
Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC, a wholly owned

subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525.

Interface Specifications for RAdiation Portal
Technology Enhancement & Replacement
(RAPTER) Modules

January 2023
SAND2023-xxxx

SAND2023-10516R

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

Contents

List of Abbreviations 3

List of Terms 5

1 Overview 13
1.1 Overview . 13
1.2 Introduction . 14
1.3 RAPTER Modules . 16

1.3.1 Control Module . 16
1.3.1.1 Hardware for Control Module 17
1.3.1.2 Logic for Control Module . 17
1.3.1.3 Relay command messages 18

1.3.2 Radiation Detector Modules . 18
1.3.3 Vehicle Presence Module . 19
1.3.4 Analysis Module . 20
1.3.5 Power Management Module . 21

1.4 Introduction to Message Groups . 21
1.4.1 Analysis Message Group . 22
1.4.2 Command Message Group . 23
1.4.3 Core Message Group . 23
1.4.4 Data-Out Message Group . 23
1.4.5 Radiation Detector Message Group . 24
1.4.6 Power Management Message Group 24
1.4.7 Vehicle Presence Message Group . 24

1.5 Device Networking . 24
1.5.1 Establishing Device Connections . 26
1.5.2 WebSocket Connection . 29
1.5.3 Network based Precision Time Protocol 29
1.5.4 Physical interfaces . 30

2 Portal and Device Operations 31
2.1 Portal Configuration . 31

2.1.1 Parameter Mechanism – Settings and Status 32
2.1.1.1 Device Position Settings . 34
2.1.1.2 Update Mechanism . 34

2.1.2 Device Operating State . 35
2.1.2.1 Device Operating Mode . 35
2.1.2.2 Data Collection Mode . 35

iv CONTENTS

2.1.2.3 Measurement Collection Interval 37
2.1.2.4 Measurement Type . 38

2.1.3 System Operating State . 38
2.1.3.1 System Measurement Type 39

2.2 Relay Commands . 40

3 RAPTER Messaging 41
3.1 Message Groups . 41
3.2 Message Group Versioning . 43
3.3 Message Contents . 44

3.3.1 Primitive Data Types Used . 44
3.3.2 Message Header Format . 45

3.3.2.1 Message Modifier Flags . 47
3.3.3 Message Body Format . 47

3.4 Message Transaction Model . 49
3.5 RAPTER Handshake . 50

3.5.1 Enforcement of RAPTER Communications 51
3.5.2 Message Buffering . 53

3.6 Messages Devices Must Respond to . 55

4 Detailed Message Descriptions 57
4.1 Core Interface . 57

4.1.1 RapterConstants Enumeration . 57
4.1.2 MessageGroup Enumeration . 58
4.1.3 CoreMsgType Enumeration . 59
4.1.4 MsgFlags Enumeration . 64
4.1.5 SupportedMessageGroupVersionsRequest Message 65
4.1.6 SupportedMessageGroupVersionsReply Message 65
4.1.7 UseMessageGroupVersionRequest Message 66
4.1.8 UseMessageGroupVersionStatus Enumeration 67
4.1.9 UseMessageGroupVersionReply Message 68
4.1.10 NotificationSeverity Enumeration . 68
4.1.11 NotificationCause Enumeration . 69
4.1.12 Notification Struct . 71
4.1.13 NotificationPush Message . 72
4.1.14 NotificationPushAck Message . 73
4.1.15 DeviceInfoRequest Message . 73
4.1.16 DataCollectionModes Enumeration . 74
4.1.17 DeviceFeaturesFlags Enumeration . 76
4.1.18 ComponentVersionInformation Struct 76
4.1.19 DeviceInfoReply Message . 77
4.1.20 DeviceStatusRequest Message . 79
4.1.21 DeviceStatusFlags Enumeration . 80
4.1.22 OperatingMode Enumeration . 81
4.1.23 MeasurementType Enumeration . 82
4.1.24 DeviceStatusReply Message . 84
4.1.25 DeviceBufferStatusRequest Message 85
4.1.26 BufferStatusFlags Enumeration . 85
4.1.27 DeviceBufferStatusReply Message . 86

CONTENTS v

4.1.28 DeviceStatusPush Message . 87
4.1.29 DeviceStatusPushAck Message . 88
4.1.30 DeviceTimeStatisticsRequest Message 88
4.1.31 DeviceTimeStatisticsReply Message 89
4.1.32 HeartbeatPacket Struct . 91
4.1.33 HeartbeatPush Message . 92
4.1.34 HeartbeatPushAck Message . 93
4.1.35 BufferRecoveryMode Enumeration . 93
4.1.36 BufferedMessagesRequest Message 94
4.1.37 BufferedDataRequestStatus Enumeration 95
4.1.38 BufferedMessagesReply Message . 95
4.1.39 BufferingSetOptionRequest Message 97
4.1.40 BufferingSetOptionsStatus Enumeration 98
4.1.41 BufferingSetOptionReply Message . 98
4.1.42 PingRequest Message . 99
4.1.43 PingReply Message . 100
4.1.44 PowerDownOption Enumeration . 100
4.1.45 PowerDownRequest Message . 101
4.1.46 PowerDownStatus Enumeration . 101
4.1.47 PowerDownReply Message . 102
4.1.48 SendLogsRequest Message . 102
4.1.49 LogReplyStatus Enumeration . 103
4.1.50 SendLogsReply Message . 104
4.1.51 DeviceOperabilityCheckRequest Message 104
4.1.52 DeviceOperabilityStatus Enumeration 105
4.1.53 DeviceOperabilityCheckReply Message 105
4.1.54 SupportedDataCollectionIntervalsRequest Message 106
4.1.55 SupportedDataCollectionIntervalsType Enumeration 107
4.1.56 SupportedDataCollectionIntervalsReply Message 107
4.1.57 ChangeDeviceStateRequest Message 109
4.1.58 CommandReplyStatus Enumeration 111
4.1.59 ChangeDeviceStateReply Message 112
4.1.60 MeasurementTypeChangeRequest Message 114
4.1.61 MeasurementTypeChangeReply Message 115
4.1.62 FirmwareUpgradeRequest Message 115
4.1.63 FirmwareUpgradeStatus Enumeration 116
4.1.64 FirmwareUpgradeReply Message . 117
4.1.65 ParameterNamesRequest Message 118
4.1.66 ParameterNameAndSubDetectorNumber Struct 118
4.1.67 ParameterNamesReply Message . 119
4.1.68 ParameterUpdateOption Enumeration 119
4.1.69 ParameterInfoRequest Message . 120
4.1.70 ParameterInfoStatus Enumeration . 120
4.1.71 ParameterValueDataType Enumeration 121
4.1.72 HealthSeverityLevel Enumeration . 122
4.1.73 ParameterPropertiesFlags Enumeration 123
4.1.74 ParameterInfoReply Message . 124
4.1.75 ParameterField Enumeration . 127

vi CONTENTS

4.1.76 SetParameterRequest Message . 128
4.1.77 SetParameterReply Message . 129
4.1.78 ParameterUpdatePush Message . 130
4.1.79 ParameterUpdatePushAck Message 131

4.2 Radiation Detector Interface . 132
4.2.1 RadDetectorMsgType Enumeration . 132
4.2.2 RadSubDetectorInformationRequest Message 133
4.2.3 RadSubDetectorType Enumeration . 134
4.2.4 RadDetDeviceFeaturesFlags Enumeration 134
4.2.5 RadDetectorKind Enumeration . 136
4.2.6 RadDetectorGeometry Enumeration 137
4.2.7 RadSubDetectorInfo Struct . 137
4.2.8 RadSubDetectorInformationReply Message 139
4.2.9 RadDataReadoutFlags Enumeration 139
4.2.10 RadChannelDataPush Message . 140
4.2.11 RadChannelDataPushAck Message 142
4.2.12 ListModeEvent Struct . 142
4.2.13 RadListModeDataPush Message . 143
4.2.14 RadListModeDataPushAck Message 144
4.2.15 EnergyCalCoefficientType Enumeration 145
4.2.16 EnergyCalibrationStatus Enumeration 145
4.2.17 EnergyCalMethodFlags Enumeration 146
4.2.18 RadEnergyCalibrationUpdatePush Message 147
4.2.19 RadEnergyCalibrationUpdatePushAck Message 150
4.2.20 RadEnergyCalibrationRequest Message 150
4.2.21 RadEnergyCalibrationReplyStatus Enumeration 151
4.2.22 RadEnergyCalibrationReply Message 151
4.2.23 RadUseExternalEnergyCalInstructions Enumeration 154
4.2.24 RadUseExternalEnergyCalRequest Message 155
4.2.25 EnergyCalUseStatus Enumeration . 157
4.2.26 RadUseExternalEnergyCalReply Message 158

4.3 Vehicle Presence Interface . 158
4.3.1 VehiclePresenceMsgType Enumeration 158
4.3.2 VehiclePresenceSubDetectorInformationRequest Message 160
4.3.3 VehiclePresenceSubDetectorType Enumeration 161
4.3.4 VehiclePresenceSubDetectorInformation Struct 161
4.3.5 VehiclePresenceSubDetectorInformationReply Message 162
4.3.6 RecommendedPresenceStatus Enumeration 162
4.3.7 VehiclePresenceReadOutFlags Enumeration 163
4.3.8 VehiclePresenceBinaryStatus Struct 164
4.3.9 VehiclePresenceBinaryDataPush Message 165
4.3.10 VehiclePresenceBinaryDataPushAck Message 166
4.3.11 VehiclePresenceCurrentBinaryDataRequest Message 166
4.3.12 VehiclePresenceReplyStatus Enumeration 167
4.3.13 VehiclePresenceCurrentBinaryDataReply Message 167
4.3.14 VehiclePresenceReadingPush Message 168
4.3.15 VehiclePresenceReadingPushAck Message 169
4.3.16 VehiclePresenceCurrentReadingRequest Message 170

CONTENTS vii

4.3.17 VehiclePresenceCurrentReadingReply Message 170
4.3.18 VehiclePresenceImageType Enumeration 172
4.3.19 VehiclePresenceImagePush Message 172
4.3.20 VehiclePresenceImagePushAck Message 173
4.3.21 VehiclePresenceCurrentImageRequest Message 174
4.3.22 VehiclePresenceCurrentImageReply Message 174

4.4 Power Management . 175
4.4.1 PowerManagementMsgType Enumeration 175
4.4.2 PwrMngmtInformationRequest Message 177
4.4.3 PwrMngmtLineOutProtectionType Enumeration 178
4.4.4 PwrMngmtLineOutPropertiesFlags Enumeration 179
4.4.5 PwrMngmtSupplyPropertiesFlags Enumeration 180
4.4.6 PwrMngmtLineOutInformation Struct 182
4.4.7 PwrMngmtInformationReply Message 182
4.4.8 PwrMngmtLineOutStatusRequest Message 183
4.4.9 PwrMngmtLineOutStatusFlags Enumeration 184
4.4.10 PwrMngmtLineOutStatus Struct . 185
4.4.11 PwrMngmtLineOutStatusReply Message 186
4.4.12 PwrMngmtSupplyStatusRequest Message 187
4.4.13 PwrMngmtSupplyStatusFlags Enumeration 188
4.4.14 PwrMngmtBatteryStatusFlags Enumeration 189
4.4.15 PwrMngmtBatteryStatus Struct . 189
4.4.16 PwrMngmtSupplyStatusReply Message 190
4.4.17 PwrMngmtLineOutEventPush Message 191
4.4.18 PwrMngmtLineOutEventPushAck Message 193
4.4.19 PwrMngmtSupplyEventPush Message 193
4.4.20 PwrMngmtSupplyEventPushAck Message 195
4.4.21 PwrMngmtTestType Enumeration . 195
4.4.22 PwrMngmtSelfTestRequest Message 195
4.4.23 PwrMngmtTestStatus Enumeration . 196
4.4.24 PwrMngmtSelfTestReply Message . 197
4.4.25 PwrMngmtAutomaticSelfTestResultPush Message 197
4.4.26 PwrMngmtAutomaticSelfTestResultPushAck Message 198
4.4.27 PwrMngmtLineOutPowerCycleRequest Message 199
4.4.28 PwrMngmtLineOutPowerCycleRequestStatus Enumeration 199
4.4.29 PwrMngmtLineOutPowerCycleReply Message 200

4.5 Analysis Interface . 201
4.5.1 AnalysisMsgType Enumeration . 201
4.5.2 AnalysisInterimResultRequest Message 202
4.5.3 InterimAnalysisDataUsageStatusFlags Enumeration 203
4.5.4 AlarmTypeFlags Enumeration . 203
4.5.5 NuclideResult Struct . 204
4.5.6 AnalysisInterimResultReply Message 205
4.5.7 AnalysisItemFinalResultsRequest Message 206
4.5.8 AnalysisFinalResultStatusFlags Enumeration 207
4.5.9 AnalysisItemFinalResultsReply Message 208

4.6 Data Out Interface . 209
4.6.1 DataOutMsgType Enumeration . 209

viii CONTENTS

4.6.2 DataOutDataPropertiesFlags Enumeration 214
4.6.3 DataOutDataFramePropertiesFlags Enumeration 215
4.6.4 DeviceStatus Struct . 216
4.6.5 ParameterUpdate Struct . 216
4.6.6 EnergyCalibration Struct . 217
4.6.7 ListModeDataPacket Struct . 220
4.6.8 ChannelDataPacket Struct . 221
4.6.9 BinarySensorsData Struct . 222
4.6.10 ImageData Struct . 222
4.6.11 VehiclePresenceReadingInfo Struct . 223
4.6.12 PwrMngmtSupplyStatus Struct . 224
4.6.13 PwrMngmtSelfTestResult Struct . 225
4.6.14 RequestReceivedSummary Struct . 225
4.6.15 DataOutDataFrame Struct . 226
4.6.16 DataOutDataPacketPush Message . 227
4.6.17 DataOutDataPacketPushAck Message 229
4.6.18 DataOutDevicesInfoRequest Message 230
4.6.19 DataOutDeviceInfo Struct . 230
4.6.20 DataOutDevicesInfoReply Message 233
4.6.21 DataOutDeviceParametersRequest Message 233
4.6.22 DataOutDeviceParametersRequestStatus Enumeration 234
4.6.23 ParameterInfo Struct . 234
4.6.24 DataOutDeviceParametersReply Message 237
4.6.25 AcknowledgeableEventType Enumeration 238
4.6.26 EventAcknowledgmentType Enumeration 238
4.6.27 DataOutEventAcknowledgementPush Message 239
4.6.28 DataOutEventAcknowledgementPushAck Message 240
4.6.29 DataOutSubDetectorInformationRequest Message 240
4.6.30 DataOutSubDetectorInformationReplyStatus Enumeration 241
4.6.31 PwrMngmtSupplyInformation Struct 241
4.6.32 DataOutSubDetectorInformationReply Message 242
4.6.33 DataOutGetStatusOfDeviceRequest Message 243
4.6.34 DataOutDeviceStatusFlags Enumeration 243
4.6.35 DataOutGetStatusOfDeviceReply Message 244
4.6.36 DataOutSystemOperabilityCheckRequest Message 245
4.6.37 SystemOperabilityStatus Enumeration 246
4.6.38 DataOutSystemOperabilityCheckReply Message 246
4.6.39 DeviceConnectionLevel Enumeration 248
4.6.40 DataOutDeviceConnectedPush Message 248
4.6.41 DataOutDeviceConnectedPushAck Message 249
4.6.42 DeviceDisconnectReason Enumeration 250
4.6.43 DataOutDeviceDisconnectedPush Message 252
4.6.44 DataOutDeviceDisconnectedPushAck Message 253
4.6.45 DataOutHandshakeFinishedPush Message 253
4.6.46 DataOutHandshakeFinishedPushAck Message 256
4.6.47 DataOutResponseErrorType Enumeration 257
4.6.48 DataOutDeviceResponseIssuePush Message 257
4.6.49 DataOutDeviceResponseIssuePushAck Message 258

CONTENTS ix

4.6.50 BufferingForDataOutOption Enumeration 259
4.6.51 DataOutBufferingEnableRequest Message 259
4.6.52 DataOutBufferingStatus Enumeration 260
4.6.53 DataOutBufferingEnableReply Message 260
4.6.54 DataOutBufferedMessagesRequest Message 261
4.6.55 DataOutBufferedMessagesReply Message 262
4.6.56 SystemStateChangeStatus Enumeration 263
4.6.57 DeviceStateChangeInfo Struct . 264
4.6.58 DeviceNotification Struct . 266
4.6.59 DataOutSystemStateChangePush Message 266
4.6.60 DataOutSystemStateChangePushAck Message 268
4.6.61 DataOutCurrentSystemStateRequest Message 269
4.6.62 DataOutCurrentSystemStateReply Message 269
4.6.63 DataOutMiscNotificationPush Message 271
4.6.64 DataOutMiscNotificationPushAck Message 272
4.6.65 DataOutDeviceReferenceInfoRequest Message 272
4.6.66 DeviceReferenceInfoRequestStatus Enumeration 273
4.6.67 DeviceReferenceInfoSetFlags Enumeration 273
4.6.68 DataOutDeviceReferenceInfoReply Message 274
4.6.69 DataOutTimeStatisticsRequest Message 275
4.6.70 DataOutTimeStatisticsReplyStatus Enumeration 275
4.6.71 IdentifiedDeviceTimeStatistics Struct 276
4.6.72 DataOutTimeStatisticsReply Message 278
4.6.73 DataOutInterimAnalysisPush Message 278
4.6.74 DataOutInterimAnalysisPushAck Message 280
4.6.75 DataOutFinalAnalysisPush Message 280
4.6.76 DataOutFinalAnalysisPushAck Message 282

4.7 Command Interface . 282
4.7.1 CommandMsgType Enumeration . 282
4.7.2 CmdSystemStateChangeRequest Message 284
4.7.3 CmdSystemStateChangeReply Message 285
4.7.4 CmdMeasurementTypeChangeRequest Message 287
4.7.5 CmdMeasurementTypeChangeReply Message 288
4.7.6 CmdDeviceRelayRequest Message . 289
4.7.7 CmdDeviceRelayReplyStatus Enumeration 290
4.7.8 CmdDeviceRelayReply Message . 291
4.7.9 CmdDeviceSetReferenceInfoRequest Message 292
4.7.10 SetReferenceInfoStatus Enumeration 293
4.7.11 CmdDeviceSetReferenceInfoReply Message 294
4.7.12 CmdDeviceEventAcknowledgmentRequest Message 294
4.7.13 CmdDeviceEventAcknowledgmentReply Message 295

Appendices 297

A General Message Encoding/Decoding Example 299

B Parameter Encoding and Decoding 305
References . 313

CONTENTS 1

2 CONTENTS

List of Abbreviations

ARDIS Automated Radiation Portal Monitor (RPM) Data Integration System.

ARM Advanced RISC Machine.

ASCII American Standard Code for Information Interchange.

CAN Controller Area Network.

CPU Central Processing Unit.

DHCP Dynamic Host Configuration Protocol.

DHS Department of Homeland Security.

DNDO Domestic Nuclear Detection Office.

FPGA Field Programmable Gate Array.

GUI Graphical User Interface.

HID Human interface device.

HTTP Hypertext Transfer Protocol.

IEEE Institute of Electrical and Electronics Engineers.

IETF Internet Engineering Task Force.

int integer.

IP Internet Protocol.

JSON JavaScript Object Notation.

NaN Not a Number.

NIC Network Interface Card.

NTP Network Time Protocol.

PKI Public Key Infrastructure.

4 List of Abbreviations

PPS Pulse Per Second.

PRIDE Port-Radiation Inspection, Detection, & Evaluation.

PTP Precision Time Protocol.

RAPTER RAdiation Portal Technology Enhancement & Replacement.

RDE Radiation detection equipment.

RFC Request for Comments, specifically by the IETF.

RFC request for comments.

RPM Radiation Portal Monitor.

RSP Radiation Sensor Panel.

RSP radiation sensor panel.

SSDP Simple Service Discovery Protocol.

ssh Secure Shell.

TCP Transmission Control Protocol.

TCP/IP Transmission Control Protocol/Internet Protocol.

TLS Transport Layer Security.

TTL transistor–transistor logic.

UDP User Datagram Protocol.

uint unsigned integer.

UPnP Universal Plug and Play.

UPS Uninterruptible Power Supply.

URL Uniform Resource Locator.

USB Universal Serial Bus.

UTC Coordinated Universal Time.

UTF-8 Unicode Transformation Format 8-bit.

UUID universally unique identifier.

VNC Virtual Network Computing.

WSS WebSocketSecure.

XML eXtensible Markup Language.

YAML YAML Ain’t Markup Language.

List of Terms

Advanced RISC Machine A computer CPU architecture commonly used for single board com-
puters, embedded systems, microprocessors, or custom electronics.

American Standard Code for Information Interchange A character encoding for electronic
communications for the representation of typographic symbols common in the United
States, such as alphanumeric characters and punctuation.

analysis message group The set of messages that relate to input of data to, or the output of
analysis results from, the analysis module. Analysis messages transit between the control
module and the analysis module.

analysis module The physical device in a RAPTER portal that performs the analysis of radia-
tion and vehicle presence data in order to determine the need for further inspection of the
conveyance. Connects to the control module via the portal’s Ethernet network and imple-
ments the core message group, the data-out message group, and the analysis message
group. See Section 1.3.4.

background In the context of radiation measurements, the ambient radiation that exists even
when no item of interest is present, for which no further inspection is warranted.

boolean A data type with two possible values: true or false.

command device A device in a RAPTER system that uses the command message group, in
addition to the core and data out message groups in its communication with the control
module. Command devices may communicate with another device in the system using the
command module as a proxy by using relay command messages; see relay command
message.

command message group A set of messages for effecting portal-wide changes in operating
mode or measurement type, or for configuring settings describing the position of detectors.
The group also includes the relay command message; see relay command message..

condition data See parameter.

control module The only physical component within a RAPTER portal that hosts the network,
and that communicates with and controls all other modules on the network. Implements all
message groups. The physical component that implements the roles and logic described
in Section 1.3.1.

6 List of Terms

core message group A set of messages for controlling device-level operations and functions,
and reporting device information. Every device connected to the control module must be
able to receive and reply to every type of core message.

data Digital information. Unless otherwise described, data refers to measurement results pro-
duced by a detector, of which examples include detected gamma or neutron radiation data,
a measured vehicle position, a vehicle presence determination, or an image.

data collection mode See data mode.

data mode A device operating condition for the collection of data from detectors in the device.
See also mode.

data type Classification of how to interpret a a specified amount of digital bits. Data types
include integers, floating point numbers, Booleans, and strings.

data-out device A device that communicates with the control module using the data-out mes-
sage group and the core message group.

data-out message group The set of messages that convey information generated within a
RAPTER portal to data-out. The group also includes messages for requesting data.

denormal Floating point numbers with leading zeros in the significand. Also sometimes referred
to as subnormal numbers.

detection zone A region of space within a portal of which measurements are made by detec-
tors.

detector A device that senses physical quantities that are analyzed to determine the need for
further inspection of a conveyance. These devices include gamma, neutron, and vehicle
presence detectors. Devices that sense quantities not directly related to the determination
of the need for further inspection, such as temperature, voltage, humidity, etc., are not
considered detectors for the purpose of this document.

device A physical component that is connected to the control module through an Ethernet con-
nection in a manner specified by this document. Implements core messages and other
message groups according to the functionality of the device plural.

dual-homed A device with more than one network interface that are each attached to separate
Ethernet networks. Among reasons devices may be dual-homed is to bridge networks or
act as a proxy between separate networks. .

Dynamic Host Configuration Protocol Standardized network protocol used on Internet Pro-
tocol (IP) networks to dynamically distribute network configuration parameters, such as IP
addresses, for interfaces and services.

energy calibration The mapping of the detected electronic signal of a detection gamma radi-
ation quanta, to the actual energy deposited in the detection medium. The usually takes
the form of an equation that maps multichannel analyzer channels to to an energy scale
determined by gamma radiation sources with known emissions.

health data See parameter.

List of Terms 7

Inf ±Infinity. A special value in floating point representation of numbers indicating positive or
negative infinity.

interface A boundary definition that allows two devices to communicate. Interface may also
refer to a physical interface, for example an Ethernet interface, or network interface card.

interlock A feature used to enforce the mutual dependence of two mechanisms or functional-
ities. Interlocks are commonly used for safety purposes to prevent potentially hazardous
operations if required prerequisite are not met. An example interlock might be a switch
that prevents a high voltage power supply from turning on if the enclosure has not been
properly closed.

item In the context of radiation measurements, radiation data from an item of interest, or simply
item, is analyzed in order to determine the need for further inspection. See also back-
ground.

JTAG connector A digital electronics connector typically included for development purposes.

list mode For radiation and vehicle presence detectors, a data recording mode in which each
detection event, including one or more attributes of the event and the precise time of
occurrence, is reported sequentially. For vehicle presence detectors such as break beams,
each detection event and its time of occurrence is likewise reported sequentially.

live time Time during which a radiation detector is capable of processing an input radiation
pulse.

live-time dwell mode A data recording mode of a radiation detector for accumulating data dur-
ing a single interval of live time. See also mode.

may As defined in Reference [1], this word means that an item is optional and an implementer
or device is free to choose whether to implement or use the item. If the option is chosen,
the item must be implemented as specified.

mechanism specifically, messaging mechanism A set of messages within a message group
that addresses a particular functionality. Examples are the parameter mechanism for man-
aging parameters, and the firmware upgrade mechanism for managing upgrades, both
within the core message group.

message A packet of binary data with interpretation as defined in this document. See Section 4
for definitions of messages.

message group A set of RAPTER messages that are related by general functionality.

message type A specific, defined RAPTER message within a message group.

mode a selectable condition for hardware or software. See also operating mode and data mode
(including list mode, live-time dwell mode, real time interval mode, real-time dwell mode).

module A physical component of a RAPTER portal that connects to the Ethernet of the portal,
specifically any of the following modules defined by this document: analysis module, con-
trol module, radiation detection module, power management module, or vehicle presence
module. See also device.

8 List of Terms

multicast A data transmission that is addressed to a group of destination devices simultane-
ously.

must Means that the statement is an absolute requirement of the specification, as in Refer-
ence [1].

Network Interface Card A physical adapter that connects a device to a network.

Not a Number A special value in floating point representation of numbers indicating an invalid
value.

occupancy The presence of a conveyance within the detection zone of a portal.

operating Adjective relating to portal or device operation.

operating mode A selectable operating condition of a device. Options are Standby, Ready, and
Operating. See also mode.

operation The use of a device or system in its intended function.

operational Adjective relating to operations.

operations The full range of activities involved with the production or use of portal data for
purposes of scanning, inspecting, and interdicting conveyances.

parameter A settable, measurable, or indicative (or a combination of these) quantity communi-
cated using specific messages. Devices or the control module define parameters relevant
to themselves. Measurable parameters are used, for example, to relay the state of health
or condition of devices, or relay status information such as CPU temperature or device
power usage. Indicative parameters report existing stored values, such as control settings
on devices. Settable parameters are those with values that can be changed in response to
a received message, such as new values of control settings on devices. See Section 2.1.1
and Section B for more information.

parameter mechanism The messaging procedure for reporting of a parameter update by a
device to the control module, outputting the updated parameter by the control module to
data-out messages, and the facility to query or set the current parameter value. (See also
Section 2.1.1. or 4.1.78.

portal See RAPTER portal.

power management message group The set of messages that relate to the control and mon-
itoring of the power management module. The included content may be proxied by the
control module to the control and data-out message group.

power management module A physical device that provides control and monitoring of the por-
tals power supply, with functionality similar to that of an Uninterruptible Power Supply and
is interfaces to the control module using the power management message group.

Radiation detection equipment Radiation data or vehicle presence data or both.

radiation detector data Data, from a measurement of neutron or gamma radiation, produced
by a radiation detector module and included in a message.

List of Terms 9

radiation detector message group The set of messages that relate to the detection and re-
porting of data by a radiation detector module. Radiation detector messages transit be-
tween the control module and the radiation detector module(s). The included content may
be forwarded by the control module using the analysis message group or the data-out
message group.

radiation detector module A physical device that detects gamma radiation, neutron radiation,
or both, and provides radiation data to the control module via the Ethernet network. The
radiation detector module implements core messages and radiation detector messages.
See Section 1.3.2.

Radiation Portal Monitor A system for performing radiation monitoring of a portal with func-
tionalities and components as defined by a user. See also RAPTER system.

radiation sensor panel Radiation portal monitors are often constructed using multiple panels
that each contain some number of gamma and/or neutron detectors. Combining multiple
RSPs together allows constructing portals with geometry and detection sensitivity desired.

RAPTER Interface Specification The communications, architectures, assumption, and re-
quirements specified in this document.

RAPTER portal A portal consisting of a RAPTER control module and the following RAPTER
modules connected thereto on a dedicated Ethernet network: an analysis module and all
radiation detector datas and vehicle presence modules.

RAPTER system A system, as defined in the RAPTER Interface Specification, consisting of
a control module and all devices connected directly to the control module, whether the
connection is by Ethernet (see also module, device) or by a physical interface (see Sec-
tion 1.2).

real time Time, true time, or wall-clock time, irrespective of the state of a detector or device.

real time interval mode A data collection mode of a radiation detector for accumulating data
during repeated, contiguous intervals of real time. See also mode, real-time dwell mode.

real-time dwell mode A data collection mode of a radiation detector for accumulating data dur-
ing a single interval of real time. See also mode, real time interval mode.

reference mark Physical mark, or marks, on the outside of a sub-device used to position it,
or a measuring device, at a point where the conventionally true value of a quantity is to
be measured, unless the position is clearly identifiable from the construction of the sub-
device.

relay command message A message type of the command message group that a command
device may send to the control module. The relay command message is a wrapper for
a request message to be sent to a specific target device from the originating command
device; the control module treats the relay command message as a request (which it may
deny) and proxies and controls all communication between the originating device and the
target device. The payload message may be of any request type the control module could
send to the target device. The request may, for example, change settings or state, or
obtain information with respect to the target device.

10 List of Terms

request for comments Formal document from the Internet Engineering Task Force that typi-
cally is used to define protocols, standards, or definitions.

requirement A necessary or compulsory condition.

Secure Shell A network protocol to securely facilitate remote network services over an unse-
cured network.

setting A value that is settable by a message. A settable parameter.

shall As defined in Reference [1], indicates an absolute requirement of this specification.

should As defined in Reference [1], this word means there may exist may exist valid reasons
in particular circumstances to ignore a particular item, but the full implications must be
understood and carefully weighed before choosing a different course.

significand Part of floating-point numbers consisting of its significant digits. Also referred to as
mantissa or coefficient.

sub-device A major physical component within a device for which location information may be
specified and queried. For example, multiple radiation sensors as sub-devices within a
radiation detector module.

system A set of connected things or parts that operate together1. See RAPTER system.

transistor–transistor logic Digital signal that can represent either an off (0) or on (1) state.
Devices may use TTL inputs, for example, for inputs by external switches, or interrupts.

unicast A one-to-one transmission from one device on the network to another device, each with
a unique network address.

Unicode Transformation Format 8-bit A character encoding which is a superset of ASCII, and
can encode all of Unicode.

Uninterruptible Power Supply Provides power to a load when mains supply power fails, is
disrupted, or outside of tolerances. Typically also protects against voltage surges or sags..

Universal Serial Bus A standard that defines cables, connectors and communications proto-
cols for connection and communication between computers and devices.

UNIX A family of operating systems, including Linux, BSD, and macOS.

User Datagram Protocol A basic network message that provides for addressing and data in-
tegrity checks, but does not account for unreliability in the network (e.g., unbeknown to the
sending device, a sent UDP message may never arrive at the destination).

vehicle presence data Digitized data produced by a vehicle presence module and included in
a message that provides information relating to the presence, position, or motion of a
vehicle, or other attributes of the vehicle.

1https://dictionary.cambridge.org/us/dictionary/english/system.

https://dictionary.cambridge.org/us/dictionary/english/system

List of Terms 11

vehicle presence message group The set of RAPTER messages that relate to the detection
and reporting of the occupancy of the portal by a vehicle. Vehicle presence messages
transit between the control module and the vehicle presence module(s).

vehicle presence module A physical device of a RAPTER portal that detects vehicle presence
and provides vehicle presence data to the control module. The vehicle presence module
implements core messages and vehicle presence messages. See Section 1.3.3.

Virtual Network Computing A graphical desktop sharing system used to remotely control an-
other computer.

WebSocket A persistent bi-directional, message based protocol defined in Reference [2].

12 List of Terms

Section 1

Overview

1.1 Overview

Radiation Portal Monitors (RPMs) were deployed throughout the port and border infrastructure of
the United States (U.S.) beginning in 2003 to monitor for the possible presence of uncontrolled
radiological and nuclear materials. Since that time, the U.S. Government (USG) has learned
much about the operational challenges faced in the field. Principal among the shortcomings has
been the lack of flexibility afforded the USG when all Internet Protocol (IP) rights and interfaces
of the system are owned by the Original Equipment Manufacturer (OEM).

In this document, USG has designed an open architecture with defined interfaces within a portal
for use in future deployed portal systems. This document defines the RAdiation Portal Technol-
ogy Enhancement & Replacement (RAPTER) interface that will make hardware and software
upgrades easier for the USG to manage. Any RAPTER module within an RPM system can eas-
ily be replaced without concern about the interfaces. The open architecture will also enable
the USG to conduct studies of special-purpose algorithms and performance enhancements in
real-world operational conditions.

RAPTER provides a modular design with well-defined modules and interfaces that OEMs will
build their systems around. There are five modules types within a RAPTER system – radi-
ation (gamma-ray and/or neutron) detection, vehicle presence, analysis, power management,
and control. While there may be multiple radiation detector module, vehicle presence modules,
and power management modules in a system, there is only one operating analysis module and
one control module. Inherent in the architecture is emphasis on state-of-health information that
will enable the user to monitor equipment health for reliability and systematically reduce main-
tenance costs over the life of the system. A standard Ethernet network is specified between
the modules to facilitate network connectivity, which is essential to support remote diagnostics,
software/firmware updates, and performance enhancements.

One of the primary system architecture changes compared to existing RPM systems is that the
control module will be physically separate from the analysis module that contains the detection
and alarm algorithms. The RAPTER system will also need to enable remote operations, external
data archiving, and developmental analysis capabilities.

This document is a USG-controlled Interface Control Document (ICD) that defines all interfaces
within a RAPTER portal as well as the interface to external networks. Example source code
for these interfaces may be made available to OEMs in order to ease the engineering task of

14 Overview

implementing the new open system architecture.

1.2 Introduction

This document presents a USG specification that defines a modular architecture for a portal used
for monitoring radiation, the allowed communications to and from the modules of the portal, and
the communication between the portal and the external world. A RAPTER portal, constructed
from the interfaced modules, may be interfaced with further devices as specified herein. Com-
pliant modules and devices may be upgraded or replaced without replacing the entire system.
The functionalities and dependencies of modules and devices are defined, as are the allowed
communications between them. Functionalities include alarming, archiving, and device health
monitoring.

Figure 1.1: Diagram of a potential RAPTER portal (within the dashed line) with connected no-
tional data-out device and command devices (outside the dashed line). Modules reside within the
portal. All communications over the diagrammed interconnections are specified RAPTER mes-
sages that start or end at the control module and transmitted over Ethernet networking. Data-out
device and command devices functionalities will be site and location specific. Non-networked in-
terfaces and controls, such as manual power switches, are not diagrammed.

The set of interface specifications defined herein is referred to as the RAPTER Interface Spec-
ification. The specification defines messages that provide full access to digital data generated
by the RAPTER system, including data from radiation measurements, vehicle presence data,
analysis results, measures of system health, and numerous parameters relating to the status,
operation, health, maintenance, configuration, and sustainment of the system.

This document does not specify system performance or how any modules or devices internally
work.

A diagram of a potential RAPTER portal can be seen in Figure 1.1. The architecture defined
by this Interface Specification includes five types of RAPTER modules (analysis module, control
module, radiation detector module, vehicle presence module, and power management module)
that each perform a concrete function in the portal. All communications over the diagrammed
network interconnections are specified RAPTER binary messages that start or end at the control
module. Each component that connects directly to the control module by Ethernet is referred to
as a device. Devices do not communicate with each other, except by Ethernet through the control
module. The term module is reserved for the five types of RAPTER modules, and other devices

1.2 Introduction 15

are not referred to as modules, regardless of their actual modularity. Devices required for stand-
alone portal operations are connected to the control modules Ethernet network. A RAPTER
system comprises the control module and the directly connected devices.

A radiation detector module is a physical device that detects gamma radiation, neutron radia-
tion, or both, and provides radiation data to the control module. A vehicle presence module is a
physical device that detects vehicle presence and provides vehicle presence data to the control
module. The power management module is a physical device that provides common Uninter-
ruptible Power Supply (UPS) capabilities and monitoring to the control module. The portal may
have more multiple radiation detector modules, vehicle presence modules and power manage-
ment modules. The portal has a single analysis module, a physical device that performs the
analysis of radiation and vehicle presence data in order to determine the operational need for
further inspection of the conveyance.

Communications are conducted with binary messages that are defined in this document. Mes-
sage definitions are organized in message groups that are tailored for different types of devices.
For example, portal data are reported from the control module in data-out messages. Certain
devices are able to issue command messages that influence system operations; these devices
are referred to as command devices. Command devices may issue commands to other devices
by relay through the control module, which exercises control over all messages. The RAPTER
modules, other than the control module, are not command devices. These and other message
groups are introduced in Section 3.1, expanded further in Section 3, and defined in Section 4.

There are two broad types of non-module devices, according to whether they communicate with
the control module with command messages and data-out messages (command devices), or
only data-out messages (data-out devices).

The devices in the diagram that are outside the RAPTER portal are notional. These devices
make use of data provided by defined RAPTER messages transmitted by the control module
of the portal. The notional devices are suggestive of how a RAPTER portal can be integrated
into a user’s site operations. For example, Figure 1.1 illustrates notional devices that interface
to the CBP network. As a further example, a Human interface device (HID) (not diagrammed)
could be constructed to include a monitoring adapter (for display of portal information), a phys-
ical control adapter (for execution of actions), and an integrated graphical user interface (GUI)
that complies with the user’s standard procedures.This sort of custom integration into a user’s
site operations can be carried out without modifying the RAPTER portal. Figure 1.2 shows an
alternative scenario where a dedicated command device, referred to as a Portal Interface Com-
puter, sits between the control module and the site network and portal controls.This document
does not explore or specify the notional device themselves, but instead focuses on the messages
that such devices are able to receive and send in communication with the control module.

All RAPTER messages are sent by twisted-pair, Cat 5 or higher, Ethernet connection to or from
the control module.

The possibility that specialty, non-Ethernet, physical interfaces may be required by a user’s site
operations is addressed in Section 1.5.4.

A RAPTER portal may be operated as a stand-alone system, or it may be integrated into a site
having multiple portals with additional tie-ins to site operations. An example network architecture
for such a site is diagrammed in Figure 1.2.

Encryption and device authentication mechanisms are outside the scope of this interface spec-
ification, but it is worth noting the technologies used within RAPTER are commonly used with

16 Overview

Figure 1.2: Notional network architecture that a RAPTER portal may operate in. The RAPTER
interface only applies to the RAPTER portal in the blue container, and only the interfaces be-
tween the control module and the other devices it connects to.

well established encryption and attestation infrastructures (i.e., Transport Layer Security (TLS),
Public Key Infrastructure (PKI), etc.)

The following overview subsections discuss the RAPTER modules, the RAPTER message
group, device networking, and physical interfaces.

1.3 RAPTER Modules

This subsection gives general descriptions of the modules. Messages are transmitted between
the control module and other RAPTER modules over a Ethernet network. The possible use of
physical interfaces is discussed in Section 1.5.4. Any monitored condition that interferes with
operations or prevents use of a device must be reported via the parameter mechanism or the
4.1.13 mechanism.

1.3.1 Control Module

The control module acts as a central point to which all devices (i.e., radiation detector modules,
vehicle presence modules, power management modules, the analysis module, data-out devices,
and command devices) connect to in order to send and receive data, commands, and responses
to commands. Devices may only communicate with the control module and not with each other.
As such, the control module functions as a gatekeeper for which devices can connect, and deter-
mines what information they can send or receive. It acts to coherently package information from
modules and send it to the analysis module, the data-out devices, and the command devices; it
also requests interim and final analysis results from the analysis module and relays them to the
data-out devices and command devices. The control module processes command messages for

1.3 RAPTER Modules 17

setting the position and location configurations of detectors within devices (see Section 2.1.1.1).
The control module implements all message groups.

1.3.1.1 Hardware for Control Module

The control module hosts the Ethernet-based network; e.g., provides Dynamic Host Configura-
tion Protocol (DHCP), network switching, etc. The control module must also act as, or make
available, an IEEE 1588 Precision Time Protocol (PTP) [3] grandmaster clock to the portal de-
vices, as explained in Section 1.5.3.

Example: The control module, for example, could be implemented by using a stan-
dard computer with it’s Network Interface Card (NIC) connected to a networking
switch servicing the portal devices, the computer providing the DHCP service, and
the switch also acting as, or is connected to, a stratum 1 PTP clock for the portal
devices.

Example: The control module could also be implemented as a single integrated de-
vice with all networking and portal operation logic controlled by the same computing
device. The standard system clock could be used as the PTP grandmaster source,
which in turn could be set using Network Time Protocol (NTP) via an external or
dedicated connection.

The possible use of physical interfaces is discussed in Section 1.5.4. The physical implementa-
tion used for the control module is not further defined.

1.3.1.2 Logic for Control Module

The control module determines which devices may connect, and how the system will react to
differing request messages, device failures, or changing environmental or operational conditions.
The control module implements the operating mode selected by the user, or changes mode in
response to changing conditions. The control module controls the output of all portal data.

The control module may disconnect devices that attempt communications outside of the
RAPTER Interface Specification, and similarly, other devices may disconnect if the control mod-
ule uses disallowed communications. (For more information see Section 3.5.1.)

The messages which the control module may issue or to which it must respond, and their mean-
ings, are defined in this document (see Section 4). All parameters of any module or device shall
be network accessible through command messaging. Further, all settable parameters shall be
settable through command messaging. Updates of firmware, executables, and software libraries
for the control module proceed through core messages wrapped in CmdDeviceRelayRequest
messages (see section 1.3.1.3). Further messages are defined herein.

The control module can receive user commands through an Ethernet connected device for phys-
ical control of the portal, and output portal information to a connected storage device. Portal in-
formation includes data generated by the modules, parameters, and any other data generated by
devices or by the control module itself. Physical control and output of portal information may be
combined in a connected Graphical User Interface (GUI) device that functions both as a data-out
device and as a command device.

18 Overview

The control module receives data from the radiation detector modules and vehicle presence
modules, determines occupancy state, and determines whether to group the radiation detector
data as background, occupancy, or “other.” Non-occupancy radiation data that are known to the
control module to be unacceptable for use as background data, are grouped as other. The con-
trol module transmits data-out message group messages containing vehicle presence data and
radiation detector data to the analysis module for processing. For each occupancy, upon re-
quest from the control module, the analysis module analyzes the provided vehicle presence data
and radiation detector data, and returns results to the control module, including both the results
of the analysis, as well as information necessary to reconstruct the results (e.g., backgrounds
used, threshold settings, etc.) contained within a N42 2012 file (see Reference [4]). The control
module then transmits this information to data-out devices and command devices.

The control module is the component within the portal whose implementation is most natural to
customize to fit the requirements of a specific deployment without modifying other modules.

1.3.1.3 Relay command messages

It is strictly required that each device connected to the control module network communicate with
only the control module, and only on the network. Since, at times, it is still useful to manually send
an individual device a command (e.g., for maintenance or troubleshooting purposes, to upgrade
firmware, or to set a parameter), a relay command mechanism has been provided that allows
command devices to send the control module a relay command message, which contains a
target device universally unique identifier (UUID) and device-specific RAPTER request message.
The control module can then act as a proxy and send the device-specific RAPTER request
message to the target device; the command device relays the device’s response message back
to the originally requesting command device. This mechanism is primarily intended to allow
adjusting or debugging of individual devices and is not typically to be used during operation. The
control module can be implemented to reject any relay command for any operational reason, but
may not use information not relevant to operations.

1.3.2 Radiation Detector Modules

Gamma and neutron detectors implement radiation detector message group in addition to the
core message group. The internal workings and detection sensitivities of gamma or neutron de-
tector modules are not specified by the RAPTER Interface Specification. A radiation detector
module shall be completely self-contained and detect gammas or neutrons or both. Each ra-
diation detector module in a RAPTER portal shall operate completely independent of the other
non-control devices in the system. Communication over the network between modules shall not
occur. The operations of one device shall not influence the operations of another device over the
Ethernet network, except possibly through the logic implemented in the control module.

However, it may be possible for devices to physically influence each other (not through the net-
work). For example, a gamma detector containing a normally sequestered radioactive check
source could expose that source to perform an energy calibration, thereby altering the physical
environment for the other detectors in the portal. This may only happen when the control module
explicitly says it can (see ActiveMaintenance).

Radiation detector modules NIC (Ethernet adapter) must support hardware-based time stamping
of PTP packets. Sub-millisecond time synchronization between devices is required for operating

1.3 RAPTER Modules 19

consistency of a RAPTER system. The control module shall support one-microsecond synchro-
nization, which some anticipated implementations may need between detectors.

Radiation detector modules may internally contain multiple sub-device radiation sensing ele-
ments, whose data shall be reported separately from each other. All radiation sensing elements
within a module must operate in the same data collection mode. There are four data collection
modes that detectors may support:

1. List mode (each detection event is individually read out and time stamped),

2. Real-time interval (radiation data is output at repeated intervals of real time),

3. Live-time dwell(accumulated radiation data is output at completion of a single interval of
live time), and

4. Real-time dwell (accumulated radiation data is output at completion of a single interval of
real time).

Modules that support neutron detection must support list mode, while gamma detecting modules
must support real time interval mode. Support for all four modes is encouraged but not required.
Individual detectors must also support reporting their energy calibration.Radiation detector mod-
ules should also report health status and sufficient measured values (e.g., parameters) with
which to monitor hardware condition and health.

1.3.3 Vehicle Presence Module

When a vehicle is occupying the portal, radiation data are analyzed to determine whether further
inspection of the vehicle is needed. A vehicle presence module provides information in real time
that may be used by the control module to determine whether the portal is currently occupied by
a vehicle and if so, the speed of the vehicle. The vehicle presence module may also may provide
the location or changes in speed of the vehicle in real time or other information about the vehicle.
Vehicle presence may be verified with digital imagery of the vehicle that is acquired by camera
sensors that are sub-devices of the vehicle presence module.

A vehicle presence module implements the vehicle presence message group in addition to the
core message group. The RAPTER specifications do not require the use of any particular sens-
ing technology. A basic vehicle presence module may consist of multiple infrared binary status
break beam sensors located at both the entrance and exit of the detection zone of the portal,
so that the control module can determine if a vehicle is present, as well as use timing informa-
tion from the break beams to determine the vehicle speed. A more advanced vehicle presence
module may use, for example, ultrasonic or lidar based distance sensors to allow tracking the
vehicle’s progress while it is approaching, in, and leaving the portal in order to provide better
positioning information for any radiation detected.

The vehicle presence module may provide digital pictures of the vehicle for use in reading ship-
ping container numbers, or for other purposes. The module may capture pictures based on its
own criteria (for example when break beam sensors are initially interrupted by a vehicle), as well
as when prompted.

A single vehicle presence module may have any number of binary status detectors (such as
break beams), distance sensors, and/or cameras. The portal must include a vehicle presence
module that is able to provide occupancy information sufficient to determine vehicle speed.

20 Overview

Vehicle presence modules NIC must have hardware support for PTP timing (see Section 1.5.3),
and must report all monitored values or external inputs using the parameter mechanism. See
Section 2.1.1 for more information.

A vehicle presence module operates in a single data collection mode (see Section 2.1.2.2): it
sends data when a sensor’s value changes. For example, whenever any of the beams of an IR
break-beam system changes state, the vehicle presence module sends a message, containing
the time stamp of the change and the new detector’s state, to the control module. Other examples
of this mode are a distance sensor that may send each new measured value as it becomes
available, or a picture that may be sent as soon as the vehicle enters or leaves the portal.

1.3.4 Analysis Module

It is the job of the control module to package radiation detector data and vehicle presence data,
and other information from relevant devices into a coherent message, and send it to the analysis
module. The control module can ask for a preliminary analysis result, perhaps while a vehicle is
still in the portal, or a final analysis result for the most recent item of interest (i.e., vehicle). The
analysis module must implement the data-out message group, and the analysis message group
in addition to the core message group. For more information on how the vehicle occupancy state
is determined, see Section 2.1.2.4.

The analysis module is a stand-alone computing device. There shall be at most one analysis
module. If additional analysis modules attempt to connect to the control module, the control
module shall terminate the WebSocket connection of the newly connecting analysis module, and
issue a DataOutMiscNotificationPush message to all data-out device and command
devices.

Thresholds, radiation analysis findings on which to alarm, and other adjustable pieces of in-
formation can be specified through setting values using the parameter mechanism. Additional
information, more detailed than that facilitated by the parameter mechanism or the device lo-
cation mechanism (described in Section 2.1.1.1) may also need to be specified in order for the
analysis module to operate with the set of devices in the portal. The RAPTER Interface Specifi-
cation provides the core message group to do this via firmware upgrades. For example, if a new
model of radiation detector module is added to the system, a firmware upgrade may be neces-
sary to provide the detector response function and detailed setup configuration of the module
and sub-device to the analysis algorithm.

Final analysis results for an occupancy are provided by the analysis module to the control module
through the AnalysisItemFinalResultsRequest message. This message contains
fields for the alarm status, the alarm type, a measure of confidence, a list of isotopes identified,
and a few other fields, including one to hold the contents of a N42.42-2012 [4] file. The N42
file contains the data, including any backgrounds, other radiation data, or vehicle presence data
used to perform the analysis, as well as the analysis results themselves. The N42 file contents
shall provide sufficient information to allow reproduction of the analysis results by a re-analysis
replay tool.

1.4 Introduction to Message Groups 21

1.3.5 Power Management Module

Power management modules provide typical UPS services with associated control and monitor-
ing using the power management message group and core message groups. The primary role
of these modules is to provide battery-based backup power when the main power fails or be-
comes out of tolerance; they also typically protect against spikes, surges, and sags in voltage.
They report their current status, estimated remaining battery levels, and self test results through
the power management message group to the control module. The power management module
will likely provide electrical protection and battery backup continuously, not just when placed into
operating mode via RAPTER messaging.

1.4 Introduction to Message Groups

This section gives a general introduction to the RAPTER message group: analysis, command,
core, data-out, radiation detector, power management, and vehicle presence. The groups and
the message types within each group are discussed further in Section 3.1 and specified in detail
in Section 4.

The groups used by RAPTER modules are shown in Table 1.2, and those used by other types
of devices are listed in Table 1.1.

Communication to and from devices is conducted by message sets that allow implementations
with functionality tailored to the application. All connections are made to the control module, and
communication between devices, if any, must pass through the control module. Communication
between devices outside the RAPTER Interface Specification is not allowed.

Communications are conducted using messages that are grouped as presented in Table 1.1.

Message Group Devices That Implement
analysis analysis module
command command devices
core all devices
data out analysis module, command de-

vices, data-out devices
power management power management module
radiation detector radiation detector module
vehicle presence vehicle presence module

Table 1.1: RAPTER Message Groups. Listing of message groups defined by this document,
and which devices must implement the message group. The control module must implement all
message groups, and devices may not only partially implement a given message group.

The core message group is a set of messages, each one of which every device connected to
the control module must be able to receive or send as a reply, or “push”, as the message type
dictates. Updates of firmware, executables, and software libraries for the control module and
devices proceed through core messages. Command messages relate to command and control
of devices and the system. The analysis message group is the set of messages that relate to
the request for, and the output of analysis results from, the analysis module. Data-out messages
convey information generated by the RAPTER system. Radiation detector messages relate to

22 Overview

Module Message groups
Analysis core, analysis, data-out
Control core, analysis, com-

mand, data-out, radi-
ation detector, vehicle
presence

Power Management core, power manage-
ment

Radiation Detector core, radiation detector
Vehicle Presence core, vehicle presence

Table 1.2: Message Groups used by RAPTER Modules.

the detection and reporting of data by a radiation detector data. Vehicle presence messages
relate to the detection and reporting of the occupancy of the portal by a vehicle, and power
management messages relate the control and reporting of the power management module to
the control module.

Message Group Request Reply Push Acknowledge
analysis control module device control module device
command device control module control module device
core control module device device control module
data out device control module control module device
power management control module device device control module
radiation detector control module device device control module
vehicle presence control module device device control module

Table 1.3: Originating source for each class of messages in each message group.

Within a message group, individual messages request information or action from a device or the
control module, which then will reply. Similarly the control module or device will "push" mes-
sages to the other device on the connection, which then may acknowledge them. Further, within
a single message group, all requests will only originate from either the control module or the de-
vice, and the replies will all go the other direction, and similarly for pushes and acknowledges.
Table 1.3 summarizes the directions of requests, replies, pushes, and acknowledges in each
message group.

1.4.1 Analysis Message Group

A RAPTER portal has a single analysis module. The analysis message group contains mes-
sages with which the control module requests and receives analysis results from the analysis
module. The data-out message group, which the analysis module also receives, contains mes-
sages that provide the analysis module with radiation detection data and vehicle presence data
used to perform its analysis. If additional “test” analysis modules are desired to be run in par-
allel, they can be configured as data-out device to receive all the relevant data in real time, but
they will not report their analysis results through RAPTER messaging (e.g., will need to store
their results on a USB drive, or some other medium). See Section 4.5.

1.4 Introduction to Message Groups 23

1.4.2 Command Message Group

Devices using the command message group also receive, and can send, the same messages as
data out devices. Command devices can issue commands that influence the operating status of
the portal, like starting or stopping of data taking, or even issuing requests (through the control
module) to individual devices (using relay “request” messages, see Section 2.2). Command
devices could be used, for example, to perform remote debugging and maintenance operations,
or control the portal via a GUI program, website, or a dedicated human interaction device. See
Section 4.7.

1.4.3 Core Message Group

Every device must implement the core message group, a large group of messages for controlling
device-level operations, settings, updates, and information reporting. See Section 4.1.

The core message group, for example, facilitates changing the operating state of individual de-
vices, reporting of parameters (e.g., high voltage, Central Processing Unit (CPU), temperature,
etc.) and hence state of health, negotiating version of the messaging protocol to use, telling the
control module basic information or capabilities of the device, recovering buffered data after net-
work interruptions, firmware upgrades, and other functionality common to all devices. Even if a
device does not support an optional feature, like data buffering, devices are expected to respond
to those messages, although the response could be “not supported.” See Section 4.1 for a full
list of messages.

1.4.4 Data-Out Message Group

Data-out devices receive all radiation data, vehicle presence data, analysis results, parameter
updates, status of each device, and device connection and disconnection notifications. Requests
sent through command messages are partially mirrored to data-out devices via the DataOut-
DataFrame::received_requests message field, and the results of those requests (device oper-
ating state changes, energy calibrations, parameter value changes, etc.) are sent to data-out
devices in the other fields of DataOutDataFrame that is in the DataOutDataPacketPush mes-
sage. Data-out devices may perform actions based on the content of the data received, for
example to display portal status on a GUI, drive a traffic light or gate arm, or archive data as it is
received. See Section 4.6.

The flow of information is strictly from the control module to data-out devices, with the following
exceptions in which the data-out devices provide a information:

• Upon request by control module to a data-out device for device information (DeviceInfoRe-
quest message).

• The device shall send parameter updates to the control module, which includes device
health information (ParameterUpdatePush messages).

• NotificationPush messages from the device

• Responses to core message requests from the control module.

24 Overview

1.4.5 Radiation Detector Message Group

The radiation detector message group is used by the control module for managing the radiation
detector modules and for obtaining interpretable radiation data from them. The radiation detector
modules use this message group to identify device features and report radiation data. Energy
calibration is managed and reported with this message group.

1.4.6 Power Management Message Group

The power management message group is used by the control module for managing the power
management modules and for obtaining status of the mains power (the input power to the mod-
ule), the output power (i.e., that powers the rest of the portal), and the backup battery status.
When mains power is lost and the batteries are nearly exhausted the control module can power
down the portal in a safe manner, or for debugging purposes trigger the power off, and then
power back on of the portal.

1.4.7 Vehicle Presence Message Group

The vehicle presence message group is used by the control module for managing the vehicle
presence modules and for obtaining interpretable vehicle presence data from them. The ve-
hicle presence modules use this message group to identify device features and report vehicle
presence data.

