR) in a Bayesian context

« MCMC interpolates missing data to perform inverse prediction

« ldentification of “important” predictors in forward model (LASSO and stepwise
regression) is somewhat subjective. Stepwise regression seemed to do a better job
with our data.

+ Results on simulated data are promising, although key simplifying assumption is
Important

« Further work needed to develop framework for generating correlation matrix Q in a
functional context

« Results on actual data are more limited, although when it works, it works well.
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