1.5 Device Networking

During operation all communications between devices and the control module take place by
transmission of binary messages over a WebSocket connection sitting on top of a standard
Transmission Control Protocol/Internet Protocol (TCP/IP) networking stack, using IPv6. The
binary message formats are defined in Section 3.3.3, as interpreted by the rules given in Sec-
tion 3.3.3. Devices of the system communicate with the control module but do not communicate
with each other. Only the defined RAPTER binary messages may be used for communications.
Similarly, connections to the control module from the outside world take place using a WebSocket
connection and the pre-defined message formats in this specification.

Interruptions to the WebSocket connection are exceptional events such as network interruptions,
device power cycles, or to isolate non-compliant devices.

RAPTER systems communicate using standard networking infrastructure (RFC 894 [5] and suc-
cessors and extensions), TCP/IP software stack (RFC 791 [6], RFC 2460 [7], RFC 2710 [8]) and
WebSockets (RFC 6455 [2]) connection - that is, using the standard network technologies which
are nearly ubiquitous in general purpose computer networking, the internet, and in many em-
bedded devices. This interface specification defines how devices communicate over Ethernet-
based [9] networks using twisted pair links, Cat 5 or higher cabling with connectors electrically
equivalent to 8P8C.

Since at the application level, the physical medium used to facilitate the networking may be
abstracted on many computing platforms, it is worth noting other physical communication mech-

https://tools.ietf.org/html/rfc894
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc2460
https://www.ietf.org/rfc/rfc2710.txt
https://tools.ietf.org/html/rfc6455

1.5 Device Networking 25

anisms such as WiFi (IEEE 802.11 [10]), fiber-optic, power over Ethernet [11], or other technolo-
gies could be candidates for inclusion in future versions of the RAPTER Interface Specification.
However, since all testing and reference implementations of this RAPTER Interface Specification
used Ethernet networks, with no consideration or testing of special requirements (e.g., reliabil-
ity, time synchronization, potential interference, latency effects, etc.) that these other physical
communication mechanisms may impose on the system, this current RAPTER Interface Speci-
fication requires Ethernet-based network communications.

Under the RAPTER Interface Specification, the control module facilitates all network functionality
for the portal. The control module acts as the network hub that performs DHCP services (RFC
3315 [12] and updates), performs network switching, and provides time synchronization. The
control module deals with all aspects of the network, including managing network congestion,
isolating devices from each other, network routing, and any other related responsibilities. The
control module also acts as a WebSockets server to which each of the other devices create
connections; this connection mechanism is explained in Section 1.5.1.

To implement communications from outside of the portal to the control module (e.g., remotely
control or monitor the portal), a data-out device or command device, that is dual-homed would
have to be used. Command devices can facilitate interacting with individual devices in the portal
(e.g., debugging, upgrading firmware, or issuing specific commands) via the relay command
messages, which ask the control module to relay the requests and responses of a command
devices. This is the mechanism that would be used to remotely configure or debug a specific
device.

The motivation for requiring the portal’s network to be separate from any other network includes:

• The portal’s operations are not dependent upon the operating conditions of an external
network. For example, if an external network goes down, or is degraded, the portal can
continue running, potentially unaffected.

• The control module can enforce network isolation of devices from each other. For example,
it can ensure a gamma detector’s network messages cannot influence a neutron detector’s
operation.

• The control module retains the ability to know exactly which modules are connected to it,
and to take any actions it deems necessary (e.g., disconnecting a “noisy” device from its
network) to ensure good system operation.

• Configuration ambiguities are reduced. That is, as far as a device connected to the portal
is concerned, there can only be one control module, and similarly, a control module has
exclusive control over any of the devices on its network.

• Some degree of isolation of the network and the outside world is achieved. This helps
to reduce packet collisions or other performance degrading conditions, as well as shield
devices from errant, but non-malicious network traffic. Note that separation of networks
through dual-homed computers is not a recommended cyber-security protection measure;
see NIST 800-82 [13].

Device authentication and encryption of portal network traffic is not specified by this standard
since each installation or deploying organization is likely to have their own unique infrastructure
in place. The RAPTER Interface Specification, however, is compatible with, and has been tested

https://csrc.nist.gov/publications/detail/sp/800-82/rev-2/final

26 Overview

using both TLS [14] and IPSec [15] technologies to authenticate and encrypt information (using
pinned certificates).

Settings and updates of operating systems may either proceed outside the RAPTER Interface
Specification, or by using the FirmwareUpgradeRequest and related messages.

1.5.1 Establishing Device Connections

Figure 1.3: Schematic representation of the SSDP broadcast mechanism illustrating some ex-
amples of the sequence of message exchanges that may occur in order for devices to get the
URL to which they should create a WebSocket connection to.

Radiation detector modules, vehicle presence modules, power management modules, the anal-
ysis module, as well as command devices and data-out devices are required to create a Web-
Socket connection to the control module. In order to know what IP address and port to connect
to, a slightly amended version of Step 1 of Universal Plug and Play (UPnP)/2.0 [16] is used to
communicate to devices what address and port to connect to. Step 1 of UPnP/2.0 is also re-
ferred to as the “Discovery” phase of UPnP/2.0, or separately as the Simple Service Discovery

1.5 Device Networking 27

Protocol (SSDP), which is how it will be referred to in this document. No other part of UPnP,
outside of SSDP, is used, or allowed to be used on RAPTER devices.

SSDP defines a mechanism that multicasts Hypertext Transfer Protocol (HTTP) 1.1 headers as
User Datagram Protocol (UDP) packets for devices to announce their presence on the network
and provide some basic information. SSDP also includes a mechanism for devices to search
for other devices on the network. SSDP was chosen because it is lightweight, has been widely
used and tested, and because there are libraries available to implement it for most common
programming languages and platforms. Implementing the necessary parts of the service from
scratch in C, C++, and Python were also found to be minor tasks relative to other aspects of
device development.

The control module acts as SSDP “controlled devices”, which function in the role of a server,
responding to requests from the other devices to send them the IP address and port on the
control module to create WebSocket connections. Non-control module devices act as SSDP
“control point” devices. Control point devices broadcast their presence and availability on the
network, as well as perform “searches” for the control module; they also listen for responses or
broadcasts from the control module.

This RAPTER Interface Specification adds the following customizations to the standard SSDP
mechanism:

1. SSDP messages sent from the control module to other devices must include the HTTP
header field “WS_PORT.RAPTER.CWMD.DHS.GOV” which provides the network port
number the control module is accepting RAPTER WebSocket connections on. Devices will
use this port number, and the IP address the packet originated from to create a WebSocket
connection to the control module for all of the devices RAPTER network traffic to flow
through.

2. A required header in SSDP messages is “LOCATION”, which normally describes the URL
on the device that presents an eXtensible Markup Language (XML) file containing a UPnP
description of the device and its services. The value of this field must be blank. This re-
quirement is driven by RAPTER devices not using the rest of the UPnP mechanism so this
file is not needed, and making it available would add additional work, networking protocols
to implement, and reduce the isolation of portal devices. Relevant device information is
instead exchanged through the RAPTER interface.

3. The control module must announce and respond to searches for three types of SSDP-
devices (the values “NT” and “ST” headers of SSDP messages)

(a) upnp:rootdevice

(b) urn:cwmd-dhs-gov:device:rapter-control-module:1

(c) urn:cwmd-dhs-gov:service:rapter-control-module:1

4. The control module may optionally isolate devices on the network so that broadcasts from
devices will not be received by any other device on the network, besides the control mod-
ule; this is part of the control module’s ability to ensure devices connected to it do not
influence each other’s behavior.

5. The UUID used for SSDP messages must be the same UUID used within the RAPTER
interface to uniquely identify a device.

28 Overview

6. Once a RAPTER WebSocket connection is established between a device and the control
module, there is no longer a need for the SSDP services, so all SSDP messaging can be
stopped by either of the devices.

Devices on the network must use the IPv6 IP address FF02::C and port 1900 for link-local
multicasting. The control module must send to, and listen on FF02::C, port 1900.

An example exchange of SSDP messages might be:

1. Once a radiation detector module is powered on and becomes ready, it might broadcast
multiple (more than one due to the unreliable nature of UDP) messages similar to the
following:

M-SEARCH * HTTP/1.1
HOST: [FF02::C]:1900
MAN: "ssdp:discover"
MX: 1
ST: urn:cwmd-dhs-gov:service:rapter-control-module:1
USER-AGENT: Unix/5.1 UPnP/2.0 RAPTER/1.0
CPFN.UPNP.ORG: Gamma Detector
CPUUID.UPNP.ORG: bbcc4467-e89b-adc4-567e-123412341234

Where the ST field could have also had the value
urn:cwmd-dhs-gov:service:rapter-control-module:1.

The CPUUID.UPNP.ORG field contains the UUID of the radiation detector module, and
the CPFN.UPNP.ORG is the “friendly” name of device. The USER-AGENT field value is
that defined by HTTP/1.1, and the MX field specifies a maximum wait time (in seconds)
for a response and should have a value between 1 and 5. The response line (first line of
message) and HOST fields values are fixed. See reference [16] for further details on each
field; line endings are given by the carriage return and line feed characters (\r\n) and
the final line is blank.

2. The control module would respond with a unicast UDP response to the source IP address
and port, similar to:

HTTP/1.1 200 OK
CACHE-CONTROL: max-age=1800
DATE: Mon Oct 16 17:34:13 2017
EXT:
LOCATION:
SERVER: Unix/5.1 UPnP/2.0 RAPTER/1.0
ST: urn:cwmd-dhs-gov:device:rapter-control-module:1
USN: uuid:111e4337-e89b-12d3-1285-123412341234::urn:cwmd-

dhs-gov:device:rapter-control-module:1
BOOTID.UPNP.ORG: 1508200453
WS_PORT.RAPTER.CWMD.DHS.GOV: 7878

1.5 Device Networking 29

Which indicates the radiation detector module should create a WebSocket connection to
ws://[fe80::13d8:c37a:13aa:2012]:7878.

In principle, the control module should wait a random amount of time between 0 and MX seconds
before sending its response to the above M-SEARCH. However, the UPnP/2.0 specifications also
allow the control module to adjust this value based on network congestion heuristics meaning the
control module has the freedom to reduce or eliminate this delay if network conditions support it.
Also, if the M-SEARCH request had contained the optional TCPPORT.UPNP.ORG field, then
the response would have instead been by Transmission Control Protocol (TCP) (instead of UDP)
to the port indicated.

1.5.2 WebSocket Connection

Once a device knows the address and port to connect to on the control module, as described in
Section 1.5.1, the device should then initiate a WebSocket connection to the control module. The
WebSocket connection is a standard connection as described in RFC 6455 [2], and is typically
resolved via a URL similar to ‘ws://ip.address’. Once a WebSocket connection has been estab-
lished, the control module will start the RAPTER handshake, as described in Section 3.5 and the
connection will persist for the duration of operations. If the WebSocket connection is interrupted,
for example by one of the participating devices restarting or a network cable becoming tem-
porarily disconnected, then the SSDP mechanism described in Section 1.5.1 should be used to
re-establish the WebSocket connection. If a WebSocket connection is terminated or interrupted
for any reason, devices should transition to stand by state (see Section 2.1.2) unless buffering
has been negotiated as described in Section 3.5.2, in which case devices should continue in
their current state of operation until the WebSocket connection has been re-initiated; see Sec-
tion 3.5.2 for more information. Extensions to WebSockets, like compression (RFC 7692 [17])
may optionally be supported by RAPTER devices, but support is not mandatory, and usage will
be negotiated during the standard WebSocket connection process.

1.5.3 Network based Precision Time Protocol

In order for the independent modules to operate coherently together and allow consistent in-
terpretation of the produced data, the modules within a portal must be time-synchronized. To
facilitate the time synchronization the control module must make a IEEE 1588 Precision Time
Protocol (PTP) [3] grand-master clock available. This may be accomplished in a number of ways,
including, for example:

• Using a dedicated PTP grand-master clock network device which in turn synchronizes off
of GPS.

• Running PTP server software on the control module system which uses the computers
real-time clock as a source; the real-time clock in turn may be set using an external source.

• Some network switches contain the ability to act as a PTP server.

The control module, radiation detector modules, and vehicle presence modules must support

https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc7692
https://standards.ieee.org/findstds/standard/1588-2008.html
https://standards.ieee.org/findstds/standard/1588-2008.html

30 Overview

hardware PTP packet time stamping1 to allow achieving microsecond level synchronization. For
general portal operations precise time synchronization is not as important for the analysis mod-
ule, power management modules, command devices, and data-out devices, so hardware times-
tamping support is not required, as millisecond level synchronization can still be achieved using
software timestamping. These requirements ensure that all the detectors and the control module
are synchronized approximately to the microsecond level (network conditions, CPU loads, time
since connection, time changes to the grandmaster clock, etc., can effect synchronization perfor-
mance), while all devices are synchronized approximately to the millisecond level for consistent
operations. If devices are not capable of achieving an appropriate level of synchronization, the
control module may disconnect them and not allow them to participate in portal operations.

1.5.4 Physical interfaces

If a device or the control module implements a non-Ethernet, physical interface to supply an in-
put, such as a button to acknowledge an alarm, or a manual push button to force an occupancy,
then that input must be reported through the normal parameter mechanism (which includes a
ParameterUpdatePush message (see Section 4.1.78), followed by the control module posting
a data-out message, as well as that inputs status being available for query through Parame-
terInfoRequest message. Similarly, if the control module implements a non-Ethernet, physical
output (e.g., electrical signals) or implements non-Ethernet, direct control of a component (e.g., a
gate-arm for traffic control, an indication light, a physical indication to operators), then a change
in such an output must be reported by the control module in a data-out message, with status
available for query through ParameterInfoRequest message.

For example, any interlocks monitored by a device (e.g., turn off high voltage if enclosure is
opened, or shut down if water is present, etc.) or monitored conditions (e.g., ambient or circuit
temperatures, input voltages, high voltage, input current usage, etc.), must be reported to the
control module by the device through the parameter mechanism. See Section 2.1.1 for more
information. If a condition may affect the health of the device, or make it non-operable, it should
be reported as a parameter.

1At the time of writing this there are a number of IEEE-1588 compliant Ethernet transceivers available in the
single unit $10USD price range, embedded single chip systems with hardware IEEE-1588 Ethernet support and
enough computational resources to potentially base RAPTER devices on for around $20USD, some single board
computers in the $100USD range which contain powerful CPUs, Field Programmable Gate Arrays (FPGAs) and
other advanced busses and capabilities.

Section 2

Portal and Device Operations

Each individual device within a portal is controlled by the control module using digital messaging.
The control module exercises its oversight of settings and configuration by digital messaging
using messages that are part of the parameter mechanism (for simple settings such as individual
values, see Section 2.1.1) and the upgrade mechanism (for more complex settings such as
detector response functions, see Section 2.1.1.2). The control module also oversees operation,
fault handling, modes, and status of all connected devices, as well as all behaviors of the portal.

Relay command messages (part of command message group) allow command devices to re-
quest the control module to change or retrieve parameters of, or alter the behavior of, other
devices. The logic by which the control module ascertains that such a request can or should be
fulfilled, and how it is fulfilled, are not specified.

2.1 Portal Configuration

The initial setup of a portal or a device includes the process of establishing the settings to be
used during operation. The value of any setting that can impact operations must be retrievable
by the control module through the parameter mechanism (see Section 2.1.1), and any setting
value that is not fixed must be settable through the parameter mechanism. Settings may be
retrieved and reported, for example, in support of configuration management or the conduct of
an inventory.

The firmware upgrade mechanism (in the core message group, Section 2.1.1.2) may be used
to enter or update more extensive sets of values, such as a detector response function (Sec-
tion 1.3.4). However, software and firmware version numbers (see the DeviceInfoReply mes-
sage) shall be updated whenever a firmware update takes place.

A few settings require user entry, such as those that express a relationship between one device
and another, for example the location of a detector element within the portal (see the CmdDe-
viceSetReferenceInfoRequest message). User entry may be accomplished through a human-
machine-interface command device (not specified herein) that is able to communicate using the
command message group with the control module.

The control module must store its own settings, as well as (sub-)device locations, names (as
the devices will be referred to in N42.42 files), and other information in the CmdDeviceSetRef-
erenceInfoRequest in non-volatile memory for retrieval and use when needed. Devices are also

32 Portal and Device Operations

responsible for persisting their own parameter settings in non-volatile memory across power cy-
cles.

2.1.1 Parameter Mechanism – Settings and Status

Parameters are managed using a set of messages - the parameter mechanism - in the core
message group, each of which contains “Parameter” in the message name.

Under the RAPTER Interface Specification, parameters are used to convey a wide array of op-
erating information. Parameters can be used to record or retrieve settings, such as target high
voltages, algorithm-specific thresholds, or enabling or disabling specific features. The range of
measured1 values that are considered healthy may be allowed to be set (at the option of the de-
vice), as well as the change necessary in measured quantities before the device should report
to the control module the new value. They can be used to report quantities (other than radia-
tion detector data or vehicle presence data) that are useful to monitor status and health, such as
temperature, measured high voltages, power draw, CPU utilization of the past minute, free disk
space or ram, or other device-specific quantities.

As specified by ParameterValueDataType, parameters may be boolean, signed 32-bit integers,
32-bit floating point numbers, or Unicode Transformation Format 8-bit (UTF-8) encoded string
values, a list of floating point values, or a list of integer values, and may consist of a set value, a
measured value, the lower and upper ranges of health (if a measured parameter), how much of
a change is required before reporting a new value (measured parameters), the lower and upper
values that it can be set to (if the parameter is settable), and an indication of the impact the
parameter is having on the health of device operations. See ParameterInfo for complete details
of information a parameter may supply.

Devices may be supplied with fixed settings that are determined and entered by the manufac-
turer, which can be used to communicate information such as date of manufacture, scintillator or
He3-tube volumes, etc. A parameter that provides a UTF-8 value could for instance be used to
indicate errors/issues not indicated elsewhere, for example: storage medium (e.g., hard drive)
failure, trouble writing to an internal bus (e.g., I2C or SPI busses) or component, or other po-
tential errors that are not expected to occur frequently enough to justify creating a dedicated
parameter. The values of settable parameters can be changed by the control module by sending
a SetParameterRequest message to the device.

A list of parameter names can be requested from a device with the ParameterNamesRequest
message, and then full information about each named parameter can be requested using Pa-
rameterInfoRequest messages. The full information about a parameter is specified in the Pa-
rameterInfoReply message sent by the device. When a device updates a measured parameter,
the update is sent from the device using a ParameterUpdatePush message. See Appendix B for
example C source code for encoding and decoding parameter messages. Devices implementing
the data-out message group can request parameters of a given device using the DataOutDevi-
ceParametersRequestValue message.

A summary of the ParameterPropertiesFlags that a device can use to define a parameter is:

ValueFixed Defines the “value” field of the parameter as not be alterable through SetParame-
terRequest requests. This can be useful to compare measured value against, for example

1measured is used to indicate both physically measured quantities, such as temperature and voltage, as well as
monitored conditions such as hard drive space, data bus congestion, or a resources initialization status.

2.1 Portal Configuration 33

supply voltages. Can not be combined with the Settable option.

Settable The “value” field can be altered using SetParameterRequest requests. Note that the
device may reject specified values for any number of reasons, including them being out
of range, cant be set while operating, or being incompatible with other parameter values.
Cannot be combined with the ValueFixed option.

Measured The value is measured, in some way, by the device. For example, CPU temperature,
high voltage current, free ram, status of intializing harware resources, operating system
errors, data bus congestion, etc.

HealthyValueRanged There is a range defined in order for the measured value to be consid-
ered healthy. The Measured option must also be set if this option set.

SetValueRanged There is a range defined that values may be set within. Not applicable to
string or boolean valued parameters. The Settable option must also be set if this
option set.

ReportOnChange Indicates the device will send updates when the Measured value for this
parameter changes, using ParameterUpdatePush messages. The Measured option
must also be set if this option is set.

ReportOnChangeDeltaSettable Indicates the change, or delta, in the measured value that is
required before a parameter update should be sent, can be set by the user. Not ap-
plicable to string valued parameters. For boolean parameters setting the delta to false
indicates the device should report on change, while true indicates do not report2. The
ReportOnChange option must also be set if this option is set.

HealthyLimitsSettable Indicates the healthy range of measured values may be set through Set-
ParameterRequest messages. The Measured and ReportOnChange options must
also be set if this option set. Not applicable to string valued parameters.

EffectsHealthWithoutLimits Indicates that even though healthy limits for the measured param-
eter are not defined, the measured value of this parameter may effect device health. The
Measured option must also be set if this option set, and the HealthyValueRanged
option must not be set.

NotSettableWhileOperating Indicates that this parameters value can not be set while the de-
vice is in active operation using SetParameterRequest messages. An example use case
would be if the high voltage could not be dynamically set, but required turning the voltage
off and then back on to the new value. The Settable option must also be set if this
option set.

SettableWithPredefinedValuesOnly Indicates that only certain pre-defined values will be ac-
cepted when setting the parameter value. The Settable option must also be set if this
option set, and the parameter description should indicate valid values.

2The logic for the boolean case falls out from boolean values typically being represented as integers internally in
computers, with ‘0’ as false, and non-zero values as true

34 Portal and Device Operations

2.1.1.1 Device Position Settings

The initial setup of a radiation detector data or a vehicle presence module includes entering the
positions (and names) of detection elements (sub-devices). The positions of portal detection
elements may influence the analysis or use of portal data. Position information can be used,
for example, by the analysis module to determine how far apart vehicle presence break-beam
sensors are, in order to use break-beam timing information to approximate the vehicles speed.
The analysis module may use the relative locations of Radiation Sensor Panel (RSP) or their
sub-devices within the portal to locate a radiological source within a conveyance.

Positions shall be specified using a standard right-hand Cartesian coordinate system with the
z-axis parallel to the direction of vehicle travel, with the origin on the center line of the portal lane
at ground level, at the midpoint of the detection zone along the z axis. The positive z direction is
fixed and is normally chosen as the preferred direction of vehicle traffic through the portal; such
that the vehicle enters the portal from the negative z and exits at positive z. Once fixed, the z
direction does not change with changes in direction of vehicle traffic. The negative x axis points
toward the vehicle driver’s side of the lane (i.e., the left hand side when driving in the positive z
direction), and the positive y axis gives the distance above ground level. Orientations and device
geometry are not included in this position information. Such a simple geometry system was
chosen to allow easy setup and use.

The location of a sub-device may be specified with respect to a manufacturer-provided physical
reference mark on the item. In the absence of a pre-defined reference mark, the detection
element’s 3D center point shall be determined or estimated (e.g., the center of a He3 tube, or for
IR recievers or cameras the location of the photo-sensitive silicon device), while for other devices
the 3D center of the device is used.

The orientation of the device is not recorded.

Positions can be specified to the control module using CmdDeviceSetReferenceInfoRequest
messages. The control module is responsible for persisting the specified position data. Data-out
devices, including the analysis module, can query the position of devices and sub-devices using
the DataOutDevicePositionRequestMsg.

2.1.1.2 Update Mechanism

Software, firmware, and extensive parameters may be updated by using the update mechanism
of the core message group, which is exercised by the FirmwareUpgradeRequest and Firmware-
UpgradeReply messages for upgradeable devices. Upgrades can be initiated by a relay com-
mand message (see Section 2.2).

Upgrades may be used to change quantities which otherwise can not be changed throught the
RAPTER Interface Specification, such as device UUID (see the DeviceInfoReply message) or
the cumulative operating time (see the DeviceUsageStatisticsReply message). An upgrade may
necessitate the restart of the upgraded device, including disconnection (see DeviceDisconnec-
tReason enumerated value DueToFirmwareUpgradeValue).

2.1 Portal Configuration 35

2.1.2 Device Operating State

This section describes the operating states of the portal and individual devices. Operating states
include operating modes, data modes, and measurement characteristics.

Each device in the system (i.e., not the control module) may receive the ChangeDeviceS-
tateRequest by which the control module informs it of how to operate. In addition to requested
transitions, transitions may be necessary due to hardware errors or other operating conditions;
devices indicate this to the control module using DeviceStatusPush messages.

ChangeDeviceStateRequest messages include a field requested_transition_time that specifies
when the device should transition (as microseconds after the UNIX epoch) to the desired state.
If this value is zero, or anytime previous to when a device receives the message, the device
should treat the transition request as being wanted immediately. If a future time is specified, the
device should make an attempt to finish the transition at that time. At most, one transition can
be queued up (e.g., if there is a transition scheduled in the future already, sending out another
transition request cancels the first one). See requested_transition_time for more details.

The ChangeDeviceStateRequest message contains the following additional pieces of informa-
tion: device operating mode, device data collection mode (measurement) mode, and measure-
ment characteristics.

2.1.2.1 Device Operating Mode

There are three device operating modes. All devices must support all three. It is up to the control
module to determine which operating mode to ask a device to be in. The device operating modes
are:

• StandBy: The device will respond to RAPTER WebSocket communications, but resource
intensive sub-systems of the device, potentially hazardous, or other optional sub-systems
should be powered down.

• Ready: The device is not currently performing its intended functionality like taking data,
performing analysis, or operating sub-components such as gate-arms. However, all the
resources that are necessary to perform the intended device functionality are ready to be
utilized with minimal notice. For radiation detector modules, this might mean that high
voltages have been stabilized, selfchecks have been performed, acquisition hardware has
been initialized, and so on. For a data-out device that records data and other information,
this might mean that a connection to the database has been established, and blocking
tasks like operating system upgrades have been finished.

• Operating: The device is performing its intended function, whether it is collecting radiation
data, measuring vehicle location, performing analysis, recording information to a database,
or some other function.

2.1.2.2 Data Collection Mode

The DataCollectionModes enumeration provides the possible values of how radiation data is ag-
gregated and sent to the control module when the device is operating. The operating_mode

36 Portal and Device Operations

field of the ChangeDeviceStateRequest message specifies if the detector should send a spec-
trum at regular time intervals, once after a specified dwell duration, or in listmode as data is
detected. For other devices in the system, or for OperatingMode values other than Operating,
this field must have values specified below. Devices must specify which DataCollectionModes
they support in the data_collection_modes field of the DeviceInfoReply message.

• NoOriginate: For radiation detector modules, vehicle presence modules, and power man-
agement modules:

– This is the value that must be specified for any OperatingMode mode other than
Operating.

– This value must not be specified when OperatingMode is equal to Operating.

For all other devices:

– This is the value that must be specified. In particular, for the analysis module, data-
out devices, and command devices, the value of DataCollectionModes must always
be NoOriginate.

• ClockTimeInterval: The device collects information and sends it to the control module at
regular intervals of wall clock time. That is, if a sensor collects data at 0.1 second intervals,
after starting data collection (at either the time specified in the requested_transition_time
field, or if it has a value before the current time, as soon as possible) it will collect informa-
tion until the next wall time that is a multiple of 0.1 second. Immediately upon concluding
one interval, it begins a new collection interval of the same duration, and so on (i.e., at x.1
seconds, then at x.2 seconds, x.3 seconds, etc.). Except for possibly the first interval of
data collection, each time interval starts at a time such that the modulo of the start wall
time with the interval length is zero. To continue on with the 0.1 second interval exam-
ple: a possible sequence of collection start time is 03:24:02.34 (first interval), 03:24:02.40,
03:24:02.50, 03:24:02.60, etc. The sequence 03:24:02.34, 03:24:02.44, 03:24:02.54, etc.,
would not be correct. Requiring collection intervals (other than the first) to start at wall time
multiples of the interval duration introduces the limitation that intervals must evenly divide
a second, but then allows straightforward synchronization of multiple devices. The maxi-
mum time interval is 1000 ms.

Radiation detector modules which detect gammas must support this mode, and radiation
detector modules which detect only neutrons may optionally support this mode. Vehicle
presence modules must not support this mode.

In this mode, data collection continues until the device is instructed otherwise.

• OnEvent: The device sends information as soon as an event is detected. For gamma and
neutron detectors this is list mode data acquisition, and for vehicle presence modules this
is whenever a beam state changes, a distance measurement becomes available, or picture
is triggered to be taken. For power management modules this is pushing information to the
control module whenever an event happens (although note that the power management
modules will likely always be providing electrical protection and battery backup, even when
not in the RAPTER operating state). If an interval is specified (the collection_interval_ms
field), the device must also send a HeartbeatPush message to the control module at the
wall times that are multiples of that interval; i.e. at the same times that define the start of
collection intervals as defined in the ClockTimeInterval bullet.

2.1 Portal Configuration 37

Vehicle presence modules and power management modules must support this mode. Ra-
diation detector modules which detect neutrons must support this mode, and radiation
detector modules that only detect gamma radiation may optionally support this mode.

In this mode data collection continues until the device is instructed otherwise.

• RealTimeDwell: The device acquires and aggregates data for a single specified time
interval, sending it to the control module at the end of collection. Once done with collection
the device returns to the Ready state unless instructed to do otherwise.

Radiation detector modules can optionally support this data collection mode. Vehicle pres-
ence modules must not support this data collection mode since it is unclear how the results
would be interpreted.

In this mode data collection continues for the specified collection interval.

• LiveTimeDwell: Similar to RealTimeDwell, but instead of the time period corresponding to
wall-clock time, the time interval specifies the time the detector is available to take radiation
data. That is, for many gamma and neutron detectors after a radiation quantum is detected
there is a small amount of time in which the detector is not available for processing another
detection event either because of physical or electrical limitations. This is often referred
to as “dead time” and does not count towards the detection interval. In contrast, the time
during which the system is available to detect incoming radiation is referred to as “live
time.”

Radiation detector modules can optionally support this data collection mode. Vehicle pres-
ence modules must not support this collection mode since it is unclear how the results
would be interpreted.

In this mode data collection continues until the specified amount of live time has accumu-
lated.

2.1.2.3 Measurement Collection Interval

• For ClockTimeInterval collection mode, this is the interval of time, in milliseconds, at which
the detector will send radiation data to the control module. The sending of data at this
interval continues until the collection mode changes. The value specified must in the list:
1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000.

• For OnEvent collection mode, if the value specified is non-zero, this is the interval of time,
in milliseconds, at whichHeartBeatPushs will be sent to the control module. The sending
of these messages continue until the collection mode changes. The value specified must
either be 0 (zero), in which case HeartBeatPush messages will not be sent, or in the list:
1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000.

• For RealTimeDwell, and LiveTimeDwell collection modes this is the period of time, in mil-
liseconds, to accumulate radiation data for before sending to the control module.

• For the NoOriginate collection mode: when the operating mode is Operating, this value
has the same meaning and consequences as for the OnEvent collection mode, and for
other operating modes must be zero.

Devices can be queried for their supported collection intervals using the SupportedDataCollec-
tionIntervalsRequest message.

38 Portal and Device Operations

2.1.2.4 Measurement Type

The MeasurementType enumeration provides possible values to indicate what is being mea-
sured by the portal. This information can be conveyed both at the beginning of a measurement
by the ChangeDeviceStateRequest message, or at any subsequent time with the Measurement-
TypeChangeRequest message. Any of the MeasurementType values can be specified to any of
the devices. The possible values are:

• NotSpecified: When sent to an device it must be interpreted as what is being measured
is unknown to the control module.

• Item: Until further specified, an item of interest is being measured.

• Background: There is no item of interest present and conditions are believed to be steady-
state background.

• PossibleInterferingSourceValue: There may not be an item of interest being measured,
but there is perhaps some activity happening that could contaminate the radiation or vehi-
cle presence data. Examples include: there is an alarming vehicle in a neighboring RPM;
there is calibration being performed nearby; there is work being done in the lane that may
erroneously trigger the vehicle presence sensors. One potential use case for this value is
to ensure that devices that take advantage of background aggregation do not accidentally
contaminate their sample.

• ActiveMaintenance: Indicates to the device that it can spend time performing mainte-
nance, which may impact other systems of the portal. One example of a usage might be if
a radiation detector module requires a period of active energy calibration with a source not
normally present. Data taken during this interval should still be sent to the control module
if possible, but it should not be interpreted as being useful for analysis, adjudications, or
other tasks.

Indicates to the device that it can spend time performing maintenance, which may impact
other devices of the portal (but only if the DeviceUsesActiveMaintenanceFlag flag is set
in the device_features field of the DeviceInfoReply message). One example of a usage
might be if a radiation detector module requires a period of active energy calibration with
a source not normally present. Data taken during this interval should still be sent to the
control module if possible, but it should not be interpreted as being useful for analysis, ad-
judications, or other tasks. When done performing active maintenance, the device should
transition back to a OperatingMode state of Ready (and notify the control module via a
DeviceStatusPush message).

2.1.3 System Operating State

The operating state of the portal system can either be automatically determined by the control
module or be changed using a CmdSystemStateChangeRequest message from a command
device. This message is defined similar to the ChangeDeviceStateRequest message of Sec-
tion 2.1.2. The CmdSystemStateChangeRequest message has a single OperatingMode field, a
single data collection time period field, and optionally a transition time that are applied to all de-
vices in the portal. However, three separate DataCollectionModes are specified. One applies

2.1 Portal Configuration 39

to radiation detector modules that detect gamma radiation, including modules that detect both
gamma and neutron radiation. One applies to all neutron-only radiation detector modules. And
the third DataCollectionModes applies to all vehicle presence modules. The control module will
always determine the operating state and data collection mode for the analysis module, power
management modules, data-out devices, and command devices. When a operating mode of Op-
erating is specified, but a data collection mode of NoOriginate for a class of devices is specified,
then those devices will be placed in the Ready mode by this request instead of Operating. See
CmdSystemStateChangeRequest message for further details.

It is the responsibility of the control module to get individual devices in the system into the desired
states, and there is no guarantee that the control module will request the respective devices to go
into a requested state. Reasons for leaving this up to the control module implementation include:
hardware issues, incompatible DataCollectionModes (e.g., a particular gamma detector does not
support the requested list mode acquisition), active maintenance being needed or in progress,
or problem devices. Should the control module reject a request, it must attach a Notification to
the reply message (see HasNotificationAttachedFalg of Section 3.3.2.1) providing a reason.

The CmdSystemStateChangeRequest message is intended to cover typical portal operation sce-
narios, however, finer grained control of devices within the system can be achieved using using
“relay commands” (discussed in Section 2.2) to issue ChangeDeviceStateRequest messages
from command devices to individual devices within the portal. The system’s operations state
may also be decided by logic implemented by the control module. For example, upon being
turned on, the control module may automatically transition to a pre-defined operating mode that
accommodates the portal’s typical duties of detection and analysis.

2.1.3.1 System Measurement Type

While devices are operating, it can be important for them to know what is currently being mea-
sured. For example, gamma detectors may accumulate background from which to perform en-
ergy calibration. The analysis module may need to know whether the received radiation data is
from background or from an item of interest (e.g., a vehicle) for which an analysis result will be
requested. In many RPMs the vehicle presence subsystem, such as break-beam style sensors,
determines if background or an item of interest is being measured. In a RAPTER portal, the ve-
hicle presence system plays a similar role in terms of detecting a vehicle’s presence, however it
is ultimately up to the control module to determine what is being measured, and then inform the
other devices of this information.

However, the CmdMeasurementTypeChangeRequest message can be used to override the cur-
rent measurement type. When a value other than NotSpecified is given, the control module will
change to that measurement type until another CmdMeasurementTypeChangeRequest mes-
sage, or a CmdSystemStateChangeRequest message is received. A value of NotSpecified indi-
cates to the control module to go back to determining the measurement type itself, likely through
use of the vehicle presence module data. This functionality can be useful, for example, if it is
wanted to manually trigger occupancies or backgrounds.

40 Portal and Device Operations

2.2 Relay Commands

Although command devices can only communicate with the control module, and not other de-
vices in the system, it is still useful for the command devices to be able to issue requests to
other individual devices. Some examples include changing parameter values, sending firmware
upgrades, or changing an individual device’s state for debugging. To facilitate this a CmdDe-
viceRelayRequest message is used. The command device sends a CmdDeviceRelayRequest
message to the control module; the message specifies the UUID of the target device, and con-
tains the binary encoded message intended for the target device. The control module is free to
decide if it will pass the message on to the target device, and if it does, it will take care of trans-
lating the message version to the version used by the device (which may be different than that
used by the originatin command device) before sending the message to the target device. Any
replies from the target device will be relayed through the control module back to the command
device, again translating as necessary. Command devices may only do this for “request” type
messages as it would make no sense for “push,” “reply,” and “acknowledge” messages.

In addition to enabling communications with general devices within the portal, the CmdDeviceRe-
layRequest message is also how parameter values can be set or log files requested from the
control module itself, which is done by specifying the UUID of the control module.

Section 3

RAPTER Messaging

RAPTER communications are defined in terms of binary messages with rigid structure. Com-
munications other than with valid messages, including every field having a valid value, may be
grounds for the control module to terminate connections to a device, or for the device to discon-
nect from the control module. This section provides a description of general message features
and sequences, while the structure of individual message types is given in Section 4.

3.1 Message Groups

All devices must be able to recognize and respond to all messages that the control module might
send to them. To reduce the complexity of implementing specific devices, RAPTER messages
are divided into seven groups, which limits the set of messages that a given type of device must
be able to process. The control module uses all message groups. A general introduction to
message groups was presented in Section 1.4.

42 RAPTER Messaging

Group Description Device Type
Core Messages in this group cover common func-

tionality and must be understood by all de-
vices.

All

Radiation Detector Covers functionality and information specific
to radiation detector modules.

Radiation detector
modules

Vehicle Presence Covers functionality and information specific
to detecting a vehicle’s presence, such as re-
porting or requesting data from break-beam
style sensors, vehicle position sensors, or
digital cameras.

Vehicle presence mod-
ules

Power Management Covers functionality and information specific
to power management modules which pro-
vide UPS capabilities to the portal

Power management
modules

Data Out Covers functionality for retrieving information
about and from the connected devices, as
well as how data which is packaged together
and output from the control module.

Data-out devices, Com-
mand devices, Analysis
module

Analysis Messages to allow the control module to re-
quest and receive analysis results.

Analysis module

Command Messages to allow changing the operating
status of the system, or to interact with spe-
cific devices through relay messages.

Command devices

In addition to all devices implementing the core message group, radiation detector modules must
implement the radiation detector message group, the vehicle presence modules must implement
the vehicle presence message group, and power management modules must implement power
management message group. Data-out devices, the analysis module, and command devices
must all implement the data-out message group; the analysis module must also implement the
analysis message group; and command devices must implement the command message group.

The data-out message group primarily contains information from all the devices packaged to-
gether in a coherent manner. Some information such as connected device summaries, or which
devices are connected, can be requested by data-out devices (and consequently by the analysis
module and command devices). But other information that may be generated dynamically and
delivered to the control module, such as spectra, vehicle presence data, or parameter changes,
are “pushed” from the control module to data-out devices, to the analysis module, and to com-
mand devices. The analysis message group enables the control module to request interim or
final analysis results for an occupancy. The command message group messages enable, for
example, changing the portal’s mode, overriding the portal’s occupancy status, or sending com-
mands to individual devices.

This categorization of messages not only maps to the functionality of devices comprising the
system, it allows future changes to one message group without necessarily affecting another
(see Section 3.2), and it also allows a device to selectively decode or understand only those
messages relevant to that device (see Appendix A).

The DataOutDataPacketPush message, which the data-out devices, command devices, and
the analysis module receive from the control module, is more or less a container message for
information from core, radiation, power management, and vehicle presence message groups. A
result of this is that if you want to extract, for example, radiation data from this message, then

3.2 Message Group Versioning 43

you will need to implement decoding at least a sub-set of radiation detector message group
messages. To keep receivers of this message from having to decode all message groups, the
DataOutDataPacketPush message provides the device_frame_uuids and device_frame_offsets
fields which can be used to locate information from specific devices within the message, allowing
you to ignore device types you are not interested in.

The format for encoding messages is given in Section 3.3, with an example C language encoding
of messages given in Appendix A. The control module must implement encoding and decoding
all message groups, but individual devices may only have to implement a subset of the message
groups.

The messages that carry information about device settings or state (e.g., high voltage, settings,
temperatures, etc.), namely ParameterInfoReply, SetParameterRequest, and ParameterUpdate-
Push messages obey the same encoding rules as other messages, but the values for the pa-
rameters are represented as strings within the message, instead of as binary like all the other
messages. The reason for this is that parameters can be booleans, integer, floating point num-
bers, strings, or lists of integers or floats, so to keep encoding consistent, no matter the value
type of the parameter, it is always represented as a string within the message. See the Param-
eterValueDataType enumeration and ParameterInfoReply message for details, and example of
encoding and decoding them in the C language in Appendix B.

3.2 Message Group Versioning

Devices in a single portal are not all required to use or support the same versions of messages,
and the control module may simultaneously support multiple versions of a message group. A
single version number is used by a given device for each message group (core, radiation detec-
tor, vehicle presence, power management, data out, and command). A handshake mechanism
is employed to allow negotiating message group versions. When the control module relays data
or other information from one device to another device (e.g., sends the radiation detector data to
the analysis module), if the version for that message group was negotiated to a different value for
each device, the control module is responsible for translating the message format when transfer-
ring it between devices. The motivation for versioning each group of messages separately is to
allow changes or improvements to be made to one message group, or to a single device type’s
capabilities, while the other types of devices, except the control module, can remain oblivious to
the changes1. Future changes to the RAPTER Interface Specification will either have to make
changes in a compatible manner (e.g., if a new field is added to a message, a possible value
for it might be “not available”) or there may be inherent incompatibilities between devices (e.g.,
if a newer version of an analysis module requires information not available from an older radia-
tion detector module, then the devices may not be able to be used together, or may be usable
with reduced capability). Devices in or connected to a single portal are not all required to use
or support the same versions of messages, as the control module may simultaneously support
multiple versions of a message group. See the handshake mechanism section (Section 3.5) for
more information about message version negotiation during the handshake.

Currently all message group version numbers are zero.

1There may be a loose coupling between the versioning numbers in that for message A, version X may require
core message group version of at least Y because any version of the core message group Y may not support certain
functionality required for message A, version X.

44 RAPTER Messaging

3.3 Message Contents

RAPTER messages are transmitted in a binary format that is intended to allow encoding or de-
coding messages with a minimal amount of overhead on resource constrained devices. With
some care about memory alignment, most messages, except notably DataOutDataPacket mes-
sages, can be easily mapped on common computational platforms (but not all architectures,
operating systems, or compilers) to C programming language struct or primitive.

Each RAPTER message, other than a DataOutDataPacket message, is built up from an ordered
combination of primitive data types. The meaning and relative location (i.e., number of bytes
offset from the beginning of the message) of each field in a message is given in Section 4 for all
messages, but the general rules for interpreting a field’s value is given in the following section.

3.3.1 Primitive Data Types Used

RAPTER messages are built up from a series of primitive data types, whose positions (i.e.,
offsets from message beginning) within the message are uniquely determined. The primitive
types used are:

• All integer values within messages are communicated in twos-complement (if signed) little-
endian format (i.e., native x86, and most, but not all, operating systems on ARM-based
computers).

• The type and size of integers is specified using C/C++ sized types. That is uint8_t
is a one-byte unsigned integer, int8_t is a signed one-byte integer, uint16_t is an
unsigned two-byte integer, int16_t is a signed two-byte integer, and similarly for 32 and
64 bit variants.

• For fields that can take on a discrete number of specified values with specific meanings
associated with the values, integer enumerations are used to represent this information.
The integer enumerations representation is defined (e.x., uint8_t, uint16_t, etc),
and the meaning associated with each valid integer value is specified by this documen-
tation. An example is MessageGroup which is the first byte of all RAPTER messages,
and determines the message group (0!Core, 1!Command, 2!Data Out, 4!Analysis,
8!Radiation Detector, or 16!Vehicle Presence) of the message. These fields may not
take on any value not defined by the enumeration.

• Messages may also have bitfields represented by an unsigned integer (uint8_t,
uint16_t, uint32_t, or uint64_t), whose individual bits are defined in an enu-
meration (see previous bullet) where each enumerated value has exactly one bit set, and
a corresponding meaning defined if that bit is set in the bitfield. An example is the de-
vice_features field of the DeviceInfoReply message, whose bits are defined by the Device-
FeaturesFlags enumeration. The bitfields may have zero bits set, one bit set, or multiple
bits set; multiple bits indicate multiple values defined by the enumeration are manifest. For
many of the defined bitfields any combination of the defined bits may be set so as to ap-
propriately indicate the relevant information, but some enumerations specify constraints
on which enumeration values may or may not be specified together. A bitfield with no bits
set indicates none of the defined options are set. All bits in a bitfield not defined by the
enumeration, must be zero.

3.3 Message Contents 45

• All floating point values are transmitted in little-endian IEEE 754-2008 (see reference [18])
format; with the additional requirement that the representation is required to be normal
(i.e., represented without leading zeros in its significand and not denormal), and values of
Infs or Not a Numbers (NaNs) are not allowed.

• Strings must be encoded as UTF-8. Strings are encoded by first specifying the string byte
length as a uint32_t, which is then followed by the number of bytes given by the string
length, and then between 1 and 4 zero-valued bytes trailing so that the total byte count
is a multiple of four. Note that an empty string will be 8-bytes long (all zeros). Strings
are designated by the types: ShortString, MediumString, and LargeString.
These string types have a maximum of 255 (short), 65,535 (medium), or 4,294,967,295
(large) bytes of character content. Note that the length specifies the number of bytes in
the string, not the number of characters.

• Structs are a named grouping of fields (integers, floats, enumerations, strings, arrays,
and other structs) used to organize mixed types of information. For each struct defined,
the data type and name of each field is given, with their position within the struct given by
the same rules as in Section 3.3.3.

• Arrays provide the ability to encode a variable-number of elements that have a homoge-
neous type. The array is encoded as the element count n (an unsigned 32-bit integer)
followed by the encoding of each of the array’s elements, starting with the first element,
and progressing to the last. Arrays are designated as ShortArray, MediumArray,
and LargeArray, that can hold a maximum of 255 (short), 65,535 (medium), or
4,294,967,295 (large) elements. Arrays can hold primitive types such as integers,
floats, or enumerations, as well as strings, and structs. An example of an
array is the parameter names contained in a ParameterNamesReply message.

• Uuid128 values are 128bit fields representing a UUID of the device. See the
device_uuid field of DeviceInfoReply for more information.

3.3.2 Message Header Format

The initial eight bytes of all RAPTER WebSockets messages follow a standardized format. The
first byte of every message defines which message group the message belongs to, as defined
by MessageGroup (e.g., core, radiation detector, analysis, vehicle presence, data out, or com-
mand). The second byte determines the type of message within that message group. The com-
bination of the first and second bytes uniquely determines how to interpret the message. (For
detailed descriptions of specific message types, see CoreMsgType, AnalysisMsgType, Com-
mandMsgType, DataOutMsgType, VehiclePresenceMsgType, PowerManagementMsgType, and
RadDetectorMsgType.) Each message type within a message group will have a unique value
within that message group, but could have the same value as a message in another message
group.

The third byte is an unsigned 8-bit integer giving the version of the message group; this value
must be equal to the value negotiated during the handshake. The fourth byte indicates modi-
fiers to the message, as specified by the MsgFlags enumeration, and further explained in Sec-
tion 3.3.2.1.

https://standards.ieee.org/findstds/standard/754-2008.html

46 RAPTER Messaging

The next four bytes are a message ID that facilitates the asynchronous nature of network com-
munications. All “replies” or “acknowledges” to a message will contain the same ID value as the
original message allowing the determination of what the reply or acknowledge is in reference to.
The message ID should not be interpreted by the device receiving a “request” or “push” mes-
sage as having a meaning, because the selection of ID values is implementation dependent.
However, the ID should be unique relative to previous or future “request” and “push” messages
from the originating device to the control module, or vice versa, with a repetition cycle (number
of messages between re-use of an ID) of at least 228 = 268,435,456 messages2. Note that the
ID’s uniqueness is direction dependent, meaning a device only has to ensure uniqueness of IDs
it originates, and does not have to consider values of IDs it has received when generating IDs3.

All bytes after the ID are the payload of the message; length and format is message type depen-
dent (as determined by the first two bytes of the message). An overview of the message header
can be seen in Figure 3.1.

Figure 3.1: The leading 8 bytes of every RAPTER message.

2This provides for approximately three hours of unique IDs assuming list mode data and a count rate of 20kcps.
3The TCP/IP mechanism indicates the source of incoming messages, meaning a control module may have

to combine the TCP/IP source information with the message ID, and message type (“request”/ “push” vs “re-
ply”/“acknowledge”) to resolve message context.

3.3 Message Contents 47

3.3.2.1 Message Modifier Flags

The fourth byte of every RAPTER message indicates modifiers to how the message should be
interpreted, depending on which bits are set (e.g., is a bitfield); the meaning of each bit is defined
by the MsgFlags enumeration, and options are described bellow.

MessageHasBeenBuffered (value 0x04) Indicates this message has been buffered, and is not
being sent at the time of the originating event. The generating event for this message may
have happened while the network connection was not active. Or, if buffer recovery was
serial, this message may have been generated while the sending of previously buffered
messages was still occurring, so it could not be sent in real time.

This bit being set does not alter the byte-format of how this message should be decoded.

3.3.3 Message Body Format

Directly after the eight-byte header, the message body begins. The binary format of messages
is inspired from the memory layout and required memory alignment used in a number of com-
mon computing architectures and platforms, as well as widely used data transfer standards
such as External Data Representation Standard (XDR) [19], Structured Data Exchange For-
mat (SDXF) [20], and other commonly used protocols for network transfer. More verbose, or
human readable formats like XML, JavaScript Object Notation (JSON), or YAML Ain’t Markup
Language (YAML) were found to add an unacceptable overhead for larger portal installations, as
well as exclude micro-controller based RAPTER devices.

The encoding and decoding of all messages can be performed using the following set of rules:

• Fields all occur in the same order as given in this document (see tables defining messages
in Section 4), however there may be padding bytes needed between fields because each
data type has a specified alignment of where it may be placed; fields must be placed an
even multiple of its data types alignment from the beginning of the message. For example,
a 32-bit integer has an alignment of four, meaning it can only be placed at locations within
the message that are a multiple of four bytes from the beginning. Sequential fields in a
message are placed as close as possible together, such that this alignment is obeyed (i.e.,
the fewest number of required padding bytes are used). Padding bytes must have a value
of zero.

• Integers, floats, bitfields, and enumerations, all have an alignment equal to the byte-width
of their data type. That is a uint8_t or char have alignments of one, and can be placed
immediately after the previous field, but a uint16_t has an alignment of two, so must be
placed at a multiple of two bytes from the beginning of the message; floats and 32-bit
integers have alignments of four, and int64_ts at alignments of eight.

– All integer values communicated in twos-complement (if signed) little-endian format
(i.e., native x86, and most, but not all, ARM-based platforms).

– All floating point values are little-endian IEEE 754-2008 [18] format, with the addi-
tional requirement that the representation is required to be normal (i.e., represented
without leading zeros in its significand. i.e., not denormal), and values of Inf or NaN
are not allowed.

48 RAPTER Messaging

– Enumerations are represented as the type of integer specified in the enumeration
definition in this document.

– Time stamps are represented by int64_ts, that give the number of microseconds
since the UNIX epoch (00:00:00 Jan 1, 1970), not counting leap seconds, and are in
Coordinated Universal Time (UTC). Their alignment is the same as int64_t (i.e.,
eight).

• UUIDs have an alignment of eight; i.e., must start at a byte location that is a multiple of
eight from the message beginning.

• Strings have an alignment of four byte length. String contents start immediately after
the length specifier. After the contents, zero-valued bytes (bytes which if interpreted as a
uint8_t, values would be zero) are appended so that there is at least one zero-valued
byte and until a multiple of four bytes from the message beginning (i.e., between one and
four padding bytes).

– The string contents byte length must not be longer than 255, or 65,535, or
4,294,967,295 for ShortString, MediumString, and LargeString re-
spectively (padding bytes are not included in string content length).

* A string with no contents requires eight bytes to encode: four bytes for the
length field, and four zero-valued bytes.

* The total string field length will always be a multiple of four bytes.

* Every strings content is terminated with between one to four zero valued
bytes.

– All strings are UTF-8 encoded, and some fields impose additional restrictions such as
only American Standard Code for Information Interchange (ASCII) or alphanumeric
characters.

– Note that even though string contents will always be terminated with at least
one zero-byte, message decoders should always verify this assumption on incoming
messages.

• Arrays must start at a multiple of four bytes from the beginning of the message (e.g.,
have an alignment of four), where a uint32_t is used to specify the number of ele-
ments in the array, potentially followed by zero or four bytes of padding, then the array
elements, and then from zero to three bytes of zero-padding to ensure the overall length
of the array is a multiple of four. How the elements are written is dependent on the data
type of the array, with there being three applicable categories:

– Integers, floats, bitfields, enumerations, UUIDs: The first element of the ar-
ray is located starting at a multiple of the data types alignment (i.e., int64_t,
uint64_t, and UUIDs may need four bytes of padding after the array length field,
but other types will not need padding). The remaining elements are then located
immediately adjacent to each other.

– Strings: The first string in the array is located starting immediately after the
array element length specification. Each remaining string is located immedi-
ately after the previous one (strings are a multiple of four bytes, so no additional
padding is needed). Each string element is represented as described in the pre-
vious major bullet.
Note that:

3.4 Message Transaction Model 49

* An empty string will take up eight bytes of space.

* To locate the nth string, you will need to iterate over the n� 1 preceding strings,
using their specified lengths to determine the starting location of the next string.

– Structs: Each array element must start at a multiple of eight bytes from the beginning
of the message, and if necessary, have padding added after the structs fields so that
each element is a multiple of eight-bytes long. This also means that there are either
zero or four bytes of zero-padding between the array length, and the first element.
Some examples are:

* A message containing 36 bytes of content before the start of an array of structs
which each take up 10 bytes of space: The first 36 bytes of content would be
written, followed by the array length written at an offset of 36, and the first ar-
ray element at an offset of 40, then six bytes of zero-padding after the structs
contents, and then the second element written, and so on for each element,
including the padding after the final element.

* A message contains 48 bytes of content before the start of an array of structs:
After the first 48 bytes of content the array offset would be written at an offset
of 48, four bytes of zero-padding would be written (at an offset of 52), and then
the first struct would be written at an offset of 56 bytes, followed by padding if
needed, and then subsequent elements of the array.

* A message contains 14 bytes of content before the start of an array of structs
with a length of zero (i.e., no entries in the array), and then followed by a
ShortString field: The initial 14 bytes of content is written, followed by two
bytes of zero-padding, followed by a uint32_t (with value zero) for the array
length, and then followed directly by the string (written as a uint32_t string
length followed by string contents); no padding is needed between the array
length and string length.

All messages can be encoded/decoded for sending across the network using the above rules;
an example C language program for encoding and decoding a general message is given in Ap-
pendix A and a ParameterInfoReply message in Appendix B. With the exception of the DataOut-
DataPacketPush message, messages can generally be encoded and decoded in a straight-
forward, sequential manner to streams, sockets, buffers, or similar, depending on the program-
ming languages paradigm. The DataOutDataPacketPush can be decoded in the same straight-
forward sequential manner, but when encoding (which only happens on the control module), the
values in the device_frame_uuids, device_frame_offsets, and device_frames fields are depen-
dent on each other, so depending on the programming language, it may be necessary to encode
the device_frames field before the other two fields. This choice was made to potentially ease im-
plementing data-out devices that may only care about looking at data from a certain device type
(e.g., only looking for energy calibration changes), so they wouldn’t need to implement decod-
ing structures applicable to devices not of interest. See the DataOutDataPacketPush message
definition for further details.

3.4 Message Transaction Model

Messages with the “request” or “push” suffix in their name (e.x., DeviceStatusRequest or Param-
eterUpdatePush) initiate a message exchange thread, while messages with “reply” or “acknowl-

50 RAPTER Messaging

edge” (e.x., DeviceStatusReply or ParameterUpdatePushAck) suffixes are respectively always
in response to request or push messages of the same base name. The message ID (the fourth
through eighth bytes of each message) of replies and acknowledgments must exactly match the
request or push message to which they respond.

The convention used in this RAPTER Interface Specification is that request messages are ei-
ther asking a device for information, or to perform an action, and their respective replies either
carry the requested information, or they give the result of the requested operation. All requests
must have at least one reply, and multiple replies may be necessary. For example, a ChangeDe-
viceStateRequest may take some time to complete so the device may send back a number of
progress updates during the transition, and then a final reply indicating completion; note that
the progress updates and final reply are all ChangeDeviceStateRequest messages. Push mes-
sages contain information generated during device operations, such as updates to parameters
(e.g., temperature, voltage, etc.), radiation data, or error conditions that occur. Acknowledg-
ments inform the sender of push messages that the message was received, and, if buffering is
enabled (see Section 3.5.2), that the message and all previous messages should be removed
from the device’s buffer.There may be, at most, one acknowledge for every push message. If
buffering is not enabled, acknowledgments are optional, and may be omitted to minimize net-
work traffic. If buffering is enabled, then not every push message needs to be acknowledged;
see Section 3.5.2 for details.

Replies should be made as soon as possible upon receiving a request to ensure efficient portal
operations, however a time limit of five seconds is established so that if the (first) reply is not
received, it is considered an issue, and if the requester is the control module, the issue will be
reported to data-out devices using a DataOutDeviceResponseIssuePush message. How tolerant
devices, particularly the control module, are to timeouts before terminating the connection is not
specified, but this may happen after just a single timeout. When the control module disconnects
a device it will send out a DataOutDeviceDisconnectedPush message to all connected data-out
devices. For further details see the REPLY_TIMEOUT_MS value.

Some “request” messages may get several replies. After the first reply, subsequent replies must
be sent at an interval of, at most, every 60 seconds, until the final reply is sent. For further details
see the FOLLOWUP_REPLY_TIMEOUT_MS value.

Some “push” messages are expected to be received at regular intervals, like HeartbeatPush
or RadChannelDataPush messages when taking data at regular intervals. These messages
should normally be received as near when expected as possible, but if they are not re-
ceived within 2.5 seconds after they are expected, it is an issue and handled as above. See
DATA_PUSH_TIMEOUT_MS for further details.

3.5 RAPTER Handshake

Once a WebSocket connection (see Section 1.5.2) has been established, the control module will
initiate a series of requests to the device to negotiate the versions of message groups that will
be used. All devices must implement the core message group. The control module must negoti-
ate the core message group version by sending the device a SupportedMessageGroupVersion-
sRequest message, with the message_group field having a value of Core (0x0). The resulting
SupportedMessageGroupVersionsReply message will inform the control module of which core
message group versions the device supports. Then, before any further communications can pro-

3.5 RAPTER Handshake 51

ceed, the control module must inform the device of the version of the core message group that
will be used going forward with a UseCoreInterfaceVersionRequest message. At this point com-
munications defined within the core message group can proceed (for example getting further
device information, or parameter information, or performing firmware upgrades).

If the control module and the device do not share a common version, then the control module will
send a DataOutDeviceDisconnectedPush message to data-out, analysis, and command devices
to indicate the issue. The device and control module cannot be used together until a firmware
upgrade takes place to allow communications.

The version for any other message groups must still be negotiated using SupportedMessage-
GroupVersionsRequest/SupportedMessageGroupVersionsReply and UseMessageGroupVer-
sionRequest/UseMessageGroupVersionReply messages before the device can start operations
of its intended functionality. Again, if the control module and the device do not share a com-
mon version, then the aforementioned messages will be sent and the device and control module
cannot be used together until a firmware upgrade takes place to allow communications. For the
analysis module and command devices the version of the core message group, data-out mes-
sage group, and respectively either the analysis message group or command message group
are negotiated.

Negotiating the versions of message groups that will be used are the only required steps in
the handshake. However, the control module will typically want to know additional information
about the device, so it may send a DeviceInfoRequest message, and it may also want to know
the health and settings status of the device which can be obtained by first requesting parame-
ter names via a ParameterNamesRequest message, and then requesting information on each
parameter using ParameterInfoRequest messages. The control module may also want to know
about the devices’s current state, by sending a DeviceStatusRequest message. A possible se-
quence of this handshake is illustrated in Figure 3.2.

If the device supports the message buffering mechanism (as indicated by the DeviceSupport-
sBufferingFlag bit in DeviceInfoReply::device_features), and the control module supports it, as
described in Section 3.5.2, then the control module may also choose to enable message buffer-
ing using the BufferingSetOptionRequest message. If the control module does not already know
for sure what state the device is in, it may want to check the device’s operating status (using a
DeviceStatusRequest message), or if it has any buffered messages (using a DeviceBufferSta-
tusRequest request). If there is any buffered messages that can be recovered, recovery can be
started using a BufferedMessagesRequest request.

3.5.1 Enforcement of RAPTER Communications

Only specified within this RAPTER Interface Specification is allowed between the control module
and RAPTER devices, and no communication between (non-control module) devices is allowed
that does not pass through the control module. If communication outside of this happens, then ei-
ther the device or the control module can terminate the WebSocket connection. Devices are only
allowed to communicate with the control module over the network; if communication with other
devices is detected by the control module, it may block all network communications between the
control module and the offending device(s). The control module may also be implemented in
such a way so as to prevent the possibility of other devices communicating with each other.

However, to accommodate repairs or advanced diagnostics, devices may have other physical
connections, such as JTAG connector connectors, serial Universal Serial Bus (USB) interfaces,

52 RAPTER Messaging

Figure 3.2: Illustration of the sequence of messages that may get exchanged between the control
module and a connecting device at the beginning of a connection. Negotiation of the message
group versions are the only required exchanges, but the other messages shown may be use-
ful. Also, not shown is the potential exchange of messages to recover messages that may be
buffered, for example, if a network cable gets disconnected.

3.5 RAPTER Handshake 53

Controller Area Network (CAN) ports, or other data busses to help with this. Connections through
the Ethernet network adapter such as Secure Shell (ssh) or Virtual Network Computing (VNC)
may also be allowed locally at the portal but may require disconnecting the device from the
portals’s Ethernet network since the control module hosted network may not allow these com-
munications. If any non-RAPTER debug or troubleshooting interfaces are used on devices, they
must not be used to facilitate or contribute to device operations.

3.5.2 Message Buffering

RAPTER devices and the control module may optionally implement buffering of radiation detec-
tor data, vehicle presence data, and other information produced during times of network outage.
For example, if an Ethernet cable between a radiation detector module and the control mod-
ule temporarily gets disconnected, then the messages (and hence radiation detector data) that
would have been sent during that time can potentially be recovered by the control module, from
the radiation detector module, and analyzed by the analysis module. Similarly if the connection
between the control module and a data-out device is lost, the control module can buffer the data
it would have sent, until a connection is re-established.

Devices specify if they support doing the buffering by the DeviceSupportsBufferingFlag bit in
the DeviceInfoReply::device_features field of the DeviceInfoReply message sent to the control
module. The BufferingSetOptionRequest message sent to the device from the control module
informs the device that the control module may attempt recovery of buffered messages if there
is a network interrupt. The control module will send the device a BufferedMessagesRequest
message upon re-connection to initiate recovery of buffered messages.

Data-out devices inform the control module to buffer “push” messages it sends to them by send-
ing the control module a DataOutBufferingEnableRequest message to initiate buffering, and a
DataOutBufferedMessagesRequest message to initiate recovery of buffered messages upon re-
connection.

If buffering is enabled, only “push” messages, such as RadChannelDataPush, or DataOutData-
PacketPush messages participate in the buffering mechanism. “Request”, “reply”, and “acknowl-
edge” messages do not get buffered. When buffering is enabled, the device which receives a
push message will send back an acknowledge message4 so that the sender knows the mes-
sage, and all messages before it, were received5. The acknowledge message does not need
to be sent for every message, but an acknowledge message should be sent often enough so
that the sender’s buffer does not fill up6,7. When buffering is active, until an acknowledge mes-
sage is received by a device, or the device runs out of room in the buffer, the sender should

4Even though the TCP/IP protocol includes an acknowledgement mechanism for received packets, the RAPTER
Interface Specification implements an acknowledgment at the application level to avoid corner cases that could
cause issues such as stale WebSocket connections (frequently caused by loss of network connectivity before ses-
sion is closed), and also to allow easier device implementation on top of operating system or hardware networking
tools and keep separation between the application level logic and the network protocols.

5The WebSocket protocol ensures messages are delivered complete, error free, and sequentially in order so that
it is known that no WebSocket messages are missed.

6The motivation for not requiring acknowledges for every push is to reduce network traffic. If it is known that
network congestion will not be an issue (e.g., gamma radiation detector data is not being taken in list mode), then
there may no harm in sending an acknowledge for every push message

7Even if an acknowledge is sent for every message, because the buffering device may not receive all acknowledg-
ments sent by the push message receiver when an interruption occurs, buffer recovery may result in the re-sending
of some messages that were successfully received.

54 RAPTER Messaging

keep the original message so that it may be re-sent, if necessary. If a device’s buffer overflows,
the oldest data should be removed to allow keeping of the most recent data for potential recov-
ery. The buffer may be volatile memory, and does not need to persist across power cycles. All
“push” messages normally sent by devices participate in the buffering mechanism. The buffering
performed by the control module works in the same manner.

Radiation detector modules, vehicle presence modules, and power management modules will
respectively buffer radiation detector data, vehicle presence data, and power management data,
as well as parameters updates, status updates, and any other push messages that they send
to the control module. Data-out devices, command devices, and the analysis module buffer
parameter and status updates and all other push messages. The control module will buffer
sensor data messages (i.e., DataOutDataPacketPush messages) as well as other push message
such as DataOutDeviceDisconnectedPush messages to send to them upon re-connection.

If a network connection is re-established and buffering was enabled, the control module can
determine the buffer status of devices during the handshake (see Section 3.5) and use a
BufferedMessagesRequest message to initiate transfer of the buffered messages. The request
to initiate recovery of buffered messages must happen before any ChangeDeviceStateRequest
messages are sent to the device; if a device receives a ChangeDeviceStateRequest message
before buffer recovery is initiated, the buffering device must empty its buffer and resume sending
push messages as they are generated. Until the device receives a ChangeDeviceStateRequest
or BufferedMessagesRequest message, it must not send push messages to the control mod-
ule, but instead buffer them until receiving one of the aforementioned requests. It is worth noting
that if the control module elects to not initiate buffer recovery, then any push messages gener-
ated by the device since the most recent connection will be lost, meaning any changes to the
device’s state will not have have been propagated to the control module. For example, if the con-
trol module sends the device a ParameterInfoRequest message before sending the ChangeDe-
viceStateRequest message, but there was an update to one of the parameters within the device
and a ParameterUpdatePush was generated, it may never be received by the control module as
it may have been placed in the buffer to queue for sending, meaning the control module will not
be aware of the change in the parameter if it does not recover the buffered data8.

There are two possible recovery modes devices must support if they support buffering:

• Serial: With this recovery mode buffered messages are sent to the control module in
sequential order according to when they were generated, and while this transfer is taking
place all newly generated push messages are placed at the end of the buffer and not
transmitted until the messages in the buffer before them have been sent. Once the buffer
has been emptied, the “push” messages should resume being sent as they are generated,
as well as sending a final BufferedMessagesReply message.

• Parallel: With this recovery mode, newly generated “push” messages should be sent to
the control module as they are generated, even while the buffered messages are being
sent.

For both recovery modes9 it is possible, assuming the device’s buffer did not overflow, to recover
all of the generated messages while the device remains operating, even if there are subsequent

8This situation of potentially becoming out of sync can be avoided by the appropriate message sequence choice
by the control module.

9For both recovery modes, network traffic congestion is regulated by the TCP/IP protocol. Especially for parallel
recovery, the sending device should be aware of the network throughput and network stack settings and memory

3.6 Messages Devices Must Respond to 55

network interruptions before buffer recovery completes. All messages sent from the buffer, rather
than as they are generated, must have the MessageHasBeenBufferedFlag bit set in the flags
field (the fourth byte) of the message headers.

Buffered message recovery by data-out devices, command devices, and the analysis module
from the control module has the same options and proceeds similarly as in the other direc-
tion, but the recovery is initiated by the device sending the DataOutBufferedMessagesRequest
message to the control module. This request must be sent after the device has sent the con-
trol module a DeviceInfoReply message, as well as negotiated the version of data-out message
group to use, but before the device has sent acknowledges to any push messages the control
module may have sent the device, or the device sends the control module a DataOutBufferin-
gEnableRequest message. When the previously buffered messages are sent from the control
module to the device, the MessageHasBeenBufferedFlag bit will be set in the fourth byte of the
message header.

3.6 Messages Devices Must Respond to

All non-control module devices must be able to respond to the 19 “request” messages enumer-
ated by CoreMsgType; there are four “push” message devices that may have to generate and
send, as well as receive the corresponding four trivial acknowledgment messages. See the
CoreMsgType enumeration (Section 4.1.3) for a summary of the messages and content, as well
as links to the actual definition of each message.

Radiation detector modules must implement response to three additional “request” messages,
with there being another three “push” messages defined the device may send and receive ac-
knowledgments of. See the RadDetectorMsgType enumeration.

Vehicle presence modules must implement responding to an additional four “request” messages,
with there being another three “push” messages defined the device may send and receive ac-
knowledgments of. See the VehiclePresenceMsgType enumeration.

Power management modules must implement responding to an additional five “request” mes-
sages, with there being another three “push” messages defined the device may send and receive
acknowledgments of. See the PowerManagementMsgType enumeration.

On top of the core messages, data-out devices, analysis modules, and command devices must
implement the messages given in the DataOutMsgType enumeration (corresponding to the data-
out message group), which includes 10 “request” messages they must respond to, and the device
may also receive 10 types of ‘push’ messages from the control module, that the device may need
to acknowledge, but it is up to the device if it will do anything with the content of the messages.
See the DataOutMsgType enumeration.

In addition to the core message group and data-out message group, analysis modules must also
respond to two additional “request” messages corresponding to the analysis message group.
See the AnalysisMsgType enumeration.

In addition to the core message group and data-out message group, command devices can
give the control module five additional “request” messages, that the control module responds to;

levels to avoid situations where the application level logic hands a large amount of buffered RAPTER messages
to the networking stack filling up its memory allocations, thus significantly delaying the sending of newly generated
push messages, or replies to requests.

56 RAPTER Messaging

however, one of the messages (CmdDeviceRelayRequest) is used to send an individual device
within the portal requests the control module would normally send, so the command devices
must also implement and understand any additional messages it sends using this message.
See the CommandMsgType enumeration for these messages in the command message group.

Section 4

Detailed Message Descriptions

These enumeration, struct, and message definitions will also available as C++ header files and
as structured XML files suitable for generating message definition and serialization code for
arbitrary programming languages.

4.1 Core Interface

4.1.1 RapterConstants Enumeration

Timing constants used by the control module to help determine when there is a potential con-
nection or communication issue with a device. Devices also use these values to determine if
intermediate "in progress" replies should be used.

Underlying integral representation: unsigned int

Enumerated values for RapterConstants:

REPLY_TIMEOUT_MS Value 5000

The timeout value, in milliseconds, that a reply to a request may take, before the
sender should assume something went wrong or a device is mis-behaving. In gen-
eral, a device should respond as quickly as it can to requests, but some requests
may involve an operation or measurement that takes some time to execute, such as
turning on a high voltage or querying a complex status, so for these cases the re-
ply will contain a status field that allows the device to immediately return a reply in-
dicating the operation is "in progress", and a final response will be sent at a later
time. Replies that may take advantage of this have a CommandReplyStatus,
DataOutDeviceParametersRequestStatus, PwrMngmtTestStatus,
SystemStateChangeStatus, or DataOutDeviceParametersRequestStatus
field in the reply message. For other messages where there is no option to indicate "in
progress" in the reply, then the response must be returned by this time limit. If a device
times out, the control module will send a DataOutDeviceResponseIssuePush
message to DataOut devices, at least at the beginning of communications issues.

FOLLOWUP_REPLY_TIMEOUT_MS Value 60000

58 Detailed Message Descriptions

When a reply indicates a "in progress" status (ex. CommandReplyStatus::InProgressValue),
then it must be followed up with either the "in progress" status, or final status before this
time period has elapsed, or else it is considered a timeout. More than one "in progress"
reply may be sent.

DATA_PUSH_TIMEOUT_MS Value 2500

Some devices are expected to send push messages to the control module at certain times,
or at certain intervals, most notably RadChannelDataPush and HeartbeatPush
messages. Normally it is expected these messages are delivered to the control module as
soon as possible after the scheduled time (e.g., if a portal is operating on 100 ms intervals,
then data will almost always be sent within 0.1 seconds of each data interval ending), but
this value defines the limit of when a timeout event will occur causing the control module
to send a DataOutDeviceResponseIssuePush message to the DataOut devices,
at least when delays first start.

4.1.2 MessageGroup Enumeration

Used in the first byte of each message to indicates the message group this message belongs to;
the value of the second byte will then define the message type within each message group.

Used in message (other than as first byte): SupportedMessageGroupVersionsRequest

Underlying integral representation: uint8_t

Enumerated values for MessageGroup:

CoreValue Value 0x00

Message group supported by all RAPTER devices.

See also: CoreMsgType

CommandValue Value 0x01

Message group that includes commands that can be sent to the control module to control
operations, change settings, debug individual devices in the portal, and provide firmware
upgrades. Only command devices communicate these messages with the control module.

See also: CommandMsgType

DataOutValue Value 0x02

Message group allowing devices to receive a copy of all radiation and occupancy data, as
well as analysis results, and a copy of all commands and messages sent to or from the
individual devices in the portal. Messages in this message group do not effect operation
of the portal. Command, DataOut and Analysis devices communicate these message with
the control module.

See also: DataOutMsgType

AnalysisValue Value 0x04

Messages specific to the analysis module, allowing the command module to request anal-
ysis results, and the analysis module to provide results to the control module.

See also: AnalysisMsgType

4.1 Core Interface 59

RadDetectorValue Value 0x08

Messages communicated between the radiation detectors and the control module for com-
municating energy calibrations and radiation data.

See also: RadDetectorMsgType

VehiclePresenceValue Value 0x10

This interface is for occupancy sensors consisting of binary sensors (ex. IR beams) which
indicate if a vehicle is occupying the portal, cameras to provide static images, and/or dis-
tance sensors to provide vehicle locations.

See also: VehiclePresenceMsgType

PowerManagementValue Value 0x20

This interface provides information from, and control over the uninterruptible power supply
(UPS) servicing the portal. The assumption is there is at most one UPS per portal.

See also: PowerManagementMsgType

4.1.3 CoreMsgType Enumeration

Values that specify the type of message being conveyed within the core message group. All
core message group requests are issued by the control module. All core message group push
messages originate at a device and are directed to the control module. The first byte of a core
message has a value of MessageGroup::CoreValue (0x0). This enumeration defines the
value of the second byte of the message so that the receiver can interpret the contents of the
message body. All RAPTER devices must implement sending and receiving core messages.

Underlying integral representation: uint8_t

Enumerated values for CoreMsgType:

SupportedMessageGroupVersionsRequestValue Value 0x01

Message sent from the control module to a device asking it which versions a particular
message group the device supports. The message groups are: Command, Core, DataOut,
Analysis, RadDetector, and VehiclePresence.

See also: SupportedMessageGroupVersionsRequest

SupportedMessageGroupVersionsReplyValue Value 0x81

Reply to a SupportedMessageGroupVersionsRequest message containing the
versions that the device supports.

See also: SupportedMessageGroupVersionsReply

UseMessageGroupVersionRequestValue Value 0x02

Message sent from the control module to a device telling it which version of the specified
message group to use.

See also: UseMessageGroupVersionRequest

60 Detailed Message Descriptions

UseMessageGroupVersionReplyValue Value 0x82

Reply to a UseMessageGroupVersionRequestmessage giving the success status
of using the specified version of the interface.

See also: UseMessageGroupVersionReply

DeviceInfoRequestValue Value 0x05

Message sent from the control module to a device requesting information about the device.

See also: DeviceInfoRequest

DeviceInfoReplyValue Value 0x85

Reply to a DeviceInfoRequest message containing information about the device.

See also: DeviceInfoReply

DeviceStatusRequestValue Value 0x06

Message sent from the control module to a device to request its current operating status.

See also: DeviceStatusRequest

DeviceStatusReplyValue Value 0x86

Reply to a DeviceStatusRequest message which contains the devices current op-
erating status.

See also: DeviceStatusReply

DeviceBufferStatusRequestValue Value 0x07

Message sent from the control module to a device inquiring about its buffer status.

See also: DeviceBufferStatusRequest

DeviceBufferStatusReplyValue Value 0x87

Reply to a DeviceBufferStatusRequest message containing the status of the
devices buffer.

See also: DeviceBufferStatusReply

BufferedMessagesRequestValue Value 0x08

Message sent from the control module to a device requesting it to send buffered mes-
sages.

See also: BufferedMessagesRequest

BufferedMessagesReplyValue Value 0x88

Reply message to a BufferedMessagesRequest message providing the status of
sending buffered messages.

See also: BufferedMessagesReply

BufferingSetOptionRequestValue Value 0x09

Message sent from the control module to a device to indicate to it whether messages
should be buffered, or if the buffer should be cleared.

See also: BufferingSetOptionRequest

4.1 Core Interface 61

BufferingSetOptionReplyValue Value 0x89

Reply to a BufferingSetOptionRequest message indicating the status of the request.

See also: BufferingSetOptionReply

PingRequestValue Value 0x0a

Message sent from the control module to a device asking for a simple response; useful
for ensuring devices are responsive and to perform crude checks on latencies or time
synchronization.

See also: PingRequest

PingReplyValue Value 0x8a

Reply to a PingRequest message containing a timestamp of when the device sent the
message.

See also: PingReply

PowerDownRequestValue Value 0x0b

Message sent from the control module to a device requesting it to either reboot or power
off.

See also: PowerDownRequest

PowerDownReplyValue Value 0x8b

Reply to a PowerDownRequest message giving status of the request.

See also: PowerDownReply

SendLogsRequestValue Value 0x0c

Message sent from the control module to a device requesting the contents of its internal
log file for a specified time period; maintaining a log file is optional for devices to support.

See also: SendLogsRequest

SendLogsReplyValue Value 0x8c

Reply to a SendLogsRequest message containing the status of being able to fulfill the
request, and if so the log file contents.

See also: SendLogsReply

DeviceTimeStatisticsRequestValue Value 0x0d

Message sent from the control module to a device requesting basic time statistics such as
total time the device has operated and its current time being powered on.

See also: DeviceTimeStatisticsRequest

DeviceTimeStatisticsReplyValue Value 0x8d

Reply to a DeviceTimeStatisticsRequest message containing basic time statis-
tics of the device.

See also: DeviceTimeStatisticsReply

62 Detailed Message Descriptions

DeviceOperabilityCheckRequestValue Value 0x0e

Message sent from the control module to a device asking if there is anything that would
prevent it from transitioning to the OperatingMode::OperatingValue state.

See also: DeviceOperabilityCheckRequest

DeviceOperabilityCheckReplyValue Value 0x8e

Reply to a DeviceOperabilityCheckRequest message that indicates if the de-
vice is currently capable of operating.

See also: DeviceOperabilityCheckReply

SupportedDataCollectionIntervalsRequestValue Value 0x0f

Message sent from the control module to a device asking for timing intervals supported by
the device for a given DataCollectionModes.

See also: SupportedDataCollectionIntervalsRequest

SupportedDataCollectionIntervalsReplyValue Value 0x8f

Reply to a SupportedDataCollectionIntervalsRequestmessage that spec-
ifies valid time intervals for a specific DataCollectionModes.

See also: SupportedDataCollectionIntervalsReply

ChangeDeviceStateRequestValue Value 0x10

Message sent from the control module to a device telling it to change its operating mode
(e.g., start, stop, or get ready to take data).

See also: ChangeDeviceStateRequest

ChangeDeviceStateReplyValue Value 0x90

Reply to a ChangeDeviceStateRequest message providing the status of the state
change. There may be multiple replies for a single request.

See also: ChangeDeviceStateReply

FirmwareUpgradeRequestValue Value 0x11

Message sent from the control module to a device which contains a firmware upgrade
package.

See also: FirmwareUpgradeRequest

FirmwareUpgradeReplyValue Value 0x91

Reply to a FirmwareUpgradeRequest message providing the status of the firmware
upgrade. There may be multiple replies for a single request.

See also: FirmwareUpgradeReply

ParameterNamesRequestValue Value 0x12

Message sent from the control module to a device asking for the names of
all the parameters the device defines. See ParameterInfoRequest and
ParameterInfoReply for further information about parameters.

See also: ParameterNamesRequest

4.1 Core Interface 63

ParameterNamesReplyValue Value 0x92

Reply to a ParameterNamesRequest message containing a list of names for all of
the parameters of the device.

See also: ParameterNamesReply

ParameterInfoRequestValue Value 0x13

Message sent from the control module to a device asking for information about a single
parameter.

See also: ParameterInfoRequest

ParameterInfoReplyValue Value 0x93

Reply to a ParameterInfoRequest message containing information on the re-
quested parameter, including most recent measured values, if applicable.

See also: ParameterInfoReply

SetParameterRequestValue Value 0x14

Message sent from the control module to a device instructing it to change a parameter’s
set value; only applicable to parameters that may be set.

See also: SetParameterRequest

SetParameterReplyValue Value 0x94

Reply to a SetParameterRequest message indicating status of setting the specified
value.

See also: SetParameterReply

MeasurementTypeChangeRequestValue Value 0x15

Message sent from the control module to a device telling it that the MeasurementType
(what is being measured) has changed.

See also: MeasurementTypeChangeRequest

MeasurementTypeChangeReplyValue Value 0x95

Reply to a MeasurementTypeChangeRequest message indicating when the
change was processed.

See also: MeasurementTypeChangeReply

NotificationPushValue Value 0x16

Message sent from a device to the control module notifying it of an error, for example, if it
received a message that could not be decoded, etc.

See also: NotificationPush

NotificationPushAckValue Value 0x96

Acknowledgement of receiving a NotificationPush message.

See also: NotificationPushAck

64 Detailed Message Descriptions

ParameterUpdatePushValue Value 0x18

Message sent from a device to the control module providing updated information about
the parameter, for example, a newly measured value, or a change in the state of health
with respect to the parameter.

See also: ParameterUpdatePush

ParameterUpdatePushAckValue Value 0x98

Acknowledgement of receiving a ParameterUpdatePush message.

See also: ParameterUpdatePushAck

DeviceStatusPushValue Value 0x19

Message sent from a device to the control module containing an updated status of the
device.

See also: DeviceStatusPush

DeviceStatusPushAckValue Value 0x99

Acknowledgement of receiving a DeviceStatusPush message.

See also: DeviceStatusPushAck

HeartbeatPushValue Value 0x1b

Message sent from a device to the control module at regular intervals when the de-
vice is in the OperatingMode::OperatingValue with a data collection mode of
DataCollectionModes::NoOriginateValue or DataCollectionModes::OnEventValue,
with a heartbeat interval specified.

See also: HeartbeatPush

HeartbeatPushAckValue Value 0x9b

Acknowledgement of receiving a HeartbeatPush message.

See also: HeartbeatPushAck

4.1.4 MsgFlags Enumeration

Flags that are part of the 4th byte of each message to indicate further information about this
message.

Underlying integral representation: uint8_t

Enumerated values for MsgFlags:

MessageHasBeenBufferedFlag Value 0x01

Indicates this message has been buffered, and is not being sent at the time of
the originating event. The generating event for this message may have hap-
pened while the network connection was not active, or if buffer recovery was
BufferRecoveryMode::SerialValue this message may have been generated
while the sending of previously buffered messages was still occurring, so it could not be

4.1 Core Interface 65

sent in real time. This bit being set does not alter the byte-format of how this message
should be decoded.

See also: BufferRecoveryMode , BufferStatusFlags::DeviceHasBufferedDataFlag
, BufferedMessagesRequest

4.1.5 SupportedMessageGroupVersionsRequest Message

This message is sent from the control module to connecting devices to request the versions of
the RAPTER message groups that the device supports.

This will be used by the control module to negotiate the version of messages that
will be sent, and will be done during the handshake portion of setting up the connec-
tion. Once the control module determines the version to use, it will send the device an
UseMessageGroupVersionRequest message so that the device knows what version
of the message group to use. If a common message version can not be identified, the control
module will send a DataOutDeviceDisconnectedPush message with a value set indi-
cating an invalid message group version. The format of the present message will not change,
even if the version of the core interface is incremented, because a common version of the core
message group has not yet been negotiated when this message is received. No other messages
may be sent until a version of the core message group has been negotiated.

See Also: SupportedMessageGroupVersionsReply , UseMessageGroupVersionRequest

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x01

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

message_group_to_negotiate uint8_t enumerated by MessageGroup
Field Description: The message group for which the supported versions are requested to
be listed in the reply message.

4.1.6 SupportedMessageGroupVersionsReply Message

This message is a reply to an SupportedMessageGroupVersionsRequest and carries
with it a list of versions that the device supports.

66 Detailed Message Descriptions

The format of this message will not change, even if the version of the core interface is incre-
mented, because a common version of the core interface has not yet been negotiated when this
message is received. No other messages may be sent until a version of the core message group
has been negotiated.

See Also: SupportedMessageGroupVersionsRequest , UseMessageGroupVersionRequest

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x81

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

message_group_being_negotiated uint8_t enumerated by MessageGroup
Field Description: The message group for which the supported versions are requested.

message_group_versions_supported Short Array of uint8_t
Field Description: The supported versions of the requested message group.

4.1.7 UseMessageGroupVersionRequest Message

Message from the control module to a client device, instructing the device what version of the
interface to use when sending messages or replies to messages.

Until the version of the RAPTER Core message group has been defined, additional communica-
tions cannot and should not be exchanged. An attempt at communication before this is invalid
and makes the WebSocket connection subject to disconnect at the device or control modules
discretion. The format of this message will not change, even if the version of the core interface
is incremented, because a common version of the core message group has not yet been ne-
gotiated when this message is received. No other messages may be sent until a version of the
core message group has been negotiated. The version of a message group used may not be
re-negotiated after the control module sends this message until the WebSocket connection has
been terminated and the connection process starts again.

See Also: SupportedMessageGroupVersionsRequest , SupportedMessageGroupVersionsReply

Message Contents:

4.1 Core Interface 67

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x02

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

message_group_being_negotiated uint8_t enumerated by MessageGroup
Field Description: The message group for which a version is being specified to be used.

message_group_version_to_use uint8_t
Field Description: Version of the message group to use when communicating with the con-
trol module.

4.1.8 UseMessageGroupVersionStatus Enumeration

Enumeration to specified the status of a UseMessageGroupVersionRequest message.

See also: UseMessageGroupVersionReply

Used in message: UseMessageGroupVersionReply

Underlying integral representation: uint8_t

Enumerated values for UseMessageGroupVersionStatus:

UseMessageGroupVersionAcceptedValue Value 0x00

The requested version of the message group was accepted, and all further communica-
tions will use this version.

UseMessageGroupAlreadyUsingRequestedVersionValue Value 0x01

This was a duplicate request; no action taken.

UseMessageGroupUnsupportedVersionValue Value 0x02

The requested version was not one of the supported versions.

UseMessageGroupUnsupportedMessageGroupValue Value 0x03

The message group specified isnt supported by this device.

UseMessageGroupVersionAlreadySetValue Value 0x04

The message group version had already been set, and its not the requested version;
changing the version after setting it is not allowed.

68 Detailed Message Descriptions

4.1.9 UseMessageGroupVersionReply Message

A reply to an UseMessageGroupVersionRequest message, which acknowledges the
command to the control module, and gives the timestamp of when it became effective (if suc-
cessful).

See Also: UseMessageGroupVersionRequest , UseMessageGroupVersionStatus

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x82

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

effective_timestamp UtcTimePoint
Field Description: Microseconds since the UNIX epoch.

message_group_being_negotiated uint8_t enumerated by MessageGroup
Field Description: The MessageGroup being negotiated.

use_message_group_status
uint8_t enumerated by

UseMessageGroupVersionStatus
Field Description: The status of responding to a request to comply with an assigned mes-
sage group version.

4.1.10 NotificationSeverity Enumeration

Indicates the severity of the issue reported by this notification.

Used in message: NotificationPush

Underlying integral representation: uint16_t

Enumerated values for NotificationSeverity:

InfoValue Value 0x00

For the device, module, or system being reported, this notification provides information
about a condition that does not prevent operation.

WarningValue Value 0x01

The reported issue should be addressed, or has the indicated potential to compromise
device operation, but device operation continues for the time being.

4.1 Core Interface 69

CriticalValue Value 0x02

For message caused by a failure that partially impairs the device operations, or which may
cause data being produced or function being performed to be compromised. The device
will keep attempting to work, but the results are suspect.

InoperableValue Value 0x03

The reported issue has resulted in a fatal condition for the device, module, or system being
reported, preventing continued operation.

4.1.11 NotificationCause Enumeration

Enumeration to indicate details on error message cause; may help to provide ’why’ an error
message has occurred.

This is necessarily a non-exhaustive list, so if no other value fits, choose a value of
NotificationCause::OtherCauseValue.

Used in message: NotificationPush

Underlying integral representation: uint8_t

Enumerated values for NotificationCause:

IllFormattedMsgValue Value 0x00

Indicates that a received message was an invalid type, jumbled, or an otherwise invalid
format relative to what was expected, i.e. a message whose length is too short for the type
of message it is.

IllegalFieldEntryValue Value 0x01

Indicates that a value expressed as (part of) a message is an invalid value, for example, if
the message type value is not one defined by this specification.

InvalidMessageContextValue Value 0x02

Indicates a received message is being used in either the wrong context, or is not sup-
ported by the receiving device, for example if the wrong type of message is replied, i.e. an
PingReply is sent in response to a version request.

InvalidStateForRequestValue Value 0x03

Indicates a received message was not valid for the current device state, for example, if a
heartbeat message is received from the device while the device is in the Standby mode.

HardwareErrorOperationNotStartedValue Value 0x04

Indicates a hardware error prevented an operation from starting, for example, the high
voltage could not be turned on when requested due to a tripped interlock.

HardwareErrorOperationNotCompletedValue Value 0x05

Indicates a hardware error prevented the completion of an operation, for example, a fuse
blew while turning on the high voltage.

70 Detailed Message Descriptions

HardwareErrorOccurredValue Value 0x06

Indicates a hardware error occurred during operation, for example, the fuse blew during
data acquisition.

OperationAnomalyValue Value 0x07

Indicates a non-standard event occurred during operation, for example, a significant volt-
age drop followed by recovery.

SoftwareIssueValue Value 0x08

Indicates a software issue that caused a disruption.

DebugValue Value 0x09

Indicates a message utilized for debug purposes only.

InvalidStringValue Value 0x0a

Indicates a string which was passed as part of a message is invalid. This could be due to
it being ill formed (i.e. not UTF-8), not being a valid name (e.g. a parameter name which
doesn’t exist), or it being too short or too long.

InvalidTypeValue Value 0x0b

Indicates that a wrong type is specified, for example, a parameter value is indicated as a
string when the expected parameter is an integer.

IncompatibleVersionValue Value 0x0c

Indicates a common version of a given protocol could not be found.

InvalidMessageTypeValue Value 0x0d

A value of MessageType was specified for which no message is defined for this message
group.

InvalidStateRequestValue Value 0x0e

A request to go into an invalid state was received.

FeatureNotSupportedValue Value 0x0f

A request was made which requires a feature the device does not support.

InvalidPropertyValue Value 0x10

Indicates that an attempt is made to access or set a field or property which can not be
accessed or set, e.g. trying to set the value of a parameter when the parameter is fixed.

ValueOutOfRangeValue Value 0x11

Indicates that the value attempting to be set is out of the allowed range.

ValueTimeoutValue Value 0x12

Indicates a timeout occurred, or something is taking longer than expected.

UnexpectedDeviceRestart Value 0x13

Indicates device had an unexpected restart or crash, and this message provides informa-
tion on what happened.

4.1 Core Interface 71

OtherCauseValue Value 0xff

Indicates that the message does not fit into any of the previous error causes.

4.1.12 Notification Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

A struct used to hold a warning, debug message, abnormal response, error, or condition warrant-
ing an explanation. This contents of this struct is used within NotificationPush messages
for devices to report errors to the control module.

Issues prompting a notification include, but are not limited to, invalid message, un-executable
message, execution error, debug information, hardware issue, and the like.

See Also: DataOutDataFrame , NotificationPush , DataOutSystemStateChangePush

Message Contents:

Field Name Data Type
timestamp UtcTimePoint

Field Description: The timestamp when the error actually happened, not when it was sent
on the network. If the time is not applicable to this particular message, this integer should
have the value of zero.

reference_message_id uint32_t
Field Description: If this notification is being sent with regards to another message, this field
provides the ’message_id’ of that message. If this notification is not in regards to another
message, then this field must be zero. An example of when a notification may reference
another message would be if CmdSystemStateChangeRequest can not be success-
fully completed, in addition to the device sending a CmdSystemStateChangeReply
indicating the request could not be completed, the device could also send a notification with
an English description with further device specific information that may help to diagnose the
issue. If non-zero, this message_id field must correspond to a message sent within the time
specified by RapterConstants::DATA_PUSH_TIMEOUT_MS.

severity
uint16_t enumerated by

NotificationSeverity
Field Description: Indicates the severity of the issue reported by this notification.

cause uint8_t enumerated by NotificationCause
Field Description: The cause of the notification; should be considered to be indicative or
descriptive, and not an absolute or definitive form of information, since there will likely be
errors or issues that are not enumerated in the NotificationCause notification types.

description Large String
Field Description: Human readable, UTF-8 encoded text which describes the error or issue
in a manner appropriate to display to a technician to provide information or to help diagnose
the problem.

72 Detailed Message Descriptions

4.1.13 NotificationPush Message

Message sent from a device to the control module notifying it of an error, warning, or pro-
viding debug information. This message may also be used to provide additional informa-
tion when a request can not successfully be completed. This message will also be sent
upon new RAPTER connections if there are pending issues (see DeviceStatusFlags and
DeviceOperabilityStatus) or the device had to restart due to an issue. Examples of
when a device might send a NotificationPush to the control module include: hardware
error, invalidly formatted messages, not being able to successfully complete a request, when
an unintended operation state change occurs due to hardware issues, or after new RAPTER
connections are formed and there are pending maintenance issues or errors, or there was an
unintended restart of the device.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x16

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

timestamp UtcTimePoint
Field Description: The timestamp when the error actually happened, not when it was sent
on the network. If the time is not applicable to this particular message, this integer should
have the value of zero.

reference_message_id uint32_t
Field Description: If this notification is being sent with regards to another message, this field
provides the ’message_id’ of that message. If this notification is not in regards to another
message, then this field must be zero. An example of when a notification may reference
another message would be if CmdSystemStateChangeRequest can not be success-
fully completed, in addition to the device sending a CmdSystemStateChangeReply
indicating the request could not be completed, the device could also send a notification with
an English description with further device specific information that may help to diagnose the
issue. If non-zero, this message_id field must correspond to a message sent within the time
specified by RapterConstants::DATA_PUSH_TIMEOUT_MS.

severity
uint16_t enumerated by

NotificationSeverity
Field Description: Indicates the severity of the issue reported by this notification.

cause uint8_t enumerated by NotificationCause
Continued on next page

4.1 Core Interface 73

Table continued from previous page
Field Name Data Type

Field Description: The cause of the notification; should be considered to be indicative or
descriptive, and not an absolute or definitive form of information, since there will likely be
errors or issues that are not enumerated in the NotificationCause notification types.

description Large String
Field Description: Human readable, UTF-8 encoded text which describes the error or issue
in a manner appropriate to display to a technician to provide information or to help diagnose
the problem.

4.1.14 NotificationPushAck Message

A message acknowledging the receipt by the control module of a NotificationPush mes-
sage.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x96

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.1.15 DeviceInfoRequest Message

Message sent by the control module to a device requesting information about the device. This
includes information about which message group the device supports, and device specific details
such as serial number or hardware/firmware versions.

See Also: DeviceInfoReply , DeviceInfoRequest , DataCollectionModes

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
Continued on next page

74 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

message_type uint8_t with value 0x05
Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.1.16 DataCollectionModes Enumeration

Flags that may be bitwise OR’d to indicate one or more conditions regarding data collection
modes. Specifies the data collection modes supported by a device, or a specific mode for the
device. A single flagged bit indicates to the mode in which the detector should (or does) collect
data. A device may be capable of multiple data collection modes. Bitwise flags are used to com-
municate to the control module which data collection modes the device is capable of exercising.

See also:

• DeviceInfoReply
• ChangeDeviceStateRequest

Used in message: DeviceStatusReply

Underlying integral representation: uint8_t

Enumerated values for DataCollectionModes:

NoOriginateValue Value 0x00

This value is used for devices that do not collect data (i.e. not detectors), or for messages
where the operating mode is specified as OperatingMode::StandByValue. If the
device supports DataCollectionModes::NoOriginateValue mode (as spec-
ified the DeviceInfoReply message), it can not support any other operating mode.
DataOut, Command, and Analysis devices must support this data collection mode, and
only this data collection mode. If this DataCollectionModes is specified along with
OperatingMode::OperatingValue, then a DeviceStatus::collection_interval_ms
can still be specified but it must be in the list: 0, 10, 20, 25, 40, 50, 100, 125, 200, 250,
500, or 1000 (milliseconds). (These intervals evenly divide a second.) If this value is
non-zero, then the device must send a HeartbeatPush message to the control mod-
ule at the specified millisecond multiple, of each second. For example, if a value of 100 is
specified, then at the beginning of each absolute clock second (e.g., the time determined
via PTP) a HeartbeatPush message will be sent, and then 0.1 seconds later, another
one, and so on.

ClockTimeIntervalValue Value 0x01

4.1 Core Interface 75

The device collects information and sends it to the control module at inte-
gral divisors of system clock time. The collection time period (specified by a
ChangeDeviceStateRequest message) must be equal to or less than 1000 ms.
The integral divisors limitation means that intervals must evenly divide a second; this then
allows straightforward synchronization of multiple detector modules and devices. As an
integral divisor, the interval must be in the list {1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125,
200, 250, 500, 1000} milliseconds, and meet the requirements specified by the device via
a SupportedDataCollectionIntervalsReply message. If a sensor collects
data at 0.1 second intervals, it will start collection when the system clock time second be-
gins (time x), and then at 0.1 seconds after the second begins, i.e. at x.1 seconds, then at
x.2 seconds, x.3 seconds, etc. Gamma, neutron, and occupancy detectors may support
this mode of data collection. If a heartbeat is specified for non-sensor devices, the same
timing rules apply.

OnEventValue Value 0x02

The device sends information as soon as an event is detected. For gamma and neutron
detectors this is list mode data acquisition. Vehicle presence sensors send information
whenever a beam state changes. Gamma and neutron detectors may support this mode
of data collection; vehicle presence and power management modules must support this
mode, and only this mode. The DeviceStatus::collection_interval_ms
specifies when and if HeartbeatPush messages must be sent by the device, with
a value in the list: 0, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, or 1000
(milliseconds). A value of zero specifies HeartbeatPush messages should not
be sent. The timing of HeartbeatPush messages follow the same rules as for
DataCollectionModes::ClockTimeIntervalValue.

LiveTimeDwellValue Value 0x04

Specifies live time dwell mode data acquisition; may only be supported by gamma
and neutron radiation detectors. The length of the measurement dwell time is spec-
ified in the ChangeDeviceStateReply command, given as the number of mil-
liseconds to acquire. If no time is specified, data will be acquired until receipt of a
ChangeDeviceStateRequest command, which causes a transition. When acqui-
sition is finished, data will be sent to the control module, and then the device will transi-
tion to the OperatingMode::ReadyValue and send a DeviceStatusPush to
the control module to indicate the device’s new state. This mode of data is useful to al-
low longer acquisition, such as a 5 minute gamma-ray spectral acquisition. In the case
that a state transition out of OperatingMode::OperatingValue is scheduled (by
a ChangeDeviceStateRequest message) after data acquisition is started, but be-
fore the dwell time specified is reached, then the scheduled transition should be obeyed
and data sent as normal. If no transition is specified and the dwell time requested is able
to be fulfilled, the device should transition to the ready state from the operating state upon
completion of the dwell. Currently no modules are required to support this mode of data
acquisition, but support in both gamma and neutron detectors is encouraged.

RealTimeDwellValue Value 0x08

Specifies real time dwell mode data acquisition; may only be supported by gamma and
neutron radiation detectors. Similar to DataCollectionModes::LiveTimeDwellValue,
but acquisition time is limited by the real (system clock) time, instead of live time.

76 Detailed Message Descriptions

4.1.17 DeviceFeaturesFlags Enumeration

Flags that may be bitwise OR’d to indicate one or more features common to all RAPTER modules
or devices.

Devices further indicate capabilities unique to the device type in RadSubDetectorInformationReply,
VehiclePresenceSubDetectorInformationReply, or PwrMngmtInformationReply
messages.

See also:

• DeviceInfoReply
• DeviceInfoReply::device_features

Underlying integral representation: uint64_t

Enumerated values for DeviceFeaturesFlags:

DeviceSupportsBufferingFlag Value 0x01

Flag to indicate that the device, or control module supports buffering. The device
will store push messages in its buffer. If a network connection is dropped, upon re-
connection if the BufferStatusFlags::DeviceHasBufferedDataFlag bit of
BufferStatus::buffer_status_flags is set, then the control module can
send a request for the buffered data using a BufferedMessagesRequest message.

DeviceSupportsFirmwareUpgradesFlag Value 0x10

The device supports firmware upgrades.

See also: MsgRequestFirmwareUpgrade

DeviceUsesOperatingBackgroundFlag Value 0x20

Device takes advantage of knowing when the detection system is in the "background" state
(e.g. when no vehicle occupies the portal).

DeviceUsesActiveMaintenanceFlag Value 0x40

The device may use the MeasurementType::ActiveMaintenanceValue time
to perform some sort of calibration, maintenance, or other activity that will block it from
other uses or cause reported data to not be as expected.

DeviceActiveMaintenanceMayEffectOtherDevicesFlag Value 0x80

During active maintenance this device may do something that influences the environ-
ment in such a way as to potentially affect other devices in the portal. An example
would be if a radioactive check source that is not normally exposed, is exposed, which
would potentially affect other gamma radiation detection modules. This bit shall only
be set if DeviceFeaturesFlags::DeviceUsesActiveMaintenanceFlag is
also set.

4.1.18 ComponentVersionInformation Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

4.1 Core Interface 77

Struct to allow specifying device component versions other than the overall firmware and hard-
ware versions. Examples could include: analysis routine version, nuclide library version, oper-
ating system version, high voltage board version, WebSocket library version, a vendor specific
library version, etc.

Message Contents:

Field Name Data Type
name Short String

Field Description:
value Short String

Field Description:
description Short String

Field Description:

4.1.19 DeviceInfoReply Message

Message sent by a device in reply to a DeviceInfoRequest from the control module.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x85

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

device_type uint8_t enumerated by MessageGroup
Field Description: The device type, as determined from the following options (designated by
the associated MessageGroup value): command device (Command), analysis device (Anal-
ysis), radiation detection device (RadDetector), vehicle presence device (VehiclePresence),
or control module (Core). The device type determines the message groups that the device
must support. See Chapter 2 for details.

data_collection_modes
uint8_t bits defined by

DataCollectionModes
Field Description: Bitwise OR of flags representing data collection modes supported by the
device.

device_features
uint64_t bits defined by

DeviceFeaturesFlags
Continued on next page

78 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: Bitwise OR of flags representing device features.
buffer_size uint64_t

Field Description: The size of the buffer for buffering. This size can be an estimate.
Should be set to 0 if the device does not support data buffering when the connection
is down. When the network connection is down, Push messages should be buffered
for retrieval once the connection is back up; see BufferedMessagesRequest and
BufferedMessagesReply for details.

num_subdetectors uint8_t
Field Description: The number of sub detectors the device contains; applicable only to radi-
ation detector, vehicle presence, and power management modules. For other devices this
must be set to 0. As examples, for gamma-ray detectors this might indicate independent
crystals (e.g. 4 crystals in one panel or module), for neutron detectors this might be the
number of independently read-out He-3 tubes, and for vehicle presence sensors, the num-
ber of IR beams plus number of cameras. For power management modules it represents the
number of independent output lines. Note that all sub-detectors must operate in the same
data collection mode (DataCollectionModes::ClockTimeIntervalValue,
DataCollectionModes::OnEventValue, etc) and at the same data collection in-
tervals (10ms, 100ms, etc.).
See also:

• RadListModeDataPush::subdetector_number
• RadChannelDataPush::subdetector_number
• RadEnergyCalibrationUpdatePush::subdetector_number
• RequestEnergyCalibration::subdetector
• VehiclePresenceSubDetectorInformationRequest
• PwrMngmtInformationRequest

device_uuid Uuid128
Field Description: The universally unique ID for this device. This number must be globally
unique, and can be assigned according to the deploying agency conventions; for exam-
ple assigned as the thumbprint of the devices cryptographic certificate. This value will not
change for a given physical device.

serial_number Short String
Field Description: The manufacturer specified serial number that is expected to be unique
at least with respect to the vendor and model. This value must remain fixed across firmware
upgrades, power cycles, setting changes, and if at all possible hardware repairs. No restric-
tions on format other than length, and valid UTF-8 text.

manufacturer Short String
Field Description: Specifies the manufacturer of this device. No restrictions other than
length, and valid UTF-8 text.

model Short String
Field Description: Specifies the model of this device. No restrictions other than length, and
valid UTF-8 text.

hardware_version Short String
Continued on next page

4.1 Core Interface 79

Table continued from previous page
Field Name Data Type

Field Description: Specifies the version of the hardware for the device. No restrictions other
than length, and valid UTF-8 text. This should be descriptive and change with respect to
hardware changes.

firmware_version Short String
Field Description: Specifies the version of the current firmware for the device. No restrictions
other than length, and valid UTF-8 text. This should be descriptive and change with respect
to firmware changes or updates.

other_component_versions
Short Array of
ComponentVersionInformation

Field Description: Versions of additional components in the device, that may be informative
for compatibility, troubleshooting, or maintenance. Examples include: underlying operating
system version, high voltage daughter card version, nuclide library version, analysis library
version, etc.

specialized_capabilities_descr �

iption
Short String

Field Description: A free form English language description of the capabilities and hardware
specific to the specialized purpose of this device. No restrictions other than length, and valid
UTF-8 text. Examples might include:

• "3x3 NaI gamma detector, 7% FWHM
@ 661 keV, temperature compensated energy calibration, pulse pileup filter, 250MHz wave-
form sampling"

• "Data archiving device to save all health information to a database"
• "Graphical user interface device for portal operations. Touchscreen."
• "Analysis software based on DHSIsotopeID v13, customized for PVT."

computing_platform_description Short String
Field Description: A free form English language description of the computing resources
of the device, such as descriptions of its CPUs, ram memory, hard drive space, Ethernet
adapter capabilities, operating system, etc. No restrictions other than length, and valid
UTF-8 text. Examples include:

• "PC4F1453 MCU, 120 MHz, 256 KB SRAM, 4GB SD-card storage, IEEE-1588 Ether-
net transceiver, FreeRTOS 9.0.0"

• "Dual core 2 GHz Arm CPU, 1 GB ram, Linux kernel 3.4."

4.1.20 DeviceStatusRequest Message

Request from the control module for a device’s current status.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x06

Continued on next page

80 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.1.21 DeviceStatusFlags Enumeration

Flags that may be bitwise OR’d to indicate one or more potential negative conditions of devices.
Any change to the status of one of these flags must trigger a DeviceStatusPush being sent
to the control module, or if its the control module itself, it needs to provide notice by issuing data
out, core, and analysis messages.

Underlying integral representation: uint32_t

Enumerated values for DeviceStatusFlags:

DeviceHasWarningConditionFlag Value 0x01

The device has a warning condition, but retains the ability to operate, but there is a danger
there could be an adverse effect on operations in the future if the condition(s) worsens or
persists. If the device is a detector, the data quality is not yet degraded to the point that
it is not useable. Examples include: CPU temperature is above a warning threshold, but
the device is still able to operate in its full capacity. Supply voltage is outside of expected
range, but not currently recognized as impacting performance. The condition causing the
warning should be reported via a ParameterUpdatePush message as well.

DeviceHasImpactedOperationFlag Value 0x02

The device is still operating, but has an issue impacting performance, or causing it to
produce suspect or bad data. Examples include: CPU temperature high enough that
processor throttling is being applied. High voltage power supply is unable to reach the
desired voltage; detection is still occurring, but data are suspect. The condition impacting
performance should be reported via a ParameterUpdatePush message as well.

DeviceHasFatalConditionFlag Value 0x04

There is a condition preventing device operation. Examples include: - High voltage power
supply is drawing more current than allowed. - A required interrupt is open, like for example
the enclosure is open. - A radiation field is too high for a gamma detector. - Error initializ-
ing a required resource. If caused by something that can be described by the parameter
mechanism, a ParameterUpdatePush message will have been sent when the con-
dition started, or the parameters can be queried using the ParameterInfoRequest

4.1 Core Interface 81

message. If something like a failed hard drive, corrupt config file, or internal device com-
munications error happens, where it is not practical to represent as a parameter, then
a description of the cause must be reported using a NotificationPush message,
both when the condition happens, and after new RAPTER connections are made until the
condition is fixed.

DeviceNeedsServiceFlag Value 0x08

Indicates device is in need of service, but still operational. A NotificationPush
message must also be sent which describes the service type needed, both when the
service is initially determined to be needed, and also upon new RAPTER connections are
creation until the condition is resolved. Examples include: - A Manual energy calibration
is necessary. - A non-essential component (e.g., vibration sensor) has failed. - A cooling
fans air filter needs replacing.

DeviceWouldLikeBackgroundTimeFlag Value 0x200

Indicates the device would like dedicated time with no vehicle in the portal, or no item of
interest being measured; the device will remain operating during a background period.

DeviceNeedsBackgroundTimeFlag Value 0x400

Indicates the device can not operate without dedicated background time. For example, a
gamma detector may be needed to gain-match PMTs, or calibrate off background. For
a neutron detector this may be needed to adjust thresholds. For an analysis module to
collect more background. For occupancy sensors this may be to check beam alignment.

DeviceWouldLikeActiveMaintenanceTimeFlag Value 0x800

Indicates the device would like dedicated active maintenance time, but can continue to
operate with out it.

See also: MeasurementType::ActiveMaintenanceValue

DeviceNeedsActiveMaintenanceTimeFlag Value 0x1000

Indicates the device can not operate until it get some dedicated active maintenance time.

See also: MeasurementType::ActiveMaintenanceValue

4.1.22 OperatingMode Enumeration

Enumeration of operating modes of a device, or system.

Note that these states are used to both control the entire system, as well as each de-
vice. Also note that devices may make transitions even when not requested. Examples:
when the required dwell duration is over, a detector will ordinarily automatically transition from
OperatingMode::OperatingValue to OperatingMode::ReadyValue. A detec-
tor might make an un-requested transition when there is a hardware error; this transition may-or-
may-not cause the entire system to transition (although a system should try to keep operating if
possible).

See also:

• ChangeDeviceStateRequest
• ChangeDeviceStateReply

82 Detailed Message Descriptions

• CmdSystemStateChangeRequest
• CmdSystemStateChangeReply
• DeviceFeaturesFlags

Used in message: DeviceStatusReply

Underlying integral representation: uint8_t

Enumerated values for OperatingMode:

StandByValue Value 0x01

Default operating mode to which the device should "boot up". If the device has high volt-
age, bias voltage supplies, or similar potentially hazardous or high energy consuming de-
vices that can be switched on or off, these should be turned OFF in this state. This does
not apply to things like HPGe crystal coolers where there is a compelling reason to always
have operating. Devices (or systems) will not transition out of this state unless requested.
Must be supported by all devices.

ReadyValue Value 0x02

In this operating mode, the device is not collecting data, or otherwise performing its duty,
but is ready to. For detectors this means that high voltages are on, and bias voltages
applied, and data collection can quickly start when requested. For archive or analysis
devices, all necessary resources should be initialized. Devices (or systems) will not tran-
sition out of this state unless there is an error, or they are specifically requested to. Must
be supported by all devices.

OperatingValue Value 0x04

In this operating mode, the device should be collecting data, or otherwise perform-
ing its function. When a ChangeDeviceStateRequest message is sent, to
the device from the control module, with this as the operating mode to achieve, a
ChangeDeviceStateReplymessage with a ChangeDeviceStateReply::status_of_transition
equal to CommandReplyStatus::CompletedValue (assuming everything went
okay and there were no errors) will be sent back from the device to the control
module before sending any data that are collected while in this operating mode.
If the device is not already in OperatingMode::ReadyValue before receiv-
ing the command to transition to OperatingMode::OperatingValue, then it
may take a while for the high voltage, or other mechanisms, to stabilize and allow
operations, in which case ChangeDeviceStateRequest messages should be
sent to update the control module of the progress towards starting operations. De-
vices should only transition out of this state when requested to, when there is an
error, or a dwell (during a DataCollectionModes::LiveTimeDwellValue
or DataCollectionModes::RealTimeDwellValue mode collection) finishes.
Must be supported by all devices.

4.1.23 MeasurementType Enumeration

Enumeration of the types of measurement that may be performed; applies to both the system
level and the module level.

See also:

4.1 Core Interface 83

• MeasurementTypeChangeRequest
• MeasurementTypeChangeReply
• CmdMeasurementTypeChangeRequest
• CmdMeasurementTypeChangeReply

Used in message: DeviceStatusReply

Underlying integral representation: uint8_t

Enumerated values for MeasurementType:

NotSpecifiedValue Value 0x00

In messages originating in the control module, the control module is unable to determine
what is being measured, whether from information generated within the portal, or from an
external authority. In a message originating in a command device relating to a request for
a change of state, no request is being presented for measurement type.

ItemValue Value 0x01

There is an item of interest being measured. For a RPM this might mean that there is a
vehicle either in the vicinity or actually in the portal (i.e., an occupancy is in progress) or
there is some other external information, as provided by a Command device, that indicates
the system should function as if there is a vehicle in it.

BackgroundValue Value 0x02

The device should consider that the background is being measured.

PossibleInterferingSourceValue Value 0x03

There is potentially a source present, like a calibration source, or cross-talk from a known
vehicle in a nearby lane, etc, that may be affecting the data in a manner not represen-
tative of a vehicle occupying the portal. Basically a way of saying the data shouldn’t be
considered background and any analysis results should take this into account.

ActiveMaintenanceValue Value 0x04

This indicates that the device is free to perform actions which may affect opera-
tion of this device, or of other devices or the system. An example would be a
gamma module with a calibration source inside of a Pb pig which, during active
maintenance, is removed from the pig to allow calibration. Or, the analysis algo-
rithm can take this time to re-index its database and not report results. If possible,
devices should still send data to the control module during this time if they are in
the OperatingMode::OperatingValue state, but this isnt a hard requirement
since some operations may prevent this. When done performing active maintenance,
the device should transition back to OperatingMode::ReadyValue (and no-
tify the control module via a DeviceStatusPush message). If the device’s active
maintenance might possibly effect operations of other devices within the portal, the
DeviceFeaturesFlags::DeviceActiveMaintenanceMayEffectOtherDevicesFlag
flag must be set in DeviceInfoReply::device_features. When a device has
completed active maintenance, it should transition the MeasurementType and send
a DeviceStatusPush indicating the change. When an entire system is put into this
mode, it is up to the control module to ensure different modules arent stepping on, or
messing up others. An example would be to only have one detector put a calibration
source out of their pigs at a time.

84 Detailed Message Descriptions

4.1.24 DeviceStatusReply Message

Gives the replying device’s current operating status in response to a DeviceStatusRequest
request

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x86

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

status_timestamp UtcTimePoint
Field Description: The timestamp of when this status indicated took effect. That is, the
timestamp of the last event which caused the reported status to change. For example, if the
last reportable thing to happen was the high voltage turned on, then this field would indicate
that time.

device_status_flags
uint32_t bits defined by

DeviceStatusFlags
Field Description: Bitwise OR of flags representing target device status.

operating_mode uint8_t enumerated by OperatingMode
Field Description: The operating mode that the device is currently in.

data_collection_mode
uint8_t enumerated by

DataCollectionModes
Field Description: The data collection mode that the device is currently in.
Set to DataCollectionModes::NoOriginateValue if the module is
in any state other than of DeviceStatusReply::operating_mode
OperatingMode::OperatingValue

measurement_type uint8_t enumerated by MeasurementType
Field Description: The type of measurement being taken (item of interest, background, not
specified, possible interfering source, or active maintenance).

collection_interval_ms uint32_t
Continued on next page

4.1 Core Interface 85

Table continued from previous page
Field Name Data Type

Field Description: The data collection interval is specific to the
data collection mode, and zero if not applicable. For informa-
tion on allowed intervals, see the DataCollectionModes enumer-
ation. For DataCollectionModes::RealTimeDwellValue and
DataCollectionModes::LiveTimeDwellValue modes, this interval speci-
fies the entire duration of the measurement, and for the other modes it specifies the interval
between sending data or HeartbeatPush (if non-zero) messages.

4.1.25 DeviceBufferStatusRequest Message

Message from the control module requesting the status of buffering by the device, including the
number of buffered messages and availability of space for buffering.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x07

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.1.26 BufferStatusFlags Enumeration

Flags that may be bitwise OR’d to indicate one or more conditions regarding buffered data.

Underlying integral representation: uint8_t

Enumerated values for BufferStatusFlags:

DeviceDoesNotSupportsBufferingFlag Value 0x01

Device does not support buffering. If this bit is set, then DeviceInfoReply::device_features
should not have the DeviceFeaturesFlags::DeviceSupportsBufferingFlag
bit set. Useful for when a DeviceBufferStatusReply gets sent to a device that
does not support buffering.

DeviceHasBufferedDataFlag Value 0x02

86 Detailed Message Descriptions

Device has not obtained acknowledgment that all data sent was received, so it has some
messages in its buffer.

DeviceBufferHasOverflowedFlag Value 0x04

Device had to buffer more data than it had room for, so some messages were lost.

4.1.27 DeviceBufferStatusReply Message

Reply from a device to a DeviceBufferStatusRequest from the control module.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x87

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

timestamp UtcTimePoint
Field Description: Timestamp of this reply message.

buffer_status_flags
uint8_t bits defined by

BufferStatusFlags
Field Description: Bitwise OR of BufferStatusFlags.

num_buffered_messages uint32_t
Field Description: The number of (possibly only approximate) buffered mes-
sages. If BufferStatusFlags::DeviceHasBufferedDataFlag bit in
DeviceBufferStatusReply::buffer_status_flags is set, then this value
should be non-zero.

buffer_free_room uint64_t
Field Description: If the device contains buffering capabilities, this indicates
the (possibly only approximate) number of free bytes in the buffer. If the
BufferStatusFlags::DeviceHasBufferedDataFlag bit is not set in
DeviceBufferStatusReply::buffer_status_flags then this value should
be the same as DeviceInfoReply::buffer_size. This must be zero if the device
does not have buffering capability.

4.1 Core Interface 87

4.1.28 DeviceStatusPush Message

Message sent to the control module by a device when there is a non-requested change made
by the device to its status flags or operating state.

For example, if a components temperature reaches a pre-defined warning threshold causing the
DeviceStatus::device_status_flags to have the DeviceStatusFlags::DeviceHasWarningConditionFlag
bit be set. Note that in this case a ParameterUpdatePush message would also be
sent corresponding to the temperature change. If there is a hardware, or other error, a
NotificationPush message may be attached to the message in order to provide an En-
glish description of the issue. When DataCollectionModes::LiveTimeDwellValue
or DataCollectionModes::RealTimeDwellValue measurements are finished, this
message will also be sent to the control module by the device.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x19

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

status_timestamp UtcTimePoint
Field Description: The timestamp of when this status indicated took effect. That is, the
timestamp of the last event which caused the reported status to change. For example, if the
last reportable thing to happen was the high voltage turned on, then this field would indicate
that time.

device_status_flags
uint32_t bits defined by

DeviceStatusFlags
Field Description: Bitwise OR of flags representing target device status.

operating_mode uint8_t enumerated by OperatingMode
Field Description: The operating mode that the device is currently in.

data_collection_mode
uint8_t enumerated by

DataCollectionModes
Field Description: The data collection mode that the device is currently
in. Set to DataCollectionModes::NoOriginateValue if the mod-
ule is in any state other than of DeviceStatusPush::operating_mode
OperatingMode::OperatingValue

measurement_type uint8_t enumerated by MeasurementType
Continued on next page

88 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: The type of measurement being taken (item of interest, background, not
specified, possible interfering source, or active maintenance).

collection_interval_ms uint32_t
Field Description: The data collection interval is specific to the
data collection mode, and zero if not applicable. For informa-
tion on allowed intervals, see the DataCollectionModes enumer-
ation. For DataCollectionModes::RealTimeDwellValue and
DataCollectionModes::LiveTimeDwellValue modes, this interval speci-
fies the entire duration of the measurement, and for the other modes it specifies the interval
between sending data or HeartbeatPush (if non-zero) messages.

4.1.29 DeviceStatusPushAck Message

Message sent by the control module to the device that sent a DeviceStatusPush message,
acknowledging receipt of the push message.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x99

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.1.30 DeviceTimeStatisticsRequest Message

A request to get the device time statistics, such as uptime, total use time and similar.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x0d

Continued on next page

4.1 Core Interface 89

Table continued from previous page
Field Name Data Type

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.1.31 DeviceTimeStatisticsReply Message

A reply to DeviceTimeStatisticsRequest which contains the time statistics of the device, such as
current uptime, current connection duration, and total device on and uptime.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x8d

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

timestamp UtcTimePoint
Field Description: The time at which these statistics were calculated. Microseconds since
the UNIX epoch.

current_uptime_seconds uint32_t
Field Description: The time, in seconds, since the device has been started or restarted.
Similar to ’uptime’ command in Linux and BSD.

current_session_time_seconds uint32_t
Field Description: For non-control modules, the number of seconds the current RAPTER
WebSocket session has been established for the device. For the control module, the amount
of time, in seconds, continuously available, up to the present, to accept WebSocket connec-
tions.

Continued on next page

90 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

current_session_time_operating �

_seconds
uint32_t

Field Description: For non-control modules, the number of seconds
the device has been in OperatingMode::OperatingValue dur-
ing the current RAPTER WebSocket session. Must be no greater than
DeviceTimeStatisticsReply::current_session_time_seconds, i.e.,
even if the device was operating when session began, because buffering was enabled, this
value should start accumulating at the beginning of the current session, not when data acqui-
sition actually started. For the control module, then this should be the longest uninterrupted
time that any connected device has been in OperatingMode::OperatingValue.

current_operating_mode_time_se �

conds
uint32_t

Field Description: For devices, the number of seconds since the most re-
cent change of the device’s OperatingMode. May be larger than
DeviceTimeStatisticsReply::current_session_time_seconds if
not a control module and the device was previously in the current state before the
RAPTER WebSocket connection was started. For the control modules, the time since
DataOutSystemStateChangePush::requested_system_operating_mode,
has been changed, or if it hasn’t been changed, the time since system start up.

cumulative_time_on_seconds uint32_t
Field Description: The number of seconds this device has been powered on. This value
should monotonically accumulate across power cycles, firmware upgrades, and if at all pos-
sible, hardware upgrades.

cumulative_time_operating_seconds uint32_t
Field Description: The number of seconds this device has been powered on and in the
OperatingMode::OperatingValue. This value should monotonically accumulate
across power cycles, firmware upgrades, mode changes, and if at all possible, hardware
upgrades.

number_restarts uint32_t
Field Description: Number of times, at the application level, the device has restarted. That
is, if the device is implemented as a software program application running within an operat-
ing system, this number would be incremented each time the application is started by the
operating system, wether due to it crashing, or the device power cycling. If the device is
implemented as a real time operating system, Unikernel, or dedicated hardware, this num-
ber would increment each power cycle. This value should monotonically accumulate across
power cycles, firmware upgrades, and if at all possible, hardware component upgrades.

number_websocket_connections_i �

nitiated
uint32_t

Field Description: If a device: cumulative number of WebSocket connection it has attempted
to initiate over its lifetime, whether the connection was successful or not. If a control mod-
ule: cumulative number of WebSocket connections devices have attempted to make to it,
whether the connection was successful or not. This value should monotonically accumu-
late across power cycles, firmware upgrades, and if at all possible, hardware component
upgrades.

Continued on next page

4.1 Core Interface 91

Table continued from previous page
Field Name Data Type

number_completed_handshakes uint32_t
Field Description: The number of times a WebSocket connection resulted in at least negoti-
ating the message group. This value should monotonically accumulate across power cycles,
firmware upgrades, and if at all possible, hardware component upgrades.

4.1.32 HeartbeatPacket Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

Struct to hold information about elapsed real and live time for a measurement interval. See
HeartbeatPush for further information.

Message Contents:

Field Name Data Type
start_timestamp UtcTimePoint

Field Description: Timestamp indicating the start of the interval this heart-
beat is for. If part of a HeartbeatPush message, must be equal to
HeartbeatPush::start_timestamp.

end_timestamp UtcTimePoint
Field Description: Timestamp indicating the point in time all data (radiation, vehicle
presence, parameter measurements, etc) has been transferred up through; if part of a
HeartbeatPush message, must be equal to HeartbeatPush::end_timestamp.
The value will nominally be the last microsecond of the time-interval, and so a listmode
events sent before this heartbeat will have timestamps less than or equal to this timestamp,
and listmode events sent after this heartbeat will have timestamps greater than this value.

subdetector_number uint8_t
Field Description: The sub-detector this information corresponds to. For Analysis, DataOut,
and Command devices this must have a value of zero (e.g., to represent the entire device).

interval_clock_time_seconds float
Field Description: The elapsed clock time, in seconds, covered between the previous
HeartbeatPush and this one. If this is the first HeartbeatPush message of the cur-
rent state, then this is the time since the change in operating mode (e.g., since the effective
time of ChangeDeviceStateReply or DeviceStatusPush).

interval_live_time_seconds float
Continued on next page

92 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: Similar to HeartbeatPacket::interval_clock_time_seconds,
except instead of the clock time, this field gives the time the device has been avail-
able to perform its primary function. An example of when this field may not match
HeartbeatPacket::interval_clock_time_seconds is for gamma de-
tectors, there is often a time period after detecting a gamma event, where another
gamma event can not be detected (often referred to as ’dead time’), this period would
not contribute to HeartbeatPush::interval_live_time_seconds. For
devices such as analysis modules, archiving systems, or human interaction devices
that are available to perform their duty 100% of the time, then this field will match
HeartbeatPacket::interval_clock_time_seconds if there are no system
clock updates.

4.1.33 HeartbeatPush Message

A heartbeat sent at regular intervals, by devices in their operational state OperatingMode::OperatingValue,
and in DataCollectionModes::OnEventValue or DataCollectionModes::NoOriginateValue
modes, if the control module instructed the device to send these heartbeats (see
ChangeDeviceStateRequest::collection_interval_ms) at regular intervals.

This message indicates all previously generated ’push’ messages have been sent. The purpose
of this message is to allow synchronizing of data more easily from instruments collecting list-
mode data with those collecting in the DataCollectionModes::ClockTimeIntervalValue
mode, so data can be packaged by the control module and sent off to the Analysis/DataOut/-
Command devices. For example, if gamma sensors collect data every 100ms, and neutron
detectors collect list mode data with a low count rate (1 count every 10 seconds), without this
heartbeat the control module would have to wait a while (there may be a network issue or con-
gestion) to be sure the neutron detector wasn’t going to send the data, before it could forward
the data to the other devices. With this heartbeat, it will usually not have to wait to know there
were zero detected counts (unless there really is a network congestion/issue).

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x1b

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Continued on next page

4.1 Core Interface 93

Table continued from previous page
Field Name Data Type

Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

start_timestamp UtcTimePoint
Field Description: Timestamp indicating the start of the interval this heartbeat is for.

end_timestamp UtcTimePoint
Field Description: Timestamp indicating the point in time all data has been transferred up
through; may be slightly larger than time scheduled for the heartbeat to be sent (maybe due
to CPU congestion), but not smaller.

infos Short Array of HeartbeatPacket
Field Description: Must contain one HeartbeatPacket for each sub-detector (see
DeviceInfoReply::num_subdetectors). Note that DataOut and Command de-
vices, as well as the analysis module, will have exactly zero entries, since they must have
DeviceInfoReply::num_subdetectors set to zero. For radiation detectors, ve-
hicle presence modules, and power management modules there will be an entry for each
detection element.

4.1.34 HeartbeatPushAck Message

A message acknowledging the receipt by the control module of a HeartbeatPush message.
This message is optional to send if buffering is not enabled.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x9b

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.1.35 BufferRecoveryMode Enumeration

Enumeration to represent how recovery should happen; either Serial (transmit all messages in
the buffer then start transferring live data), or Parallel (transmit live data in pseudo-realtime while
also transmitting buffered messages).

94 Detailed Message Descriptions

Used in message: BufferedMessagesRequest

Underlying integral representation: uint8_t

Enumerated values for BufferRecoveryMode:

SerialValue Value 0x00

First transmit all of the requested buffered messages, then start transmitting live mes-
sages; this may involve buffering the live data while transferring the buffered data.

ParallelValue Value 0x01

Transmit the live data while also transmitting the buffered data. It is up to the sending
device to monitor the data transmit speed (which may be limited due to the TCP conges-
tion resolution) and insure the "live" data isnt sitting in a queue (the websockets libraries
queue, the OSes TCP queue, etc) behind a bunch of the buffered data. That is, send-
ing current data should be prioritized ahead of sending the buffered data. Also note, if the
connection fails before the full retrieval of the buffered data, the data taken after failing will
be appended to the queue, with no delineation of which data was before which disconnect
(although see BufferedMessagesReply::newest_recovered_msg_id).

4.1.36 BufferedMessagesRequest Message

Request sent to a device for buffered data, for example to recover after a dropped connection.

Note that messages that have been buffered should have the MsgFlags::MessageHasBeenBufferedFlag
flag set in the message header. When a connection is dropped during data collection, the sensor
device should keep in its current state (e.g., continue collecting data), and upon re-connection, it
should not send data messages (or any message with an Ack reply) until the control module ei-
ther sends a ChangeDeviceStateRequest message (at which point the device will clear
its buffer but can then send new data in real time, even if the message didn’t actually change
the operational state), or a BufferedMessagesRequest message requesting to send the
buffered messages.

See Also: BufferStatusFlags::DeviceHasBufferedDataFlag , MsgFlags::MessageHasBeenBufferedFlag

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x08

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

Continued on next page

4.1 Core Interface 95

Table continued from previous page
Field Name Data Type

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

recovery_mode
uint8_t enumerated by

BufferRecoveryMode
Field Description: Whether live messages should be sent serially after the buffered mes-
sages, or in parallel.

4.1.37 BufferedDataRequestStatus Enumeration

Enumeration to represent the possible outcomes of buffered data requests from a device or
module.

Used in message: BufferedMessagesReply

Underlying integral representation: uint8_t

Enumerated values for BufferedDataRequestStatus:

NotSupportedValue Value 0x00

Buffering is not supported.

NoBufferedContentsValue Value 0x01

There are no buffered messages to be sent.

WillSendValue Value 0x02

Buffered messages are present, but remain to be sent.

SendFailedValue Value 0x03

An attempt was made to send buffered messages, but failed

SendAlreadyInProgressValue Value 0x04

Buffered messages are in the process of being transmitted, but the last buffered message
has not been sent.

SendCompletedSuccessfullyValue Value 0x05

The last buffered message has been transmitted to the receiving device.

4.1.38 BufferedMessagesReply Message

Message sent in response to an BufferedMessagesRequest request; multiple instances
of these messages will be sent in response to the original request message. One of these
messages will be sent before re-sending the buffered data, and one of these messages will
be sent once sending of the buffered data is complete. However there may be other of these
messages sent, if, for instance, there is a failure in re-sending the data, the original message will
be followed up to indicate the failure.

96 Detailed Message Descriptions

If the device is able to provide the buffered data, it should return this message followed by the
buffered data. If recovery mode is BufferRecoveryMode::SerialValue, then data
currently being taken should not be sent after the first BufferedMessagesReply message
until the last currently buffered message is sent; this applies to any "push" message. Process-
ing of commands which do not fall into the buffering scheme (so do not have a "Push"/"Ack" in
the message or its reply) can proceed even while the recovery (i.e. the communications ’catch
up’) is still happening. Note that if any buffer overflow (causing discarded messages) happens
during this catch up an DeviceStatusPush update message should be sent to indicate
this. Upon successful completion of the buffer transfer a BufferedMessagesReply mes-
sage should be sent with the BufferedMessagesReply::buffered_status field set
to BufferedDataRequestStatus::SendCompletedSuccessfullyValue. Note
that if the detector is currently taking data, in Serial mode the buffered data will precede current
data (which will follow), while in Parallel mode the current data will begin to be sent immediately.
Note: upon reconnection occurring during data taking, the data currently being acquired and the
buffered data will not be sent until requested; or, if a change of state is requested, the buffer will
be cleared.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x88

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

buffered_status
uint8_t enumerated by

BufferedDataRequestStatus
Field Description: Status of the buffering operation.

oldest_recovered_msg_id uint32_t
Field Description: The message ID of the oldest message that will be,
or was sent. If BufferedMessagesReply::buffered_status
is BufferedDataRequestStatus::NotSupportedValue,
BufferedDataRequestStatus::NoBufferedContentsValue, or
BufferedDataRequestStatus::SendAlreadyInProgressValue, then
this variable should be ignored.

newest_recovered_msg_id uint32_t
Continued on next page

4.1 Core Interface 97

Table continued from previous page
Field Name Data Type

Field Description: When BufferedMessagesReply::buffered_status is
BufferedDataRequestStatus::WillSendValue, then this is the most recent
message in the buffer. When BufferedMessagesReply::buffered_status
is BufferedDataRequestStatus::SendFailedValue, this is the
most recent message to enter the buffer, or zero if none. If status is
BufferedDataRequestStatus::SendCompletedSuccessfullyValue
then this was the last message sent from the buffer. For all other
BufferedMessagesReply::buffered_status values this variable should have
a value of zero and be ignored. Note that if BufferRecoveryMode::SerialValue
option was selected, there may be subsequent messages after this ID that are
marked with the MsgFlags::MessageHasBeenBufferedFlag bit, and the fi-
nal BufferedMessagesReply sent after buffer has been emptied will have a
BufferedMessagesReply::newest_recovered_msg_id indicating the last
message transferred before the buffer was emptied (so might be data taken after the buffer
recovery was begun).

number_failed_messages uint32_t
Field Description: Indicates the number of buffered messages that either will not, or
were not recovered. When BufferedMessagesReply::buffered_status is
BufferedDataRequestStatus::WillSendValue, this field indicates the num-
ber of messages that are known to not be able to be recovered, for example because
the buffer overflowed. When BufferedMessagesReply::buffered_status
has a value BufferedDataRequestStatus::SendFailedValue or
BufferedDataRequestStatus::SendCompletedSuccessfullyValue
this variable indicates the number of message that were not able to be sent. For other
values of BufferedDataRequestStatus, this value must be zero.

4.1.39 BufferingSetOptionRequest Message

Message sent from the control module to tell a device to either not bother buffering data during
disconnects, or to buffering back on; there is also an option to clear the current buffer.

Note that if a device supports buffering, it should default to not having the buffering mechanism
on, until told otherwise.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x09

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Continued on next page

98 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

set_buffering_enabled uint8_t
Field Description: If nonzero, set buffering to enabled. If zero, disable buffering.

clear_buffer uint8_t
Field Description: A non-zero value indicates a request to clear any pending messages in
the buffer. Note that if recovery of buffered messages is under way, and this is set to true,
then the behavior is undefined.

4.1.40 BufferingSetOptionsStatus Enumeration

Enumeration to represent results of a request to set buffering options.

Used in message: BufferingSetOptionReply

Underlying integral representation: uint8_t

Enumerated values for BufferingSetOptionsStatus:

SuccessValue Value 0x00

The requested operation(s) were successful.

BufferingNotSupportedValue Value 0x01

Device doesn’t support buffering.

CouldNotClearBufferValue Value 0x02

Buffer couldn’t be cleared; Possible causes include: buffered data is being transferred
currently, network conditions are causing new events to be put into the buffer, or something
else.

OtherErrorValue Value 0x03

Some other error occurred.

4.1.41 BufferingSetOptionReply Message

Message acknowledging, and giving timestamp of message buffer options being set.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
Continued on next page

4.1 Core Interface 99

Table continued from previous page
Field Name Data Type

message_type uint8_t with value 0x89
Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

status
uint8_t enumerated by

BufferingSetOptionsStatus
Field Description: Status of the request

timestamp UtcTimePoint
Field Description: The time at which the data buffer was either turned on, off, or emptied.

num_messages uint64_t
Field Description: The number of messages in the buffer that are currently in the buffer, or
were cleared (depending on request, and success). If accurately counting the messages is
impractical, this may be an estimate; a value of zero should indicate exactly zero messages
were buffered.

num_bytes uint64_t
Field Description: The number of bytes in the buffer currently, or before it was cleared,
depending on request and success. If accurately counting the number of bytes is impractical,
this may be an estimate; a value of zero should indicate exactly zero bytes were buffered.

4.1.42 PingRequest Message

A message sent from the control module to a device to check connection status, and possibly
gain timing delay information.

Note that there is no requirement that the system should process this command in any given
order (either before or after previous commands).

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x0a

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

Continued on next page

100 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

timestamp UtcTimePoint
Field Description: Microseconds since the Unix epoch. This timestamp should be calculated
at the application level, immediately before passing the message off to the networking stack,
so that the receiver of the message may use it to gain information regarding timing delays
present. A new timestamp will be provided on the reply from the original receiver as well.

4.1.43 PingReply Message

Reply to a PingRequest.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x8a

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

timestamp UtcTimePoint
Field Description: This timestamp should be taken immediately before passing the message
off to the networking stack since the control module may use this message pair as a coarse
estimate of time offset accuracy.

4.1.44 PowerDownOption Enumeration

Enumeration to indicate options for the behavior of a PowerDownRequest.

Used in message: PowerDownRequest

Underlying integral representation: uint8_t

Enumerated values for PowerDownOption:

4.1 Core Interface 101

RebootSystemValue Value 0x01

Restart the the system.

PowerOffValue Value 0x02

Power off the system. E.g. make it safe to work on or unplug the device.

4.1.45 PowerDownRequest Message

A request to a device to PowerDown.

Useful to attempt to resolve transient issues. The device should start acting as soon as it receives
this command. This message must be replied to before the WebSocket connection disconnects;
note that the WebSocket close code (see RFC 6455 7.4.1) should also be properly selected.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x0b

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

power_option uint8_t enumerated by PowerDownOption
Field Description: The option to reboot or power off.

4.1.46 PowerDownStatus Enumeration

Enumeration to indicate potential outcomes of a PowerDownRequest.

Used in message: PowerDownReply

Underlying integral representation: uint8_t

Enumerated values for PowerDownStatus:

PowerDownProceedingValue Value 0x00

PowerDown is proceeding; you should expect to lose connection momentarily.

PowerDownFailedValue Value 0x01

Something is preventing a PowerDown; a notification should be attached describing the
issue.

102 Detailed Message Descriptions

4.1.47 PowerDownReply Message

The reply to the PowerDownRequest message.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x8b

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

power_status uint8_t enumerated by PowerDownStatus
Field Description: The power status that the device is about to implement.

4.1.48 SendLogsRequest Message

A request for a device to send its internal log to the control module, if the device has some
form of internal log. The format, information content, or existence of a log is not specified and
would be expected to be device specific. This is likely to be utilized for technician maintenance
or diagnosis of device behavior.

See Also: LogReplyStatus , SendLogsReply

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x0c

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Continued on next page

4.1 Core Interface 103

Table continued from previous page
Field Name Data Type

Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

start_time UtcTimePoint
Field Description: The desired start time of the log to be returned. Microseconds since the
UNIX epoch. The device can use or not use this time at its discretion, so it should be treated
as a preference of the requester and not absolute. A value of zero indicates that the device
should send log information as far back as is possible.

end_time UtcTimePoint
Field Description: The desired end time of the log to be returned. Microseconds since the
UNIX epoch. The device can use or not use this time at its discretion, so it should be treated
as a preference of the requester and not absolute. A value of zero indicates the device
should return log information up to the current time.

max_log_size_bytes uint32_t
Field Description: The maximum size of the log that should be transferred, in bytes. This is
used to avoid sending large volumes, e.g. a 10 TB database, while in operation, which could
potentially hamper necessary network traffic. A value of zero indicates no limit, however the
device may choose to impose a limitation on log size.

4.1.49 LogReplyStatus Enumeration

Enumeration of values to represent the status of retrieving a device’s internal log.

See also:

• SendLogsRequest
• SendLogsReply

Used in message: SendLogsReply

Underlying integral representation: uint8_t

Enumerated values for LogReplyStatus:

LogRetrievedSuccessValue Value 0x00

The log is being returned successfully.

LogDoesNotExistValue Value 0x01

The device does not keep a log.

LogTimePeriodSpecifiedInvalidValue Value 0x02

An invalid time period was specified, e.g., end_time before start_time.

LogNoLogForSpecifiedPeriodValue Value 0x03

A log for the requested time period is not defined.

LogTruncatedValue Value 0x04

The log is truncated due to the maximum log size.

104 Detailed Message Descriptions

4.1.50 SendLogsReply Message

The response to an SendLogsRequest request that includes the device’s internal log if sup-
ported.

See Also: SendLogsRequest , LogReplyStatus

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x8c

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

reply_status uint8_t enumerated by LogReplyStatus
Field Description: The success status of request.

start_time UtcTimePoint
Field Description: The start time of the returned log, if it is known. Microseconds since the
UNIX epoch. This does not have to be the same as the request specified. A value of zero
indicates that the log start time is unknown.

end_time UtcTimePoint
Field Description: The end time of the returned log, if it is known. Microseconds since the
UNIX epoch. This does not have to be the same as the request specified. A value of zero
indicates that the log end time is unknown; it is likely that this would be the current time.

log_data Large Array of uint8_t
Field Description: The log data from the device - intended to be displayed in text editor, or
similar type of display. This is intended to be the equivalent of a text file, so if a specific
encoding is used, the data may begin with the appropriate byte order mark (BOMs).

4.1.51 DeviceOperabilityCheckRequest Message

A request from the control module for a device to report its ability to transition to the Operating
mode, or if there is something that would block the transition. This is not a request to actually
make the transition.

Message Contents:

4.1 Core Interface 105

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x0e

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.1.52 DeviceOperabilityStatus Enumeration

Description of a devices operability status.

Used in message: DeviceOperabilityCheckReply

Underlying integral representation: uint8_t

Enumerated values for DeviceOperabilityStatus:

DeviceIsOperating Value 0x00

Device is currently operating.

DeviceIsPreparingToOperate Value 0x01

Device is preparing to operate. For example if if the device is still initializing resources
after starting up, or performing some self-tests.

DeviceIsNotOperatingButCan Value 0x02

The device is not currently in the operating state, but there are no known issues that will
prevent it from operating if asked.

DeviceCanNotOperate Value 0x03

There is an issue and the device can not operate.

4.1.53 DeviceOperabilityCheckReply Message

A device’s reply informing the control module of its ability to transition to the DeviceOperabilityStatus::DeviceIsOperating
mode. If there is something that would block the transition, the device may also send a
NotificationPush message (referencing this message id) to explain more details.

Message Contents:

106 Detailed Message Descriptions

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x8e

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

operability_status
uint8_t enumerated by

DeviceOperabilityStatus
Field Description: Indication of if the device is in, or can be brought to the operational state.

estimate_time_to_operating_ms uint32_t
Field Description: Estimated time to resolve any issues that are preventing operability, or to
transition to operating, if known; zero if the system is already operating, or no estimate is
available.

4.1.54 SupportedDataCollectionIntervalsRequest Message

Request to check which data collection intervals a device supports. A use case for this mes-
sage is if the control module wants to make sure a detector supports a 100ms interval for taking
DataCollectionModes::ClockTimeIntervalValue data. If the control module a-
priori knows the valid intervals of a certain device, it is not required to check with the device. Also
if a device is requested to transition to the operation mode with an invalid interval, the device will
refuse to do this and will be indicated as such in the ChangeDeviceStateReply returned
to the device. For data taking modes such as DataCollectionModes::OnEventValue
(listmode data) where there is no natural interval for the data, this message checks for the inter-
vals at which heartbeats can be sent.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x0f

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Continued on next page

4.1 Core Interface 107

Table continued from previous page
Field Name Data Type

Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

data_collection_mode
uint8_t enumerated by

DataCollectionModes
Field Description: Data collection mode being inquired about.

4.1.55 SupportedDataCollectionIntervalsType Enumeration

Enumeration to convey the different ways a detector may list its valid intervals for a given data
collection mode.

Used in message: SupportedDataCollectionIntervalsReply

Underlying integral representation: uint8_t

Enumerated values for SupportedDataCollectionIntervalsType:

NoIntervalRestrictionsValue Value 0x00

The device can use any interval allowed by the RAPTER Interface Specification. There
are no further limitations imposed by the device. For example this for a data collec-
tion mode of DataCollectionModes::ClockTimeIntervalValue, the device
would support 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, and 1000
milli-second intervals. For DataCollectionModes::LiveTimeDwellValue
or DataCollectionModes::RealTimeDwellValue this option would im-
ply the device supports anything between 1 ms and 2^{}32-1 milliseconds (a
uint32_t is used to specify time interval period). This option should be specified for
DataCollectionModes::OnEventValue and DataCollectionModes::NoOriginateValue.

ListOfIntervalsValue Value 0x01

A list of valid intervals, in ms, will be returned by the device.

MinMaxIntervalValue Value 0x02

Two values will be returned that specify the minimum and maximum time intervals (inclu-
sive) that can be used.

InvalidDataCollectionModeValue Value 0x03

The data collection mode being queried isn’t supported.

4.1.56 SupportedDataCollectionIntervalsReply Message

Message that specifies valid intervals for data collection that the device supports. For information
on allowed intervals, see the DataCollectionModes enumeration.

108 Detailed Message Descriptions

Message Contents:

4.1 Core Interface 109

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x8f

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

data_collection_mode
uint8_t enumerated by

DataCollectionModes
Field Description: Data collection mode these limits are applicable to.

time_interval_type
uint8_t enumerated by

SupportedDataCollectionIntervalsType
Field Description: How the limitation is specified. If
SupportedDataCollectionIntervalsReply::data_collection_mode
is not supported by the device, then this field must be set to
SupportedDataCollectionIntervalsType::InvalidDataCollectionModeValue,
and no time periods returned. DataCollectionModes::NoOriginateValue
must specify SupportedDataCollectionIntervalsType::NoIntervalRestrictionsValue.

time_intervals Short Array of uint32_t
Field Description: Time in milli-seconds of a data collection interval that the device supports.
If SupportedDataCollectionIntervalsReply::time_interval_type
has values SupportedDataCollectionIntervalsType::NoIntervalRestrictionsValue
or SupportedDataCollectionIntervalsType::InvalidDataCollectionModeValue
then no values will be provided. If SupportedDataCollectionIntervalsReply::time_interval_type
has value SupportedDataCollectionIntervalsType::ListOfIntervalsValue
then this field will be a list of supported intervals. If
SupportedDataCollectionIntervalsReply::time_interval_type has
value SupportedDataCollectionIntervalsType::MinMaxIntervalValue,
then this field will have two entries. If SupportedDataCollectionIntervalsReply::data_collection_mode
is DataCollectionModes::ClockTimeIntervalValue or
DataCollectionModes::OnEventValue,

4.1.57 ChangeDeviceStateRequest Message

Message from the control module to a device requesting a change in the operating state of a the
device.

Message Contents:

110 Detailed Message Descriptions

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x10

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

operating_mode uint8_t enumerated by OperatingMode
Field Description: The requested new operating mode.

data_collection_mode
uint8_t enumerated by

DataCollectionModes
Field Description: The requested new mode for collecting data. If transitioning to an
operating mode other than OperatingMode::OperatingValue this value must
be DataCollectionModes::NoOriginateValue (integer value 0). For transi-
tions to OperatingMode::OperatingValue, the mode specified must be one the
device supports, as specified by DeviceInfoReply::data_collection_modes
or else the request will fail. Note that when a dwell measurement finishes (and
OperatingMode automatically changes to OperatingMode::ReadyValue), the device will
send a DeviceStatusPush to the control module, after it sends the data, to inform the
control module of the device’s new state.

measurement_type uint8_t enumerated by MeasurementType
Field Description: The type of measurement to perform or being performed (item of interest,
background, not specified, possible interfering source, or active maintenance).

collection_interval_ms uint32_t
Field Description: Data collection interval. Specifies interval to
send data (DataCollectionModes::ClockTimeIntervalValue,
DataCollectionModes::LiveTimeDwellValue, or
DataCollectionModes::RealTimeDwellValue), or HeartbeatPush
messages (DataCollectionModes::OnEventValue or
DataCollectionModes::NoOriginateValue, if value is non-zero). If tran-
sitioning to an operating mode other than OperatingMode::OperatingValue this
value must be 0.

requested_transition_time UtcTimePoint
Continued on next page

4.1 Core Interface 111

Table continued from previous page
Field Name Data Type

Field Description: Target time for the transition to occur, if non-zero. A value of zero,
or any value less than the present indicates to perform the transition now. Otherwise,
this is the target time for the transition to become complete, with the exception of transi-
tioning out of OperatingMode::OperatingValue, in which case it is the time to
stop operating and start transitioning to the state specified. When this transition time is
specified, and it is in the future (relative to when the message is received), at least two
ChangeDeviceStateReply messages will be sent back to the control module by the
device. One to acknowledge the transition can occur), and the other to indicate completion
or failure of transition. There may be more intermediate ChangeDeviceStateReply
messages if the transition estimate needs updating for some reason (ex will take longer to
stabilize the high voltage than is available when transitioning to operation). If you are tak-
ing a dwell, and you specify a time after the dwell ends, then the dwell measurement will
not be effected; if you specify a time before the dwell ends, then the dwell will be cut short.
This transition time should be considered a target time, as there may be limitations in hard-
ware (ex. cooling down, bringing H.V. up, or timer accuracy) that prevent this time from
being exact. If there is a currently pending request for a transition at a given time, and then
another request for a transition is specified, the original pending transition is canceled. If a
transition has been specified for the future, to cancel it, specify a transition to the current
state, to which you will get a reply CommandReplyStatus::CompletedValue and
whose ChangeDeviceStateReply::previous_device_operating_mode
and ChangeDeviceStateReply::requested_device_operating_mode
will be the current state. Note that the original transition mes-
sage should still get a ChangeDeviceStateReply message with
the ChangeDeviceStateReply::status_of_transition set to
CommandReplyStatus::CanceledValue; this message should be sent be-
fore any replies to the second message (that does the canceling) is sent. If the value
specified by ChangeDeviceStateRequest::measurement_type is different
then the previous value, then it should be assumed that this change takes place at the tran-
sition time as well. When transitioning out of OperatingMode::OperatingValue,
the ChangeDeviceStateReply message should be sent out before the (final) data.

4.1.58 CommandReplyStatus Enumeration

Indicates the status for a number of types of reply messages. Messages whose replies use this
status may receive more than one reply; for things like turning a high voltage on which could take
a while may first send a reply with status of CommandReplyStatus::InProgressValue
to prevent a communications timeout, and then once the voltage is on and stabilized, another re-
sponse to the original message will be sent with a status of CommandReplyStatus::CompletedValue.

Used in message: ChangeDeviceStateReply

Underlying integral representation: uint8_t

Enumerated values for CommandReplyStatus:

CompletedValue Value 0x01

Indicates that the requested action has been completed with no issues.

112 Detailed Message Descriptions

RedundantValue Value 0x02

Indicates that the requested action has no effect. An example would be if an
ChangeDeviceStateRequest request with a corresponding OperatingMode::OperatingValue
message was sent, but the device was already in the process of initializing or conducting
data collection.

InProgressValue Value 0x04

Indicates that the request was received and is currently in the process of be-
ing completed. This must be sent when commands will maybe take longer than
RapterConstants::REPLY_TIMEOUT_MS, so that the sender will not assume that
the device has become un-operational, or is ignoring the request. If the final reply will take
longer than an additional RapterConstants::FOLLOWUP_REPLY_TIMEOUT_MS
milliseconds, then you must send further replies with a status of CommandReplyStatus::InProgressValue
at least within RapterConstants::FOLLOWUP_REPLY_TIMEOUT_MS millisec-
onds or the control module will assume a timeout. An estimate of the time remaining may,
or may not be included in the message to indicate when the device will be ready. Zero,
one, or multiple messages with this status may be sent for each request.

CanceledValue Value 0x08

Indicates that the command which was in progress, or which was set to be done in the
future, was canceled or superseded by the explicit dispatch of an interfering command.
For example, an ChangeDeviceStateRequest command is sent with the operat-
ing mode field set to OperatingMode::ReadyValue, which will take 50 seconds
to complete; during this 50 second window, another ChangeDeviceStateRequest
message is sent with corresponding field set to OperatingMode::StandByValue.
The first command will therefore be replied to with an ChangeDeviceStateReply
message with the status field set to CommandReplyStatus::CanceledValue;
this message may be sent before or after any replies to the second command. The second
command will be sent replies as normal.

CompletedWithIssueValue Value 0x10

Indicates that the requested action has been completed, but that there may have been
issues. A NotificationPush message must also be sent to provide additional infor-
mation on the issue.

See also: NotificationPush

FailedValue Value 0x20

Indicates that the requested action could not be completed. A NotificationPush
message must also be sent to provide additional information on the issue.

See also: NotificationPush

4.1.59 ChangeDeviceStateReply Message

Reply from device to a ChangeDeviceStateRequest, which updates the control module
on the status of a requested transition, or any errors encountered.

Message Contents:

4.1 Core Interface 113

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x90

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

status_of_transition
uint8_t enumerated by

CommandReplyStatus
Field Description: Status of the transition. Note that the device must send
a message with status of CommandReplyStatus::CompletedValue or
CommandReplyStatus::CompletedWithIssueValue after all data of the
previous state have been sent and before any data of this new state are sent.

previous_device_operating_mode uint8_t enumerated by OperatingMode
Field Description: The operating mode of the device at the time that the request to change
state was received.

previous_device_data_collectio �

n_mode
uint8_t enumerated by

DataCollectionModes
Field Description: The data collection mode of the device at the time that the request to
change state was received.

previous_device_collection_int �

erval_ms
uint32_t

Field Description: The data collection interval of the device at the time that the request to
change state was received.

previous_measurement_type uint8_t enumerated by MeasurementType
Field Description: The measurement type in effect on the device at the time that the request
to change state was received.

requested_device_operating_mode uint8_t enumerated by OperatingMode
Field Description: The requested new operating mode for the device.

requested_device_data_collecti �

on_mode
uint8_t enumerated by

DataCollectionModes
Field Description: The requested new data collection mode for the device.

requested_device_collection_in �

terval_ms
uint32_t

Field Description: The requested new data collection interval for the device.
requested_measurement_type uint8_t enumerated by MeasurementType

Field Description: The requested new measurement type to be applied by the device.
new_state_effective_timestamp UtcTimePoint

Continued on next page

114 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: Time that the state change was com-
pleted (CommandReplyStatus::CompletedValue or
CommandReplyStatus::CompletedWithIssueValue), or is pre-
dicted to be completed (CommandReplyStatus::InProgressValue),
or failed (CommandReplyStatus::FailedValue), or was cancelled
(CommandReplyStatus::CanceledValue), or a redundant request
(CommandReplyStatus::RedundantValue) was received. If the status is
CommandReplyStatus::InProgressValue, then this value may be zero if there
is no estimate available for when the transition will finish.

4.1.60 MeasurementTypeChangeRequest Message

Message sent from the control module to each connected device to indicate what is currently
being measured. This is intended as a hint for the device on how to treat the data internally in
case the device calibrates off data, or something similar.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x15

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

effective_timestamp UtcTimePoint
Field Description: Time when new MeasurementTypeChangeRequest::measurement_type
went into effect. Microseconds since the Unix epoch. This must not be a future time, or
a time before indicated by any previous MeasurementTypeChangeRequest.
Any messages from the old MeasurementType must be sent before the
DeviceStatusPush message is sent that reports compliance with the requested
change of MeasurementType. Any messages originating from the new state must not
precede this DeviceStatusPush message. If the control module is unable to specify
the time (for example, when the system first starts up, or a module is just coming online and
the control module implementation didn’t keep the timestamp of the last transition) then this
field may be zero (but this is discouraged) where the receiving device should interpret it as
’now’; if a future value is specified, the transition should be interpreted as ’now’.

Continued on next page

4.1 Core Interface 115

Table continued from previous page
Field Name Data Type

measurement_type uint8_t enumerated by MeasurementType
Field Description: Message sent by control module to change to a new measurement type.

4.1.61 MeasurementTypeChangeReply Message

An acknowledgement of receiving a MeasurementTypeChangeRequest.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x95

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

processed_timestamp UtcTimePoint
Field Description: Timestamp of when the MeasurementTypeChangeRequest was
processed.

4.1.62 FirmwareUpgradeRequest Message

A request sent to a device to upgrade its firmware with the supplied blob.

The blob can be hashed and signed using the manufacturer choice of hashing scheme,
as well as detached signature; these fields are optional and not using them does not
necessarily imply insecurity as the blob may have a signature attached to the blob
that both validates its integrity and origin. Should only be sent by devices that have
the DeviceFeaturesFlags::DeviceSupportsFirmwareUpgradesFlag bit of
DeviceInfoReply::device_features set.

The actual mechanism behind the upgrade is not specified. One potential example mechanism
that could be used is: The blob could be a zip file that once unzipped contains a script that gets
executed, as well as any files necessary for the script to do its job of upgrading the firmware.
PGP could be used to sign the blob, with the appropriate public key pre-installed on the device,
and MDA5 used to create the hash (these could also be contained within the zip file). There
could be two separate OS volumes used such that the previous operating system or software is
not re-written, but instead the newly upgraded firmware can be selected to be used. There could

116 Detailed Message Descriptions

also be a counting boot-loader, and other failure detection protections, that would roll-back the
upgrade if the device fails to boot up more than X times, or fails to connect more than Y times
after restarting - or it could restore the device back to the factory state (erasing all data).

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x11

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

blob Large Array of uint8_t
Field Description: The actual binary data for the firmware upgrade. The mechanism by
which upgrade takes place is not specified.

blob_hash Short Array of uint8_t
Field Description: Hash of the FirmwareUpgradeRequest::blob field. Ex. if a
MDA5 hash is used would be a 16 byte value. The purpose of this field is to verify data
integrity. Devices manufacturers can choose whether or not to use this field, but if they do,
the hash will need to be supplied with the blob upgrade.

signature Medium Array of uint8_t
Field Description: The detached signature for the data to verify source of the update. An ex-
ample of the use for this field would be to use gpg with a private key (ex: gpg –output blob.sig
–detach-sig blob) to generate this signature, which the device could then use the previ-
ously installed public key to verify this FirmwareUpgradeRequest::signature of
FirmwareUpgradeRequest::blob was made by an allowable source. Devices man-
ufacturers can choose whether or not to use this field.

4.1.63 FirmwareUpgradeStatus Enumeration

Enumerations to describe the progress of a firmware upgrade.

Used in message: FirmwareUpgradeReply

Underlying integral representation: uint8_t

Enumerated values for FirmwareUpgradeStatus:

FirmwareUpgradeReceivedWillProcessValue Value 0x00

Use this enumeration to prevent a timeout of a firmware upgrade that is proceeding nor-
mally but is not yet complete.

4.1 Core Interface 117

FirmwareUpgradeNotSupportedValue Value 0x01

Status to send if the device does not support firmware upgrades.

FirmwareUpgradeInvalidStateToUpgradeValue Value 0x02

Status to send if the device is not in a state that would allow it to upgrade, for example, it
is currently taking data. The device itself determines what state it must be in in order to
accept updates. There is no mechanism to query the device about its requirements in this
regard.

FirmwareUpgradeFailedIntegrityCheckValue Value 0x03

The hash of the upgrade blob failed its check.

FirmwareUpgradeInvalidSignatureValue Value 0x04

The signature was not valid for the given upgrade blob.

FirmwareUpgradeFailedUnpackValue Value 0x05

The upgrade blob had an unexpected format, so could not be unpacked. Ex. the device
expected the blob to be a zip file, but it was not.

FirmwareUpgradeInvalidBlobValue Value 0x06

The upgrade was in some way not what the device required. Ex. an expected file was not
in the output of unzipping the blob.

FirmwareUpgradeFailedOtherValue Value 0x07

The upgrade failed in some other way. The FirmwareUpgradeReply::comment
will provide details.

FirmwareUpgradeInProgressValue Value 0x08

Notification that the device is working normally to install the upgrade.

FirmwareUpgradeDoneWillRebootValue Value 0x09

The upgrade has completed successfully, and the device will now disconnect, and then
reconnect.

FirmwareUpgradeSuccesfulValue Value 0x0a

The upgrade was successful, can continue on functioning as normal now without discon-
necting or rebooting.

4.1.64 FirmwareUpgradeReply Message

Reply from a device to a FirmwareUpgradeRequest from the control module.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
Continued on next page

118 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

message_type uint8_t with value 0x91
Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

status
uint8_t enumerated by

FirmwareUpgradeStatus
Field Description: The status of the firmware upgrade, whether final, waiting, or an error
occurred.

comment Medium String
Field Description: Comments relating to the firmware upgrade.

4.1.65 ParameterNamesRequest Message

A request sent to a device for it to return a list of all parameters of the device has.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x12

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.1.66 ParameterNameAndSubDetectorNumber Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

4.1 Core Interface 119

Message Contents:

Field Name Data Type
parameter_name Short String

Field Description:
subdetector_number uint8_t

Field Description:

4.1.67 ParameterNamesReply Message

A reply by a device to a ParameterNamesRequest message. Parameter names must con-
sist of only ascii letters, numbers, underscores, period, dash, and space characters. The possible
parameters present can not change after a WebSocket connection is established.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x92

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

parameter_names
Medium Array of
ParameterNameAndSubDetectorNumber

Field Description: Names of the parameters, as well as the sub-detectors they are associ-
ated with.

4.1.68 ParameterUpdateOption Enumeration

Option used by ParameterInfoRequest for how the measured value of a parameter should
be updated.

Used in message: ParameterInfoRequest

Underlying integral representation: uint8_t

Enumerated values for ParameterUpdateOption:

DefaultValue Value 0x00

Vendor determines if the measured value needs to be read and updated or not before

120 Detailed Message Descriptions

replying to the ParameterInfoRequest.

MostRecentReadingValue Value 0x01

Device should return the most recent reading of the parameter, but should not bother to
update its reading before replying to the ParameterInfoRequest, unless otherwise
necessary to get the value.

UpdatedReadingValue Value 0x02

Device should read out the current value, if possible.

4.1.69 ParameterInfoRequest Message

Request to a device from the control module for information on a given parameter of the device.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x13

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

update_option
uint8_t enumerated by

ParameterUpdateOption
Field Description: Hint to the device for how the measured value of a parameter should
be updated. This option may be ignored for measured parameters, and is ignored for non-
measured parameters. Also note that ParameterInfoReply does not have to say if
this hint was obeyed or not, but should be inferred from the timestamp.

parameter_name Short String
Field Description: UTF-8 encoded name of the parameter.

subdetector_number uint8_t
Field Description: Subdetector

4.1.70 ParameterInfoStatus Enumeration

Enumeration of validity status of a parameter reply message.

Used in message: ParameterInfoReply

4.1 Core Interface 121

Underlying integral representation: uint8_t

Enumerated values for ParameterInfoStatus:

ValidParameterNameValue Value 0x00

The requested parameter is a valid parameter.

InvalidParameterNameValue Value 0x01

The requested parameter is not a valid parameter.

4.1.71 ParameterValueDataType Enumeration

An enumeration of data types that can be used for parameters; all data types will be represented
as a string, but this enum specifies how the string must be formatted.

Used in message: ParameterInfoReply

Underlying integral representation: uint8_t

Enumerated values for ParameterValueDataType:

BooleanValue Value 0x00

A boolean type. Value can only have the following representations: "true", "false", "0", "1"

IntegerValue Value 0x01

An integer, as could be represented by a int64_t. Leading zeros are prohibited,
and representation is always in base-10. For example: ’-1’, ’0’, ’2147483647’, ’+1000’,
’9223372036854775807’.

FloatValue Value 0x02

A IEEE 754 double precision floating point number represented as text. However,
like the rest of this specification, ’INF’ and ’NaN’ are prohibited. Examples include:
’3.14’, ’-3E4’, ’1.0’, ’3.2E-9’, ’33.823E-1’, ’-0’, ’0’. See https://www.w3.org/TR/2004/REC-
xmlschema-2-20041028/datatypes.html

Utf8StringValue Value 0x03

A UTF-8 encoded string. Note: may be an empty string.

FloatingPointListValue Value 0x04

A space separated list of IEEE 754 double precision floating point numbers represented
as text. ’INF’ and ’NaN’ values are prohibited. Note: an empty list is valid.

IntegerListValue Value 0x05

A space separated list of 64-bit integers represented as text. Note: an empty list is valid.

122 Detailed Message Descriptions

4.1.72 HealthSeverityLevel Enumeration

Enumeration of a device’s health assessment of a parameter in regards to quality of data and its
impact on operation.

Used in message: ParameterInfoReply

Underlying integral representation: uint8_t

Enumerated values for HealthSeverityLevel:

NotApplicableValue Value 0x00

This parameter does not effect operation.

NoProblemValue Value 0x01

Value indicating that the value of this parameter is not impacting operation.

WarningNotAffectingDeviceOperationValue Value 0x02

The value of this parameter is a cause for concern, but not currently affecting quality of
the primary operation of the module. Examples include: CPU temperature is higher than
expected, but still within its specification, or input voltage is lower than expected, but still
high enough to operate normally.

WarningAffectingDeviceOperationValue Value 0x03

The value of this parameter may be causing a degradation of quality in the primary opera-
tion of the module. Examples might include: high voltage power supply not reaching target
voltage, or a bias current being outside of its calibrated range.

FatalEffectOnDeviceOperationValue Value 0x04

Parameter is abnormal and preventing the device from operating. Examples might include:
high voltage power supply to hot, abnormal PMT currents, hard drive free space too low,
ambient humidity to high, etc.

IntentionalPreventionOfDeviceOperationValue Value 0x05

The mechanism driving this parameter is doing its intended purpose of preventing the
device from operating. Example uses of this might be: enclosure door is open, an external
input that prevents data-taking is activated (for example, from an x-ray machine that is
operating nearby), or a manual interrupt switch is flipped.

NotAbleToMeasureValue Value 0x06

The parameter is not able to be measured/read-out for some reason. Examples of this
might be: hardware failure, garbage data from a humidity sensor, or a failure to initialize
appropriate operating system resources to interact with hardware.

HealthNotCurrentlyApplicableValue Value 0x07

This health status of this parameter is not currently applicable most likely due to its oper-
ational state. An example of when this value might be used is for high voltage; a healthy
range of voltages may be defined, but when the detector is not operating, the voltage will
be at zero, which would be outside of the healthy range. Rather than declaring this param-
eter to be unhealthy, this value would be used to indicate its health status is not currently

4.1 Core Interface 123

applicable. Note that the health status of a parameter changing to or from this value will
also case an update push of the parameter to be sent out by the device.

4.1.73 ParameterPropertiesFlags Enumeration

Flags that may be bitwise OR’d to describe one or more properties of a parameter .

Underlying integral representation: uint32_t

Enumerated values for ParameterPropertiesFlags:

ValueFixedFlag Value 0x01

A parameter that is fixed, can not be altered, and will not change during any WebSocket
Connection. Cannot be combined with ParameterPropertiesFlags::SettableFlag.

SettableFlag Value 0x02

The parameter can be set by a user. May be combined with all other options other than
ParameterPropertiesFlags::ValueFixedFlag.

MeasuredFlag Value 0x04

The parameter will report a measured value. May be combined with all other options.

HealthyValueRangedFlag Value 0x08

The parameter has a range of measured values considered to be health or within tol-
erance. Note, this healthy range may be different than the range the value is allowed
to be set, if parameter is settable. May be combined with all other options except
ParameterPropertiesFlags::AffectsHealthWithoutLimitsFlag.
Must also have the ParameterPropertiesFlags::MeasuredFlag bit set. Not
applicable to parameters of type ParameterValueDataType::Utf8StringValue.

SetValueRangedFlag Value 0x10

The values of the parameter are constrained to only be settable in a certain range. May be
combined with all other options except ParameterPropertiesFlags::ValueFixedFlag.
Not applicable to parameters of type ParameterValueDataType::Utf8StringValue
or ParameterValueDataType::BooleanValue. The ParameterPropertiesFlags::SettableFlag
must also be set if this flag is set.

ReportOnChangeFlag Value 0x20

Indicates that the device will notify the control module of changes in a measured
values parameter, when it changes by more that a specified value (for ints/bool-
s/floats; changes in string always reported) from the previously reported value, or
it has crossed a threshold between healthy value and not healthy, or similar. The
ParameterPropertiesFlags::MeasuredFlag must also be set.

ReportOnChangeDeltaSettableFlag Value 0x40

Indicates that the delta is settable. Delta is computed as the difference between the previ-
ously reported value and the new value. This value should be settable whether device is
collecting data or not. The ParameterPropertiesFlags::ReportOnChangeFlag
and ParameterPropertiesFlags::MeasuredFlag bits must also be set.

124 Detailed Message Descriptions

HealthyLimitsSettableFlag Value 0x80

Indicates that the limits can be set for the healthy range of a parameter. The
ParameterPropertiesFlags::HealthyValueRangedFlag bit must also
be set.

AffectsHealthWithoutLimitsFlag Value 0x100

Indicates that the parameter affects health, however there are no explicit limits that dictate
the healthy range. This is useful for string based variables, or numeric variables where the
healthy range can not be a priori determined.

NotSettableWhileOperatingFlag Value 0x200

Indicates a settable parameter can not be set while the device is operating.
If this bit is set, this parameter can only be set when the device is in the
OperatingMode::StandByValue or OperatingMode::ReadyValue operat-
ing modes. If you request a parameter to be changed while in another state, the device can
either return a SetParameterReply indicating an error, or the device can transition
to the OperatingMode::StandByValue or OperatingMode::ReadyValue
operating mode, change the parameter, and then return to its current operating mode
(during which each state change needs to be accompanied by a DeviceStatusPush
message). The ParameterPropertiesFlags::SettableFlag bit must also
be set.

SettableWithPredefinedValuesOnlyFlag Value 0x400

Settable parameters that can only take on certain discreet values, are indicated by setting
this bit. Currently, valid values can only be specified in the description of the parameter. If
a change to a value that is not one of the discreet values is allowed by the device, then the
device choose to either reject the change indicating an error, or just round to the nearest
value. The ParameterPropertiesFlags::SettableFlag bit must also be set.

4.1.74 ParameterInfoReply Message

Contains the full information about a parameter. The number of parameters, their names, type
(bool/int/float/string/etc), and ParameterInfoReply::value_properties of parame-
ters can not change during a single connection to the control module.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x93

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

Continued on next page

4.1 Core Interface 125

Table continued from previous page
Field Name Data Type

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

reply_status
uint8_t enumerated by

ParameterInfoStatus
Field Description: Status of this request. If status is not
ParameterInfoStatus::ValidParameterNameValue, then
ParameterInfo::parameter_name and ParameterInfo::subdetector_number
must match the values requested, but all other integer based fields must have a value of
zero, and all string based fields must have a length of zero.

value_type
uint8_t enumerated by

ParameterValueDataType
Field Description: The data type of this parameter. Each
applicable field in ParameterInfoReply::set_value,
ParameterInfoReply::measured_value, ParameterInfoReply::lower_healthy_measured_value,
ParameterInfoReply::upper_healthy_measured_value,
ParameterInfoReply::lower_settable_value, ParameterInfoReply::upper_settable_value,
and ParameterInfoReply::reportable_change_delta (as can be deter-
mined from the ParameterInfoReply::value_properties field) must be
lexically encoded as this value type (non applicable fields must be empty strings).

parameter_health_impact
uint8_t enumerated by

HealthSeverityLevel
Field Description: The devices assessment as to the impact of the value of this parame-
ter. For both ParameterPropertiesFlags::HealthyValueRangedFlag and
ParameterPropertiesFlags::AffectsHealthWithoutLimitsFlag pa-
rameters, it is the responsibility of the sender to mark the health status, regardless of
healthy limits or current measured value.

subdetector_number uint8_t
Field Description: The subdetector this Parameter applies to, or zero if not associated with
a specific sub-detector.

value_properties
uint32_t bits defined by

ParameterPropertiesFlags
Field Description: A bitwise OR of ParameterPropertiesFlags flags.

set_timestamp UtcTimePoint
Field Description: The timestamp at which this parameter was last set. May be zero for
factory values, or other situations where it wouldn’t be able to be tracked, or if the parameter
is not settable.

effective_timestamp UtcTimePoint
Continued on next page

126 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: The timestamp at which this parameter was last measured, or health
status determined. If this parameter does not change, or effect health status this field
must be zero. (i.e. zero unless ParameterInfoReply::value_properties has
ParameterPropertiesFlags::AffectsHealthWithoutLimitsFlag or
ParameterPropertiesFlags::MeasuredFlag bits set)

parameter_name Short String
Field Description: Name of the parameter; must not be empty, and use only only ascii letters,
numbers, underscore, dash, period, and space characters.

set_value Short String
Field Description: Value of the parameter, if ParameterInfoReply::value_properties
contains ParameterPropertiesFlags::ValueFixedFlag or
ParameterPropertiesFlags::SettableFlag; otherwise the string shall be
empty. Value is always represented as a UTF8 string which is a lexical encoding of the type
specified by ParameterInfoReply::value_type. Lexical encoding of non-string
values is according to the same rules as for XML data types, with the exception that Infs
and NaNs are not allowed for floating points; see https://www.w3.org/TR/xmlschema11-
2/. If ParameterInfoReply::value_properties
is ParameterPropertiesFlags::ValueFixedFlag or
ParameterPropertiesFlags::SettableFlag, then this field
may only be empty if ParameterInfoReply::value_type has
a value of ParameterValueDataType::Utf8StringValue,
ParameterValueDataType::FloatingPointListValue, or
ParameterValueDataType::IntegerListValue

measured_value Short String
Field Description: The measured value of the parameter if, and
only if, ParameterInfoReply::value_properties has the
ParameterPropertiesFlags::MeasuredFlag bit set, otherwise string must
be empty. Value is always represented as a UTF8 string which is a lexical encoding
of the type specified by ParameterInfoReply::value_type. Lexical encod-
ing of non-string values is according to the same rules as for XML data types; see
https://www.w3.org/TR/xmlschema11-2/, with the exception floats can not be Infs or
NaNs.

lower_healthy_measured_value Short String
Field Description: The lower limiting value in the range of val-
ues over which this parameter is still considered ’healthy’. Used if
and only if ParameterInfoReply::value_properties has the
ParameterPropertiesFlags::HealthyValueRangedFlag bit set, and
otherwise must be an empty string. Value must be lexically encoded according to same
rules as XML data types.

upper_healthy_measured_value Short String
Continued on next page

4.1 Core Interface 127

Table continued from previous page
Field Name Data Type

Field Description: The highest value at which this parameter is still considered
’healthy’. Used only if ParameterInfoReply::value_properties has the
ParameterPropertiesFlags::HealthyValueRangedFlag bit set, otherwise
must be an empty string. Value must be lexically encoded according to same rules as XML
data types.

lower_settable_value Short String
Field Description: The lowest value at which this parameter can be set. If this value is depen-
dent upon a value of another parameter (e.x. both parameters must multiply together and
be higher than a given number), then this value lists the absolute lowest value the parame-
ter can take, but the parameter description should give this limitation, and if the parameter
is requested to be changed to a value that it cant be set to (partially due to the other de-
pendent parameter), a reply with a status of CommandReplyStatus::FailedValue
should be given. Used if and only if ParameterInfoReply::value_properties
field has the ParameterPropertiesFlags::SetValueRangedFlag bit set, oth-
erwise this string must be empty. Value must be lexically encoded according to same rules
as XML data types.

upper_settable_value Short String
Field Description: The absolutely highest value at which this parameter can be set.
If this upper threshold value is dependent upon a value of another parameter (e.x.
both parameters must add together and be lower than a given number), then this
value should list the absolute highest value the parameter can take, but the param-
eter description should give this limitation, and if the parameter is requested to be
changed to a value that it cant be set to (partially due to the other dependent param-
eter), a reply with a status of CommandReplyStatus::FailedValue should be
given. Used if and only if ParameterInfoReply::value_properties has the
ParameterPropertiesFlags::SetValueRangedFlag bit is set, otherwise this
string must be empty. Value must be lexically encoded according to same rules as XML
data types.

reportable_change_delta Short String
Field Description: The amount a measured value needs to change before an update
will be sent. Used only if ParameterInfoReply::value_properties has the
ParameterPropertiesFlags::ReportOnChangeFlag bit set, otherwise this
string will be empty. For boolean parameters, setting delta to false indicates report on
change (such that a change in value results in a Boolean change from zero to one), while
true indicates do not report (for which a change of one or more does not result in a change
of Boolean value). Value must be lexically encoded according to same rules as XML data
types, with the restriction that for floating point types Infs and NaNs are not allowed.

parameter_description Medium String
Field Description: Human readable, UTF-8 description of the parameter.

4.1.75 ParameterField Enumeration

Describes which field to set when setting a parameter value, or what field changed when notifying
of a change. Only one field change can be reported per message.

128 Detailed Message Descriptions

Used in message: SetParameterRequest

Underlying integral representation: uint8_t

Enumerated values for ParameterField:

SetValueValue Value 0x00

The set value of a parameter.

LowerHealthValue Value 0x01

The lowest healthy value of a parameter.

UpperHealthValue Value 0x02

The uppermost healthy value of a parameter.

ChangeDeltaValue Value 0x03

The reportable change delta (i.e., difference from a previous measurement) for a measured
value. For boolean parameters, setting delta to false indicates report on change (such that
a change in value results in a Boolean change from zero to one), while true indicates do
not report (for which a change of one or more does not result in a change of Boolean
value).

MeasuredValueValue Value 0x04

A measured value. Can only be used in ParameterInfoReply, and ParameterUpdatePush
messages.

4.1.76 SetParameterRequest Message

Message to set a parameter field. Note that only one field of a parameter can be changed at
a time, and changing other fields will require separate SetParameterRequest messages.
For example, if a high voltage is controlled with a settable parameter, which also uses upper and
lower healthy values to ensure the measured voltage is within a prescribed range, then when
changing the set high voltage, you will have to use three separate SetParameterRequest
messages in order to change all three fields. Also, the order fields are set may be important so
that superfluous warnings are not generated; for example, if increasing the voltage you would
first increase the upper healthy value, then the set value, then the lower healthy value.

See Also: SetParameterReply

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x14

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

Continued on next page

4.1 Core Interface 129

Table continued from previous page
Field Name Data Type

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

value_type
uint8_t enumerated by

ParameterValueDataType
Field Description: The data type of the value of parameter field.

parameter_field uint8_t enumerated by ParameterField
Field Description: Which field of the parameter should be set. Only one parameter field
can be set per message. The field being requested to be set should be allowed by
this parameters ParameterInfoReply::value_properties value. For example
the ParameterPropertiesFlags::ReportOnChangeDeltaSettableFlag
bit must be set in order to change the ParameterField::ChangeDeltaValue field.

subdetector_number uint8_t
Field Description: The subdetector this Parameter applies to, or zero if not associated with
a specific sub-detector.

parameter_name Short String
Field Description: UTF-8 encoded name of the parameter.

value Short String
Field Description: Data type must match what is specified by
SetParameterRequest::value_type, encoded as a string as in
https://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html

4.1.77 SetParameterReply Message

A reply to a SetParameterRequest from the control module, indicating the status of the
change.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x94

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

Continued on next page

130 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

reply_status
uint8_t enumerated by

CommandReplyStatus
Field Description: Status of the request, see CommandReplyStatus.

timestamp UtcTimePoint
Field Description: Timestamp of when the parameter setting became effective. Or if status
was CommandReplyStatus::InProgressValue, than either zero, or an estimate
of when it will become effective. Microseconds since the Unix epoch.

4.1.78 ParameterUpdatePush Message

Message sent by a device to the control module informing of a change to a single parameter of
the device.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x18

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

change_timestamp UtcTimePoint
Field Description: Timestamp of when the change became effective, or at least when it was
noticed to have become effective. Microseconds since the Unix epoch.

value_type
uint8_t enumerated by

ParameterValueDataType
Field Description: Data type of the value field. The data type cannot change during a
connection, once it has been provided.

parameter_field uint8_t enumerated by ParameterField
Continued on next page

4.1 Core Interface 131

Table continued from previous page
Field Name Data Type

Field Description: Enumeration identifying which field of the parameter changed.
Only one field change can be reported per message. Note that if a measured
value changes, which also causes a health status change, this field should re-
port that it was the measured value that changed, while the health status change
is reported in the ParameterUpdatePush::parameter_health_impact
field, and the new value of the measurement goes in the
ParameterUpdate::value field. If the ParameterField::SetValueValue,
ParameterField::LowerHealthValue or ParameterField::UpperHealthValue
are changed, causing a change to the health status, then it should be re-
ported what was changed, and the new health status should be noted in
ParameterUpdatePush::parameter_health_impact.

parameter_health_impact
uint8_t enumerated by

HealthSeverityLevel
Field Description: The impact of the current value of the parameter on health.

subdetector_number uint8_t
Field Description: The subdetector this Parameter applies to, or zero if not associated with
a specific sub-detector.

parameter_name Short String
Field Description: Parameter name; only ascii letters, numbers, underscore, period, dash,
and space characters are allowed.

value Short String
Field Description: Data type must match what is specified by
ParameterUpdatePush::value_type, encoded as a string as in
https://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html

4.1.79 ParameterUpdatePushAck Message

A message acknowledging the receipt by the control module of a ParameterUpdatePush

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x00

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x98

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Continued on next page

132 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.2 Radiation Detector Interface

4.2.1 RadDetectorMsgType Enumeration

Values to indicate the type of message being sent as part of the MessageGroup::RadDetectorValue
message group. In this message group, push messages originate at the radiation de-
tector modules, and request messages originate at the control module. The first byte
of messages shall have a value of MessageGroup::RadDetectorValue (0x08),
and the second byte of the message will have a value as indicated by this enum, which
will then tell you how to decode the message. For example a second byte value of
RadDetectorMsgType::RadSubDetectorInformationRequestValue will tell
you the message contents are specified by RadSubDetectorInformationRequest.

Underlying integral representation: uint8_t

Enumerated values for RadDetectorMsgType:

RadSubDetectorInformationRequestValue Value 0x61

A request from the control module to the radiation detector module for infor-
mation about the radiation related capabilities of a given subdetector. See
RadSubDetectorInformationRequest for message contents and format.

RadSubDetectorInformationReplyValue Value 0xe1

A reply from a radiation detector module to the control module in response to a
RadSubDetectorInformationRequestmessage. See RadSubDetectorInformationReply
for message contents and format.

RadChannelDataPushValue Value 0x62

Message sent from the radiation detector to the control module containing the channel data
(spectrum), or gross counts information (i.e., a one channel spectrum) and related informa-
tion of a measurement interval for a single subdetector. See RadChannelDataPush
for message contents and format.

RadChannelDataPushAckValue Value 0xe2

Acknowledgment sent from the control module to the radiation detector module that veri-
fies the channel data was received.

RadListModeDataPushValue Value 0x63

Message containing List mode data sent from the radiation detector module to
the control module for a single detection event from a single subdetector. See
RadListModeDataPush for message contents and format.

4.2 Radiation Detector Interface 133

RadListModeDataPushAckValue Value 0xe3

Acknowledgment sent from the control module to the radiation detector that verifies the
listmode data was received. See RadListModeDataPushAck for message contents
and format.

RadEnergyCalibrationUpdatePushValue Value 0x64

Message sent from a radiation detector module to the control module when the energy cal-
ibration has been updated. Note that this message might be sent even in cases when the
actual energy calibration parameters have not changed but perhaps were either checked
or verified, or the detector’s internal scaling changes (e.x., when a detector always lin-
earizes data to a fixed calibration, but its internal scaling periodically gets updated). See
RadEnergyCalibrationUpdatePush for message contents and format.

RadEnergyCalibrationUpdatePushAckValue Value 0xe4

Acknowledgement sent from the control module to the radiation detector that verifies the
energy calibration was received. See RadEnergyCalibrationUpdatePushAck
for message contents and format.

RadEnergyCalibrationRequestValue Value 0x65

Request sent from the control module to a radiation detector module, for the mod-
ule to send back the current energy calibration for the specified subdetector. See
RadEnergyCalibrationRequest for message contents and format.

RadEnergyCalibrationReplyValue Value 0xe5

Reply sent from the radiation detector module to the control module containing the current
energy calibration information; a response to a RadEnergyCalibrationRequest
message. See RadEnergyCalibrationReply for message contents and format.

RadUseExternalEnergyCalRequestValue Value 0x66

Energy calibration sent from the control module, to a radiation detector module, requesting
that a specified subdetector use the calibration. Note that in order for detectors to accept
external calibrations, the RadDetDeviceFeaturesFlags::AcceptsExternalCalibFlag
bit of RadSubDetectorInfo::subdetector_features shall be set in the
RadSubDetectorInfo information provided by the device. See RadUseExternalEnergyCalRequest
for message contents and format.

RadUseExternalEnergyCalReplyValue Value 0xe6

Reply sent from a radiation detector to the control module in response to a
RadUseExternalEnergyCalRequest message, informing the control module of
the status of using the requested calibration. See RadUseExternalEnergyCalReply
for message contents and format.

4.2.2 RadSubDetectorInformationRequest Message

Message sent from the control module to the radiation detector module when it would like
radiation-detector-specific information about all of the module’s subdetectors.

Message Contents:

134 Detailed Message Descriptions

Field Name Data Type
message_group uint8_t with value 0x08

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x61

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.2.3 RadSubDetectorType Enumeration

Specifies the type of detector within a radiation detection module, i.e., if it detects gamma-rays
or neutrons.

A detector that detects both gamma rays and neutrons would need to defined as two subdetec-
tors, one of which is devoted to the gamma-ray response, and the other for the neutron response.

Underlying integral representation: uint16_t

Enumerated values for RadSubDetectorType:

RadDetectorGammaValue Value 0x01

The radiation subdetector detects gamma rays.

RadDetectorNeutronValue Value 0x02

The radiation subdetector detects neutrons.

4.2.4 RadDetDeviceFeaturesFlags Enumeration

Flags that may be bitwise OR’d to indicate one or more features or functionalities of gamma or
neutron detectors.

Underlying integral representation: uint64_t

Enumerated values for RadDetDeviceFeaturesFlags:

NotEnergySensitiveFlag Value 0x01

Indicates the radiation detector only provides gross-count information, not spec-
troscopic information. This implies that EnergyCalCoefficientType will al-
ways be EnergyCalCoefficientType::NotApplicableValue, as well as
ListModeEvent::energy_channel always being zero, and ChannelDataPacket::channel_data
having exactly one entry.

4.2 Radiation Detector Interface 135

FixedEnergyCalFlag Value 0x02

The device has a fixed calibration that does not change, and which can not be otherwise
set.

PerformsPeriodicSelfCalFlag Value 0x04

The device contains a routine that may periodically run to calibrate itself off of NORM,
an internal seed source, an internal LED source, or some other method, resulting in a
RadEnergyCalibrationUpdatePush being sent to the control module.

CalsOffNormFlag Value 0x08

The device performs calibration off of ambient natural radiation NORM sources. If this flag
is set, the RadDetDeviceFeaturesFlags::PerformsPeriodicSelfCalFlag
must also be set.

ContainsSeedCalSourceFlag Value 0x10

The device contains an internal ’seed’ source which is always visible to the detector and is
used for calibration. If this flag is set, the RadDetDeviceFeaturesFlags::PerformsPeriodicSelfCalFlag
must also be set.

ContainsHousedCalSourceFlag Value 0x20

The device contains an internal source normally shielded (e.g. housed within a lead pig)
but which can be made visible to the detector when energy calibration is being performed.

ContainsNonRadCalSourceFlag Value 0x40

The device uses something such as an internal LED source for calibration.

NeedsDedicatedCalTimeFlag Value 0x80

The device performs calibration during dedicated calibration time.

AcceptsExternalCalibFlag Value 0x100

The device accepts external calibration information; calibration information may be sent
to the device via an RadUseExternalEnergyCalRequest message. Even if the
detector contains its own automated energy calibration routine, it is strongly encourage
to also support externally setting the energy calibration to help accommodate situations
where the built-in calibration algorithms may fail, or for special deployment circumstances.

SupportsPolynomialCalFlag Value 0x200

The device supports EnergyCalCoefficientType::PolynomialValue en-
ergy calibration; polynomial calibration is utilized in accordance with the N42.42-2012
standard. This feature implies support for spectroscopic data.

SupportsChannelBoundariesEnergyCalFlag Value 0x400

The device supports EnergyCalCoefficientType::ChannelBoundariesValue
energy calibration; this calibration type specifies the energy boundary of each channel.
This feature implies support for spectroscopic data.

136 Detailed Message Descriptions

SupportsDeviationPairCalFlag Value 0x800

See RadEnergyCalibrationUpdatePush::deviation_pairs. The device
module supports updated calibration information utilizing deviation pairs. This feature im-
plies support for spectroscopic data.

InternallyLinearizesSpectrumFlag Value 0x1000

Indicates the device performs a linearization of the data before sending it out. Examples
of doing this might be: to make the output spectrum always go from 0 keV to 3072 keV in
1024 evenly sized bins (resulting in a polynomial calibration of {0,3,0}), or to apply the de-
tectors intrinsic deviation pairs to the data, but still have polynomial calibration coefficients
that are varied to account for temperature or other drifts.

4.2.5 RadDetectorKind Enumeration

The kinds of detection mediums of radiation detectors.

Underlying integral representation: uint8_t

Enumerated values for RadDetectorKind:

HPGeValue Value 0x01

HPXeValue Value 0x02

NaIValue Value 0x03

LaBr3Value Value 0x04

LaCl3Value Value 0x05

BGOValue Value 0x06

CZTValue Value 0x07

CdTeValue Value 0x08

CsIValue Value 0x09

GMTValue Value 0x0a

GMTWValue Value 0x0b

LiFiberValue Value 0x0c

PVTValue Value 0x0d

PSValue Value 0x0e

He3Value Value 0x0f

He4Value Value 0x10

LiGlassValue Value 0x11

4.2 Radiation Detector Interface 137

LiIValue Value 0x12

SrI2Value Value 0x13

CLYCValue Value 0x14

CdWO4Value Value 0x15

BF3Value Value 0x16

HgI2Value Value 0x17

CeBr4Value Value 0x18

LiCAFValue Value 0x19

LiZnSValue Value 0x1a

B10GlassValue Value 0x1b

OtherRadDetectorKindValue Value 0xff

4.2.6 RadDetectorGeometry Enumeration

Description of detector geometry.

Underlying integral representation: uint8_t

Enumerated values for RadDetectorGeometry:

RightCircularCylinderDetectorValue Value 0x01

A right circular cylinder. Examples include a typical 3x3 NaI detector, a He3 filled tube, or
mechanically cooled HPGe detector.

RectangularCuboidDetectorValue Value 0x02

A rectangular detector. Examples include most large volume PVT detectors, and vehicle
mounted NaI search detectors.

OtherGeometryDetectorValue Value 0xff

Detector is another geometry. A free-form description should be included as part of the
RadSubDetectorInfo::subdetector_description field.

4.2.7 RadSubDetectorInfo Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

A struct to hold the information about a specific subdetector. RadSubDetectorInformationReply
messages contain one of these for each of the subdetectors in the system.

Message Contents:

138 Detailed Message Descriptions

Field Name Data Type
subdetector_number uint8_t

Field Description: The radiation subdetector number to which this information corresponds.

subdetector_type
uint16_t enumerated by

RadSubDetectorType
Field Description: The type of radiation detector (gamma or neutron) this subdetector is.

number_energy_channels uint32_t
Field Description: The number of energy channels this subdetector reports; e.g., the number
of channels in the energy spectrum. Gross count devices such as He3 neutron detectors will
report one; no detector may report zero. The highest value allowed is 65536 to be consistent
with allowed channel numbers of listmode data or channel data array sizes. If there is a
setting (as part of the parameter mechanism) that changes the number of energy channels,
then the RAPTER connection must be terminated and re-initiated before this change takes
effect.

subdetector_features
uint64_t bits defined by

RadDetDeviceFeaturesFlags
Field Description: Bitwise OR of flags to indicate the features this subdetector supports.

subdetector_description Short String
Field Description: A UTF-8 encoded, human readable description of this subdetector. Ex-
amples might be: ’3x3 NaI 7%’, ’24cm x 36cm x 10cm PVT two PMT panel’, ’5 atm He3
detector’, etc.

subdetector_kind uint8_t enumerated by RadDetectorKind
Field Description: The detection medium type.

detector_geometry
uint8_t enumerated by

RadDetectorGeometry
Field Description: The geometry description of the detection medium.

detector_dim1_cm float
Field Description: For RadDetectorGeometry::RightCircularCylinderDetectorValue
detectors, this is the diameter of the cylinder. For
RadDetectorGeometry::RectangularCuboidDetectorValue detectors
this is the width of the detection face.

detector_dim2_cm float
Field Description: For RadDetectorGeometry::RightCircularCylinderDetectorValue
detectors, this is the length of the cylinder. For
RadDetectorGeometry::RectangularCuboidDetectorValue detectors
this is the height of the detection face. In units of cm.

detector_dim3_cm float
Field Description: For RadDetectorGeometry::RightCircularCylinderDetectorValue
detectors, this is value is not used and must be 0.0. For
RadDetectorGeometry::RectangularCuboidDetectorValue detectors
this is the depth (thickness) of the detector. In units of cm.

detector_volume_cm3 float
Field Description: The volume of the detection medium in cubic centimeters. This value
should not include internal voids or inactive volumes, so may differ from the naive volume
computation from the given dimensions.

4.2 Radiation Detector Interface 139

4.2.8 RadSubDetectorInformationReply Message

A reply to a RadSubDetectorInformationRequest message, which contains informa-
tion about all subdetectors in this radiation detection module.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x08

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xe1

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

informations Short Array of RadSubDetectorInfo
Field Description: Information about all subdetectors in this module; must con-
tain exactly one entry for each of the subdetectors. Length should be equal to
DeviceInfo::num_subdetectors. Subdetector numbers start with 1 and go to
DeviceInfo::num_subdetectors.

4.2.9 RadDataReadoutFlags Enumeration

Flags that may be bitwise OR’d to indicate one or more conditions regarding the status of
RadChannelDataPush, or RadListModeDataPush messages.

See also:

• RadChannelDataPush::status_flags
• RadListModeDataPush::status_flags
• OccupancyData::status_flags

Underlying integral representation: uint32_t

Enumerated values for RadDataReadoutFlags:

RadDataReadoutExternallyInterruptedFlag Value 0x01

Indicates that external interrupt (ex. TTL input from a radiography system) was on for at
least a portion of the time period that this data represents.

RadDataReadoutSuspectFlag Value 0x02

Indicates that the detector health should be further inspected before using this data.

RadDataReadoutGettingActiveCalSourceReadyFlag Value 0x04

140 Detailed Message Descriptions

Indicates that for at least a portion of the time period this data represents, the detector’s
internal active calibration system was in the process of becoming active (led turning on,
Th232 coming out of Pb case) and this portion of time was not used to do the calibration.

RadDataReadoutActiveCalibrationDataFlag Value 0x08

Indicates that for at least a portion of the current time period this data repre-
sents, the detector’s internal active calibration system (ex. scintillator LED on, or
Th232 source outside its Pb case) was in effect. For systems where the calibra-
tion source is always present, this bit should not be set. Note both this bit, and
RadDataReadoutFlags::RadDataReadoutGettingActiveCalSourceReadyFlag
may be set if the time period this data corresponds too separately had both these condi-
tions.

RadDataReadoutMultipleTimeSamplesFlag Value 0x10

Indicates that there was a readout issue causing the readout to fall behind to the point
where combining multiple samples was necessary to catch back up. This should be an
exceptional circumstance. The number of combined sample can be figured out by using
the real time.

RadDataReadoutDataCouldNotBeCollectedFlag Value 0x20

Data was unable to be collected for this interval.

RadDataReadoutNotAcquiringDataFlag Value 0x40

Indicates that the detector is not taking data, and that this message does not contain
valid data (the message must still be in a valid format to allow parsing, but but should be
considered to not contain useful radiation data). This bit is useful for when current data of
a radiation detector is requested but the detector isn’t in operating mode.

4.2.10 RadChannelDataPush Message

This message structure, which is the same as the RadChannelDataPush struct,
contains the data sent for one time-slice (e.x., every 0.1 seconds), or at the end
of a requested dwell, from a gamma detector or neutron detector. If a device has
more than one subdetector than it must send one of these messages for each sub
detector (i.e. when in DataCollectionModes::ClockTimeIntervalValue,
DataCollectionModes::LiveTimeDwellValue, or DataCollectionModes::RealTimeDwellValue
modes); which subdetector this data is for is noted by RadChannelDataPush::subdetector_number.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x08

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x62

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

Continued on next page

4.2 Radiation Detector Interface 141

Table continued from previous page
Field Name Data Type

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

start_timestamp UtcTimePoint
Field Description: The clock time of the module at the start of the interval to which this
channel data corresponds. Microseconds since the UNIX epoch.

end_timestamp UtcTimePoint
Field Description: The clock time of the module at the end of the interval to which the
channel data corresponds. This value will nominally be the last microsecond in an interval,
and not the beginning of the next interval (e.g., it will be one less than the next interval start
time). Microseconds since the UNIX epoch. Note that because of time adjustments (via the
PTP synchronization mechanisms), or interruptions to data taking, this time might not be
ChannelDataPacket::start_timestamp + 1.0E6*clock_time_seconds.

live_time_seconds float
Field Description: The time in seconds that the detection system was
available to take data during this data taking interval. The differ-
ence between RadChannelDataPush::clock_time_seconds and
RadChannelDataPush::live_time_seconds is often referred to as "dead
time" and can be caused, for example, by limitations in the MCA that prevent it from record-
ing more detection events for a brief time after an event (maybe due to inherent decay time
of scintillator, or electronics reset time), or from internal queues filling up, or an external
interrupt (e.g., from a nearby radiography system) indicating data should not be taken.

clock_time_seconds float
Field Description: The acquisition clock time elapsed, in seconds, to which
this data corresponds. A common use for this value, in combination with
RadChannelDataPush::live_time_seconds, is to determine the "dead time" of
the acquisition electronics to account for pulse-pileup effects. This time is not simply be the
difference of the absolute times of the beginning and end of the data taking interval. For
example, PTP time synchronizations should not affect this value. Time periods where data
acquisition is blocked due to an external interrupt (i.e., from non-intrusive inspection sys-
tem), or other reason (e.x., data acquisition did not start until part way through the interval)
do not contribute to this value.

rad_data_flags
uint32_t bits defined by

RadDataReadoutFlags
Field Description: Bitwise OR of flags to indicate unusual, but important conditions during
data taking.

subdetector_number uint8_t
Field Description: The subdetector this data is from.

channel_data Large Array of float
Continued on next page

142 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: The channel data as recorded by the detector.

4.2.11 RadChannelDataPushAck Message

A message sent by the control module to the device acknowledging the receipt of a
RadChannelDataPush message.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x08

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xe2

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.2.12 ListModeEvent Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

A struct that represents a single listmode detection event. This struct holds a time offset (in
microseconds) from ListModeDataPacket::reference_timestamp, as well as the
detected energy channel.

Message Contents:

Field Name Data Type
relative_time uint32_t

Field Description: Number of microseconds to add to
ListModeDataPacket::reference_timestamp in order to get the UTC
time point of the detection event.

energy_channel uint16_t
Continued on next page

4.2 Radiation Detector Interface 143

Table continued from previous page
Field Name Data Type
Field Description: The energy channel for the gamma or neutron detection event.
Used in conjunction with the energy calibration to determine the energy of this
detection event. If the detector does not measure energy in any way (i.e.,
the RadDetDeviceFeaturesFlags::NotEnergySensitiveFlag is set in
RadSubDetectorInfo::subdetector_features), this value must be zero.

4.2.13 RadListModeDataPush Message

Message sent by a radiation detection module to convey list mode neutron or gamma
data. This message conveys data from a single subdetector, and will contain one or more
detection events. This message will only be sent when the device is operating in the
DataCollectionModes::OnEventValue mode. If the device is operating with a non-
zero collection interval (e.g., ChangeDeviceStateRequest::collection_interval_ms
was non-zero), then the device will also be sending HeartbeatPush messages for each
interval, and the detection events contained in this message must only be from a single
time interval; that is, the contained listmode data will all come either before or after the
HeartbeatPush::end_timestamp, but not both. However, if no detection events hap-
pened during an interval, none of these messages will be sent. Or there may be multiple of
these messages sent for a single time interval, for each subdetector. This message can convey
multiple detection events for detector that may detect at high rates, so as to allow minimizing the
number of separate WebSocket message and Ethernet frames on the network.

See Also: RadListModeDataPushValue

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x08

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x63

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

reference_timestamp UtcTimePoint
Field Description: The timestamp all contained listmode detection events time offsets (i.e.,
the ListModeEvent::relative_time field) will be added to to get the detection
events time. Note, this reference timestamp will come before must be less than or equal to
the first detection event.

Continued on next page

144 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

rad_data_flags
uint32_t bits defined by

RadDataReadoutFlags
Field Description: Bitwise OR of the relevant RadDataReadoutFlags. The same flags
must be applicable to all contained detection events.

subdetector_number uint8_t
Field Description: If a detector contains multiple detection devices (ex. multiple He3 tubes,
or multiple NaI blocks) that are individually read out as subdetectors, then the subdetector
that detected the event should be specified here. If only a single detection device is present
in the module, this value will always be one.
See also:

• DeviceInfoReply::num_subdetectors
• RadChannelDataPush::subdetector_number
• RadEnergyCalibrationUpdatePush::subdetector_number

listmode_events Medium Array of ListModeEvent
Field Description: The detected listmode events. Events must be in increasing time order
(e.g., the earliest detected events of this message come first in the array). Note that if there
are more than 65,536 detection events, multiple RadListModeDataPush messages
must be sent.

4.2.14 RadListModeDataPushAck Message

A message sent by the control module to the device acknowledging the receipt of a
RadListModeDataPush message.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x08

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xe3

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.2 Radiation Detector Interface 145

4.2.15 EnergyCalCoefficientType Enumeration

Enumeration to indicate how the coefficients of the the energy calibration structure are to be
interpreted.

Used in message: RadEnergyCalibrationUpdatePush

Underlying integral representation: uint8_t

Enumerated values for EnergyCalCoefficientType:

NotApplicableValue Value 0x01

The detector does not provide energy information (e.g., He3, Geiger counter,
gross-count gamma, etc.). No coefficients or uncertainties should be provided.
If the range of energies detected is well defined, you may consider defining a
EnergyCalCoefficientType::ChannelBoundariesValue calibration with
a single channel.

PolynomialValue Value 0x02

The coefficients are polynomial calibration coefficients, used as specified in the
N42.42-2012 standard, i.e. energy_channel_i(keV) = coefficients[0] + i*coefficients[1]
+ i*i*coefficients[2] + ... There will be two or more coefficients, and the resulting energy of
the channels will be monotonically increasing. Note that the N42.42-2012 standard spec-
ifies exactly three coefficients, but the use here only requires two or more coefficients, in
keeping with the wider use of polynomial energy calibration for gamma radiation detec-
tors. If there are any deviation pairs defined, then these nonlinearity corrections will be
applied on top of this polynomial calibration.

ChannelBoundariesValue Value 0x04

The energy boundary of each channel is specified. This means there will be the same
number of float RadEnergyCalibrationUpdatePush::coefficients val-
ues specified, as there are channels, with optionally one additional value that gives the up-
per energy of the last channel. The values in RadEnergyCalibrationUpdatePush::coefficients
must be strictly monotonically increasing, and no deviation pairs will be defined.

4.2.16 EnergyCalibrationStatus Enumeration

Enumeration of values to describe the status of an energy calibration for a radiation detector.
Used by a radiation detector module to inform the control module in a push message, or reply to
a request from the control module for status information.

Used in message: RadEnergyCalibrationUpdatePush

Underlying integral representation: uint8_t

Enumerated values for EnergyCalibrationStatus:

EnergyCalibrationGoodValue Value 0x00

The energy calibration presently in use is a good calibration.

146 Detailed Message Descriptions

EnergyCalibrationQuestionableValue Value 0x01

The energy calibration presently in use is a questionable calibration.

EnergyCalibrationOutOfDateValue Value 0x02

The energy calibration presently in use is out of date.

EnergyCalibrationBadValue Value 0x03

The energy calibration presently in use is a bad calibration.

EnergyCalibrationUnknownStatusValue Value 0x04

The energy calibration presently in use is of undetermined quality.

4.2.17 EnergyCalMethodFlags Enumeration

Flags that may be bitwise OR’d to indicate one or more conditions regarding the sources used
and how the energy calibration was derived.

Underlying integral representation: uint16_t

Enumerated values for EnergyCalMethodFlags:

EnergyCalMethodNoneFlag Value 0x00

Energy calibration is not applicable to this device, e.g., He3 detector or a gross count
gamma detector.

EnergyCalFactoryFlag Value 0x01

Energy calibration is fixed at the factory and has not been changed.

EnergyCalExternallySetFlag Value 0x02

The calibration was sent to the device through a RAPTER message, for example if a
technician manually determined and entered the calibration.

EnergyCalSeedSourceFlag Value 0x04

A seed source embedded in or near the detection element was used for calibration. The
detection element is always exposed to the source. This could be something like a Cs137
or Eu152 embedded into the detection media, or Thorium welding rods or K40 source near
the detection element.

EnergyCalNormFlag Value 0x10

Calibration is performed using naturally occurring radiation.

EnergyCalActiveGammaSourceFlag Value 0x20

Energy calibration performed using an active radiological calibration source that is housed
on-board the system and automatically exposed to the detector during dedicated active
calibration periods).

EnergyCalActiveLedSourceFlag Value 0x40

A mechanism using a light source, such as a LED or laser embedded in the scintillator, is
used.

4.2 Radiation Detector Interface 147

EnergyCalKnownSourceFlag Value 0x80

A known radiological source was used for calibration. The source is not housed on-board
the system.

EnergyCalDefaultValueFlag Value 0x200

Indicates device is using a "default" energy cal, but may update itself in the future. For
example when detector is first turned on and hasn’t had a chance to calibrate, so is using
some pre-programmed defaults.

EnergyCalOtherMethodFlag Value 0x8000

Some other method of calibration was performed, and should be described in the
EnergyCalibration::method_description.

4.2.18 RadEnergyCalibrationUpdatePush Message

Message sent by a radiation detection module to convey the energy calibration of data provided
by the RadChannelDataPush or RadListModeDataPush messages. If there are multi-
ple subdetectors, all calibrations may be sent as a list of messages within a single WebSocket
message. Energy is in units of keV.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x08

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x64

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

calibration_timestamp UtcTimePoint
Field Description: When the calibration was completed. Will be in the past, but not the
future. If this energy calibration is empty or not valid, this value will be zero.

energy_cal_coefficient_type
uint8_t enumerated by

EnergyCalCoefficientType
Field Description: The types of coefficients used by the calibration.

calibration_status
uint8_t enumerated by

EnergyCalibrationStatus
Field Description: The status of the energy calibration, such as good, out of date, etc.

Continued on next page

148 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

subdetector_number uint8_t
Field Description: The subdetector number this calibration is for. If a module only has one
detection crystal/He3-tube, this will always be number one. If it has N detection sensors,
this value will range from 1 to N (inclusive) according to the subdetector this calibration is
for.
See also:

• DeviceInfoReply::num_subdetectors
• RadListModeDataPush::subdetector_number
• RadChannelDataPush::subdetector_number

energy_cal_method_flags
uint16_t bits defined by

EnergyCalMethodFlags
Field Description: A bitwise OR of flags representing energy calibration source and method.

coefficients Medium Array of float
Field Description: The coefficients necessary to specify the calibration.

coefficient_uncertainties Medium Array of float
Field Description: The uncertainty on the coefficients; may have zero entries, the same
number of entries as the number of coefficients, twice the number of coefficients, or the
number of coefficients squared. The interpretation of the coefficients is dependent on the
number of entries and the options are:

• No entries: uncertainty is not specified.
• Same number of entries as coefficients: symmetrized 1-sigma uncertainties.
• Twice the number of entries as coefficients: the positive 1-sigma uncertainties for

each coefficient, then the negative 1-sigma uncertainties (e.g., the first N coefficients
are positive uncertainties, followed the N negative uncertainties).

• The square of number of entries as coefficients: the covariance matrix with entries of
the first row listed first, followed by entries of second row, etc. To avoid an ambiguous
situation, when there are two coefficients, the covariance matrix can not be specified,
but as a work around, a 3rd zero valued coefficient could be added and then the matrix
specified.

deviation_pairs Short Array of float
Continued on next page

4.2 Radiation Detector Interface 149

Table continued from previous page
Field Name Data Type

Field Description: Deviation pairs, as in N42.42, are each two floats, first
the true energy, then the offset, then next entry in array is the next true en-
ergy, and its offset, etc. True energies and offsets are in keV. Unless the
RadDetDeviceFeaturesFlags::SupportsDeviationPairCalFlag bit is
set in RadSubDetectorInfo::subdetector_features, no values for this field
may be provided. An example procedure for using deviation pairs:

• Determine first (offset) and second (gain) polynomial coefficients using the 239 keV
and 2614 keV peaks of Th232

• If the k-40 1460 keV peak is now at 1450 keV, a deviation of 10 keV should be set at
1460 keV

• Deviation pairs set to zero would be defined for 239 keV and 2614 keV
• The value provided in this field would then be [239,0,1460,10,2614,0].

Cubic spline interpolation is used to interpolate between deviation pairs. When solving for
the spline coefficients, the second derivative is set to zero at the lowest deviation pair en-
ergy, and the first derivative is set to zero at the highest deviation pair energy. Corrections
for energies below the lowest value deviation pair are always equal to the offset of the low-
est energy deviation pair, and corrections for energies above the highest energy deviation
pair are always equal to the offset of the highest energy deviation pair. Note: uncertain-
ties for RadEnergyCalibrationUpdatePush::deviation_pairs can not be
specified since these are typically taken as well defined fixed quantities, and the polyno-
mial coefficient uncertainties will account for the uncertainties. Note: although non-linear
deviation pairs are used within the N42.42-2012 standard, the specification doesnt appear
to provide an adequate definition of the,; the open source SpecUtils library, available at
https://github.com/sandialabs/SpecUtils/, provides an implementation of non-linear devia-
tion pairs that may be useful for reference.

method_description Short String
Field Description: A free-form description of method used to derive calibration. Examples
might be:

• "Fixed Factory Calibration"
• "Fit to NORM templates"
• "Gain matched for Th232 2614 keV and K40 1460 keV peaks"
• "Individual PMTs gain matched to each other, followed by a fit to NORM templates"
• "Gain matched to internal Cs137 seed"
• "5 minute spectrum using Eu152"
• etc.

calculation_notes Medium String
Continued on next page

150 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: Free form text providing additional implementation specific details related
to quality of energy calibration procedure. Examples of information that might be given in
this text are:

• Chi2 of fit to background template.
• Endpoint energy of the detector that was determined
• Relative gains of PMTs.
• Unusual conditions detected, like high background rates, or contamination
• Data channel corresponding to peak maximum
• Version of calibration algorithm used

The text must be UTF-8 encoded.

4.2.19 RadEnergyCalibrationUpdatePushAck Message

A message sent by the control module to the device acknowledging the receipt of a
RadEnergyCalibrationUpdatePush message.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x08

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xe4

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.2.20 RadEnergyCalibrationRequest Message

Request for a detector to send its current energy calibration information to the control module.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x08

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x65

Continued on next page

4.2 Radiation Detector Interface 151

Table continued from previous page
Field Name Data Type

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

subdetector uint8_t
Field Description: The subdetector for which calibration is desired.

4.2.21 RadEnergyCalibrationReplyStatus Enumeration

The overall status for the reply to a RadEnergyCalibrationRequest.

Used in message: RadEnergyCalibrationReply

Underlying integral representation: uint8_t

Enumerated values for RadEnergyCalibrationReplyStatus:

EnergyCalReplySuccessfulValue Value 0x00

The energy calibration that is a part of this message was successfully retrieved. Note that
devices that do not support energy calibration (ex, He3), still return a valid energy calibra-
tion, they are just marked with EnergyCalCoefficientType::NotApplicableValue.

EnergyCalReplyInvalidSubDetectorValue Value 0x01

The calibration for an invalid subdetector was requested. The energy calibration that is part
of the message should still be marked as EnergyCalCoefficientType::NotApplicableValue
and otherwise a valid energy calibration.

EnergyCalReplyOtherErrorValue Value 0x02

There was an error retrieving energy calibration - a NotificationPush message may
be separately sent to provide additional information.

4.2.22 RadEnergyCalibrationReply Message

Energy calibration information in response to a RadEnergyCalibrationRequest. If
the request specified an individual invalid subdetector number, an energy calibration with
EnergyCalCoefficientTypemarked as EnergyCalCoefficientType::NotApplicableValue
should be returned, along with a notification attached.

Message Contents:

152 Detailed Message Descriptions

Field Name Data Type
message_group uint8_t with value 0x08

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xe5

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

reply_status
uint8_t enumerated by

RadEnergyCalibrationReplyStatus
Field Description: The status of retrieving the requested energy calibration.

calibration_timestamp UtcTimePoint
Field Description: When the calibration was completed. Will be in the past, but not the
future. If this energy calibration is empty or not valid, this value will be zero.

energy_cal_coefficient_type
uint8_t enumerated by

EnergyCalCoefficientType
Field Description: The types of coefficients used by the calibration.

calibration_status
uint8_t enumerated by

EnergyCalibrationStatus
Field Description: The status of the energy calibration, such as good, out of date, etc.

subdetector_number uint8_t
Field Description: The subdetector number this calibration is for. If a module only has one
detection crystal/He3-tube, this will always be number one. If it has N detection sensors,
this value will range from 1 to N (inclusive) according to the subdetector this calibration is
for.
See also:

• DeviceInfoReply::num_subdetectors
• RadListModeDataPush::subdetector_number
• RadChannelDataPush::subdetector_number

energy_cal_method_flags
uint16_t bits defined by

EnergyCalMethodFlags
Field Description: A bitwise OR of flags representing energy calibration source and method.

coefficients Medium Array of float
Field Description: The coefficients necessary to specify the calibration.

coefficient_uncertainties Medium Array of float
Continued on next page

4.2 Radiation Detector Interface 153

Table continued from previous page
Field Name Data Type

Field Description: The uncertainty on the coefficients; may have zero entries, the same
number of entries as the number of coefficients, twice the number of coefficients, or the
number of coefficients squared. The interpretation of the coefficients is dependent on the
number of entries and the options are:

• No entries: uncertainty is not specified.
• Same number of entries as coefficients: symmetrized 1-sigma uncertainties.
• Twice the number of entries as coefficients: the positive 1-sigma uncertainties for

each coefficient, then the negative 1-sigma uncertainties (e.g., the first N coefficients
are positive uncertainties, followed the N negative uncertainties).

• The square of number of entries as coefficients: the covariance matrix with entries of
the first row listed first, followed by entries of second row, etc. To avoid an ambiguous
situation, when there are two coefficients, the covariance matrix can not be specified,
but as a work around, a 3rd zero valued coefficient could be added and then the matrix
specified.

deviation_pairs Short Array of float
Field Description: Deviation pairs, as in N42.42, are each two floats, first
the true energy, then the offset, then next entry in array is the next true en-
ergy, and its offset, etc. True energies and offsets are in keV. Unless the
RadDetDeviceFeaturesFlags::SupportsDeviationPairCalFlag bit is
set in RadSubDetectorInfo::subdetector_features, no values for this field
may be provided. An example procedure for using deviation pairs:

• Determine first (offset) and second (gain) polynomial coefficients using the 239 keV
and 2614 keV peaks of Th232

• If the k-40 1460 keV peak is now at 1450 keV, a deviation of 10 keV should be set at
1460 keV

• Deviation pairs set to zero would be defined for 239 keV and 2614 keV
• The value provided in this field would then be [239,0,1460,10,2614,0].

Cubic spline interpolation is used to interpolate between deviation pairs. When solving
for the spline coefficients, the second derivative is set to zero at the lowest deviation pair
energy, and the first derivative is set to zero at the highest deviation pair energy. Correc-
tions for energies below the lowest value deviation pair are always equal to the offset of
the lowest energy deviation pair, and corrections for energies above the highest energy
deviation pair are always equal to the offset of the highest energy deviation pair. Note:
uncertainties for RadEnergyCalibrationReply::deviation_pairs can not be
specified since these are typically taken as well defined fixed quantities, and the polynomial
coefficient uncertainties will account for the uncertainties. Note: although non-linear de-
viation pairs are used within the N42.42-2012 standard, the specification doesnt appear
to provide an adequate definition of the,; the open source SpecUtils library, available at
https://github.com/sandialabs/SpecUtils/, provides an implementation of non-linear devia-
tion pairs that may be useful for reference.

method_description Short String
Continued on next page

154 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: A free-form description of method used to derive calibration. Examples
might be:

• "Fixed Factory Calibration"
• "Fit to NORM templates"
• "Gain matched for Th232 2614 keV and K40 1460 keV peaks"
• "Individual PMTs gain matched to each other, followed by a fit to NORM templates"
• "Gain matched to internal Cs137 seed"
• "5 minute spectrum using Eu152"
• etc.

calculation_notes Medium String
Field Description: Free form text providing additional implementation specific details related
to quality of energy calibration procedure. Examples of information that might be given in
this text are:

• Chi2 of fit to background template.
• Endpoint energy of the detector that was determined
• Relative gains of PMTs.
• Unusual conditions detected, like high background rates, or contamination
• Data channel corresponding to peak maximum
• Version of calibration algorithm used

The text must be UTF-8 encoded.

4.2.23 RadUseExternalEnergyCalInstructions Enumeration

Enumeration to convey instructions on the use of an energy calibration.

Used in message: RadUseExternalEnergyCalRequest

Underlying integral representation: uint8_t

Enumerated values for RadUseExternalEnergyCalInstructions:

UseThisCalibrationAndSelfUpdateAsNormalValue Value 0x00

Use this calibration, but proceed with normal self calibration procedures in the future if the
device has those capabilities.

DoNotPerformSelfCalibrationValue Value 0x01

Accept this energy calibration as fixed, and do not attempt to change it using any built
in calibration procedures. Useful if default calibration routine is failing, or an externally
provided routine (e.x., a command device is constructed for this purpose) is to be used.

ResetToDefaultCalibrationValue Value 0x02

Do not use the energy calibration sent, if any, but instead reset back to the fac-
tory default calibration. Useful if a calibration has previously been set with the
RadUseExternalEnergyCalInstructions::DoNotPerformSelfCalibrationValue
option, or the auto-calibration has wandered into an incorrect area and is no longer pro-
ducing sensical results.

4.2 Radiation Detector Interface 155

4.2.24 RadUseExternalEnergyCalRequest Message

Request sent to a device to use the energy calibration contained in this message.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x08

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x66

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

calibration_timestamp UtcTimePoint
Field Description: When the calibration was completed. Will be in the past, but not the
future. If this energy calibration is empty or not valid, this value will be zero.

energy_cal_coefficient_type
uint8_t enumerated by

EnergyCalCoefficientType
Field Description: The types of coefficients used by the calibration.

calibration_status
uint8_t enumerated by

EnergyCalibrationStatus
Field Description: The status of the energy calibration, such as good, out of date, etc.

subdetector_number uint8_t
Field Description: The subdetector number this calibration is for. If a module only has one
detection crystal/He3-tube, this will always be number one. If it has N detection sensors,
this value will range from 1 to N (inclusive) according to the subdetector this calibration is
for.
See also:

• DeviceInfoReply::num_subdetectors
• RadListModeDataPush::subdetector_number
• RadChannelDataPush::subdetector_number

energy_cal_method_flags
uint16_t bits defined by

EnergyCalMethodFlags
Field Description: A bitwise OR of flags representing energy calibration source and method.

coefficients Medium Array of float
Field Description: The coefficients necessary to specify the calibration.

coefficient_uncertainties Medium Array of float
Continued on next page

156 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: The uncertainty on the coefficients; may have zero entries, the same
number of entries as the number of coefficients, twice the number of coefficients, or the
number of coefficients squared. The interpretation of the coefficients is dependent on the
number of entries and the options are:

• No entries: uncertainty is not specified.
• Same number of entries as coefficients: symmetrized 1-sigma uncertainties.
• Twice the number of entries as coefficients: the positive 1-sigma uncertainties for

each coefficient, then the negative 1-sigma uncertainties (e.g., the first N coefficients
are positive uncertainties, followed the N negative uncertainties).

• The square of number of entries as coefficients: the covariance matrix with entries of
the first row listed first, followed by entries of second row, etc. To avoid an ambiguous
situation, when there are two coefficients, the covariance matrix can not be specified,
but as a work around, a 3rd zero valued coefficient could be added and then the matrix
specified.

deviation_pairs Short Array of float
Field Description: Deviation pairs, as in N42.42, are each two floats, first
the true energy, then the offset, then next entry in array is the next true en-
ergy, and its offset, etc. True energies and offsets are in keV. Unless the
RadDetDeviceFeaturesFlags::SupportsDeviationPairCalFlag bit is
set in RadSubDetectorInfo::subdetector_features, no values for this field
may be provided. An example procedure for using deviation pairs:

• Determine first (offset) and second (gain) polynomial coefficients using the 239 keV
and 2614 keV peaks of Th232

• If the k-40 1460 keV peak is now at 1450 keV, a deviation of 10 keV should be set at
1460 keV

• Deviation pairs set to zero would be defined for 239 keV and 2614 keV
• The value provided in this field would then be [239,0,1460,10,2614,0].

Cubic spline interpolation is used to interpolate between deviation pairs. When solving for
the spline coefficients, the second derivative is set to zero at the lowest deviation pair en-
ergy, and the first derivative is set to zero at the highest deviation pair energy. Corrections
for energies below the lowest value deviation pair are always equal to the offset of the low-
est energy deviation pair, and corrections for energies above the highest energy deviation
pair are always equal to the offset of the highest energy deviation pair. Note: uncertain-
ties for RadUseExternalEnergyCalRequest::deviation_pairs can not be
specified since these are typically taken as well defined fixed quantities, and the polyno-
mial coefficient uncertainties will account for the uncertainties. Note: although non-linear
deviation pairs are used within the N42.42-2012 standard, the specification doesnt appear
to provide an adequate definition of the,; the open source SpecUtils library, available at
https://github.com/sandialabs/SpecUtils/, provides an implementation of non-linear devia-
tion pairs that may be useful for reference.

method_description Short String
Continued on next page

4.2 Radiation Detector Interface 157

Table continued from previous page
Field Name Data Type

Field Description: A free-form description of method used to derive calibration. Examples
might be:

• "Fixed Factory Calibration"
• "Fit to NORM templates"
• "Gain matched for Th232 2614 keV and K40 1460 keV peaks"
• "Individual PMTs gain matched to each other, followed by a fit to NORM templates"
• "Gain matched to internal Cs137 seed"
• "5 minute spectrum using Eu152"
• etc.

calculation_notes Medium String
Field Description: Free form text providing additional implementation specific details related
to quality of energy calibration procedure. Examples of information that might be given in
this text are:

• Chi2 of fit to background template.
• Endpoint energy of the detector that was determined
• Relative gains of PMTs.
• Unusual conditions detected, like high background rates, or contamination
• Data channel corresponding to peak maximum
• Version of calibration algorithm used

The text must be UTF-8 encoded.

use_instructions
uint8_t enumerated by

RadUseExternalEnergyCalInstructions
Field Description: Options for implementing the provided calibration: use, do or do not
proceed with auto-calibration, and reset to factory default calibration.

4.2.25 EnergyCalUseStatus Enumeration

Enumeration of values to describe the status of an energy calibration for a radiation detector.
Used by a radiation detector module when replying to a request by the control module for a
change to a calibration supplied by the control module.

Used in message: RadUseExternalEnergyCalReply

Underlying integral representation: uint8_t

Enumerated values for EnergyCalUseStatus:

EnergyCalUsingCalibrationValue Value 0x00

The calibration received from the control module is being used.

EnergyCalUnsupportedCalibrationTypeValue Value 0x01

The calibration received from the control module is a type that is not supported by the
detector.

EnergyCalDeviceDoesNotAcceptCalibrationValue Value 0x02

The calibration received from the control module has been rejected by the detector.

158 Detailed Message Descriptions

EnergyCalInvalidCalibrationValue Value 0x03

The calibration received from the control module is invalid.

EnergyCalInvalidSubDetectorValue Value 0x04

The calibration received from the control module was directed to an invalid subdetector.

4.2.26 RadUseExternalEnergyCalReply Message

Message replying to the control module’s request that the provided energy calibration be applied.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x08

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xe6

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

change_effective_timestamp UtcTimePoint
Field Description: Timestamp for when the calibration will become effective. If the calibration
won’t be used, this must be 0.

use_status
uint8_t enumerated by

EnergyCalUseStatus
Field Description: Status for the use of the calibration
that was sent to the detector. For any value other than
EnergyCalUseStatus::EnergyCalUsingCalibrationValue, consider
sending a separate NotificationPush message further explaining the issue.

4.3 Vehicle Presence Interface

4.3.1 VehiclePresenceMsgType Enumeration

Values to indicate the type of message being sent as part of the MessageGroup::VehiclePresenceValue
message group. In this message group, push messages originate at the vehicle pres-
ence modules, and request messages originate at the control module. The first byte of
messages shall have a value of MessageGroup::VehiclePresenceValue, and
the second byte of the message will have a value as indicated by this enum, which

4.3 Vehicle Presence Interface 159

will then tell you how to decode the message. For example a second byte value of
VehiclePresenceSubDetectorInformationRequest will tell you the message
contents are specified by VehiclePresenceSubDetectorInformationRequest.

Underlying integral representation: uint8_t

Enumerated values for VehiclePresenceMsgType:

VehiclePresenceSubDetectorInformationRequestValue Value 0x71

Message sent from the control module to a vehicle presence module requesting informa-
tion about one of its subdetectors (break beam, distance, camera, etc).

See also: VehiclePresenceSubDetectorInformationRequest

VehiclePresenceSubDetectorInformationReplyValue Value 0xf1

Reply sent in response to a VehiclePresenceSubDetectorInformationRequest
message containing information about a subdetector.

See also: DataOutDevicesInfoReply

VehiclePresenceBinaryDataPushValue Value 0x72

Message sent from a vehicle presence module to the control module when one of the
binary presence subdetectors (e.g., IR break-beam sensor) changes state.

See also: VehiclePresenceBinaryDataPush

VehiclePresenceBinaryDataPushAckValue Value 0xf2

Acknowledgement of receiving a VehiclePresenceBinaryDataPush message.

See also: VehiclePresenceBinaryDataPushAck

VehiclePresenceCurrentBinaryDataRequestValue Value 0x73

Message sent from the control module to a vehicle presence module requesting the current
status of its binary style sensors.

See also: VehiclePresenceCurrentBinaryDataRequest

VehiclePresenceCurrentBinaryDataReplyValue Value 0xf3

Reply to a VehiclePresenceCurrentBinaryDataRequest containing the cur-
rent status of the binary sensors (e.g., if the IR beams are occluded or not).

See also: VehiclePresenceCurrentBinaryDataReply

VehiclePresenceReadingPushValue Value 0x74

Message from the vehicle presence module to the control module when a new distance or
speed measurement is available.

See also: VehiclePresenceReadingPush

VehiclePresenceReadingPushAckValue Value 0xf4

Acknowledgement of receiving a VehiclePresenceReadingPush message.

See also: VehiclePresenceReadingPushAck

160 Detailed Message Descriptions

VehiclePresenceCurrentReadingRequestValue Value 0x75

Message sent from the control module to a vehicle presence module requesting the current
status of a distance or speed sensor.

See also: VehiclePresenceCurrentReadingRequest

VehiclePresenceCurrentReadingReplyValue Value 0xf5

Message sent in response to a VehiclePresenceCurrentReadingRequest
message, containing if a distance or speed measurement is available (there may be noth-
ing to measure), and if so, it’s value.

See also: VehiclePresenceCurrentReadingReply

VehiclePresenceImagePushValue Value 0x76

Message sent from vehicle presence module to the control module containing an image;
the module decides when to send these.

See also: VehiclePresenceImagePush

VehiclePresenceImagePushAckValue Value 0xf6

Acknowledgement of receiving a VehiclePresenceReadingPush message.

See also: VehiclePresenceImagePushAck

VehiclePresenceCurrentImageRequestValue Value 0x77

Message sent from the control module to a vehicle presence device requesting a current
image.

See also: VehiclePresenceCurrentImageRequest

VehiclePresenceCurrentImageReplyValue Value 0xf7

Reply to a VehiclePresenceCurrentImageRequest message containing the a
current image, or otherwise error.

See also: VehiclePresenceCurrentImageReply

4.3.2 VehiclePresenceSubDetectorInformationRequest Message

A request for the vehicle presence module to send information about all of it’s subdetectors.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x10

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x71

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

Continued on next page

4.3 Vehicle Presence Interface 161

Table continued from previous page
Field Name Data Type

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.3.3 VehiclePresenceSubDetectorType Enumeration

Enumeration to describe the type of vehicle presence subdetector.

See also: MessageGroup::VehiclePresenceValue

Used in message: VehiclePresenceReadingPush

Underlying integral representation: uint16_t

Enumerated values for VehiclePresenceSubDetectorType:

BreakBeamPresenceValue Value 0x01

Device contains a binary yes/no style presence sensor. For example, a breakbeam style
sensor.

VehicleDistanceValue Value 0x02

Device provides a distance of the item, relative to itself.

See also: CmdDeviceSetReferenceInfoRequest

VehicleSpeedValue Value 0x04

Device provides a speed of the item.

ImageValue Value 0x08

Device provides an image. There is currently no message available to query or change
resolution.

4.3.4 VehiclePresenceSubDetectorInformation Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

A struct to hold information about a vehicle presence subdetector.

Message Contents:

Field Name Data Type
subdetector_number uint8_t

Field Description: The subdetector number of the vehicle presence subdetector that is being
described.

Continued on next page

162 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

subdetector_type
uint16_t enumerated by

VehiclePresenceSubDetectorType
Field Description: A UTF-8 encoded, human readable description of this subdetector.

subdetector_description Short String
Field Description: A UTF-8 encoded, human readable description of this subdetector.

4.3.5 VehiclePresenceSubDetectorInformationReply Message

Message from a vehicle presence module containing information on all of the subdetectors in
this vehicle presence module.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x10

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xf1

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

informations
Short Array of
VehiclePresenceSubDetectorInformation

Field Description: Information about all sub-detectors in this module; must con-
tain exactly one entry for each of the subdetectors. Length should be equal
to DeviceInfo::num_subdetectors. Sub-detectors start with 1 and go to
DeviceInfo::num_subdetectors.

4.3.6 RecommendedPresenceStatus Enumeration

Enumeration to convey the recommendation from the vehicle presence module as to whether the
portal is occupied, as determined from the vehicle presence sensors (e.g., binary break-beam
style sensors). Note, if you are not going to include any binary style sensors but you would still
like to provide a binary occupied/not-occupied status you could define a binary subdetector that
doesn’t exist physically, but is determined by a camera or distance sensor.

Used in message: VehiclePresenceBinaryDataPush

Underlying integral representation: uint8_t

4.3 Vehicle Presence Interface 163

Enumerated values for RecommendedPresenceStatus:

NotOccupiedValue Value 0x00

The recommendation is that the portal is not occupied.

OccupiedValue Value 0x01

The recommendation is that the portal is occupied.

OccupancyUndeterminedValue Value 0x02

Unable to make a suggestion; either because of an error, or inherent limitation.

4.3.7 VehiclePresenceReadOutFlags Enumeration

Flags that may be bitwise OR’d to describe error conditions relating to vehicle presence data.

Underlying integral representation: uint32_t

Enumerated values for VehiclePresenceReadOutFlags:

SubDetectorIsSuspectFlag Value 0x01

Indicates that a one or a few subdetectors (e.x., individual beams, or distance sensors)
are suspect.

ReadoutExternallyInterruptedFlag Value 0x02

Indicates that an external interrupt (ex panel door being opened) has prevented taking
data

ReadoutSystemSuspectFlag Value 0x04

Indicates that occupancy systems health is suspect, and the data may not be reliable.

ReadoutDataCouldNotBeCollectedFlag Value 0x08

Indicates that this data could not be read out.

ReadoutNotAcquiringDataFlag Value 0x10

Indicates that the detector is not taking data, and that this message does not contain
valid data (the message must still be in a valid format to allow parsing, but but should be
considered to not contain useful vehicle presence data). This bit is useful for when current
data of a occupancy detector is requested but the detector isn’t in acquisition mode.

ReadOutTargetNotAcquiredFlag Value 0x20

Indicates the sensor was unable to readout a distance or speed as there was no vehicle
within its range.

164 Detailed Message Descriptions

4.3.8 VehiclePresenceBinaryStatus Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

A struct to hold measured vehicle presence data from a binary vehicle presence detector.

Message Contents:

4.3 Vehicle Presence Interface 165

Field Name Data Type
detection_timestamp UtcTimePoint

Field Description: The time when the change of occupancy was detected. Microseconds
since the UNIX epoch.

subdetector_number uint8_t
Field Description: Subdetector number that is reporting the change of occupancy.

readout_status_flags
uint32_t bits defined by

VehiclePresenceReadOutFlags
Field Description: Bitwise OR of flags to indicate state of the vehicle presence data included
in this struct. If zero, all is good.

item_present uint8_t
Field Description: If nonzero, the subdetector is reporting that an item is present; for a
break-beam occupancy sensor this would imply that the beam is broken.

4.3.9 VehiclePresenceBinaryDataPush Message

This message represents data reported by a occupancy sensor, which may have multi-
ple beams, each of which yield a yes-or-no answer as to whether or not there is an oc-
cupancy. Only sub-detectors that have changed need to be included, while when part of
VehiclePresenceCurrentBinaryDataReply message, the most recent data from all
sub-detectors must be included. Note, no specification is made as to the internal sampling
frequency the machine will operate at (ex. some devices may record up to 500 changes per sec-
ond, some only 10, and others in real time). Current sensor values may be requested using a
VehiclePresenceCurrentBinaryDataRequest command.

See Also: VehiclePresenceCurrentBinaryDataRequestValue

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x10

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x72

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

presence_recommendation
uint8_t enumerated by

RecommendedPresenceStatus
Continued on next page

166 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: Recommendation by a vehicle presence module for if the portal
is occupied. Timestamp of the recommendation is implied to be the latest one in
VehiclePresenceBinaryDataPush::binary_presence_data.

binary_presence_data
Short Array of
VehiclePresenceBinaryStatus

Field Description: Each binary (break-beam type) vehicle presence sensor may have at
most one entry in this array and time stamps may not span (come both before and after) a
heartbeat. Must have an entry from at least one sensor.

4.3.10 VehiclePresenceBinaryDataPushAck Message

A message acknowledging the receipt by the control module of a VehiclePresenceBinaryDataPush
message.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x10

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xf2

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.3.11 VehiclePresenceCurrentBinaryDataRequest Message

Requests the current data from the occupancy sensor, when the message is received by the
device.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x10

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x73

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

Continued on next page

4.3 Vehicle Presence Interface 167

Table continued from previous page
Field Name Data Type

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.3.12 VehiclePresenceReplyStatus Enumeration

Enumeration to hold an indicator of whether or not a query for current data was successful.

Used in message: VehiclePresenceCurrentBinaryDataReply

Underlying integral representation: uint8_t

Enumerated values for VehiclePresenceReplyStatus:

InformationAvailableValue Value 0x00

The device is able to provide the requested information.

InvalidSubdetectorNumberValue Value 0x01

The subdetector number provided does not exist.

UnsupportedDataTypeValue Value 0x02

The subdetector number requested does not produce the type of data requested.

UnableToMeasureValue Value 0x03

Measurement was unable to be made. Can happen for example if there is no vehicle
present to measure its distance, or if the sensor is busy reading out another measurement.

NotOperatingValue Value 0x04

The device is not in the OperatingMode::OperatingValue mode.

ReadoutErrorValue Value 0x05

There was an error reading out the requested sensor. A NotificationPush may
separately be sent to provide more information.

4.3.13 VehiclePresenceCurrentBinaryDataReply Message

A reply from a vehicle presence module to a VehiclePresenceCurrentBinaryDataRequest.
If the device is not operating (OperatingMode::OperatingValue) then the
VehiclePresenceCurrentBinaryDataReply::reply_status field should have
the value of VehiclePresenceReplyStatus::NotOperatingValue. If there is a
readout error then VehiclePresenceCurrentBinaryDataReply::reply_status

168 Detailed Message Descriptions

will have a value of VehiclePresenceReplyStatus::ReadoutErrorValue and a
NotificationPush message may be separately sent to provide further information.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x10

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xf3

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

reply_status
uint8_t enumerated by

VehiclePresenceReplyStatus
Field Description: Status of the reply, as enumerated by
VehiclePresenceReplyStatus.

presence_recommendation
uint8_t enumerated by

RecommendedPresenceStatus
Field Description: Recommendation by a vehicle presence module for if the portal
is occupied. Timestamp of the recommendation is implied to be the latest one in
VehiclePresenceCurrentBinaryDataReply::binary_presence_data.

binary_presence_data
Short Array of
VehiclePresenceBinaryStatus

Field Description: Each binary (break-beam type) vehicle presence sensor may have at
most one entry in this array and time stamps may not span (come both before and after) a
heartbeat. Must have an entry from at least one sensor.

4.3.14 VehiclePresenceReadingPush Message

Sent from a vehicle presence module to the control module when something is being measured
(e.g., it thinks its measuring something that might be a vehicle) and a new relevant distance mea-
surement is available. The device itself determines when to send this which might be whenever
the sensor can take another measurement, or so many times per second (which is a settable
parameter, see ParameterInfoRequest, could control).

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x10

Field Description: The RAPTER MessageGroup this message corresponds too.
Continued on next page

4.3 Vehicle Presence Interface 169

Table continued from previous page
Field Name Data Type

message_type uint8_t with value 0x74
Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

detection_timestamp UtcTimePoint
Field Description: The time the distance measurement was made. Microseconds since the
UNIX epoch.

subdetector_number uint8_t
Field Description: The subdetector number of the subdetector that is reporting this distance.

subdetector_type
uint16_t enumerated by

VehiclePresenceSubDetectorType
Field Description: The subdetector type this reading corresponds too. Will
be either VehiclePresenceSubDetectorType::VehicleDistanceValue or
VehiclePresenceSubDetectorType::VehicleSpeedValue. This type must
that given by VehiclePresenceSubDetectorInformationReply for the speci-
fied subdetector.

readout_status_flags
uint32_t bits defined by

VehiclePresenceReadOutFlags
Field Description: Bitwise OR of flags to indicate state of the distance data reported with
this struct. If zero, all is good.

reading_is_useable uint8_t
Field Description: If nonzero, the measured distance or speed is useable. If zero, the mea-
sured distance or speed should not be used.

reading_value float
Field Description: Either the measured speed (in meters per sec-
ond), or the measured distance (in centimeters), as determined by
VehiclePresenceReadingInfo::subdetector_type. The distance from
the subdetector to the item in centimeters. When used with the subdetector’s position and
orientation, an unambiguous location of one point of the item is specified. If no item is being
measured, then a value of zero should be reported.

4.3.15 VehiclePresenceReadingPushAck Message

A message acknowledging the receipt by the control module of a VehiclePresenceReadingPush

Message Contents:

170 Detailed Message Descriptions

Field Name Data Type
message_group uint8_t with value 0x10

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xf4

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.3.16 VehiclePresenceCurrentReadingRequest Message

A request from the control module for the distance measured by a given sensor when this mes-
sage is received by the vehicle presence sensor.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x10

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x75

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

subdetector_number uint8_t
Field Description: The subdetector number from which a measurement of distance is
wanted.

4.3.17 VehiclePresenceCurrentReadingReply Message

Message from a vehicle presence module containing the currently measured distance using the
specified sensor, or if there was an issue reading it out, that issue.

Message Contents:

4.3 Vehicle Presence Interface 171

Field Name Data Type
message_group uint8_t with value 0x10

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xf5

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

reply_status
uint8_t enumerated by

VehiclePresenceReplyStatus
Field Description: The success status of reading out the current distance.

detection_timestamp UtcTimePoint
Field Description: The time the distance measurement was made. Microseconds since the
UNIX epoch.

subdetector_number uint8_t
Field Description: The subdetector number of the subdetector that is reporting this distance.

subdetector_type
uint16_t enumerated by

VehiclePresenceSubDetectorType
Field Description: The subdetector type this reading corresponds too. Will
be either VehiclePresenceSubDetectorType::VehicleDistanceValue or
VehiclePresenceSubDetectorType::VehicleSpeedValue. This type must
that given by VehiclePresenceSubDetectorInformationReply for the speci-
fied subdetector.

readout_status_flags
uint32_t bits defined by

VehiclePresenceReadOutFlags
Field Description: Bitwise OR of flags to indicate state of the distance data reported with
this struct. If zero, all is good.

reading_is_useable uint8_t
Field Description: If nonzero, the measured distance or speed is useable. If zero, the mea-
sured distance or speed should not be used.

reading_value float
Field Description: Either the measured speed (in meters per sec-
ond), or the measured distance (in centimeters), as determined by
VehiclePresenceReadingInfo::subdetector_type. The distance from
the subdetector to the item in centimeters. When used with the subdetector’s position and
orientation, an unambiguous location of one point of the item is specified. If no item is being
measured, then a value of zero should be reported.

172 Detailed Message Descriptions

4.3.18 VehiclePresenceImageType Enumeration

Enumeration to hold the file type of an image contained in the message.

Used in message: VehiclePresenceImagePush

Underlying integral representation: uint8_t

Enumerated values for VehiclePresenceImageType:

NoImageValue Value 0x00

No image is present.

JpegValue Value 0x01

Joint Photographic Experts Group (JPEG)

PngValue Value 0x02

Portable Network Graphics (PNG)

GifValue Value 0x03

Graphics Interchange Format (Gif)

BmpValue Value 0x04

Bitmap image.

PdfValue Value 0x05

Portable Document Format (PDF)

SvgValue Value 0x06

Scalable Vector Graphics (SVG)

4.3.19 VehiclePresenceImagePush Message

Image sent from a vehicle presence module to the control module. This message is sent when
the vehicle presence module decides to send it, and may for example be when the vehicle enters
or exits the portal. To make it adjustable when, or if, the images are taken, use the parameters
mechanism (see ParameterInfoReply).

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x10

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x76

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

Continued on next page

4.3 Vehicle Presence Interface 173

Table continued from previous page
Field Name Data Type

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

timestamp UtcTimePoint
Field Description: Time image was taken. Microseconds since the UNIX epoch.

subdetector_number uint8_t
Field Description: The number of the imaging sub-detector (camera) that took the image.

readout_status_flags
uint32_t bits defined by

VehiclePresenceReadOutFlags
Field Description: Bitwise OR of flags to indicate state of the camera that took the picture,
and status of the data. If zero, all is good.

image_type
uint8_t enumerated by

VehiclePresenceImageType
Field Description: The file type of the image being transferred.

image_data Large Array of uint8_t
Field Description: The image data corresponding to a standard image file.

4.3.20 VehiclePresenceImagePushAck Message

A message acknowledging the receipt by the control module of a VehiclePresenceImagePush
message.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x10

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xf6

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

174 Detailed Message Descriptions

4.3.21 VehiclePresenceCurrentImageRequest Message

A request from the control module for a picture to be taken as soon as the message is received.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x10

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x77

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

subdetector_number uint8_t
Field Description: The subdetector number of the camera the pictured is wanted from.

4.3.22 VehiclePresenceCurrentImageReply Message

Message from a vehicle presence module containing the requested current image, or if not, the
reason why not.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x10

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xf7

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

reply_status
uint8_t enumerated by

VehiclePresenceReplyStatus
Continued on next page

4.4 Power Management 175

Table continued from previous page
Field Name Data Type

Field Description: The success status of being able to fulfill the request.
timestamp UtcTimePoint

Field Description: Time image was taken. Microseconds since the UNIX epoch.
subdetector_number uint8_t

Field Description: The number of the imaging sub-detector (camera) that took the image.

readout_status_flags
uint32_t bits defined by

VehiclePresenceReadOutFlags
Field Description: Bitwise OR of flags to indicate state of the camera that took the picture,
and status of the data. If zero, all is good.

image_type
uint8_t enumerated by

VehiclePresenceImageType
Field Description: The file type of the image being transferred.

image_data Large Array of uint8_t
Field Description: The image data corresponding to a standard image file.

4.4 Power Management

4.4.1 PowerManagementMsgType Enumeration

Values to indicate the type of message being sent as part of the Power Management
Interface. In this message group, push messages originate at the power management
module (PMU), and request messages originate at the control module. The first byte of
messages shall have a value of MessageGroup::PowerManagementValue (0x20),
and the second byte of the message will have a value as indicated by this enum, which
will then tell you how to decode the message. For example a second byte value of
PowerManagementMsgType::PwrMngmtInformationRequestValue will tell you
the message contents are specified by PwrMngmtInformationRequest message.

Underlying integral representation: uint8_t

Enumerated values for PowerManagementMsgType:

PwrMngmtInformationRequestValue Value 0x56

A request from the control module to the power management module for static information
(ie., information that doesn’t change, so not things like realtime voltage or current) about
the output lines and supply portion of the power management module.

See also: PwrMngmtInformationRequest

PwrMngmtInformationReplyValue Value 0xd6

A reply from the power management module to the control module in response to a
PwrMngmtInformationRequest message. Provides information on the capabili-
ties of the line-outs and supply portion of PMM. Does not provide dynamic status.

See also: PwrMngmtInformationReply

176 Detailed Message Descriptions

PwrMngmtLineOutStatusRequestValue Value 0x58

A request from the control module to the power management module for dynamic infor-
mation (i.e., power source, voltage, current, etc) about a line out.

See also: PwrMngmtLineOutStatusRequest

PwrMngmtLineOutStatusReplyValue Value 0xd8

A reply from the power management module to the control module in response to a
PwrMngmtLineOutStatusRequest message. Provides dynamic information about
the line out such as power source, voltage, current, etc.

See also: PwrMngmtLineOutStatusReply

PwrMngmtSupplyStatusRequestValue Value 0x59

A request from the control module to the power management module for dynamic informa-
tion about the mains power, batteries, charging or inverting circuitry and other components
that could cause issues.

See also: PwrMngmtSupplyStatusRequest

PwrMngmtSupplyStatusReplyValue Value 0xd9

A reply from the power management module to the control module in response to a
PwrMngmtSupplyStatusRequest message. Provides dynamic information about
mains (supply) power source, such as voltage, current being used, and any issues.

See also: PwrMngmtSupplyStatusReply

PwrMngmtLineOutEventPushValue Value 0x5a

A push message from the power management module to the control module notifying
it of a condition enumerated by PwrMngmtLineOutStatusFlags has changed;
ex, switch to on battery power, overloaded, switch back to mains power, etc. See
PwrMngmtLineOutEventPush for message contents and format.

PwrMngmtLineOutEventPushAckValue Value 0xda

Acknowledgement of receiving a PwrMngmtLineOutEventPush message.

See also: PwrMngmtLineOutEventPushAck

PwrMngmtSupplyEventPushValue Value 0x5b

A push message from the power management module to the control module notifying
it that one of the conditions enumerated by PwrMngmtSupplyStatusFlags has
changed (ex. over voltage, battery fault, etc). See PwrMngmtSupplyEventPush
for message contents and format.

PwrMngmtSupplyEventPushAckValue Value 0xdb

Acknowledgement of receiving a PwrMngmtSupplyEventPush message.

See also: PwrMngmtSupplyEventPushAck

4.4 Power Management 177

PwrMngmtSelfTestRequestValue Value 0x5c

A request from the control module to the power management module asking the device
to perform a self-test. The types of self-tests that can be requested are enumerated in
PwrMngmtTestType.

See also: PwrMngmtTestType , PwrMngmtSelfTestRequest

PwrMngmtSelfTestReplyValue Value 0xdc

A reply from the power management module to the control module in response to a
PwrMngmtSelfTestRequest message. There may be multiple replies to a single
request as some tests can take significant time.

See also: PwrMngmtSelfTestReply

PwrMngmtAutomaticSelfTestResultPushValue Value 0x5d

A push message from the power management module to the control module notifying it
of a automated self test has started, in progress, aborted, or completed. Some power
management units will perform periodic tests to ensure readiness for mains power failure.
This message informs the control module of the results of the test.

See also: PwrMngmtAutomaticSelfTestResultPush

PwrMngmtAutomaticSelfTestResultPushAckValue Value 0xdd

Acknowledgement of receiving a PwrMngmtAutomaticSelfTestResultPush
message.

See also: PwrMngmtAutomaticSelfTestResultPushAck

PwrMngmtLineOutPowerCycleRequestValue Value 0x5e

A request from the control module to the power management module asking the de-
vice to turn a line out off and then back on, with potential delays for both the off
and on actions. PwrMngmtLineOutEventPush message will be sent with the
PwrMngmtLineOutStatusFlags::PwrMngmtLineOutImminentShutdownFlag
flag set in the PwrMngmtLineOutEventPush::lineout_status field.

See also: PwrMngmtLineOutPowerCycleRequest

PwrMngmtLineOutPowerCycleReplyValue Value 0xde

A reply from the power management module to the control module in response to a
PwrMngmtLineOutPowerCycleReply message.

4.4.2 PwrMngmtInformationRequest Message

A request from the control module to the power management module for static information (ie,
information that doesn’t change, so not things like realtime voltage or current) about a output
line.

See Also: PwrMngmtInformationReply

Message Contents:

178 Detailed Message Descriptions

Field Name Data Type
message_group uint8_t with value 0x20

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x56

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.4.3 PwrMngmtLineOutProtectionType Enumeration

Enumeration to specify the the type of backup protection the line-out corresponds to, using the
standard terminology of uninterruptible power supplies.

Underlying integral representation: uint8_t

Enumerated values for PwrMngmtLineOutProtectionType:

PwrMngmtStandbyTypeValue Value 0x01

The line-out power is directly tied to the input (mains) power, and the inverting circuitry
(DC to AC circuitry) is idle until a power disruption occurs. Switching to battery power may
lead to a few milliseconds disruption in power output. If the line-out supplies DC voltage
and there may be a glitch when switching from mains power to battery power, specify this
type.

PwrMngmtDoubleConversionTypeValue Value 0x02

The entire line-out power is always provided by the inverting circuitry from the batteries; the
mains power is converted to DC to supply the batteries. Mains power loss or disruptions
typically do not cause any interruption to the output power. If the line-out directly provides
DC power that is supplied from the battery through a regulated mechanism (ex, DC to DC
voltage conversion), specify that it is this type.

PwrMngmtDeltaConversionTypeValue Value 0x04

Some amount of the output power skips the AC to DC back to AC processing stage, to
create a more power efficient process but with potentially some loss of protections of the
double conversion type.

PwrMngmtLineInteractiveTypeValue Value 0x08

Line interactive line-outs have an ability to automatically regulate voltage to correct low
and high mains voltages, without needing to convert to DC.

4.4 Power Management 179

PwrMngmtNoBatteryPowerValue Value 0x10

The power management module does not provide and buffer from mains losing power.

4.4.4 PwrMngmtLineOutPropertiesFlags Enumeration

Properties of a given lineout. Which properties are marked will trigger PwrMngmtLineOutEventPush
messages to be sent, and which fields of PwrMngmtLineOutEventPush and
PwrMngmtLineOutStatusReply are expected to be valid.

Underlying integral representation: uint32_t

Enumerated values for PwrMngmtLineOutPropertiesFlags:

PwrMngmtLineOutCanBePoweredByBatteryFlag Value 0x01

If mains power is lost, this lineout will be powered from the battery.

See also: PwrMngmtLineOutStatusFlags::PwrMngmtLineOutOnBatteryPowerFlag

PwrMngmtLineOutPowerCanBeCycledFlag Value 0x02

If marked, line can be shut off, and after a delay, turned back on using a
PwrMngmtLineOutPowerCycleRequest message. Useful for forcing a hard
reboot of non-responding devices.

PwrMngmtLineOutVoltageIsMeasuredFlag Value 0x04

The output voltage is actively monitored and reported using PwrMngmtLineOutStatus::voltage_volts.

PwrMngmtLineOutCurrentIsMeasuredFlag Value 0x08

The output voltage is actively monitored and reported using PwrMngmtLineOutStatus::current_amps.

PwrMngmtLineOutFrequencyIsMeasuredFlag Value 0x10

The output frequency is actively monitored and reported using PwrMngmtLineOutStatus::frequency_hz.

PwrMngmtLineOutNoiseIsMeasuredFlag Value 0x20

The output is actively monitored for noise conditions.

See also: PwrMngmtLineOutStatusFlags::PwrMngmtLineOutOutOfToleranceFlag

PwrMngmtLineOutCanReportFaultsFlag Value 0x40

Output faults can be detected and reported.

See also: PwrMngmtLineOutStatusFlags::PwrMngmtLineOutOutputLineFaultFlag

PwrMngmtLineOutSupportsBypassFlag Value 0x80

The line out may go into bypass mode. This may be due to a manual intervention, power
draw overload (while mains power is available), or malfunction.

PwrMngmtLineOutSupportsOverloadWarningFlag Value 0x100

The device monitors for conditions approaching output overload, and will send a
PwrMngmtLineOutEventPush message when detected.

See also: PwrMngmtLineOutStatusFlags::PwrMngmtLineOutOutputOverloadWarningFlag

180 Detailed Message Descriptions

PwrMngmtLineOutSupportsOverloadProtectionFlag Value 0x200

The device monitors for overload conditions and will take protective actions when neces-
sary.

See also: PwrMngmtLineOutStatusFlags::PwrMngmtLineOutOutputOverloadDetectedFlag

PwrMngmtLineOutSupportsBuckFlag Value 0x400

The mains voltage is being actively lowered. Usually applicable to line-interactive units.

See also: PwrMngmtLineOutStatusFlags::PwrMngmtLineOutBuckOnFlag

PwrMngmtLineOutSupportsBoostFlag Value 0x800

The mains voltage is being actively increased. Usually applicable to line-interactive units.

See also: PwrMngmtLineOutStatusFlags::PwrMngmtLineOutBoostOnFlag

PwrMngmtLineOutMonitorsDiagnosticsFlag Value 0x1000

The device will report issues with diagnostics if they happen. For example if voltage or
current cant be read, or internal diagnostics fail.

See also: PwrMngmtLineOutStatusFlags::PwrMngmtLineOutDiagnosticsFailFlag

4.4.5 PwrMngmtSupplyPropertiesFlags Enumeration

Features of the "supply" portion of the power management unit. Which features are marked
as supported will determine what type of events may trigger a PwrMngmtSupplyEventPush
message to be sent, and what fields of PwrMngmtSupplyEventPush and PwrMngmtSupplyStatusReply
and PwrMngmtBatteryStatus are expected to be valid.

Underlying integral representation: uint32_t

Enumerated values for PwrMngmtSupplyPropertiesFlags:

PwrMngmtSupplyMainsVoltageIsMeasuredFlag Value 0x01

The power management module actively measures and monitors the mains voltage.

See also: PwrMngmtSupplyStatusFlags::PwrMngmtSupplyMainsOverVoltageFlag
, PwrMngmtSupplyStatusFlags::PwrMngmtSupplyMainsUnderVoltageFlag

PwrMngmtSupplyMainsCurrentIsMeasuredFlag Value 0x02

The power management module actively measures and monitors the mains current.

See also: PwrMngmtSupplyStatus::mains_current_amps

PwrMngmtSupplyMainsFrequencyIsMeasuredFlag Value 0x04

The power management module actively measures and monitors the mains frequency.

See also: PwrMngmtSupplyStatusReply::mains_frequency_hz

PwrMngmtSupplyMainsNoiseIsMeasuredFlag Value 0x08

The power management module actively measures and monitors the mains noise (e.g.,
looks for spike, or sags, etc).

See also: PwrMngmtSupplyStatusFlags::PwrMngmtSupplyMainsNoisyFlag

4.4 Power Management 181

PwrMngmtSupplyBatteryVoltageIsMeasuredFlag Value 0x10

The power management module actively measures and monitors the battery voltage.

See also: PwrMngmtSupplyStatusFlags::PwrMngmtSupplyBatteryLowCapacityFlag
, PwrMngmtSupplyStatusFlags::PwrMngmtSupplyBatteryDepletedFlag

PwrMngmtSupplyBatteryCurrentIsMeasuredFlag Value 0x20

The power management module actively measures and monitors the battery current.

See also: PwrMngmtLineOutStatus::current_amps

PwrMngmtSupplyBatteryFaultsCanBeDetectedFlag Value 0x40

The power management module actively measures and monitors for battery faults.

See also: PwrMngmtSupplyStatusFlags::PwrMngmtSupplyBatteryFaultFlag

PwrMngmtSupplyAmbientTemperatureIsMeasuredFlag Value 0x80

The power management module actively measures and monitors the ambient temperature
(i.e., the module enclosure).

See also: PwrMngmtSupplyStatusFlags::PwrMngmtSupplyAmbientTemperatureBadFlag

PwrMngmtSupplyBatteryTemperatureIsMeasuredFlag Value 0x100

The power management module actively measures and monitors the battery tempera-
ture(s).

See also: PwrMngmtSupplyStatusFlags::PwrMngmtSupplyBatteryTemperatureBadFlag

PwrMngmtSupplyOtherTemperatureIsMeasuredFlag Value 0x200

The power management module actively measures and temperature(s) other than battery
and ambient.

See also: PwrMngmtSupplyStatusFlags::PwrMngmtSupplyOtherTemperatureBadFlag

PwrMngmtSupplyFanIsMonitoredFlag Value 0x400

The power management module includes a fan that is actively monitored for operation.

See also: PwrMngmtSupplyStatusFlags::PwrMngmtSupplyFanFailureFlag,

PwrMngmtSupplyHumidityIsMonitoredFlag Value 0x800

The power management module actively monitors relative humidity.

See also: PwrMngmtSupplyStatusFlags::PwrMngmtSupplyHumidityBadFlag

PwrMngmtSupplyWaterPresenceIsMonitoredFlag Value 0x1000

The power management module actively monitors for the presence of water.

See also: PwrMngmtSupplyStatusFlags::PwrMngmtSupplyWaterDetectedFlag

PwrMngmtSupplyDiagnosticsIsMonitoredFlag Value 0x2000

The power management module is capable of detecting when a diagnostic measurements
fail.

See also: PwrMngmtSupplyStatusFlags::PwrMngmtSupplySupplyDiagnosticsFailFlag

182 Detailed Message Descriptions

4.4.6 PwrMngmtLineOutInformation Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

Struct to hold the information relevant to line-outs of a PwrMngmtInformationReply mes-
sage.

Message Contents:

Field Name Data Type
subdetector_number uint8_t

Field Description: The line out number to which this message corresponds. Must be be-
tween one and DeviceInfoReply::num_subdetectors, inclusive.

subdetector_type
uint8_t enumerated by

PwrMngmtLineOutProtectionType
Field Description: The type of power protection provided by this line out.

subdetector_features
uint32_t bits defined by

PwrMngmtLineOutPropertiesFlags
Field Description: Features of this line-out

nominal_output_frequency_hz float
Field Description: The nominal output frequency, in hertz, of the power supplied for this
line-out. DC power output will have a value of zero, and standard US AC will have a value
60.

nominal_output_voltage_volts float
Field Description: The nominal output voltage for the line-out. If AC, then the RMS value is
used.

nominal_output_max_current_amps float
Field Description:

4.4.7 PwrMngmtInformationReply Message

A reply from the power management module to the control module in response to a
PwrMngmtInformationRequest message. Provides information on the capabilities
of the module. Does not provide dynamic status.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x20

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xd6

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Continued on next page

4.4 Power Management 183

Table continued from previous page
Field Name Data Type

Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

lineout_informations
Short Array of
PwrMngmtLineOutInformation

Field Description: Information about all of the lineouts of the unit.

supply_features
uint32_t bits defined by

PwrMngmtSupplyPropertiesFlags
Field Description: Bitfield listing features supported by the supply. Which fea-
tures are marked will determine which PwrMngmtSupplyStatusFlags properties
will trigger a PwrMngmtSupplyEventPush message or measured quantities of
PwrMngmtSupplyStatusReply or PwrMngmtBatteryStatus are valid.

description Short String
Field Description: Free-form description of power management supply status.

4.4.8 PwrMngmtLineOutStatusRequest Message

A request from the control module to the power management module for dynamic information
(i.e., power source, voltage, current, etc) about the line outs.

See Also: PwrMngmtLineOutStatusReply

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x20

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x58

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

184 Detailed Message Descriptions

4.4.9 PwrMngmtLineOutStatusFlags Enumeration

Flags to indicate current status of a line out. A nominally operating line-out will not have any
flags set. Any condition that will cause a change to any of the statuses (either cause flag to
be set, or unset) will also trigger sending a PwrMngmtLineOutEventPush to let the con-
trol module know of the change. If no connection to the control module is established, then
the PwrMngmtLineOutEventPush message does not need to be generated, unless data
buffering is enabled.

Underlying integral representation: uint32_t

Enumerated values for PwrMngmtLineOutStatusFlags:

PwrMngmtLineOutOnBatteryPowerFlag Value 0x01

The batteries are currently the source of power for this output line (ie, mains power is not
being used).

See also: PwrMngmtLineOutPropertiesFlags::PwrMngmtLineOutCanBePoweredByBatteryFlag

PwrMngmtLineOutOffByRequestFlag Value 0x02

This output line is not currently not powered because of a requested power cycle.

See also: PwrMngmtLineOutPropertiesFlags::PwrMngmtLineOutPowerCanBeCycledFlag

PwrMngmtLineOutOutOfToleranceFlag Value 0x04

The lineout is out of tolerance, for some reason other than overload; usually either too low
of voltage, or too high, but may be other factors like noise or frequency.

See also: PwrMngmtLineOutPropertiesFlags::PwrMngmtLineOutNoiseIsMeasuredFlag
, PwrMngmtLineOutPropertiesFlags::PwrMngmtLineOutVoltageIsMeasuredFlag

PwrMngmtLineOutOutputLineFaultFlag Value 0x40

There is a fault on the lineout; too much power was being drawn, or other failure. If the line
is shutoff, the PwrMngmtLineOutStatusFlags::PwrMngmtLineOutOffByFailureFlag
flag will also be marked.

See also: PwrMngmtLineOutPropertiesFlags::PwrMngmtLineOutCanReportFaultsFlag

PwrMngmtLineOutOnBypassFlag Value 0x80

The lineout is on bypass; usually due to failure of overload.

See also: PwrMngmtLineOutPropertiesFlags::PwrMngmtLineOutSupportsBypassFlag

PwrMngmtLineOutOutputOverloadWarningFlag Value 0x100

The power being drawn from a lineout is approaching maximum levels.

See also: PwrMngmtLineOutPropertiesFlags::PwrMngmtLineOutSupportsOverloadWarningFlag

PwrMngmtLineOutOutputOverloadDetectedFlag Value 0x200

The power draw has reached overload levels. Line may enter bypass mode, shut the line
off, or cope for a limited amount of time before taking further action. If line is turned off the
PwrMngmtLineOutStatusFlags::PwrMngmtLineOutOutputLineFaultFlag

4.4 Power Management 185

and PwrMngmtLineOutStatusFlags::PwrMngmtLineOutOffByFailureFlag
flags will also be set.

See also: PwrMngmtLineOutPropertiesFlags::PwrMngmtLineOutSupportsOverloadProtectionFlag

PwrMngmtLineOutBuckOnFlag Value 0x400

The mains voltage is being actively lowered. Usually applicable to line-interactive units.

See also: PwrMngmtLineOutPropertiesFlags::PwrMngmtLineOutSupportsBuckFlag

PwrMngmtLineOutBoostOnFlag Value 0x800

The mains voltage is being actively lowered. Usually applicable to line-interactive units.

See also: PwrMngmtLineOutPropertiesFlags::PwrMngmtLineOutSupportsBoostFlag

PwrMngmtLineOutDiagnosticsFailFlag Value 0x1000

A diagnostic for the lineout has failed. This might mean the voltage or current cant be
measured, or an internal test has failed.

See also: PwrMngmtLineOutPropertiesFlags::PwrMngmtLineOutMonitorsDiagnosticsFlag

PwrMngmtLineOutOffByFailureFlag Value 0x2000

This output line is not currently not powered because of a fault or battery depletion,

See also: PwrMngmtLineOutPropertiesFlags::PwrMngmtLineOutCanReportFaultsFlag

PwrMngmtLineOutImminentShutdownFlag Value 0x8000

This output line will imminently shutdown; you should immediately place all devices con-
nected to it in a safe state.

4.4.10 PwrMngmtLineOutStatus Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

Struct to hold the information of a PwrMngmtLineOutStatusReply message.

Message Contents:

Field Name Data Type
subdetector_number uint8_t

Field Description: The line out number this message corresponds to. Must be between one
and DeviceInfoReply::num_subdetectors, inclusive.

status_time UtcTimePoint
Field Description: Time at which the status measurements are effective.

lineout_status
uint32_t bits defined by

PwrMngmtLineOutStatusFlags
Field Description: Bitfield indicating any current issues for the line-out.

current_source_time_seconds uint32_t
Field Description: The number of seconds this output line has been on the current power
source

Continued on next page

186 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

voltage_volts float
Field Description: The measured output voltage, in volts. AC voltages are RMS. If output
voltage is not measured, a value of zero will be provided.
See also:

• PwrMngmtLineOutPropertiesFlags::PwrMngmtLineOutVoltageIsMeasuredFlag
current_amps float

Field Description: The measured output current, in amps. AC current given in RMS. If output
current is not measured, a value of zero will be provided.
See also:

• PwrMngmtLineOutPropertiesFlags::PwrMngmtLineOutCurrentIsMeasuredFlag
frequency_hz float

Field Description: The frequency of the output. If output frequency is not measured, then
the nominal designed frequency will be reported.
See also:

• PwrMngmtLineOutPropertiesFlags::PwrMngmtLineOutFrequencyIsMeasuredFlag
load_percent float

Field Description: The current load, in percent, of maximum sustainable current. If output
load is not measured, a value of zero will be provided.
See also:

• PwrMngmtLineOutPropertiesFlags::PwrMngmtLineOutCurrentIsMeasuredFlag
battery_capacity_percent float

Field Description: The current capacity of the battery(s) (potentially) supplying this lineout.
If batteries are not present, or their status is not monitored, a value of zero will be provided.
See also:

• PwrMngmtSupplyPropertiesFlags::PwrMngmtSupplyBatteryVoltageIsMeasuredFlag
estimated_battery_capacity_seconds int32_t

Field Description: The estimated time in seconds the batteries can sustain this line out if
no mains power is supplied. If batteries are not present, or their status is not monitored, a
value of zero will be provided.
See also:

• PwrMngmtSupplyPropertiesFlags::PwrMngmtSupplyBatteryVoltageIsMeasuredFlag
status_description Short String

Field Description: A free form English description of the status; if any flags are set in
PwrMngmtLineOutStatus::lineout_status, then this field may provide more
information

4.4.11 PwrMngmtLineOutStatusReply Message

A reply from the power management module to the control module in response to a
PwrMngmtLineOutStatusRequest message. Provides dynamic information about the
line out such as power source, voltage, current, etc.

See Also: PwrMngmtLineOutStatusRequest

Message Contents:

4.4 Power Management 187

Field Name Data Type
message_group uint8_t with value 0x20

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xd8

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

informations
Short Array of
PwrMngmtLineOutStatus

Field Description:

4.4.12 PwrMngmtSupplyStatusRequest Message

A request from the control module to the power management module for dynamic information
about the mains power, batteries, charging or inverting circuitry and other components that could
cause issues. The dynamic status of mains power, batteries, and circuits are queried and re-
ported together since their effect on portal operations are largely the same, and for components
like circuitry or fans failing it may not always be possible, or particularly helpful, to distinguish the
various components of the power management module.

See Also: PwrMngmtSupplyStatusReply

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x20

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x59

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

188 Detailed Message Descriptions

4.4.13 PwrMngmtSupplyStatusFlags Enumeration

The status of the mains input to the power management system. When the change of a property
defined in this enum changes, a PwrMngmtLineOutEventPush will be sent out.

Underlying integral representation: uint32_t

Enumerated values for PwrMngmtSupplyStatusFlags:

PwrMngmtSupplyMainsOverVoltageFlag Value 0x01

Mains (supply) voltage is above tolerances. Some units may switch to battery power, which
would be seperately indicated by the PwrMngmtLineOutStatusFlags::PwrMngmtLineOutOnBatteryPowerFlag
bit of the PwrMngmtLineOutEventPush::lineout_status field.

PwrMngmtSupplyMainsUnderVoltageFlag Value 0x02

Mains (supply) voltage is below tolerances. Some units may switch to battery power, which
would be separately indicated by the PwrMngmtLineOutStatusFlags::PwrMngmtLineOutOnBatteryPowerFlag
bit of the PwrMngmtLineOutEventPush::lineout_status field.

PwrMngmtSupplyMainsNoisyFlag Value 0x04

Mains (supply) voltage is noisy. Some units may switch to battery power, which would be
separately indicated by the PwrMngmtLineOutStatusFlags::PwrMngmtLineOutOnBatteryPowerFlag
bit of the PwrMngmtLineOutEventPush::lineout_status field.

PwrMngmtSupplyBatteryLowCapacityFlag Value 0x08

The batteries have been discharged to a low capacity. The battery capacity that is consid-
ered low may either be fixed at the factory, or settable through the Parameter mechanism,
but a typical value might be 10 minutes of runtime left.

PwrMngmtSupplyBatteryDepletedFlag Value 0x10

The battery reserves are at a level such that the current load can not be sustained without
mains power; if mains power is not available, any attached devices should be powered
off to insure a safe shutdown. The battery level that is considered depleted may either
be fixed, or settable through the Parameter mechanism, but a typical value might be one
minute.

PwrMngmtSupplyBatteryIsChargingFlag Value 0x20

Battery has started charging to recover from a lowered charge level (devices were powered
from batteries, or testing that drained the battery was performed). Not for indicating typical
maintenance charging.

PwrMngmtSupplyBatteryFaultFlag Value 0x40

A fault has been detected with a battery. May indicate a battery needs replacing or servic-
ing.

PwrMngmtSupplyFanFailureFlag Value 0x80

A fan has been detected as failed.

PwrMngmtSupplyAmbientTemperatureBadFlag Value 0x100

The ambient temperature is out of tolerance.

4.4 Power Management 189

PwrMngmtSupplyBatteryTemperatureBadFlag Value 0x200

The battery temperature is out of tolerance.

PwrMngmtSupplyOtherTemperatureBadFlag Value 0x400

A temperature, other than ambient and battery, is out of tolerance. For example, power
transistor are running too hot.

PwrMngmtSupplyHumidityBadFlag Value 0x800

Relative humidity is out of tolerance.

PwrMngmtSupplyWaterDetectedFlag Value 0x1000

Water has been detected.

PwrMngmtSupplySupplyDiagnosticsFailFlag Value 0x2000

Diagnostics has failed; this could be something like voltage or current measurements
aren’t working for some reason.

4.4.14 PwrMngmtBatteryStatusFlags Enumeration

Flags to indicate the gross level of battery health.

Underlying integral representation: uint32_t

Enumerated values for PwrMngmtBatteryStatusFlags:

PwrMngmtBatteryDiagnosticsFailedFlag Value 0x01

Battery state unable to be determined.

PwrMngmtBatteryLoweredCapacityFlag Value 0x02

Potential battery capacity is below a predefined threshold, but unit will still operate at
specified levels.

PwrMngmtBatteryCriticalDegradedFlag Value 0x04

Potential battery capacity has degraded to a level that will effect performance.

PwrMngmtBatteryNotFunctioningFlag Value 0x08

Battery is functionally no longer operable. For example potential capacity is degraded to
a point where it will only be able to provide power, in absence of mains power, for a very
limited or no time.

4.4.15 PwrMngmtBatteryStatus Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

A struct to hold information about a batteries current status.

Message Contents:

190 Detailed Message Descriptions

Field Name Data Type
battery_number uint8_t

Field Description: If multiple batteries, or banks of batteries within the system are reported
separately, this field distinguishes them. The value starts at zero and increments by one for
each subsequent battery or bank.

battery_status_flags
uint32_t bits defined by

PwrMngmtBatteryStatusFlags
Field Description: Flags to indicate any issues with the battery. No flags set means all is
fine.

voltage_volts float
Field Description: The voltage of the battery.
See also:

• PwrMngmtSupplyPropertiesFlags::PwrMngmtSupplyBatteryVoltageIsMeasuredFlag
capacity_percent float

Field Description: The present capacity of the battery, in percent. Between 0 and 100.
See also:

• PwrMngmtSupplyPropertiesFlags::PwrMngmtSupplyBatteryVoltageIsMeasuredFlag
temperature_centigrade float

Field Description: The present temperature of the battery. If this isn’t the battery itself, it
may be the battery enclosure or otherwise representative temperature.
See also:

• PwrMngmtSupplyPropertiesFlags::PwrMngmtSupplyBatteryTemperatureIsMeasuredFlag
battery_description Short String

Field Description:

4.4.16 PwrMngmtSupplyStatusReply Message

A reply from the power management module to the control module in response to a
PwrMngmtSupplyStatusRequest message. Provides dynamic information about mains
(supply) power source, battery(s) and other components of the module. The status of the output
lines are reported separately in the PwrMngmtLineOutStatusReply message.

See Also: PwrMngmtSupplyStatusRequest

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x20

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xd9

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

Continued on next page

4.4 Power Management 191

Table continued from previous page
Field Name Data Type

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

status_time UtcTimePoint
Field Description: Time at which the status measurements are effective.

supply_status_flags
uint32_t bits defined by

PwrMngmtSupplyStatusFlags
Field Description: Bitfield to represent any abnormal conditions Under normal conditions no
flags will be set. Check this field to see

battery_statuses
Short Array of
PwrMngmtBatteryStatus

Field Description: Array of battery statuses. Statuses of batteries can be reported either
individually, or grouped together. Reporting individual statuses is preffered for the additional
information, but may not always be possible due to the design of the hardware.

mains_voltage_volts float
Field Description: The current voltage of the supply power. If AC, then the RMS value is
used.
See also:

• PwrMngmtSupplyPropertiesFlags::PwrMngmtSupplyMainsVoltageIsMeasuredFlag
mains_current_amps float

Field Description: The current amperage being used of the supply power. If AC, then the
RMS value is used.
See also:

• PwrMngmtSupplyPropertiesFlags::PwrMngmtSupplyMainsCurrentIsMeasuredFlag
mains_frequency_hz float

Field Description: The frequency of the supply power either measured or assumed.
See also:

• PwrMngmtSupplyPropertiesFlags::PwrMngmtSupplyMainsFrequencyIsMeasuredFlag
ambient_temperature_celsius float

Field Description: The ambient temperature of the power management module enclosure.
Will have a value of zero if temperature is not measured.
See also:

• PwrMngmtSupplyPropertiesFlags::PwrMngmtSupplyAmbientTemperatureIsMeasuredFlag
status_description Short String

Field Description: Free form text description of the status.

4.4.17 PwrMngmtLineOutEventPush Message

A push message from the power management module to the control module notifying it of a
condition enumerated by PwrMngmtLineOutStatusFlags has changed; ex, switch to on
battery power, overloaded, switch back to mains power, etc. If a power management unit has
multiple line-outs, and more than one changes status (e.g., goes on battery power), then multiple
PwrMngmtLineOutEventPush messages will be sent.

Message Contents:

192 Detailed Message Descriptions

Field Name Data Type
message_group uint8_t with value 0x20

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x5a

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

subdetector_number uint8_t
Field Description: The line out number this message corresponds to. Must be between one
and DeviceInfoReply::num_subdetectors, inclusive.

status_time UtcTimePoint
Field Description: Time at which the status measurements are effective.

lineout_status
uint32_t bits defined by

PwrMngmtLineOutStatusFlags
Field Description: Bitfield indicating any current issues for the line-out.

current_source_time_seconds uint32_t
Field Description: The number of seconds this output line has been on the current power
source

voltage_volts float
Field Description: The measured output voltage, in volts. AC voltages are RMS. If output
voltage is not measured, a value of zero will be provided.
See also:

• PwrMngmtLineOutPropertiesFlags::PwrMngmtLineOutVoltageIsMeasuredFlag
current_amps float

Field Description: The measured output current, in amps. AC current given in RMS. If output
current is not measured, a value of zero will be provided.
See also:

• PwrMngmtLineOutPropertiesFlags::PwrMngmtLineOutCurrentIsMeasuredFlag
frequency_hz float

Field Description: The frequency of the output. If output frequency is not measured, then
the nominal designed frequency will be reported.
See also:

• PwrMngmtLineOutPropertiesFlags::PwrMngmtLineOutFrequencyIsMeasuredFlag
load_percent float

Field Description: The current load, in percent, of maximum sustainable current. If output
load is not measured, a value of zero will be provided.
See also:

• PwrMngmtLineOutPropertiesFlags::PwrMngmtLineOutCurrentIsMeasuredFlag
battery_capacity_percent float

Continued on next page

4.4 Power Management 193

Table continued from previous page
Field Name Data Type

Field Description: The current capacity of the battery(s) (potentially) supplying this lineout.
If batteries are not present, or their status is not monitored, a value of zero will be provided.
See also:

• PwrMngmtSupplyPropertiesFlags::PwrMngmtSupplyBatteryVoltageIsMeasuredFlag
estimated_battery_capacity_seconds int32_t

Field Description: The estimated time in seconds the batteries can sustain this line out if
no mains power is supplied. If batteries are not present, or their status is not monitored, a
value of zero will be provided.
See also:

• PwrMngmtSupplyPropertiesFlags::PwrMngmtSupplyBatteryVoltageIsMeasuredFlag
status_description Short String

Field Description: A free form English description of the status; if any flags are set in
PwrMngmtLineOutStatus::lineout_status, then this field may provide more
information

4.4.18 PwrMngmtLineOutEventPushAck Message

Acknowledgement of receiving a PwrMngmtLineOutEventPush message.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x20

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xda

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.4.19 PwrMngmtSupplyEventPush Message

A push message from the power management module to the control module notifying it that one
of the conditions enumerated by PwrMngmtSupplyStatusFlags has changed (ex. over
voltage, battery fault, etc).

Message Contents:

194 Detailed Message Descriptions

Field Name Data Type
message_group uint8_t with value 0x20

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x5b

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

status_time UtcTimePoint
Field Description: Time at which the status measurements are effective.

supply_status_flags
uint32_t bits defined by

PwrMngmtSupplyStatusFlags
Field Description: Bitfield to represent any abnormal conditions Under normal conditions no
flags will be set. Check this field to see

battery_statuses
Short Array of
PwrMngmtBatteryStatus

Field Description: Array of battery statuses. Statuses of batteries can be reported either
individually, or grouped together. Reporting individual statuses is preffered for the additional
information, but may not always be possible due to the design of the hardware.

mains_voltage_volts float
Field Description: The current voltage of the supply power. If AC, then the RMS value is
used.
See also:

• PwrMngmtSupplyPropertiesFlags::PwrMngmtSupplyMainsVoltageIsMeasuredFlag
mains_current_amps float

Field Description: The current amperage being used of the supply power. If AC, then the
RMS value is used.
See also:

• PwrMngmtSupplyPropertiesFlags::PwrMngmtSupplyMainsCurrentIsMeasuredFlag
mains_frequency_hz float

Field Description: The frequency of the supply power either measured or assumed.
See also:

• PwrMngmtSupplyPropertiesFlags::PwrMngmtSupplyMainsFrequencyIsMeasuredFlag
ambient_temperature_celsius float

Field Description: The ambient temperature of the power management module enclosure.
Will have a value of zero if temperature is not measured.
See also:

• PwrMngmtSupplyPropertiesFlags::PwrMngmtSupplyAmbientTemperatureIsMeasuredFlag
status_description Short String

Continued on next page

4.4 Power Management 195

Table continued from previous page
Field Name Data Type

Field Description: Free form text description of the status.

4.4.20 PwrMngmtSupplyEventPushAck Message

Acknowledgement of receiving a PwrMngmtSupplyEventPush message.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x20

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xdb

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.4.21 PwrMngmtTestType Enumeration

Type of test performed, or to be performed.

Used in message: PwrMngmtSelfTestRequest

Underlying integral representation: uint8_t

Enumerated values for PwrMngmtTestType:

PwrMngmtTestGeneralValue Value 0x01

A general test of the systems functionality.

PwrMngmtTestBatteryValue Value 0x02

A test sufficient to check if battery needs replacing.

PwrMngmtTestBatteryDeepCalibrationValue Value 0x04

A deep test of batteries, usually involving discharging and recharging them.

4.4.22 PwrMngmtSelfTestRequest Message

A request from the control module to the power management module asking the device
to perform a self-test. The types of self-tests that can be requested are enumerated in

196 Detailed Message Descriptions

PwrMngmtTestType. There may be multiple replies to this message as some tests may
take some time to perform so may send one or more updates during testing.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x20

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x5c

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

test_type uint8_t enumerated by PwrMngmtTestType
Field Description: The type of test requested to be performed.

4.4.23 PwrMngmtTestStatus Enumeration

The status of the test request.

Used in message: PwrMngmtSelfTestReply

Underlying integral representation: uint8_t

Enumerated values for PwrMngmtTestStatus:

PwrMngmtTestNotSupportedValue Value 0x01

The requested test type is not supported.

PwrMngmtTestCantBePerformedNowValue Value 0x02

The requested test cant be performed right now. This may happen, for example, because
mains power is not available, or batteries are charging.

PwrMngmtTestInProgressValue Value 0x03

The requested test has been started. There may be additional progress updates sent, but
there must be a final result sent with status PwrMngmtTestStatus::PwrMngmtTestCompletedValue
or PwrMngmtTestStatus::PwrMngmtTestCantBePerformedNowValue.

PwrMngmtTestCompletedValue Value 0x04

Test is complete.

4.4 Power Management 197

4.4.24 PwrMngmtSelfTestReply Message

A reply from the power management module to the control module in response to a
PwrMngmtSelfTestRequest message. There may be multiple replies to a single re-
quest as some tests can take significant time.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x20

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xdc

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

timestamp UtcTimePoint
Field Description: Time at which event happened.

test_type uint8_t enumerated by PwrMngmtTestType
Field Description: The type of test requested.

test_status
uint8_t enumerated by

PwrMngmtTestStatus
Field Description: The status of performing the test.

remaining_time_seconds uint32_t
Field Description: The estimated time remaining for the test to complete when
PwrMngmtSelfTestReply::test_status is equal to PwrMngmtTestSta-
tus::PwrMngmtTestInProgressValue.

description Short String
Field Description: Free form description of test results.

4.4.25 PwrMngmtAutomaticSelfTestResultPush Message

A push message from the power management module to the control module notifying it of a
automated self test has started, in progress, aborted, or completed. Some power management
units will perform periodic tests to ensure readiness for mains power failure. This message
informs the control module of the results of the test.

Message Contents:

198 Detailed Message Descriptions

Field Name Data Type
message_group uint8_t with value 0x20

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x5d

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

timestamp UtcTimePoint
Field Description: Time at which event happened.

test_type uint8_t enumerated by PwrMngmtTestType
Field Description: The type of test requested.

test_status
uint8_t enumerated by

PwrMngmtTestStatus
Field Description: The status of performing the test.

remaining_time_seconds uint32_t
Field Description: The estimated time remaining for the test to complete when
PwrMngmtSelfTestReply::test_status is equal to PwrMngmtTestSta-
tus::PwrMngmtTestInProgressValue.

description Short String
Field Description: Free form description of test results.

4.4.26 PwrMngmtAutomaticSelfTestResultPushAck Message

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x20

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xdd

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Continued on next page

4.4 Power Management 199

Table continued from previous page
Field Name Data Type

Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.4.27 PwrMngmtLineOutPowerCycleRequest Message

A request from the control module to the power management module asking the device to turn
a line out off and then back on, with potential delays for both the off and on actions. There may
be multiple replies to this request.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x20

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x5e

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

subdetector_number uint8_t
Field Description: The lineout to power cycle.

delay_until_power_off_seconds uint32_t
Field Description: The delay to wait, in seconds, before powering off the line. This is in-
tended to allow safely powering down devices attached to the line (which may include the
control module making the request). A value of zero means no delay.

delay_while_powered_off_seconds uint32_t
Field Description: Number of seconds to wait with the power off, before powering the line
back on. This is only a request; the power management module may power the line back on
before this timeout, or the total time off may take longer. Reasons for this include:

• There may be a set pre-defined maximum off time limit intended to minimize chance
of accidentally remotely powering the system down for extensive periods of time.

• After the elapsed amount of time, the batteries may not be charged enough to turn
the power back on.

A value of zero means no delay.

4.4.28 PwrMngmtLineOutPowerCycleRequestStatus Enumeration

The status of the PwrMngmtLineOutPowerCycleRequest

200 Detailed Message Descriptions

Used in message: PwrMngmtLineOutPowerCycleReply

Underlying integral representation: uint8_t

Enumerated values for PwrMngmtLineOutPowerCycleRequestStatus:

PwrMngmtLineOutPowerCycleInvalidLineOutValue Value 0x01

An invalid line-out was requested. No further replies to the request will be sent.

PwrMngmtLineOutPowerCycleNotSupportedValue Value 0x02

Cycling the power is not supported for the requested line-out. No further replies to the
request will be sent.

PwrMngmtLineOutPowerCycleWontToggleValue Value 0x03

The line-out can not currently be power cycled. This may be because of a self-test be-
ing run, or another issue. A NotificationPush message may be separately sent
explaining the issue. No further replies to the request will be sent.

PwrMngmtLineOutPowerCycleScheduledValue Value 0x04

Request was received, and now waiting the specified delay before powercycling. If the
scheduled time is near or greater than RapterConstants::FOLLOWUP_REPLY_TIMEOUT_MS,
than more than one reply with this status may need to be sent. Additional replies to the
request will be sent when the power cycling happens.

PwrMngmtLineOutPowerCycleTurnedOffValue Value 0x05

Power has been turned off. May not be able to be sent if the line-out powered the control
module. Additional replies will be sent when power cycling is completed, or as needed
while the power is off.

PwrMngmtLineOutPowerCycleInProgressValue Value 0x06

If the requested delay while power is off is approaching or great than RapterConstants::FOLLOWUP_REPLY_TIMEOUT_MS
then replies with this status may need to be sent.

PwrMngmtLineOutPowerCycleCompletedValue Value 0x07

The power cycle has been completed, and line-out is turned back on. May not be able to
be sent if the line-out powered the control module. No further replies to the request will be
sent.

PwrMngmtLineOutPowerCycleCompletedWithIssueValue Value 0x08

The power cycle has been completed, and line-out is turned back on. May not be able to
be sent if the line-out powered the control module. No further replies to the request will be
sent.

4.4.29 PwrMngmtLineOutPowerCycleReply Message

A reply from the power management module to the control module in response to a
PwrMngmtLineOutPowerCycleReply message. In addition to sending this reply, a
PwrMngmtLineOutEventPushmessage with PwrMngmtLineOutStatusFlags::PwrMngmtLineOutOffByRequestFlag

4.5 Analysis Interface 201

bit of PwrMngmtLineOutStatus::lineout_status appropriately set when the line is
turned off and on.

See Also: PwrMngmtLineOutStatusFlags::PwrMngmtLineOutImminentShutdownFlag

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x20

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xde

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

timestamp UtcTimePoint
Field Description: Time at which event happened.

request_status
uint8_t enumerated by

PwrMngmtLineOutPowerCycleRequestStatus
Field Description: Status of the request.

subdetector_number uint8_t
Field Description: The lineout the power cycle was requested for.

4.5 Analysis Interface

4.5.1 AnalysisMsgType Enumeration

Values that specify the type of message being conveyed for within the analysis message group.
That is, when the first byte of the message has a value of MessageGroup::AnalysisValue,
then this enumeration defines the value of the second byte of the message so that the receiver
can interpret the contents of the message body.

Underlying integral representation: uint8_t

Enumerated values for AnalysisMsgType:

AnalysisInterimResultRequestValue Value 0x51

Message sent from the control module to the analysis module requesting a preliminary
analysis result up through the most recent DataOutDataPacketPush message.

See also: AnalysisInterimResultRequest

AnalysisInterimResultReplyValue Value 0xd1

202 Detailed Message Descriptions

Reply to a AnalysisInterimResultRequestmessage, containing the preliminary
results for the occupancy so far.

See also: AnalysisInterimResultReply

AnalysisItemFinalResultsRequestValue Value 0x52

Message sent from the control module to the analysis module requesting the final analysis
results for the most recent item.

See also: AnalysisItemFinalResultsRequestMsg

AnalysisItemFinalResultsReplyValue Value 0xd2

Reply to a AnalysisItemFinalResultsRequest message, containing the final
alarming status for the most recent item.

See also: AnalysisItemFinalResultsReply

4.5.2 AnalysisInterimResultRequest Message

Message sent from the control module to the analysis module requesting a preliminary analysis
result up through the most recent DataOutDataPacketPush message. The primary pur-
pose of this message is to allow alarming while the vehicle is still traversing the portal, if the
analysis algorithm is able to identify a potential issue before it exits. The control module can
make this request at any time during an occupancy, during a background period, test source,
etc. How the information in the AnalysisInterimResultReply message is determined
is up to the implementation of the algorithm; for example, it could consider only the most recent
DataOutDataPacketPush, or most recent 3 seconds, or time since the occupancy began,
etc.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x04

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x51

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.5 Analysis Interface 203

4.5.3 InterimAnalysisDataUsageStatusFlags Enumeration

Flags that may be bitwise OR’d to indicate one or more conditions regarding the usage of data in
an interim analysis. Used by the analysis module to indicate the current status of the preliminary
analysis.

Underlying integral representation: uint16_t

Enumerated values for InterimAnalysisDataUsageStatusFlags:

NotUsingDataFlag Value 0x01

This data is being ignored, and not used, and will not affect future analysis re-
sults. Possible because device is not in OperatingMode::OperatingValue,
or the current MeasurementType is not MeasurementType::ItemValue or
MeasurementType::BackgroundValue.

DataAnomalousForBackgroundFlag Value 0x02

The data currently is claimed to be background, but the analysis module finds it suspicious,
so is not using it to aggregate background.

AggregatingBackgroundFlag Value 0x04

This data is being used to build up the background. Note that this doesn’t specify that this
data will actually affect the next analysis, since circular buffer, or other such mechanisms
may be used internally to the analysis module.

UsingAsPartOfItemOfInterestFlag Value 0x10

Data is being used to evaluate an item of interest.

StateErrorFlag Value 0x8000

There is currently an error; a notification may be attached to the message.

4.5.4 AlarmTypeFlags Enumeration

Bitwise OR of flags indicating that one or more alarms have been triggered based on radiation
detector data or vehicle presence data. If this is zero, then no alarm has been found yet. (See
N42.42 2012 standard for

<RadAlarmCategoryCode >)

Underlying integral representation: uint16_t

Enumerated values for AlarmTypeFlags:

NoneFlag Value 0x00

Analysis of radiation detector data has resulted in no alarm.

NeutronFlag Value 0x01

Analysis of radiation detector data has resulted in an alarm due to neutrons.

GammaFlag Value 0x02

Analysis of radiation detector data has resulted in an alarm due to gamma radiation.

204 Detailed Message Descriptions

IsotopeFlag Value 0x10

Analysis of radiation detector data has resulted in the identification of one or more radionu-
clides the identity of which is reported in AnalysisItemFinalResultsReply::n42_xml

VehicleSpeedFlag Value 0x20

Analysis of vehicle presence data has resulted in an alarm based on vehicle speed

OccupancyDurationTooShortFlag Value 0x40

The duration of vehicle occupancy was too short for analysis to be completed.

OccupancyDurationTooLongFlag Value 0x80

The duration of vehicle occupancy was longer than allowed by the analysis module.

OtherFlag Value 0x100

Analysis of radiation detector data has produced results not properly described by other
values of AlarmTypeFlags

4.5.5 NuclideResult Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

Representation of a specific radioactive source identified by the analysis algorithm. May be a
nuclide (e.x., U235, Co60, Th232, etc.) or a more general source (e.x., NORM, Bremsstrahlung,
U-xray, SNM, etc.), or even a finding (e.x., Gross Count, Window Ratio, Background Suppres-
sion).

Message Contents:

Field Name Data Type
nuclide_id_confidence_value float

Field Description: Indication of confidence ranging from 0.0% to 100.0% (specified by a
numerical value ranging from 0.0 to 1.0), in the identification status of a nuclide, where
increasing values indicate more certainty that the nuclide is present. The interpretation of
this value is dependent on the characteristics of the nuclide identification algorithm. If no
confidence value is available, then this field must have a negative value other than negative
infinity or negative zero; the magnitude of negative values may not carry any further meaning
(e.g., a change in magnitude of a negative value must not affect the fields interpretation).
(Roughly equivalent to N42 2012 standard for <NuclideIDConfidenceValue >)

start_sample_number uint32_t
Field Description: The starting sample number that this NuclideResult applies to; the
value must correspond to a sample number in the relevant occupancy, unless it is zero, in
which case the start of the occupancy is then implied.

end_sample_number uint32_t
Field Description: The ending sample number that this NuclideResult applies to; the
value must correspond to a sample number in the relevant occupancy, unless it is zero, in
which case the latest sample number of the occupancy is then implied.

Continued on next page

4.5 Analysis Interface 205

Table continued from previous page
Field Name Data Type

nuclide Short String
Field Description: Radioactive source identified; does not strictly have to name a nuclide,
but should name a radioactive source. For example valid entries include: Plutonium, Co-60,
Bremsstrahlung, U-xray, HEU, U-235, I-131, Ag-110m, Annihilation, Gross Count, Window
Ratio, (last two not in N42 standard, but it allows additions) etc. (Roughly equivalent to
N42 2012 <NuclideName > elements. See section 5.1.3 of the 2012 N42 standard, and its
subsections, for formatting of source names).

nuclide_category Short String
Field Description: Free form description of the identified source category. Some example
entries are: SNM, Industrial, Medical, etc. May be blank. (Roughly equivalent of N42 2012
standard for <NuclideCategoryDescription >)

4.5.6 AnalysisInterimResultReply Message

Reply to an AnalysisInterimResultRequest message.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x04

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xd1

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

analysis_module_uuid Uuid128
Field Description: The UUID of the analysis module that produced this analysis result. Must
match the UUID given by DeviceInfoReply of the analysis module.

result_timestamp UtcTimePoint
Field Description: TODO: decide if we need a UUID for each analysis result The time the
analysis was started.

result_uuid Uuid128
Field Description: UUID generated by the analysis module for this result. This must be
generated in such a way that it uniquely identifies this result.

interim_analysis_status
uint16_t bits defined by

InterimAnalysisDataUsageStatusFlags
Continued on next page

206 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: Indication of whether the data are being used for background aggregation
or for the analysis of an item of interest.

alarm_type uint16_t bits defined by AlarmTypeFlags
Field Description: Bitwise OR of flags indicating a gamma, neutron, etc, alarm has been
triggered. If this is zero, then no alarm has been found.

sample_number uint32_t
Field Description: The item of interest number these results are for; must match
DataOutPacket::sample_number of the data this result is for.

analysis_confidence_value float
Field Description: Indication of confidence, as a percent ranging from 0.0 to 100.0 (speci-
fied with a filed value ranging from 0.0 to 1.0), in the overall accuracy of the analysis, where
increasing values indicate higher confidence. If a confidence is not ascribed, this should
be set to a negative value (other than negative infinity or negative 0), with the magnitude
having not carrying any meaning. (Taken roughly from N42 2012 standard for <Analysis-
ConfidenceValue >)

nuclides Short Array of NuclideResult
Field Description: The analysis algorithms identified results; does not strictly have to be
nuclides (e.x., U235, Co60, etc.), but may be other sources as well (e.x., Bremsstrahlung,
Annihilation, Gross Count, etc.). The same nuclide may be specified multiple times covering
different ranges of sample numbers.

analysis_result_description Short String
Field Description: Free-form text describing the overall conclusion of the analysis regarding
the source of concern. (See N42.42 2012 standard for
<AnalysisResultDescription >)

4.5.7 AnalysisItemFinalResultsRequest Message

Request sent from the control module to the analysis module to return the final analysis of
most recent occupancy. The control module should not make this request except for at the
end of an occupancy because the additional computational and bandwidth requirements to
send the results may overwhelm the system. If the most recent DataOutDataPacketPush
was marked as MeasurementType::ItemValue, the analysis module should assume
the occupancy lasted up through the last DataOutDataPacketPush and is now over. If
the control module would like updates in real time as the vehicle is traversing the portal, use
AnalysisInterimResultRequest requests.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x04

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x52

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

Continued on next page

4.5 Analysis Interface 207

Table continued from previous page
Field Name Data Type

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.5.8 AnalysisFinalResultStatusFlags Enumeration

Flags that may be bitwise OR’d to indicate the alarm results from the final analysis of radiation
data from an occupancy. If no flags are set, the final analysis of occupancy radiation data
concluded that no threat was present.

Underlying integral representation: uint16_t

Enumerated values for AnalysisFinalResultStatusFlags:

InconclusiveFlag Value 0x01

The final analysis of occupancy radiation data was inconclusive as to whether a threat was
present.

ExcessNeutronFlag Value 0x02

Analysis of radiation detection data has found a source of neutrons.

SNMFlag Value 0x04

Analysis of radiation detection data has found a source that is categorized as SNM.

IndustrialFlag Value 0x08

Analysis of radiation detection data has found a source that is categorized as Industrial.

MedicalFlag Value 0x10

Analysis of radiation detection data has found a source that is categorized as Medical.

UnknownFlag Value 0x20

Analysis of radiation detection data has found a source that is categorized as Unknown.

NORMFlag Value 0x40

The final analysis of occupancy radiation data concluded that an innocent NORM source
was present

ReferralFlag Value 0x80

The algorithm recommends additional inspection.

208 Detailed Message Descriptions

NotOperatingFlag Value 0x100

The final analysis of occupancy radiation data could not be produced because a necessary
part of the system was not operating.

AnalysisFinalResultErrorFlag Value 0x8000

The final analysis of occupancy radiation data was accompanied by an error. Analysis re-
sults should not be trusted. The AnalysisItemFinalResultData::analysis_result_description
field must include a description of the issue.

4.5.9 AnalysisItemFinalResultsReply Message

Message to convey the final results from analysis of the radiation data of an occupancy. Reply
to a AnalysisItemFinalResultsRequest message.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x04

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xd2

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

analysis_module_uuid Uuid128
Field Description: The UUID of the analysis module that produced this analysis result. Must
match the UUID given by DeviceInfoReply of the analysis module.

result_timestamp UtcTimePoint
Field Description: Timestamp of when the analysis results were generated

result_uuid Uuid128
Field Description: UUID generated by the analysis module for this result. This must be
generated in such a way that it uniquely identifies this result.

item_number uint32_t
Field Description: The item of interest number these results are for; must match
DataOutPacket::item_number of the data this result is for.

analysis_results_status
uint16_t bits defined by

AnalysisFinalResultStatusFlags
Continued on next page

4.6 Data Out Interface 209

Table continued from previous page
Field Name Data Type

Field Description: Bitwise OR of flags including the large picture final result of the ra-
diation data analysis, i.e., whether to refer the vehicle for further inspection. (See
DataOutFinalAnalysisPush::alarm_type field for additional alarm details, plus
results from occupancy sensors).

alarm_type uint16_t bits defined by AlarmTypeFlags
Field Description: Bitwise OR of AlarmTypeFlags indicating an
alarm has been triggered based on radiation data or vehicle pres-
ence data. If this is zero, then no alarm has been found. (See
AnalysisItemFinalResultsReply::analysis_results_status for
referral recommendation and further alarm detail.)

analysis_confidence_value float
Field Description: Indication of confidence, as a percent ranging from 0.0 to 100.0 (speci-
fied with a filed value ranging from 0.0 to 1.0), in the overall accuracy of the analysis, where
increasing values indicate higher confidence. If a confidence is not ascribed, this should
be set to a negative value (other than negative infinity or negative 0), with the magnitude
having not carrying any meaning. (Taken roughly from N42 2012 standard for <Analysis-
ConfidenceValue >)

nuclides Short Array of NuclideResult
Field Description: The analysis algorithms identified results; does not strictly have to be
nuclides (e.x., U235, Co60, etc.), but may be other sources as well (e.x., Bremsstrahlung,
Annihilation, Gross Count, etc.). The same nuclide may be specified multiple times covering
different ranges of sample numbers.

analysis_result_description Short String
Field Description: Free-form text describing the overall conclusion of the analysis regarding
the source of concern. (See N42.42 2012 standard for
<AnalysisResultDescription >)

n42_xml Large String
Field Description: This string provides the UTF-8 encoded contents of a ANSI N42.42-2012
file, including analysis results. The N42.42 contents must include the data used to make the
determination of results.

4.6 Data Out Interface

4.6.1 DataOutMsgType Enumeration

Values to indicate the type of message being sent as part of the DataOut message
group. Request messages of the DataOut message group originate at a device and are
directed to the control module. The control module issues push messages that are di-
rected to all DataOut devices. The first byte of DataOut messages shall have a value of
MessageGroup::DataOutValue. The second byte of the message will have a value as
indicated by this enum, which will then tell you how to decode the message. For example a
second byte value of DataOutDataPacketPush will tell you the message contents are
specified by DataOutDataPacketPush message.

210 Detailed Message Descriptions

Underlying integral representation: uint8_t

Enumerated values for DataOutMsgType:

DataOutDataPacketPushValue Value 0x21

Message sent from the control module to DataOut, analysis, and control devices contain-
ing packaged data from the portal devices for a given time interval.

See also: DataOutDataPacketPush

DataOutDataPacketPushAckValue Value 0xa1

Acknowledgement of receiving a DataOutDataPacketPush message.

See also: DataOutDataPacketPushAck

DataOutDevicesInfoRequestValue Value 0x22

Message sent from a device to the control module requesting information about all the
devices in the system.

See also: DeviceInfoReply , SystemDeviceInfoRequest , DataOutSubDetectorInformationRequest

DataOutDevicesInfoReplyValue Value 0xa2

Reply sent in response to a DataOutDevicesInfoRequest containing information
about all the devices currently connected to the control module.

See also: DataOutDevicesInfoReply

DataOutDeviceParametersRequestValue Value 0x3d

Request to get the parameters of a specific device.

See also: DataOutDeviceParametersRequest

DataOutDeviceParametersReplyValue Value 0xbd

Reply sent in response to a DataOutMsgType::DataOutDeviceParametersRequestValue
containing the parameter information of the requested device.

See also: DataOutDeviceParametersReply

DataOutEventAcknowledgementPushValue Value 0x3e

Message notifying DataOut devices that an event has been acknowledged.

See also: DataOutEventAcknowledgementPush

DataOutEventAcknowledgementPushAckValue Value 0xbe

Acknowledgement of receiving a DataOutEventAcknowledgementPush mes-
sage.

See also: DataOutEventAcknowledgementPushAck

DataOutSubDetectorInformationRequestValue Value 0x23

A request from a DataOut device to the control module for sub-device information for a
given device. Note only radiation detectors or vehicle presence modules have sub-devices.

See also: DataOutDevicesInfoRequest , RadSubDetectorInformationRequest
, VehiclePresenceSubDetectorInformationRequest

4.6 Data Out Interface 211

DataOutSubDetectorInformationReplyValue Value 0xa3

The reply from the control module to the DataOut device containing information about the
sub-devices of a given module.

See also: DataOutDevicesInfoReply , RadSubDetectorInformationReply
, VehiclePresenceSubDetectorInformationReply

DataOutGetStatusOfDeviceRequestValue Value 0x24

Request from a device to the control module requesting the status of a device in the
system.

See also: DeviceStatusReply

DataOutGetStatusOfDeviceReplyValue Value 0xa4

Reply to a DataOutGetStatusOfDeviceRequest with either the device’s status,
or information about why it isn’t available at this time.

See also: DataOutGetStatusReply

DataOutSystemOperabilityCheckRequestValue Value 0x25

Request from a device to the control module asking if the system is ready to start opera-
tions.

See also: DataOutSystemOperabilityCheckRequest , DeviceOperabilityCheckRequest

DataOutSystemOperabilityCheckReplyValue Value 0xa5

Reply sent in response to a DataOutSystemOperabilityCheckRequest with
status of if the system is ready to operate.

See also: DataOutDevicesInfoReply

DataOutDeviceConnectedPushValue Value 0x26

Notice sent from the control module to all DataOut devices when a new device has con-
nected to the control module via a websocket connection; this message is sent regardless
of the newly connected device’s state (e.g. this information not communicated as part of a
DataOutDataPacketPush).

See also: DataOutDeviceConnectedPush

DataOutDeviceConnectedPushAckValue Value 0xa6

Acknowledgement of receiving a DataOutDeviceConnectedPush message.

See also: DataOutDeviceConnectedPushAck

DataOutDeviceDisconnectedPushValue Value 0x27

Notice sent from the control module to all DataOut devices when a device’s WebSocket
connection has disconnected.

See also: DataOutDeviceDisconnectedPush

DataOutDeviceDisconnectedPushAckValue Value 0xa7

Acknowledgement of receiving a DataOutDeviceDisconnectedPush message.

See also: DataOutDeviceDisconnectedPushAck

212 Detailed Message Descriptions

DataOutHandshakeFinishedPushValue Value 0x28

Notice sent from the control module to devices using the data message group, letting them
know that another device has completed the handshake process. For devices which do
not complete the handshake process, see DataOutDeviceDisconnectedPush.

See also: DataOutHandshakeFinishedPush

DataOutHandshakeFinishedPushAckValue Value 0xa8

Acknowledgement of receiving a DataOutHandshakeFinishedPush message.

See also: DataOutHandshakeFinishedPushAck

DataOutDeviceResponseIssuePushValue Value 0x29

Notice sent from the control module to all DataOut devices to let them know that a con-
nection to a device hasn’t been terminated (as far as the control module knows), but the
device has timed out, or not responded to a message, or that the issue that caused a
previous one of these messages to be sent out, has been cleared up.

See also: DataOutDeviceResponseIssuePush

DataOutDeviceResponseIssuePushAckValue Value 0xa9

Acknowledgement of receiving a DataOutDeviceResponseIssuePush message.

See also: DataOutDeviceResponseIssuePushAck

DataOutSystemStateChangePushValue Value 0x2a

Message sent from the control module to a device when a system wide operating state
has changed.

See also: DataOutSystemStateChangePush , DataOutSystemStateChangePushAck

DataOutSystemStateChangePushAckValue Value 0xaa

Acknowledgement of receiving a DataOutSystemStateChangePush message.

See also: DataOutSystemStateChangePushAck

DataOutMiscNotificationPushValue Value 0x2b

Message sent from the control module to all DataOut devices as a catch-all message
allowing information not communicated elsewhere; useful for error messages, or unusual
conditions.

See also: DataOutMiscNotificationPush

DataOutMiscNotificationPushAckValue Value 0xab

Acknowledgement of receiving a DataOutMiscNotificationPush message.

See also: DataOutMiscNotificationPushAck

DataOutDeviceReferenceInfoRequestValue Value 0x2c

Message sent from a device to the control module asking for the physical position informa-
tion of a specific subdevice; note that this information is stored in the control module and
manually entered at portal setup.

See also: DataOutDeviceReferenceInfoRequest

4.6 Data Out Interface 213

DataOutDeviceReferenceInfoReplyValue Value 0xac

Reply sent in response to a DataOutDeviceReferenceInfoRequest message giving the
physical position of the subdetector or device, if it has been set.

See also: DataOutDevicesInfoReply

DataOutTimeStatisticsRequestValue Value 0x2d

Message sent from a device to the control module requesting the time statics (up time,
total on time, etc) of the control module and all devices connected to the portal. (The core
message group contains a message for obtaining the statistics of a single device.)

See also: DataOutTimeStatisticsRequest

DataOutTimeStatisticsReplyValue Value 0xad

Reply sent in response to a DataOutTimeStatisticsRequest message giving
time statistics of the control module and all the devices.

See also: DataOutDevicesInfoReply

DataOutBufferingEnableRequestValue Value 0x2e

Message sent from device asking the control module to buffer eligible messages for the de-
vice, in case the device temporarily disconnects. This option is only available to DataOut,
Command, and Analysis devices, and only if allowed by the control module.

See also: DataOutBufferingEnableRequest

DataOutBufferingEnableReplyValue Value 0xae

Reply message sent by the control module in response to a DataOutBufferingEnableRequest
message giving the status of the buffering.

See also: DataOutBufferingEnableReply

DataOutBufferedMessagesRequestValue Value 0x2f

Message sent by a device to the control module upon re-establishing a connection in order
to start retrieval of buffered messages.

See also: DataOutBufferedMessagesRequest

DataOutBufferedMessagesReplyValue Value 0xaf

Reply sent in response to a DataOutBufferedMessagesRequest message, sup-
plying status of the request. There may be multiple replies for a request.

See also: DataOutBufferedMessagesReply

DataOutInterimAnalysisPushValue Value 0x3a

An interim, not final, alarm status, most typically from when a measurement is not yet
complete (example: vehicle still in portal); useful to alarm early if the analysis module
already knows the item has alarmed before the occupancy is finished. Lack of an alarm
from this message does not mean that the vehicle won’t alarm during the occupancy.

See also: DataOutInterimAnalysisPush

214 Detailed Message Descriptions

DataOutInterimAnalysisPushAckValue Value 0xba

Acknowledgement of receiving a DataOutInterimAnalysisPush message.

See also: DataOutInterimAnalysisPushAck

DataOutFinalAnalysisPushValue Value 0x3b

The final adjudication by the analysis module for the most recent item.

See also: DataOutFinalAnalysisPush , AnalysisItemFinalResultData
, AnalysisItemFinalResultsReply

DataOutFinalAnalysisPushAckValue Value 0xbb

Acknowledgement of receiving a DataOutFinalAnalysisPush message.

See also: DataOutFinalAnalysisPushAck

DataOutCurrentSystemStateRequestValue Value 0x3c

Message sent from a device to the control module requesting the current system state.

See also: DataOutCurrentSystemStateRequest

DataOutCurrentSystemStateReplyValue Value 0xbc

Reply sent in response to a DataOutCurrentSystemStateRequestmessage giv-
ing the current system state.

See also: DataOutCurrentSystemStateReply

4.6.2 DataOutDataPropertiesFlags Enumeration

Flags that may be bitwise OR’d to indicate one or more conditions regarding data in a data out
message.

Underlying integral representation: uint32_t

Enumerated values for DataOutDataPropertiesFlags:

InformationalUpdateNotFinalPacketFlag Value 0x01

Indicates that this DataOutDataPacketPush is not complete for the specified inter-
val, and that it does not contain any radiation data or vehicle presence data (break-beam,
photos, or distance), but rather includes other information such as state changes, param-
eter updates, or notifications. A future DataOutDataPacketPush that does not have
this flag set will be sent out that covers this time period (and possibly more) which contains
all information in this packet, plus the radiation and occupancy data. This feature may be
used for example, when doing a long dwell measurement but you would still like to send
parameter information, such as temperature, or high voltage to connected devices to keep
them informed. All information in this message will be re-sent at a later time.

ReTransmitOnTimeoutRecoverFlag Value 0x02

If expected data isn’t received from a device by a the control module’s timeout in-
terval, then a DataOutDataPacketPush message will be sent anyway. How-
ever if the data is eventually received from that device, the control module will re-
send that entire DataOutDataPacketPush message, but with this flag marked.

4.6 Data Out Interface 215

Note that the data frame(s) that were not previously sent must be marked with a
DataOutDataFramePropertiesFlags::RecoveredDataFlag, while the
previously transmitted frames will not be marked.

DeviceMissingFlag Value 0x04

Indicates that at least one device’s data is missing from the packet; if the data is eventually
received then the data will be re-sent, but with the DataOutDataPropertiesFlags::ReTransmitOnTimeoutRecoverFlag
bit set, and the devices frame will be marked with the DataOutDataFramePropertiesFlags::RecoveredDataFlag.

NotAllDevicesTakingDataYetFlag Value 0x08

After data acquisition is started, some detectors may start slightly before others so you
might get a few time-slices where some are taking data, and others are not. This bit
indicates this condition; is not an error condition.

4.6.3 DataOutDataFramePropertiesFlags Enumeration

Flags that may be bitwise OR’d to indicate one or more conditions regarding the properties of a
data frame.

Underlying integral representation: uint32_t

Enumerated values for DataOutDataFramePropertiesFlags:

DataMissingFlag Value 0x01

Indicates that this frame was expected to exist, but the control module never received the
data within the timings expected. Data for this device may be sent later, and if it is, it will be
marked with the DataOutDataFramePropertiesFlags::RecoveredDataFlag.
Note: if nothing was expected from the device in the time frame, then the control module
must not include a data frame for that device.

See also: DataOutDataPropertiesFlags::DeviceMissingFlag

RecoveredDataFlag Value 0x02

Indicates that the data in this frame was previously reported as missing data (i.e. marked
with DataOutDataFramePropertiesFlags::DataMissingFlag), but the
missing data have since been received; the entire frame is being re-transmitted with both
the recovered data and the original data.

PreparingToTakeDataFlag Value 0x04

The detector this frame corresponds to is still in the process of getting ready to take data
(ex. turning HV on, etc).

DeviceErrorFlag Value 0x08

The device this frame corresponds to is having some sort of issue.

216 Detailed Message Descriptions

4.6.4 DeviceStatus Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

A struct to hold information on device operating state and status.

Message Contents:

Field Name Data Type
status_timestamp UtcTimePoint

Field Description: The timestamp of when this status indicated took effect. That is, the
timestamp of the last event which caused the reported status to change. For example, if the
last reportable thing to happen was the high voltage turned on, then this field would indicate
that time.

device_status_flags
uint32_t bits defined by

DeviceStatusFlags
Field Description: Bitwise OR of flags representing target device status.

operating_mode uint8_t enumerated by OperatingMode
Field Description: The operating mode that the device is currently in.

data_collection_mode
uint8_t enumerated by

DataCollectionModes
Field Description: The data collection mode that the device is currently
in. Set to DataCollectionModes::NoOriginateValue if the mod-
ule is in any state other than of DeviceStatus::operating_mode
OperatingMode::OperatingValue

measurement_type uint8_t enumerated by MeasurementType
Field Description: The type of measurement being taken (item of interest, background, not
specified, possible interfering source, or active maintenance).

collection_interval_ms uint32_t
Field Description: The data collection interval is specific to the
data collection mode, and zero if not applicable. For informa-
tion on allowed intervals, see the DataCollectionModes enumer-
ation. For DataCollectionModes::RealTimeDwellValue and
DataCollectionModes::LiveTimeDwellValue modes, this interval speci-
fies the entire duration of the measurement, and for the other modes it specifies the interval
between sending data or HeartbeatPush (if non-zero) messages.

4.6.5 ParameterUpdate Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

Represents ParameterUpdatePush message that is sent when a parameter changes (ei-
ther measured value, or one of another field was forced to change with out being asked to),
and/or its health status changes. This message should not be sent if a specific request to
change a parameter via a SetParameterRequest is made (and succeeds), unless there is
a side effect like changing a different parameter (which the SetParameterRequest should
be for the that parameter) or a change in health status or similar.

4.6 Data Out Interface 217

See Also: ParameterUpdatePushAck

Message Contents:

Field Name Data Type
change_timestamp UtcTimePoint

Field Description: Timestamp of when the change became effective, or at least when it was
noticed to have become effective. Microseconds since the Unix epoch.

value_type
uint8_t enumerated by

ParameterValueDataType
Field Description: Data type of the value field. The data type cannot change during a
connection, once it has been provided.

parameter_field uint8_t enumerated by ParameterField
Field Description: Enumeration identifying which field of the parameter changed.
Only one field change can be reported per message. Note that if a measured
value changes, which also causes a health status change, this field should re-
port that it was the measured value that changed, while the health status change
is reported in the ParameterUpdate::parameter_health_impact
field, and the new value of the measurement goes in the
ParameterUpdate::value field. If the ParameterField::SetValueValue,
ParameterField::LowerHealthValue or ParameterField::UpperHealthValue
are changed, causing a change to the health status, then it should be re-
ported what was changed, and the new health status should be noted in
ParameterUpdate::parameter_health_impact.

parameter_health_impact
uint8_t enumerated by

HealthSeverityLevel
Field Description: The impact of the current value of the parameter on health.

subdetector_number uint8_t
Field Description: The subdetector this Parameter applies to, or zero if not associated with
a specific sub-detector.

parameter_name Short String
Field Description: Parameter name; only ascii letters, numbers, underscore, period, dash,
and space characters are allowed.

value Short String
Field Description: Data type must match what is specified by
ParameterUpdate::value_type, encoded as a string as in
https://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html

4.6.6 EnergyCalibration Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

A struct to hold information on the energy calibration for a radiation detector. Used for both
internally and externally obtained calibrations.

Message Contents:

218 Detailed Message Descriptions

Field Name Data Type
calibration_timestamp UtcTimePoint

Field Description: When the calibration was completed. Will be in the past, but not the
future. If this energy calibration is empty or not valid, this value will be zero.

energy_cal_coefficient_type
uint8_t enumerated by

EnergyCalCoefficientType
Field Description: The types of coefficients used by the calibration.

calibration_status
uint8_t enumerated by

EnergyCalibrationStatus
Field Description: The status of the energy calibration, such as good, out of date, etc.

subdetector_number uint8_t
Field Description: The subdetector number this calibration is for. If a module only has one
detection crystal/He3-tube, this will always be number one. If it has N detection sensors,
this value will range from 1 to N (inclusive) according to the subdetector this calibration is
for.
See also:

• DeviceInfoReply::num_subdetectors
• RadListModeDataPush::subdetector_number
• RadChannelDataPush::subdetector_number

energy_cal_method_flags
uint16_t bits defined by

EnergyCalMethodFlags
Field Description: A bitwise OR of flags representing energy calibration source and method.

coefficients Medium Array of float
Field Description: The coefficients necessary to specify the calibration.

coefficient_uncertainties Medium Array of float
Field Description: The uncertainty on the coefficients; may have zero entries, the same
number of entries as the number of coefficients, twice the number of coefficients, or the
number of coefficients squared. The interpretation of the coefficients is dependent on the
number of entries and the options are:

• No entries: uncertainty is not specified.
• Same number of entries as coefficients: symmetrized 1-sigma uncertainties.
• Twice the number of entries as coefficients: the positive 1-sigma uncertainties for

each coefficient, then the negative 1-sigma uncertainties (e.g., the first N coefficients
are positive uncertainties, followed the N negative uncertainties).

• The square of number of entries as coefficients: the covariance matrix with entries of
the first row listed first, followed by entries of second row, etc. To avoid an ambiguous
situation, when there are two coefficients, the covariance matrix can not be specified,
but as a work around, a 3rd zero valued coefficient could be added and then the matrix
specified.

deviation_pairs Short Array of float
Continued on next page

4.6 Data Out Interface 219

Table continued from previous page
Field Name Data Type

Field Description: Deviation pairs, as in N42.42, are each two floats, first
the true energy, then the offset, then next entry in array is the next true en-
ergy, and its offset, etc. True energies and offsets are in keV. Unless the
RadDetDeviceFeaturesFlags::SupportsDeviationPairCalFlag bit is
set in RadSubDetectorInfo::subdetector_features, no values for this field
may be provided. An example procedure for using deviation pairs:

• Determine first (offset) and second (gain) polynomial coefficients using the 239 keV
and 2614 keV peaks of Th232

• If the k-40 1460 keV peak is now at 1450 keV, a deviation of 10 keV should be set at
1460 keV

• Deviation pairs set to zero would be defined for 239 keV and 2614 keV
• The value provided in this field would then be [239,0,1460,10,2614,0].

Cubic spline interpolation is used to interpolate between deviation pairs. When solving
for the spline coefficients, the second derivative is set to zero at the lowest deviation pair
energy, and the first derivative is set to zero at the highest deviation pair energy. Correc-
tions for energies below the lowest value deviation pair are always equal to the offset of
the lowest energy deviation pair, and corrections for energies above the highest energy
deviation pair are always equal to the offset of the highest energy deviation pair. Note:
uncertainties for EnergyCalibration::deviation_pairs can not be specified
since these are typically taken as well defined fixed quantities, and the polynomial co-
efficient uncertainties will account for the uncertainties. Note: although non-linear de-
viation pairs are used within the N42.42-2012 standard, the specification doesnt appear
to provide an adequate definition of the,; the open source SpecUtils library, available at
https://github.com/sandialabs/SpecUtils/, provides an implementation of non-linear devia-
tion pairs that may be useful for reference.

method_description Short String
Field Description: A free-form description of method used to derive calibration. Examples
might be:

• "Fixed Factory Calibration"
• "Fit to NORM templates"
• "Gain matched for Th232 2614 keV and K40 1460 keV peaks"
• "Individual PMTs gain matched to each other, followed by a fit to NORM templates"
• "Gain matched to internal Cs137 seed"
• "5 minute spectrum using Eu152"
• etc.

calculation_notes Medium String
Continued on next page

220 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: Free form text providing additional implementation specific details related
to quality of energy calibration procedure. Examples of information that might be given in
this text are:

• Chi2 of fit to background template.
• Endpoint energy of the detector that was determined
• Relative gains of PMTs.
• Unusual conditions detected, like high background rates, or contamination
• Data channel corresponding to peak maximum
• Version of calibration algorithm used

The text must be UTF-8 encoded.

4.6.7 ListModeDataPacket Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

A struct that holds data of one or more detection events recorded by a single radiation subdetec-
tor. If the device is operating with a non-zero interval time (e.g., it is sending HeartbeatPush
messages at regular intervals), then the contained detection events will all be from the same
time interval.

Message Contents:

Field Name Data Type
reference_timestamp UtcTimePoint

Field Description: The timestamp all contained listmode detection events time offsets (i.e.,
the ListModeEvent::relative_time field) will be added to to get the detection
events time. Note, this reference timestamp will come before must be less than or equal to
the first detection event.

rad_data_flags
uint32_t bits defined by

RadDataReadoutFlags
Field Description: Bitwise OR of the relevant RadDataReadoutFlags. The same flags
must be applicable to all contained detection events.

subdetector_number uint8_t
Field Description: If a detector contains multiple detection devices (ex. multiple He3 tubes,
or multiple NaI blocks) that are individually read out as subdetectors, then the subdetector
that detected the event should be specified here. If only a single detection device is present
in the module, this value will always be one.
See also:

• DeviceInfoReply::num_subdetectors
• RadChannelDataPush::subdetector_number
• RadEnergyCalibrationUpdatePush::subdetector_number

listmode_events Medium Array of ListModeEvent
Continued on next page

4.6 Data Out Interface 221

Table continued from previous page
Field Name Data Type

Field Description: The detected listmode events. Events must be in increasing time order
(e.g., the earliest detected events of this message come first in the array). Note that if there
are more than 65,536 detection events, multiple RadListModeDataPush messages
must be sent.

4.6.8 ChannelDataPacket Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

A struct to hold the histogram radiation data for a RadChannelDataPush message

Message Contents:

Field Name Data Type
start_timestamp UtcTimePoint

Field Description: The clock time of the module at the start of the interval to which this
channel data corresponds. Microseconds since the UNIX epoch.

end_timestamp UtcTimePoint
Field Description: The clock time of the module at the end of the interval to which the
channel data corresponds. This value will nominally be the last microsecond in an interval,
and not the beginning of the next interval (e.g., it will be one less than the next interval start
time). Microseconds since the UNIX epoch. Note that because of time adjustments (via the
PTP synchronization mechanisms), or interruptions to data taking, this time might not be
ChannelDataPacket::start_timestamp + 1.0E6*clock_time_seconds.

live_time_seconds float
Field Description: The time in seconds that the detection system was
available to take data during this data taking interval. The differ-
ence between ChannelDataPacket::clock_time_seconds and
ChannelDataPacket::live_time_seconds is often referred to as "dead
time" and can be caused, for example, by limitations in the MCA that prevent it from record-
ing more detection events for a brief time after an event (maybe due to inherent decay time
of scintillator, or electronics reset time), or from internal queues filling up, or an external
interrupt (e.g., from a nearby radiography system) indicating data should not be taken.

clock_time_seconds float
Field Description: The acquisition clock time elapsed, in seconds, to which
this data corresponds. A common use for this value, in combination with
ChannelDataPacket::live_time_seconds, is to determine the "dead time" of
the acquisition electronics to account for pulse-pileup effects. This time is not simply be the
difference of the absolute times of the beginning and end of the data taking interval. For
example, PTP time synchronizations should not affect this value. Time periods where data
acquisition is blocked due to an external interrupt (i.e., from non-intrusive inspection sys-
tem), or other reason (e.x., data acquisition did not start until part way through the interval)
do not contribute to this value.

rad_data_flags
uint32_t bits defined by

RadDataReadoutFlags
Continued on next page

222 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: Bitwise OR of flags to indicate unusual, but important conditions during
data taking.

subdetector_number uint8_t
Field Description: The subdetector this data is from.

channel_data Large Array of float
Field Description: The channel data as recorded by the detector.

4.6.9 BinarySensorsData Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

A struct to hold measurements from one or more binary vehicle presence detectors (e.g., break
beam sensors), with overall recommendation from the vehicle presence module as to the pres-
ence (or not) of a vehicle.

Message Contents:

Field Name Data Type

presence_recommendation
uint8_t enumerated by

RecommendedPresenceStatus
Field Description: Recommendation by a vehicle presence module for if the portal
is occupied. Timestamp of the recommendation is implied to be the latest one in
BinarySensorsData::binary_presence_data.

binary_presence_data
Short Array of
VehiclePresenceBinaryStatus

Field Description: Each binary (break-beam type) vehicle presence sensor may have at
most one entry in this array and time stamps may not span (come both before and after) a
heartbeat. Must have an entry from at least one sensor.

4.6.10 ImageData Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

A struct to hold image data from a subdetector.

Message Contents:

Field Name Data Type
timestamp UtcTimePoint

Field Description: Time image was taken. Microseconds since the UNIX epoch.
subdetector_number uint8_t

Field Description: The number of the imaging sub-detector (camera) that took the image.
Continued on next page

4.6 Data Out Interface 223

Table continued from previous page
Field Name Data Type

readout_status_flags
uint32_t bits defined by

VehiclePresenceReadOutFlags
Field Description: Bitwise OR of flags to indicate state of the camera that took the picture,
and status of the data. If zero, all is good.

image_type
uint8_t enumerated by

VehiclePresenceImageType
Field Description: The file type of the image being transferred.

image_data Large Array of uint8_t
Field Description: The image data corresponding to a standard image file.

4.6.11 VehiclePresenceReadingInfo Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

A struct to hold a completed measurement of distance or speed from a vehicle presence subde-
tector to a vehicle.

Message Contents:

Field Name Data Type
detection_timestamp UtcTimePoint

Field Description: The time the distance measurement was made. Microseconds since the
UNIX epoch.

subdetector_number uint8_t
Field Description: The subdetector number of the subdetector that is reporting this distance.

subdetector_type
uint16_t enumerated by

VehiclePresenceSubDetectorType
Field Description: The subdetector type this reading corresponds too. Will
be either VehiclePresenceSubDetectorType::VehicleDistanceValue or
VehiclePresenceSubDetectorType::VehicleSpeedValue. This type must
that given by VehiclePresenceSubDetectorInformationReply for the speci-
fied subdetector.

readout_status_flags
uint32_t bits defined by

VehiclePresenceReadOutFlags
Field Description: Bitwise OR of flags to indicate state of the distance data reported with
this struct. If zero, all is good.

reading_is_useable uint8_t
Field Description: If nonzero, the measured distance or speed is useable. If zero, the mea-
sured distance or speed should not be used.

reading_value float
Continued on next page

224 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: Either the measured speed (in meters per sec-
ond), or the measured distance (in centimeters), as determined by
VehiclePresenceReadingInfo::subdetector_type. The distance from
the subdetector to the item in centimeters. When used with the subdetector’s position and
orientation, an unambiguous location of one point of the item is specified. If no item is being
measured, then a value of zero should be reported.

4.6.12 PwrMngmtSupplyStatus Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

Not a RAPTER message, but a struct to hold information about the "supply" portion of the Power
Management module.

See Also: PwrMngmtSupplyStatusReply

Message Contents:

Field Name Data Type
status_time UtcTimePoint

Field Description: Time at which the status measurements are effective.

supply_status_flags
uint32_t bits defined by

PwrMngmtSupplyStatusFlags
Field Description: Bitfield to represent any abnormal conditions Under normal conditions no
flags will be set. Check this field to see

battery_statuses
Short Array of
PwrMngmtBatteryStatus

Field Description: Array of battery statuses. Statuses of batteries can be reported either
individually, or grouped together. Reporting individual statuses is preffered for the additional
information, but may not always be possible due to the design of the hardware.

mains_voltage_volts float
Field Description: The current voltage of the supply power. If AC, then the RMS value is
used.
See also:

• PwrMngmtSupplyPropertiesFlags::PwrMngmtSupplyMainsVoltageIsMeasuredFlag
mains_current_amps float

Field Description: The current amperage being used of the supply power. If AC, then the
RMS value is used.
See also:

• PwrMngmtSupplyPropertiesFlags::PwrMngmtSupplyMainsCurrentIsMeasuredFlag
mains_frequency_hz float

Field Description: The frequency of the supply power either measured or assumed.
See also:

• PwrMngmtSupplyPropertiesFlags::PwrMngmtSupplyMainsFrequencyIsMeasuredFlag
Continued on next page

4.6 Data Out Interface 225

Table continued from previous page
Field Name Data Type

ambient_temperature_celsius float
Field Description: The ambient temperature of the power management module enclosure.
Will have a value of zero if temperature is not measured.
See also:

• PwrMngmtSupplyPropertiesFlags::PwrMngmtSupplyAmbientTemperatureIsMeasuredFlag
status_description Short String

Field Description: Free form text description of the status.

4.6.13 PwrMngmtSelfTestResult Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

Not a RAPTER message. Holds information related to a power management unit test.

Message Contents:

Field Name Data Type
timestamp UtcTimePoint

Field Description: Time at which event happened.
test_type uint8_t enumerated by PwrMngmtTestType

Field Description: The type of test requested.

test_status
uint8_t enumerated by

PwrMngmtTestStatus
Field Description: The status of performing the test.

remaining_time_seconds uint32_t
Field Description: The estimated time remaining for the test to complete when
PwrMngmtSelfTestReply::test_status is equal to PwrMngmtTestSta-
tus::PwrMngmtTestInProgressValue.

description Short String
Field Description: Free form description of test results.

4.6.14 RequestReceivedSummary Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

A struct used by the control module to inform DataOut devices of a single request message it
has received from a command device. Only the first 255 bytes of the command request are
included. Even though the whole message is not distributed to the DataOut devices, key parts
of the message are included and may be useful for auditing what requests have been made to
the control module.

Message Contents:

226 Detailed Message Descriptions

Field Name Data Type
timestamp_received UtcTimePoint

Field Description: The time the control module received the request from a command device.
Microseconds since the UNIX epoch.

request_message_length uint32_t
Field Description: The total length of the received request.

message_content Short Array of uint8_t
Field Description: Up to the first 255 bytes of the request message received from the com-
mand device.

4.6.15 DataOutDataFrame Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

A struct to hold measurement data and related information to be sent to DataOut devices. See
DataOutDataPacketPush message for use within a RAPTER message. When sending in-
formation a DataOutDataPacketPush message, the control module will group information
into relevant time segments, and further group information by unique device. Information for one
time segment for a unique device is represented by a one DataOutDataFrame.

Message Contents:

Field Name Data Type
device_uuid Uuid128

Field Description: The UUID of the device from which the data in this frame originate.
device_type uint8_t enumerated by MessageGroup

Field Description: The device type this frame represents as the device reports in
DeviceInfo::device_type.
See also:

• DeviceInfo::device_type

frame_properties_flags
uint32_t bits defined by

DataOutDataFramePropertiesFlags
Field Description: Bitwise OR of DataOutDataFramePropertiesFlags

changed_statuses Short Array of DeviceStatus
Field Description: An array of DeviceStatus, in which the elements record each operating
state experienced by the device during this time interval.

changed_params Medium Array of ParameterUpdate
Field Description: Parameter changes that occurred during the time interval of this frame
are included here. Note that these might be sensor-derived parameters like a temperature
change, a changed setting from via a SetParameterRequest, or any other parameter
change.

changed_energy_calibrations Short Array of EnergyCalibration
Field Description: Energy calibrations that went into effect on this device during the interval
of this frame.

listmode_data Large Array of ListModeDataPacket
Field Description: List mode data produced by this device during the interval of this frame.

Continued on next page

4.6 Data Out Interface 227

Table continued from previous page
Field Name Data Type

heartbeats Short Array of HeartbeatPacket
Field Description: Heartbeat information received for the sub-devices; note that only radi-
ation detectors and vehicle presence sensors will have entries as DataOut, Analysis, and
Command devices do not have any sub-devices.

channel_data Short Array of ChannelDataPacket
Field Description: Channel data produced by this device during the interval of this frame.

presence_binary_data Short Array of BinarySensorsData
Field Description: Binary occupancy data produced (e.g., break-beam style IR sensors)
during the interval of this frame.

presence_image_data Short Array of ImageData
Field Description: Any images produced during the time interval of this frame.

presence_speed_distance_data
Short Array of
VehiclePresenceReadingInfo

Field Description: Any speed or location measurements produced during the time interval
of this frame.

power_management_line_out_statuses
Short Array of
PwrMngmtLineOutStatus

Field Description: Information from PwrMngmtLineOutStatusReply and
PwrMngmtLineOutEventPush messages.

power_management_supply_statuses
Short Array of
PwrMngmtSupplyStatus

Field Description: Information from PwrMngmtSupplyStatusReply and
PwrMngmtSupplyEventPush messages.

power_management_test_results
Short Array of
PwrMngmtSelfTestResult

Field Description: Information from PwrMngmtSelfTestReply and
PwrMngmtAutomaticSelfTestResultPush messages.

received_requests
Short Array of
RequestReceivedSummary

Field Description: Any MessageGroup::CommandValue interface request messages
that the control module received from this device during the time interval of this data frame
(will have zero entries for all non-command devices).

notifications Short Array of Notification
Field Description: Notifications sent to the control module by this device during the interval
of this frame.

4.6.16 DataOutDataPacketPush Message

Message pushed from the control module to all DataOut devices. The message contains infor-
mation produced during normal operations by all devices connected to the control module, and
including the control module, for a discrete amount of time. For example, if a radiation portal is
operating with gamma detectors in DataCollectionModes::ClockTimeIntervalValue
mode with interval 100ms, then this packet will be sent from the control module after each
100ms period. If performing a dwell measurement this packet will be sent at the end of

228 Detailed Message Descriptions

the measurement interval; however intermediate packets may also be sent, but with the
DataOutDataPropertiesFlags::InformationalUpdateNotFinalPacketFlag
bit of DataOutPacket::properties set to indicate that it doesnt contain radiation
data, but may include other information that may be useful to monitor during the dwell,
like parameters. Each DataOutDataPacketPush message that does not have the
DataOutDataPropertiesFlags::InformationalUpdateNotFinalPacketFlag
bit marked covers a unique period of time, so there is no time-overlap between
DataOutDataPacketPushmessage, with the exception of re-sending DataOutDataPacketPush
messages due to data being recovered from a device for this time period that was not originally in-
cluded (see DataOutDataPropertiesFlags::ReTransmitOnTimeoutRecoverFlag).
Data that is from different system states, or from different time period will not be combined into
the same DataOutDataPacketPush. DataOutDataPacketPush messages may be
sent out while not collecting radiation data in order to convey parameter updates or other infor-
mation; again time periods will not overlap, but when and how often to send the the messages
is up to the control module.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x21

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

interval_start_time UtcTimePoint
Field Description: The start of the time interval covered by the data in this struct.

interval_end_time UtcTimePoint
Field Description: The end of the time interval covered by the data in this struct.

sample_number uint32_t
Field Description: The data frame index of the current occupancy; the first data frame of an
occupancy will have a value of one, and each subsequent data frame of the occupancy will
have a value that increases by one from the previous value. All non-occupancy frames will
have a value of zero.

item_number uint32_t
Field Description: Item number increments monotonically for a particular control module for
each occupancy. If the data is not associated with an occupancy, this should be marked as
a zero.

properties
uint32_t bits defined by

DataOutDataPropertiesFlags
Continued on next page

4.6 Data Out Interface 229

Table continued from previous page
Field Name Data Type

Field Description: A bitwise OR of DataOutDataProperties.
system_operating_mode uint8_t enumerated by OperatingMode

Field Description: The operating mode of the system. This can either be set using the
CmdSystemStateChangeRequest message or may be automatically determined and
set by the control module. Individual devices may be in differing operating modes, or transi-
tioning.
See also:

• DataOutSystemStateChangePush::requested_operating_mode
system_measurement_type uint8_t enumerated by MeasurementType

Field Description: What is being measured (item of interest, background, not specified,
possible interfering source, or active maintenance).

system_data_collection_interval_ms uint32_t
Field Description: The data collection interval of the system.

device_frame_uuids Short Array of Uuid128
Field Description: The UUIDs of the entries in DataOutDataPacketPush::device_frames.
This array must be in the same order, same size, and have the same UUIDs as the entries
in DataOutDataPacketPush::device_frames.

device_frame_offsets Short Array of uint32_t
Field Description: The relative offset of each frame in
DataOutDataPacketPush::device_frames. The entries in this array must corre-
spond one-to-one, with the entries in DataOutDataPacketPush::device_frames
and DataOutDataPacketPush::device_frame_uuids. The
offsets are relative to where the first DataOutDataFrame in
DataOutDataPacketPush::device_frames begins, therefore the first entry
in this array will always have a value of zero. The second offset will be the number of
bytes the first frame took up, plus any padding bytes to get to the multiple of 8 needed for
serializing the struct in an array, and so on.

device_frames Short Array of DataOutDataFrame
Field Description: Information from each device connected to the control module, who re-
ported information for this time interval. This information includes sensor data, parameter
updates, notifications, state changes (either pushed, or that were requested), or a summary
of requests messages received by the control module from the device.

4.6.17 DataOutDataPacketPushAck Message

A message acknowledging the receipt of a DataOutDataPacketPush message sent by the
control module. Only required when buffering for the connection is enabled.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xa1

Continued on next page

230 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.6.18 DataOutDevicesInfoRequest Message

Request from a DataOut device to the control module requesting information about all the de-
vices in the system.

See Also: DeviceInfoReply , SystemDeviceInfoRequest

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x22

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.6.19 DataOutDeviceInfo Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

Holds the information about a connected device. For use within DataOutDevicesInfoReply
messages. Note, the control modules will not include devices that they havent yet gotten
DataOutDeviceInfo for yet.

Message Contents:

4.6 Data Out Interface 231

Field Name Data Type
handshake_finish_timestamp UtcTimePoint

Field Description: Approximate timestamp of finishing the handshake.
ipaddress Short String

Field Description: IP address of the device. This must match to the IP ad-
dress specified in DataOutDeviceConnectedPush::ipaddress and
DataOutDeviceDisconnectedPush::ipaddress.

device_type uint8_t enumerated by MessageGroup
Field Description: The device type, as determined from the following options (designated by
the associated MessageGroup value): command device (Command), analysis device (Anal-
ysis), radiation detection device (RadDetector), vehicle presence device (VehiclePresence),
or control module (Core). The device type determines the message groups that the device
must support. See Chapter 2 for details.

data_collection_modes
uint8_t bits defined by

DataCollectionModes
Field Description: Bitwise OR of flags representing data collection modes supported by the
device.

device_features
uint64_t bits defined by

DeviceFeaturesFlags
Field Description: Bitwise OR of flags representing device features.

buffer_size uint64_t
Field Description: The size of the buffer for buffering. This size can be an estimate.
Should be set to 0 if the device does not support data buffering when the connection
is down. When the network connection is down, Push messages should be buffered
for retrieval once the connection is back up; see BufferedMessagesRequest and
BufferedMessagesReply for details.

num_subdetectors uint8_t
Field Description: The number of sub detectors the device contains; applicable only to radi-
ation detector, vehicle presence, and power management modules. For other devices this
must be set to 0. As examples, for gamma-ray detectors this might indicate independent
crystals (e.g. 4 crystals in one panel or module), for neutron detectors this might be the
number of independently read-out He-3 tubes, and for vehicle presence sensors, the num-
ber of IR beams plus number of cameras. For power management modules it represents the
number of independent output lines. Note that all sub-detectors must operate in the same
data collection mode (DataCollectionModes::ClockTimeIntervalValue,
DataCollectionModes::OnEventValue, etc) and at the same data collection in-
tervals (10ms, 100ms, etc.).
See also:

• RadListModeDataPush::subdetector_number
• RadChannelDataPush::subdetector_number
• RadEnergyCalibrationUpdatePush::subdetector_number
• RequestEnergyCalibration::subdetector
• VehiclePresenceSubDetectorInformationRequest
• PwrMngmtInformationRequest

device_uuid Uuid128
Continued on next page

232 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: The universally unique ID for this device. This number must be globally
unique, and can be assigned according to the deploying agency conventions; for exam-
ple assigned as the thumbprint of the devices cryptographic certificate. This value will not
change for a given physical device.

serial_number Short String
Field Description: The manufacturer specified serial number that is expected to be unique
at least with respect to the vendor and model. This value must remain fixed across firmware
upgrades, power cycles, setting changes, and if at all possible hardware repairs. No restric-
tions on format other than length, and valid UTF-8 text.

manufacturer Short String
Field Description: Specifies the manufacturer of this device. No restrictions other than
length, and valid UTF-8 text.

model Short String
Field Description: Specifies the model of this device. No restrictions other than length, and
valid UTF-8 text.

hardware_version Short String
Field Description: Specifies the version of the hardware for the device. No restrictions other
than length, and valid UTF-8 text. This should be descriptive and change with respect to
hardware changes.

firmware_version Short String
Field Description: Specifies the version of the current firmware for the device. No restrictions
other than length, and valid UTF-8 text. This should be descriptive and change with respect
to firmware changes or updates.

other_component_versions
Short Array of
ComponentVersionInformation

Field Description: Versions of additional components in the device, that may be informative
for compatibility, troubleshooting, or maintenance. Examples include: underlying operating
system version, high voltage daughter card version, nuclide library version, analysis library
version, etc.

specialized_capabilities_descr �

iption
Short String

Field Description: A free form English language description of the capabilities and hardware
specific to the specialized purpose of this device. No restrictions other than length, and valid
UTF-8 text. Examples might include:

• "3x3 NaI gamma detector, 7% FWHM
@ 661 keV, temperature compensated energy calibration, pulse pileup filter, 250MHz wave-
form sampling"

• "Data archiving device to save all health information to a database"
• "Graphical user interface device for portal operations. Touchscreen."
• "Analysis software based on DHSIsotopeID v13, customized for PVT."

computing_platform_description Short String
Continued on next page

4.6 Data Out Interface 233

Table continued from previous page
Field Name Data Type

Field Description: A free form English language description of the computing resources
of the device, such as descriptions of its CPUs, ram memory, hard drive space, Ethernet
adapter capabilities, operating system, etc. No restrictions other than length, and valid
UTF-8 text. Examples include:

• "PC4F1453 MCU, 120 MHz, 256 KB SRAM, 4GB SD-card storage, IEEE-1588 Ether-
net transceiver, FreeRTOS 9.0.0"

• "Dual core 2 GHz Arm CPU, 1 GB ram, Linux kernel 3.4."

4.6.20 DataOutDevicesInfoReply Message

A reply by the control module to a DataOutDevicesInfoRequest message sent by a
data-out device requesting information on all connected devices.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xa2

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

device_infos Short Array of DataOutDeviceInfo
Field Description: The information describing each and every device, one device per array
element.

4.6.21 DataOutDeviceParametersRequest Message

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x3d

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

Continued on next page

234 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

device_uuid Uuid128
Field Description: UUID of device you would like the status of.

4.6.22 DataOutDeviceParametersRequestStatus Enumeration

Status enumeration of a DataOutDeviceParametersRequest.

Used in message: DataOutDeviceParametersReply

Underlying integral representation: uint8_t

Enumerated values for DataOutDeviceParametersRequestStatus:

RequestSuccessfulValue Value 0x00

Information in this DataOutSubDetectorInformationReply is valid.

RequestToDeviceInProgressValue Value 0x01

A request has been sent to the device for this information an a reply from it is being waited
on.

RequestToDeviceTimedOutValue Value 0x02

The request for this information to the device timed out.

InvalidDeviceUuidValue Value 0x03

The device UUID specified was not the UUID of a device in the system.

RequestFailedOtherErrorValue Value 0x04

A DataOutMiscNotificationPush may be sent to provide additional information.

4.6.23 ParameterInfo Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

Not a RAPTER message but a struct that holds all information about a parameter.

Message Contents:

4.6 Data Out Interface 235

Field Name Data Type

value_type
uint8_t enumerated by

ParameterValueDataType
Field Description: The data type of this parameter. Each applicable field in
ParameterInfo::set_value, ParameterInfo::measured_value,
ParameterInfo::lower_healthy_measured_value,
ParameterInfo::upper_healthy_measured_value,
ParameterInfo::lower_settable_value, ParameterInfo::upper_settable_value,
and ParameterInfo::reportable_change_delta (as can be determined from
the ParameterInfo::value_properties field) must be lexically encoded as this
value type (non applicable fields must be empty strings).

parameter_health_impact
uint8_t enumerated by

HealthSeverityLevel
Field Description: The devices assessment as to the impact of the value of this parame-
ter. For both ParameterPropertiesFlags::HealthyValueRangedFlag and
ParameterPropertiesFlags::AffectsHealthWithoutLimitsFlag pa-
rameters, it is the responsibility of the sender to mark the health status, regardless of
healthy limits or current measured value.

subdetector_number uint8_t
Field Description: The subdetector this Parameter applies to, or zero if not associated with
a specific sub-detector.

value_properties
uint32_t bits defined by

ParameterPropertiesFlags
Field Description: A bitwise OR of ParameterPropertiesFlags flags.

set_timestamp UtcTimePoint
Field Description: The timestamp at which this parameter was last set. May be zero for
factory values, or other situations where it wouldn’t be able to be tracked, or if the parameter
is not settable.

effective_timestamp UtcTimePoint
Field Description: The timestamp at which this parameter was last measured, or health
status determined. If this parameter does not change, or effect health status this field
must be zero. (i.e. zero unless ParameterInfo::value_properties has
ParameterPropertiesFlags::AffectsHealthWithoutLimitsFlag or
ParameterPropertiesFlags::MeasuredFlag bits set)

parameter_name Short String
Field Description: Name of the parameter; must not be empty, and use only only ascii letters,
numbers, underscore, dash, period, and space characters.

set_value Short String
Continued on next page

236 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: Value of the parameter, if ParameterInfo::value_properties
contains ParameterPropertiesFlags::ValueFixedFlag or
ParameterPropertiesFlags::SettableFlag; otherwise the string shall
be empty. Value is always represented as a UTF8 string which is a lexical en-
coding of the type specified by ParameterInfo::value_type. Lexical en-
coding of non-string values is according to the same rules as for XML data types,
with the exception that Infs and NaNs are not allowed for floating points; see
https://www.w3.org/TR/xmlschema11-2/. If ParameterInfo::value_properties
is ParameterPropertiesFlags::ValueFixedFlag or
ParameterPropertiesFlags::SettableFlag, then this field
may only be empty if ParameterInfo::value_type has
a value of ParameterValueDataType::Utf8StringValue,
ParameterValueDataType::FloatingPointListValue, or
ParameterValueDataType::IntegerListValue

measured_value Short String
Field Description: The measured value of the parameter if,
and only if, ParameterInfo::value_properties has the
ParameterPropertiesFlags::MeasuredFlag bit set, otherwise string must
be empty. Value is always represented as a UTF8 string which is a lexical encod-
ing of the type specified by ParameterInfo::value_type. Lexical encoding
of non-string values is according to the same rules as for XML data types; see
https://www.w3.org/TR/xmlschema11-2/, with the exception floats can not be Infs
or NaNs.

lower_healthy_measured_value Short String
Field Description: The lower limiting value in the range of values over which this parameter is
still considered ’healthy’. Used if and only if ParameterInfo::value_properties
has the ParameterPropertiesFlags::HealthyValueRangedFlag bit set,
and otherwise must be an empty string. Value must be lexically encoded according to same
rules as XML data types.

upper_healthy_measured_value Short String
Field Description: The highest value at which this parameter is still consid-
ered ’healthy’. Used only if ParameterInfo::value_properties has the
ParameterPropertiesFlags::HealthyValueRangedFlag bit set, otherwise
must be an empty string. Value must be lexically encoded according to same rules as XML
data types.

lower_settable_value Short String
Continued on next page

4.6 Data Out Interface 237

Table continued from previous page
Field Name Data Type

Field Description: The lowest value at which this parameter can be set. If this value is depen-
dent upon a value of another parameter (e.x. both parameters must multiply together and
be higher than a given number), then this value lists the absolute lowest value the parame-
ter can take, but the parameter description should give this limitation, and if the parameter
is requested to be changed to a value that it cant be set to (partially due to the other de-
pendent parameter), a reply with a status of CommandReplyStatus::FailedValue
should be given. Used if and only if ParameterInfo::value_properties field
has the ParameterPropertiesFlags::SetValueRangedFlag bit set, other-
wise this string must be empty. Value must be lexically encoded according to same rules as
XML data types.

upper_settable_value Short String
Field Description: The absolutely highest value at which this parameter can be set.
If this upper threshold value is dependent upon a value of another parameter (e.x.
both parameters must add together and be lower than a given number), then this
value should list the absolute highest value the parameter can take, but the param-
eter description should give this limitation, and if the parameter is requested to be
changed to a value that it cant be set to (partially due to the other dependent pa-
rameter), a reply with a status of CommandReplyStatus::FailedValue should
be given. Used if and only if ParameterInfo::value_properties has the
ParameterPropertiesFlags::SetValueRangedFlag bit is set, otherwise this
string must be empty. Value must be lexically encoded according to same rules as XML
data types.

reportable_change_delta Short String
Field Description: The amount a measured value needs to change before an up-
date will be sent. Used only if ParameterInfo::value_properties has the
ParameterPropertiesFlags::ReportOnChangeFlag bit set, otherwise this
string will be empty. For boolean parameters, setting delta to false indicates report on
change (such that a change in value results in a Boolean change from zero to one), while
true indicates do not report (for which a change of one or more does not result in a change
of Boolean value). Value must be lexically encoded according to same rules as XML data
types, with the restriction that for floating point types Infs and NaNs are not allowed.

parameter_description Medium String
Field Description: Human readable, UTF-8 description of the parameter.

4.6.24 DataOutDeviceParametersReply Message

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xbd

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

Continued on next page

238 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

requested_device_uuid Uuid128
Field Description: UUID of requested

request_status
uint8_t enumerated by

DataOutDeviceParametersRequestStatus
Field Description: Status of the request. Check this to see if there are is-
sues, information is not yet available, or the information is available in the
DataOutDeviceParametersReply::parameters field.

parameters Medium Array of ParameterInfo
Field Description: The parameters from the device. If the
DataOutDeviceParametersReply::request_status value is anything be-
sides DataOutDeviceParametersRequestStatus::RequestSuccessfulValue
this array may be empty.

4.6.25 AcknowledgeableEventType Enumeration

The type of event an acknowledgment is for. Any events added in the future that can be acknowl-
edged must have a UUID generated by the originating device.

Used in message: DataOutEventAcknowledgementPush

Underlying integral representation: int32_t

Enumerated values for AcknowledgeableEventType:

FinalAnalysisAlarmAcknowledgement Value 0x00

Acknowledgment of an alarming vehicle.

4.6.26 EventAcknowledgmentType Enumeration

The type of acknowledgment a device provided. Additional values may be added in the future
when operational needs are better defined.

Used in message: DataOutEventAcknowledgementPush

Underlying integral representation: int32_t

Enumerated values for EventAcknowledgmentType:

EventDealtWith Value 0x00

Event has been dealt with.

4.6 Data Out Interface 239

4.6.27 DataOutEventAcknowledgementPush Message

Message telling data out devices that an event (possible events defined by AcknowledgeableEventType)
has been acknowledged by a command device. This message can be used to indicate, for ex-
ample, that a gate arm can lift up after a vehicle alarms. This message can also serve as a
record that a condition was acknowledged and dealt with. Currently only final analysis results
can be acknowledged, but other events such as errors will be added in the future.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x3e

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

acknowledging_device_uuid Uuid128
Field Description: The UUID of the device that acknowledged the event.

acknowledging_device_timestamp UtcTimePoint
Field Description: The timestamp of the device that acknowledged the event.

acknowledgment_recieved_timestamp UtcTimePoint
Field Description: The time at which the control module received the Ack.

event_type
uint32_t enumerated by

AcknowledgeableEventType
Field Description: The type of event that was acknowledged.

event_uuid Uuid128
Field Description: The UUID of the event that
See also:

• AnalysisItemFinalResultData::result_uuid
• InterimAnalysisData::result_uuid

acknowledgment_type
uint32_t enumerated by

EventAcknowledgmentType
Field Description: The type of acknowledgement that was done.

message_from_acknowledger Short String
Field Description: Optional message included by the device that gave this acknowledge-
ment.
See also:

• CmdDeviceEventAcknowledgmentRequest::message

240 Detailed Message Descriptions

4.6.28 DataOutEventAcknowledgementPushAck Message

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xbe

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.6.29 DataOutSubDetectorInformationRequest Message

Request from a MessageGroup::DataOutValue device to the control module requesting
information about all the sub-devices for a given device in the system. When the control module
receives this request, it is free to then query the specified device, or the control module can
cache this information and return that. This means the control module may, or may not, be able
to return information on devices that were previously connected, but now are disconnected.

See Also: DataOutDevicesInfoRequest , RadSubDetectorInformationRequest
, VehiclePresenceSubDetectorInformationRequest

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x23

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

Continued on next page

4.6 Data Out Interface 241

Table continued from previous page
Field Name Data Type

device_uuid Uuid128
Field Description: UUID of device you would like the status of.

4.6.30 DataOutSubDetectorInformationReplyStatus Enumeration

The status of a DataOutSubDetectorInformationRequest

Used in message: DataOutSubDetectorInformationReply

Underlying integral representation: uint8_t

Enumerated values for DataOutSubDetectorInformationReplyStatus:

RequestSuccessfulValue Value 0x00

Information in this DataOutSubDetectorInformationReply is valid.

DeviceDoesNotHaveSubDevicesValue Value 0x01

The request was for a valid UUID, but the device did not have any sub-devices (e.g., was
a data out, command device, analysis module or the control module).

InvalidDeviceUuidValue Value 0x02

The device UUID specified was not the UUID of a device in the system.

RequestToDeviceTimedOutValue Value 0x03

The RadSubDetectorInformationRequest or VehiclePresenceSubDetectorInformationRequest
from the control module to the device timed out or otherwise failed.

HandshakeInProgressValue Value 0x04

The handshake between the specified device and the control module is currently in
progress. Try again later.

4.6.31 PwrMngmtSupplyInformation Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

A struct to hold information about the supply portion of the power management unit.

Message Contents:

Field Name Data Type

supply_features
uint32_t bits defined by

PwrMngmtSupplyPropertiesFlags
Field Description: Bitfield listing features supported by the supply. Which fea-
tures are marked will determine which PwrMngmtSupplyStatusFlags properties
will trigger a PwrMngmtSupplyEventPush message or measured quantities of
PwrMngmtSupplyStatusReply or PwrMngmtBatteryStatus are valid.

Continued on next page

242 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

description Short String
Field Description: Free-form description of power management supply status.

4.6.32 DataOutSubDetectorInformationReply Message

The reply from the control module to a data out device containing information about the sub-
devices of a given module.

See Also: DataOutDevicesInfoReply , RadSubDetectorInformationReply ,
VehiclePresenceSubDetectorInformationReply

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xa3

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

device_uuid Uuid128
Field Description: UUID of device requested.

status
uint8_t enumerated by

DataOutSubDetectorInformationReplyStatus
Field Description: The status of this request.

rad_detectors_info Short Array of RadSubDetectorInfo
Field Description: The sub-device information if the requested device was
a radiation detector. Each RadSubDetectorInfo must have a unique
RadSubDetectorInfo::subdetector_number starting at one and increas-
ing by one for each subsequent RadSubDetectorInfo.

vehicle_presence_info
Short Array of
VehiclePresenceSubDetectorInformation

Field Description: The sub-device information if the re-
quested device was a vehicle presence module. Each
VehiclePresenceSubDetectorInformation must have a unique
VehiclePresenceSubDetectorInformation::subdetector_number
starting at one and increasing by one for each subsequent RadSubDetectorInfo.

Continued on next page

4.6 Data Out Interface 243

Table continued from previous page
Field Name Data Type

power_management_lineout_info
Short Array of
PwrMngmtLineOutInformation

Field Description: The lineout information of the power management unit if that is what was
requested.

power_management_supply_info
Short Array of
PwrMngmtSupplyInformation

Field Description: The supply information of the power management unit if that is what was
requested.

4.6.33 DataOutGetStatusOfDeviceRequest Message

Request from a DataOut device to the control module requesting the status of a device in the
system.

See Also: DeviceStatusReply

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x24

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

device_uuid Uuid128
Field Description: UUID of device you would like the status of.

force_refresh uint8_t
Field Description: If 0, the control module can decide to either return its cached or tracked
version of the status, or query the device; if non-zero, the control module must query the
individual device for status. In the case of querying the device, there may be delays or poten-
tial errors due to the overhead of handling the request in the control module and possibility
of the request to the device timing out.

4.6.34 DataOutDeviceStatusFlags Enumeration

Underlying integral representation: uint8_t

244 Detailed Message Descriptions

Enumerated values for DataOutDeviceStatusFlags:

InvalidDevice Value 0x01

Device with requested Uuid is not part of the system. The remainder of the message must
be valid to decode, but should not be used.

DeviceNoLongerConnected Value 0x02

Device is no longer connected, so status is last known status, but is valid.

CouldNotReachDevice Value 0x04

The device is not responding, so couldn’t update status from device, however the control
module does not recognized the device as being disconnected.

StatusNotAvailable Value 0x08

The status for the device is not available for some reason; a DataOutMiscNotificationPush
may be separately sent explaining the reason. The remainder of the message must be
valid to decode, but should not be used.

QueriedDevice Value 0x10

Device status was retrieved by querying the device itself.

4.6.35 DataOutGetStatusOfDeviceReply Message

A reply by the control module to a DataOutGetStatusOfDeviceRequest message sent
by a data-out device requesting status of a specific device.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xa4

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

device_uuid Uuid128
Field Description: The UUID of the device being reported.

Continued on next page

4.6 Data Out Interface 245

Table continued from previous page
Field Name Data Type

reply_status_flags
uint8_t bits defined by

DataOutDeviceStatusFlags
Field Description: Bitwise OR of the DataOutDeviceStatusFlags indicating the sta-
tus of this reply to the request.

status_timestamp UtcTimePoint
Field Description: The timestamp of when this status indicated took effect. That is, the
timestamp of the last event which caused the reported status to change. For example, if the
last reportable thing to happen was the high voltage turned on, then this field would indicate
that time.

device_status_flags
uint32_t bits defined by

DeviceStatusFlags
Field Description: Bitwise OR of flags representing target device status.

operating_mode uint8_t enumerated by OperatingMode
Field Description: The operating mode that the device is currently in.

data_collection_mode
uint8_t enumerated by

DataCollectionModes
Field Description: The data collection mode that the device is currently in. Set
to DataCollectionModes::NoOriginateValue if the module is in any
state other than of DataOutGetStatusOfDeviceReply::operating_mode
OperatingMode::OperatingValue

measurement_type uint8_t enumerated by MeasurementType
Field Description: The type of measurement being taken (item of interest, background, not
specified, possible interfering source, or active maintenance).

collection_interval_ms uint32_t
Field Description: The data collection interval is specific to the
data collection mode, and zero if not applicable. For informa-
tion on allowed intervals, see the DataCollectionModes enumer-
ation. For DataCollectionModes::RealTimeDwellValue and
DataCollectionModes::LiveTimeDwellValue modes, this interval speci-
fies the entire duration of the measurement, and for the other modes it specifies the interval
between sending data or HeartbeatPush (if non-zero) messages.

4.6.36 DataOutSystemOperabilityCheckRequest Message

A message sent by a DataOut device to the control module requesting to check if the system is
operable.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x25

Continued on next page

246 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.6.37 SystemOperabilityStatus Enumeration

Enumeration of descriptions of system operability.

Used in message: DataOutSystemOperabilityCheckReply

Underlying integral representation: uint8_t

Enumerated values for SystemOperabilityStatus:

SystemIsDeterminingOperabilityStatusValue Value 0x00

Operability is still being determined; this message is being sent to avoid timeouts.

SystemIsOperableNoIssuesValue Value 0x01

There is nothing preventing operation, or the system is already in the OperatingMode::ReadyValue
or OperatingMode::OperatingValue operating mode; however, there may still
be a delay before things can start, so check the time estimate.

SystemIsOperableWithIssuesValue Value 0x02

The system can operate, but one or more devices have issues that may prevent optimal op-
eration; examples might be that one gamma detector can’t be found, or that a neutron de-
tectors state of health is bad. The DataOutSystemOperabilityCheckReply::description
field will provide a description of the issue(s).

SystemIsNotOperableValue Value 0x03

The system can not operate - for example if too many detectors are missing,
or have bad states of health, or a critical interrupt is tripped somewhere. The
DataOutSystemOperabilityCheckReply::description field will provide a
description of the issue(s).

4.6.38 DataOutSystemOperabilityCheckReply Message

A reply by the control module to a DataOutSystemOperabilityCheckRequest mes-
sage sent by a data-out device requesting system operability status.

4.6 Data Out Interface 247

Message Contents:

248 Detailed Message Descriptions

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xa5

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

status
uint8_t enumerated by

SystemOperabilityStatus
Field Description: The status of the system’s operability.

estimate_time_to_operating_ms uint32_t
Field Description: Estimated time to resolve any issues that prevent operability, if known;
zero if the system is already operable.

description Medium String
Field Description: Provides a description of any issues or errors present. Intended to help
users diagnose issues.

4.6.39 DeviceConnectionLevel Enumeration

The different level of connection a DataOutDeviceConnectedPush might convey. Not all
implementations of control modules will support all connection levels.

Used in message: DataOutDeviceConnectedPush

Underlying integral representation: uint8_t

Enumerated values for DeviceConnectionLevel:

PhysicalConnection Value 0x00

A device was physically connected to the network.

DhcpEstablished Value 0x01

A device has acquired a IP address.

WebSocketConnected Value 0x02

A new WebSocket connection was created to the control module.

4.6.40 DataOutDeviceConnectedPush Message

Message pushed from the control module to all DataOut devices when a new device has con-
nected to the control module via a WebSocket connection.

4.6 Data Out Interface 249

See Also: DataOutDeviceConnectedPush

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x26

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

timestamp UtcTimePoint
Field Description: Approximate timestamp that connection was established.

ipaddress Short String
Field Description: IP address of the device .

device_uuid Uuid128
Field Description: UUID of the connecting device, if known, for example through the SSDP
mechanism or the MAC address. All zeros if not known.

connection_level
uint8_t enumerated by

DeviceConnectionLevel
Field Description: The type of connection being reported on.

4.6.41 DataOutDeviceConnectedPushAck Message

A message acknowledging the receipt of a DataOutDeviceConnectedPush message
sent by the control module.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xa6

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Continued on next page

250 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.6.42 DeviceDisconnectReason Enumeration

Enumeration of some reasons a disconnect may have happened. See also Section 7.4.1 or RFC
6455.

Used in message: DataOutDeviceDisconnectedPush

Underlying integral representation: uint8_t

Enumerated values for DeviceDisconnectReason:

CleanCloseValue Value 0x00

The WebSocket close code was 1000 or 1001.

DisappearedValue Value 0x01

The device disappeared, and no close frame was received for the WebSocket connection.

DisappearedPhysicallyValue Value 0x02

The device disappeared, and the control module is able to determine it is effectively no
longer physically connected to the network (e.g., link integrity test pulses of the Ethernet
have stopped); not all control module configurations may be able to detect this.

DueToPowerDownValue Value 0x03

The control module requested the device power down via a PowerDownRequest, and
the connection was subsequently closed.

DueToFirmwareUpgradeValue Value 0x04

A FirmwareUpgradeRequest was completed successfully and device restarted.

DueToTimeoutValue Value 0x05

Communications with the device have timed out, so the control module has closed the
connection.

UnallowedNetworkCommunicationValue Value 0x06

The control module detected a network communication attempt outside of the allowed
channels.

InvalidWebSocketCommunicationValue Value 0x07

An invalid RAPTER message was received from the device by the control module within
the WebSocket connection.

4.6 Data Out Interface 251

MessageReceivedInInvalidContext Value 0x08

A message was received from the device at a time when that message was not expected.
Ex., A reply to a request that was never sent. Or a message was received before that
MessageGroup version was negotiated.

InvalidMessageTypeReceivedValue Value 0x09

The device sent the control module an invalid message type. E.g.,a radiation detector
module sent a message type in the vehicle presence message group.

InvalidMessageFormatReceivedValue Value 0x0a

The device sent a message that was not able to be decoded by the control module. E.g.,
message was not long enough to contain a string of the claimed length; or the message
received was shorter than that type of message would be allowed.

InvalidMessageFieldEntryReceivedValue Value 0x0b

A value for one of the fields of a message was invalid. E.g., the value for an enumeration
field did not match any defined value for the enumeration.

RequiredResponseAbsentValue Value 0x0c

The device is not responding to a message requiring a response.

CoreMessageGroupVersionInvalidValue Value 0x0d

A mutually supported version of the core message group could not be agreed upon.

NonCoreMessageGroupVersionInvalidValue Value 0x0e

A mutually supported version of a non-core message group could not be agreed upon.

DuplicateResourceValue Value 0x0f

The device was a duplicate in some way. Either it was the second analysis module, or it
contained a already existing UUID, or something similar.

DesiredFeatureNotSupportedValue Value 0x10

The control module is unable to use the device because it does not support a feature the
control module requires. E.g., the control module requires gamma detectors to support
listmode data collection, but the connected gamma detector does not support listmode
data collection.

ExcessiveNetworkTrafficValue Value 0x11

The device was causing excessive network traffic, so was disconnected.

UnsatisfactoryMessagingPerformanceValue Value 0x12

The device messaging performance was not acceptable. For example if responses are
consistently taking to long, to many TCP re-transmits are necessary, or connections keep
getting dropped.

252 Detailed Message Descriptions

UnsatisfactoryTimeSynchronizationValue Value 0x13

The time synchronization between the control module and the device could not be estab-
lished well enough to allow operations. Examples might include: the times reported by the
device jump around relative to the control module, or the absolute difference between the
devices time and the control modules time is larger than acceptable and has not corrected
itself via the PTP mechanism in a reasonable amount of time.

OtherControlModuleInitiatedDisconnectValue Value 0x14

The control module disconnected the device for another reason not otherwise enumerated.

OtherDisconnectTypeValue Value 0x15

The connection was disconnected for another reason not enumerated.

4.6.43 DataOutDeviceDisconnectedPush Message

Message pushed from the control module to all DataOut devices that a device has disconnected
from the control module. If the control module itself is re-booting, then the IP address should
be "::1" for IPv6. A DataOutMiscNotificationPush may be separately sent to explain
possible odd conditions.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x27

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

timestamp UtcTimePoint
Field Description: Approximate timestamp of disconnect.

ipaddress Short String
Field Description: IP address of the device.

device_uuid Uuid128
Field Description: UUID of the disconnecting device, if known; all zeros if not.

reason
uint8_t enumerated by

DeviceDisconnectReason
Field Description: The reason for the disconnect.

Continued on next page

4.6 Data Out Interface 253

Table continued from previous page
Field Name Data Type

remark Short String
Field Description: Optional free form text description of disconnect. Examples include: "An
analysis module is already present.", "ParameterUpdatePush message indicated unrecog-
nized parameter name."

4.6.44 DataOutDeviceDisconnectedPushAck Message

A message acknowledging the receipt of a DataOutDeviceDisconnectedPush mes-
sage sent by the control module.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xa7

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.6.45 DataOutHandshakeFinishedPush Message

Message sent by the control module to DataOut devices whenever a new device has connected
to the control module, and the handshake has completed (i.e, the control module has gotten the
device information).

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x28

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Continued on next page

254 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

handshake_finish_timestamp UtcTimePoint
Field Description: Approximate timestamp of finishing the handshake.

ipaddress Short String
Field Description: IP address of the device. This must match to the IP ad-
dress specified in DataOutDeviceConnectedPush::ipaddress and
DataOutDeviceDisconnectedPush::ipaddress.

device_type uint8_t enumerated by MessageGroup
Field Description: The device type, as determined from the following options (designated by
the associated MessageGroup value): command device (Command), analysis device (Anal-
ysis), radiation detection device (RadDetector), vehicle presence device (VehiclePresence),
or control module (Core). The device type determines the message groups that the device
must support. See Chapter 2 for details.

data_collection_modes
uint8_t bits defined by

DataCollectionModes
Field Description: Bitwise OR of flags representing data collection modes supported by the
device.

device_features
uint64_t bits defined by

DeviceFeaturesFlags
Field Description: Bitwise OR of flags representing device features.

buffer_size uint64_t
Field Description: The size of the buffer for buffering. This size can be an estimate.
Should be set to 0 if the device does not support data buffering when the connection
is down. When the network connection is down, Push messages should be buffered
for retrieval once the connection is back up; see BufferedMessagesRequest and
BufferedMessagesReply for details.

num_subdetectors uint8_t
Continued on next page

4.6 Data Out Interface 255

Table continued from previous page
Field Name Data Type

Field Description: The number of sub detectors the device contains; applicable only to radi-
ation detector, vehicle presence, and power management modules. For other devices this
must be set to 0. As examples, for gamma-ray detectors this might indicate independent
crystals (e.g. 4 crystals in one panel or module), for neutron detectors this might be the
number of independently read-out He-3 tubes, and for vehicle presence sensors, the num-
ber of IR beams plus number of cameras. For power management modules it represents the
number of independent output lines. Note that all sub-detectors must operate in the same
data collection mode (DataCollectionModes::ClockTimeIntervalValue,
DataCollectionModes::OnEventValue, etc) and at the same data collection in-
tervals (10ms, 100ms, etc.).
See also:

• RadListModeDataPush::subdetector_number
• RadChannelDataPush::subdetector_number
• RadEnergyCalibrationUpdatePush::subdetector_number
• RequestEnergyCalibration::subdetector
• VehiclePresenceSubDetectorInformationRequest
• PwrMngmtInformationRequest

device_uuid Uuid128
Field Description: The universally unique ID for this device. This number must be globally
unique, and can be assigned according to the deploying agency conventions; for exam-
ple assigned as the thumbprint of the devices cryptographic certificate. This value will not
change for a given physical device.

serial_number Short String
Field Description: The manufacturer specified serial number that is expected to be unique
at least with respect to the vendor and model. This value must remain fixed across firmware
upgrades, power cycles, setting changes, and if at all possible hardware repairs. No restric-
tions on format other than length, and valid UTF-8 text.

manufacturer Short String
Field Description: Specifies the manufacturer of this device. No restrictions other than
length, and valid UTF-8 text.

model Short String
Field Description: Specifies the model of this device. No restrictions other than length, and
valid UTF-8 text.

hardware_version Short String
Field Description: Specifies the version of the hardware for the device. No restrictions other
than length, and valid UTF-8 text. This should be descriptive and change with respect to
hardware changes.

firmware_version Short String
Field Description: Specifies the version of the current firmware for the device. No restrictions
other than length, and valid UTF-8 text. This should be descriptive and change with respect
to firmware changes or updates.

other_component_versions
Short Array of
ComponentVersionInformation

Continued on next page

256 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: Versions of additional components in the device, that may be informative
for compatibility, troubleshooting, or maintenance. Examples include: underlying operating
system version, high voltage daughter card version, nuclide library version, analysis library
version, etc.

specialized_capabilities_descr �

iption
Short String

Field Description: A free form English language description of the capabilities and hardware
specific to the specialized purpose of this device. No restrictions other than length, and valid
UTF-8 text. Examples might include:

• "3x3 NaI gamma detector, 7% FWHM
@ 661 keV, temperature compensated energy calibration, pulse pileup filter, 250MHz wave-
form sampling"

• "Data archiving device to save all health information to a database"
• "Graphical user interface device for portal operations. Touchscreen."
• "Analysis software based on DHSIsotopeID v13, customized for PVT."

computing_platform_description Short String
Field Description: A free form English language description of the computing resources
of the device, such as descriptions of its CPUs, ram memory, hard drive space, Ethernet
adapter capabilities, operating system, etc. No restrictions other than length, and valid
UTF-8 text. Examples include:

• "PC4F1453 MCU, 120 MHz, 256 KB SRAM, 4GB SD-card storage, IEEE-1588 Ether-
net transceiver, FreeRTOS 9.0.0"

• "Dual core 2 GHz Arm CPU, 1 GB ram, Linux kernel 3.4."

4.6.46 DataOutHandshakeFinishedPushAck Message

A message acknowledging the receipt of a DataOutHandshakeFinishedPush message
sent by the control module.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xa8

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Continued on next page

4.6 Data Out Interface 257

Table continued from previous page
Field Name Data Type

Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.6.47 DataOutResponseErrorType Enumeration

Categories of general communication issues that may arise

Used in message: DataOutDeviceResponseIssuePush

Underlying integral representation: uint8_t

Enumerated values for DataOutResponseErrorType:

SingleMessageResponseTimeoutValue Value 0x01

Device timed out for a single message, but still responds to echos/pings and other
RAPTER messages and lower level network traffic, such as pings.

DeviceNotRespondingToRequestsValue Value 0x02

Device isn’t responding to RAPTER messages, but device still responds to lower level
network traffic, such as pings.

DeviceNotProducingExpectedPushValue Value 0x03

Device is not producing expected "push" messages

DeviceCommunicationsErrorOtherValue Value 0x04

A communications error not captured by other enumerated conditions; message should
have an English description as well.

DeviceCommunicationsErrorResolvedValue Value 0x05

Previous communications error has been resolved.

4.6.48 DataOutDeviceResponseIssuePush Message

Message pushed from the control module to all DataOut devices to let them know that a con-
nection to a device hasn’t been terminated (as far as the control module knows), but the device
has timed out or not responded to a message, or that the issue, that caused a previous one of
these messages to be sent out, has been cleared up. The control module shouldn’t necessar-
ily send out one of these messages for each timed out message. Sending just the first message
that triggers a timeout for a given context avoids flooding the network with messages).

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
Continued on next page

258 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

message_type uint8_t with value 0x29
Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

timestamp UtcTimePoint
Field Description: Time when issue was first diagnosed

device_uuid Uuid128
Field Description: UUID of device having comms issues

issue_message_id uint32_t
Field Description: The id of the message sent to the device that timed out, for debugging
purposes; may be zero, especially if an issue with not receiving expected push messages.

time_waited_ms uint32_t
Field Description: The approximate time, in milliseconds, that this issue took to manifest,
e.g., how long you waited without a message response.

issue_message_group uint8_t enumerated by MessageGroup
Field Description: The message group of the message having an issue.

issue_message_type uint8_t
Field Description: The message type within the MessageGroup
(ex. CoreMsgType::DeviceInfoRequestValue,
CoreMsgType::UseMessageGroupVersionRequestValue,
VehiclePresenceMsgType::VehiclePresenceSubDetectorInformationRequestValue,
etc) of the message having trouble. Will have a value of 255 if this is a general connection
issue.

issue_error_type
uint8_t enumerated by

DataOutResponseErrorType
Field Description: The type of comm error detected

issue_description Short String
Field Description: Description of the issue; should especially be filled out in the case of
DataOutResponseErrorType::DeviceCommunicationsErrorOtherValue

4.6.49 DataOutDeviceResponseIssuePushAck Message

A message acknowledging the receipt of a DataOutDeviceResponseIssuePush mes-
sage sent by the control module.

Message Contents:

4.6 Data Out Interface 259

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xa9

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.6.50 BufferingForDataOutOption Enumeration

Enumeration to represent the buffering option a device requests of the control module to do on
its behalf.

Used in message: DataOutBufferingEnableRequest

Underlying integral representation: uint8_t

Enumerated values for BufferingForDataOutOption:

DisableBufferMessagesValue Value 0x00

Useful to turn off buffering by the control module for the device. For example if the device
knows it will be shutting down (or otherwise going away) and the buffering will be pointless.
When the control module receives a DataOutBufferingEnableRequest with this status, it
should clear all contents of its buffer for this device, even if it is currently sending buffered
messages to the device. By default the control module does not buffer, so no need to send
a DataOutBufferingEnableRequest message with this value unless buffering
was explicitly already enabled.

EnableBufferingMessageValue Value 0x01

The device is requesting that the control module buffer data for the device.

4.6.51 DataOutBufferingEnableRequest Message

A message sent by a DataOut device to the control module requesting that the control module
buffer its push DataOut messages, in the event of a temporary disconnection.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Continued on next page

260 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x2e

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

buffering_option
uint8_t enumerated by

BufferingForDataOutOption
Field Description: Whether the device requests that the control module buffer push mes-
sages to the device.

4.6.52 DataOutBufferingStatus Enumeration

Enumeration to represent response possibilities to a DataOutBufferingEnableRequest.

Used in message: DataOutBufferingEnableReply

Underlying integral representation: uint8_t

Enumerated values for DataOutBufferingStatus:

BufferingEnabledValue Value 0x00

The control module was able, and did, enable buffering for the device. The device must
send acknowledges to push messages to keep the control module’s buffer from overflow-
ing.

BufferingDisabledValue Value 0x01

Buffering is not enabled by the control module for this device. The device does not need
to send acknowledges to push messages.

BufferingNotSupportedValue Value 0x02

Buffering is not supported by the control module. The device does not need to send
acknowledges to push messages.

4.6.53 DataOutBufferingEnableReply Message

A reply by the control module to a DataOutBufferingEnableRequest message sent by
a data-out device.

Message Contents:

4.6 Data Out Interface 261

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xae

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

buffering_status
uint8_t enumerated by

DataOutBufferingStatus
Field Description: The status of the control module buffering for the requesting DataOut
device.

buffer_capacity uint32_t
Field Description: Approximate buffer capacity for this device, in bytes; zero if buffering is
not supported.

current_buffer_contents uint32_t
Field Description: Size of the current contents in buffer for this device, in bytes; zero if
buffering not supported or not being performed.

4.6.54 DataOutBufferedMessagesRequest Message

Message sent by a data-out device requesting the control module send any buffered messages
after a RAPTER connection is established. This request must be sent after the device has
sent the control module a DeviceInfoReply message, as well as negotiated the version of
MessageGroup::DataOutValue to use, but before the device has sent acknowledges to
any push messages the control module may have sent the device, and before the device sends
a DataOutBufferingEnableRequest to the control module.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x2f

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Continued on next page

262 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

recovery_mode
uint8_t enumerated by

BufferRecoveryMode
Field Description: How the recovered data should be sent.

4.6.55 DataOutBufferedMessagesReply Message

Message sent in response to an DataOutBufferedMessagesRequest request; multiple
instances of these messages will be sent in response to the original request message. One of
these messages will be sent before re-sending the buffered data, and one of these messages
will be sent once sending of the buffered data is complete. However there may be other of these
messages sent, if, for instance, there is a failure in re-sending the data, the original message will
be followed up to indicate the failure. If the control module is able to provide the buffered data, it
should return this message followed by the buffered data.

If recovery mode is BufferRecoveryMode::SerialValue, then data currently be-
ing taken should not be sent until the last currently buffered message is sent. (This
applies to essentially any message falling into the buffer category, having an Ack in
the name of the reply.) Processing of commands which do not fall into the buffer-
ing scheme (so do not have an "Ack" in the name of the replies) can proceed even
while the recovery (i.e. the communications ’catch up’) is still happening. Note that
if any buffer overflow (causing discarded messages) happens during this catch-up, a
DeviceStatusPush update message should be sent to indicate this. Upon successful
completion of the buffer transfer a DataOutBufferedMessagesReply message should
be sent with the DataOutBufferedMessagesReply::buffered_status field set to
BufferedDataRequestStatus::SendCompletedSuccessfullyValue.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xaf

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Continued on next page

4.6 Data Out Interface 263

Table continued from previous page
Field Name Data Type

Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

buffered_status
uint8_t enumerated by

BufferedDataRequestStatus
Field Description: Status of the buffering operation.

oldest_recovered_msg_id uint32_t
Field Description: The message ID of the oldest message that will be, or
was sent. If DataOutBufferedMessagesReply::buffered_status
is BufferedDataRequestStatus::NotSupportedValue,
BufferedDataRequestStatus::NoBufferedContentsValue, or
BufferedDataRequestStatus::SendAlreadyInProgressValue, then
this variable should be ignored.

newest_recovered_msg_id uint32_t
Field Description: When DataOutBufferedMessagesReply::buffered_status
is BufferedDataRequestStatus::WillSendValue, then
this is the most recent message in the buffer. When
DataOutBufferedMessagesReply::buffered_status is
BufferedDataRequestStatus::SendFailedValue, this is the
most recent message to enter the buffer, or zero if none. If status is
BufferedDataRequestStatus::SendCompletedSuccessfullyValue
then this was the last message sent from the buffer. For all other
DataOutBufferedMessagesReply::buffered_status values this vari-
able should be ignored. Note that if BufferRecoveryMode::SerialValue
option was selected, there may be subsequent messages after this ID that are
marked with the MsgFlags::MessageHasBeenBufferedFlag bit, and the fi-
nal BufferedMessagesReply sent after buffer has been emptied will have a
DataOutBufferedMessagesReply::newest_recovered_msg_id indicating
the last message transfered before the buffer was emptied (so might be data taken after the
buffer recovery was begun).

number_failed_messages uint32_t
Field Description: Indicates the number of buffered messages that either will not be, or
were not, recovered. When BufferedMessagesReply::buffered_status is
BufferedDataRequestStatus::WillSendValue, this field indicates the num-
ber of messages that are known to not be able to be recovered, for example because
the buffer overflowed. When BufferedMessagesReply::buffered_status
has a value BufferedDataRequestStatus::SendFailedValue or
BufferedDataRequestStatus::SendCompletedSuccessfullyValue
this variable indicates the number of message that were not able to be sent. For other
values of BufferedDataRequestStatus, this value must be zero.

4.6.56 SystemStateChangeStatus Enumeration

Enumeration to hold possible statuses of the reply to a CmdSystemStateChangeRequest
request.

264 Detailed Message Descriptions

Used in message: DataOutSystemStateChangePush

Underlying integral representation: uint8_t

Enumerated values for SystemStateChangeStatus:

CompletedNoIssuesValue Value 0x00

The system state change has successfully completed, and no devices gave any issues or
transition failures.

InProgressValue Value 0x01

The state change is in progress; at least one more reply will be sent to indicate the final
transition status.

NoStateChangeNeededValue Value 0x02

System was already in the requested state so no action was taken.

InvalidRequestValue Value 0x03

The CmdSystemStateChangeRequest request was invalid, for example if not
all the neutron detectors supported the requested DataCollectionModes. A
DataOutMiscNotificationPush may be separately sent to provide insight into
the reason.

StateChangeCanceledValue Value 0x04

Either before the transition was scheduled to occur, or while the transition was underway,
another CmdSystemStateChangeRequest was received that canceled this transi-
tion.

CompletedWithIssueValue Value 0x05

The system state change was completed, however there was at least one issue; a
DataOutMiscNotificationPush may be separately sent to provide additional in-
formation.

CompletedWithDeviceFailureValue Value 0x06

The system state change was completed, however there was at least one device that failed
the transition.

CouldNotCompleteValue Value 0x07

The system state change could not be completed. A DataOutMiscNotificationPush
may be separately sent to provide insight into the reason.

4.6.57 DeviceStateChangeInfo Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

A struct to hold information on a change in operating state of a device.

Message Contents:

4.6 Data Out Interface 265

Field Name Data Type
device_uuid Uuid128

Field Description: The universally unique ID for this device.

status_of_transition
uint8_t enumerated by

CommandReplyStatus
Field Description: Status of the transition. Note that the device must send
a message with status of CommandReplyStatus::CompletedValue or
CommandReplyStatus::CompletedWithIssueValue after all data of the
previous state have been sent and before any data of this new state are sent.

previous_device_operating_mode uint8_t enumerated by OperatingMode
Field Description: The operating mode of the device at the time that the request to change
state was received.

previous_device_data_collectio �

n_mode
uint8_t enumerated by

DataCollectionModes
Field Description: The data collection mode of the device at the time that the request to
change state was received.

previous_device_collection_int �

erval_ms
uint32_t

Field Description: The data collection interval of the device at the time that the request to
change state was received.

previous_measurement_type uint8_t enumerated by MeasurementType
Field Description: The measurement type in effect on the device at the time that the request
to change state was received.

requested_device_operating_mode uint8_t enumerated by OperatingMode
Field Description: The requested new operating mode for the device.

requested_device_data_collecti �

on_mode
uint8_t enumerated by

DataCollectionModes
Field Description: The requested new data collection mode for the device.

requested_device_collection_in �

terval_ms
uint32_t

Field Description: The requested new data collection interval for the device.
requested_measurement_type uint8_t enumerated by MeasurementType

Field Description: The requested new measurement type to be applied by the device.
new_state_effective_timestamp UtcTimePoint

Field Description: Time that the state change was com-
pleted (CommandReplyStatus::CompletedValue or
CommandReplyStatus::CompletedWithIssueValue), or is pre-
dicted to be completed (CommandReplyStatus::InProgressValue),
or failed (CommandReplyStatus::FailedValue), or was cancelled
(CommandReplyStatus::CanceledValue), or a redundant request
(CommandReplyStatus::RedundantValue) was received. If the status is
CommandReplyStatus::InProgressValue, then this value may be zero if there
is no estimate available for when the transition will finish.

266 Detailed Message Descriptions

4.6.58 DeviceNotification Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

A struct to hold information relating to an error or issue. This struct is used by the control module
in DataOut messages, and includes the UUID of the device that has reported an issue along with
the information included from the NotificationPush message from the originating device.

Message Contents:

Field Name Data Type
device_uuid Uuid128

Field Description: The universally unique ID for this device.
timestamp UtcTimePoint

Field Description: The timestamp when the error actually happened, not when it was sent
on the network. If the time is not applicable to this particular message, this integer should
have the value of zero.

reference_message_id uint32_t
Field Description: If this notification is being sent with regards to another message, this field
provides the ’message_id’ of that message. If this notification is not in regards to another
message, then this field must be zero. An example of when a notification may reference
another message would be if CmdSystemStateChangeRequest can not be success-
fully completed, in addition to the device sending a CmdSystemStateChangeReply
indicating the request could not be completed, the device could also send a notification with
an English description with further device specific information that may help to diagnose the
issue. If non-zero, this message_id field must correspond to a message sent within the time
specified by RapterConstants::DATA_PUSH_TIMEOUT_MS.

severity
uint16_t enumerated by

NotificationSeverity
Field Description: Indicates the severity of the issue reported by this notification.

cause uint8_t enumerated by NotificationCause
Field Description: The cause of the notification; should be considered to be indicative or
descriptive, and not an absolute or definitive form of information, since there will likely be
errors or issues that are not enumerated in the NotificationCause notification types.

description Large String
Field Description: Human readable, UTF-8 encoded text which describes the error or issue
in a manner appropriate to display to a technician to provide information or to help diagnose
the problem.

4.6.59 DataOutSystemStateChangePush Message

Message sent by the control module to all devices that receive DataOut messages, in response
to a valid CmdSystemStateChangeRequest. This message forwards the status, as of
the time of the message, of those devices that were asked to change their status by the re-
quest. Devices that were not affected by the CmdSystemStateChangeRequest (e.g. a
DataOut device already in the requested state, that will continue being in the same state) do

4.6 Data Out Interface 267

not have to be reported in this message. For each CmdSystemStateChangeRequest
message that the control module decides to act on, it will send out at least two
DataOutSystemStateChangePush messages, but may send out more. The first
DataOutSystemStateChangePush message should be sent out as early as possi-
ble from the control module to let the DataOut devices know about the request. The final
DataOutSystemStateChangePush gives the result of the transition, and also the final
ChangeDeviceStateReply of any of the transitioning devices that hadn’t been communicated yet.
Additional intermediate DataOutSystemStateChangePush messages may be utilized to
to convey status updates, or estimates. For each device whose state changed as a result of
the CmdSystemStateChangeRequest, at least their final transition information should be
included in DataOutSystemStateChangePush::device_statuses.

See Also: DataOutSystemStateChangePush , DataOutSystemStateChangePushAck
, CmdSystemStateChangeRequest

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x2a

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

requestor_uuid Uuid128
Field Description: The UUID of the device that requested this transition.

requested_transition_time UtcTimePoint
Field Description: The time the requestor targeted the transition to finish; if no time was
specified (e.g. an immediate transition), this time represents the time the control module be-
gan processing the request. All DataOutSystemStateChangePush messages that
are in response to a CmdSystemStateChangeRequest must have the same values
of DataOutSystemStateChangePush::requested_transition_time.

requested_system_operating_mode uint8_t enumerated by OperatingMode
Field Description: At the completion of the requested system state change, all devices and
the control module should ideally be in this operating mode.

requested_gamma_data_collectio �

n_mode
uint8_t enumerated by

DataCollectionModes
Field Description: The data collection mode to which all gamma radiation detection modules
are to transition.

requested_neutron_data_collect �

ion_mode
uint8_t enumerated by

DataCollectionModes
Continued on next page

268 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: The data collection mode to which all neutron radiation detection modules
are to transition.

requested_vehicle_presence_dat �

a_collection_mode
uint8_t enumerated by

DataCollectionModes
Field Description: The data collection mode to which all vehicle presence detection modules
are to transition.

requested_collection_interval_ms uint32_t
Field Description: The data collection interval to which all data collecting devices are to
transition.

requested_measurement_type uint8_t enumerated by MeasurementType
Field Description: The new measurement type for the system.

effective_measurement_type uint8_t enumerated by MeasurementType
Field Description: The currently measurement type of the system.

status_of_system_transition
uint8_t enumerated by

SystemStateChangeStatus
Field Description: The overall status of the system transition. (The initial and re-
quested status of the individual devices is given in the array of structs contained in the
DataOutSystemStateChangePush::device_statuses field of this message,
in the struct field StateChangeInfo::status_of_transition)

device_statuses
Short Array of
DeviceStateChangeInfo

Field Description: Statuses sent from each of the devices that will be changing status
due to a particular CmdSystemStateChangeRequest message. The control mod-
ule may collect state change information from multiple devices before sending out the
DataOutSystemStateChangePush message.

device_notifications Short Array of DeviceNotification
Field Description: Array of structs, one per error or notification condition being reported.
Each of the structs contains the identity of the device, timestamp of the issue, the cause
and severity of the issue, and a string field to contain a description.

4.6.60 DataOutSystemStateChangePushAck Message

A message acknowledging the receipt of a DataOutSystemStateChangePush message
sent by the control module.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xaa

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Continued on next page

4.6 Data Out Interface 269

Table continued from previous page
Field Name Data Type

Field Description: The version of the message_group being used.
message_flags uint8_t bits defined by MsgFlags

Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.6.61 DataOutCurrentSystemStateRequest Message

Message sent by a data-out device to the control module requesting information on the current
system state.

See Also: DataOutSystemStateChangePush

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x3c

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.6.62 DataOutCurrentSystemStateReply Message

Reply to a DataOutCurrentSystemStateRequest message, conveying information on
the system state of the portal; this information should match the information in the most recent
DataOutSystemStateChangePush message.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xbc

Continued on next page

270 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

state_requestor_uuid Uuid128
Field Description: The UUID of the command device, or the control module, that requested
the portal transition to the current state. If the system state transition was driven by default
behaviour of the control module, or operating procedures (e.x., devices failed necessitating
a state change), then the UUID of the control module will be given. If the state was explicitly
requested by a command device, then its UUID will be specified.

system_state_start_time UtcTimePoint
Field Description: The starting time of the current system state.

system_operating_mode uint8_t enumerated by OperatingMode
Field Description: The current system operating mode.

gamma_data_collection_mode
uint8_t enumerated by

DataCollectionModes
Field Description: Data collection mode of gamma modules.

neutron_data_collection_mode
uint8_t enumerated by

DataCollectionModes
Field Description: Data collection mode of neutron modules.

vehicle_presence_data_collecti �

on_mode
uint8_t enumerated by

DataCollectionModes
Field Description: Data collection mode of vehicle presence modules.

collection_interval_ms uint32_t
Field Description: Current collection interval in milliseconds.

requested_measurement_type uint8_t enumerated by MeasurementType
Field Description: The system measurement type specified by the device that requested
the current state. A value of MeasurementType::NotSpecifiedValue indicates
the MeasurementType is being determined based on sensor (e.g., vehicle presence
sensor) values.

effective_system_measurement_type uint8_t enumerated by MeasurementType
Field Description: The effective measurement type of the systems (i.e. if auto determined,
its actual auto determined value)

4.6 Data Out Interface 271

4.6.63 DataOutMiscNotificationPush Message

A message sent from the control module to all DataOut devices to convey information for which
there is no dedicated mechanism to convey. The intent of this message is that its content will go
somewhere like a log file or operational GUI. This message may be sent to an individual DataOut
or Command device to notify that device of issues related to one of its requests, or it may be the
case that effectively a copy of the same message may be sent out to all DataOut and Command
devices.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x2b

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

timestamp UtcTimePoint
Field Description: Time when issue happened.

reference_message_id uint32_t
Field Description: If this notification is being sent with regards to another message, this field
provides the ’message_id’ of that message. If this notification is not in regards to another
message, then this field must be zero. An example of when a notification may reference
another message would be if CmdSystemStateChangeRequest can not be success-
fully completed, in addition to the device sending a CmdSystemStateChangeReply
indicating the request could not be completed, the device could also send a notification with
an English description with further device specific information that may help to diagnose the
issue. If non-zero, this message_id field must correspond to a message sent within the time
specified by RapterConstants::DATA_PUSH_TIMEOUT_MS.

severity
uint16_t enumerated by

NotificationSeverity
Field Description: The type of message within the message group.

device_uuid Uuid128
Field Description: The UUID of the device that has experienced the issue that is the subject
of the notification. If the issue does not concern a specific device, or a device whose UUID
is not yet known, this should be left blank (all zeros). The control module can also put its
own UUID to communicate issues related to itself.

description Medium String
Continued on next page

272 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: A human readable UTF-8 encoded string providing a description of the
issue being reported.

4.6.64 DataOutMiscNotificationPushAck Message

A message acknowledging the receipt of a DataOutMiscNotificationPush message sent by the
control module.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xab

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.6.65 DataOutDeviceReferenceInfoRequest Message

A message sent by a DataOut device to the control module requesting the reference info (posi-
tion, name, comments) of a device, or a sub-detector, that was manually entered.

See Also: CmdDeviceSetReferenceInfoRequest

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x2c

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Continued on next page

4.6 Data Out Interface 273

Table continued from previous page
Field Name Data Type

Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

device_uuid Uuid128
Field Description: The UUID for the device you would like the reference information for.

subdetector_number uint8_t
Field Description: The subdetector you would like the reference information for. A value of
zero indicates information is wanted for the device. A non-zero value indicates information
is wanted for the specified sub-detector.

4.6.66 DeviceReferenceInfoRequestStatus Enumeration

An enum to describe the status of a DataOutDeviceReferenceInfoRequest.

Used in message: DataOutDeviceReferenceInfoReply

Underlying integral representation: uint8_t

Enumerated values for DeviceReferenceInfoRequestStatus:

ReferenceInfoSuccessfulValue Value 0x00

Request was successful.

ReferenceInfoNotSetValue Value 0x01

Information has not been set for the requested device and/or sub-detector.

ReferenceInfoInvalidUuidValue Value 0x02

A UUID for a target device not connected to the control module was specified in the re-
quest.

ReferenceInfoInvalidSubDeviceNumberValue Value 0x03

An invalid subdetector number for the particular target device was specified in the request.

4.6.67 DeviceReferenceInfoSetFlags Enumeration

Flags to specify what reference information is set, for variables that could be ambiguous.

Underlying integral representation: uint8_t

Enumerated values for DeviceReferenceInfoSetFlags:

ReferenceInfoPositionIsSetFlag Value 0x01

The position is set. If this flag is not set, the position is not usable. Position follows the
coordinate system and portal configuration conventions, as defined in Chapter 2, including
the naming of radiation detection panels which sets the positive z direction.

274 Detailed Message Descriptions

4.6.68 DataOutDeviceReferenceInfoReply Message

A reply by the control module to a DataOutDeviceReferenceInfoRequest message
sent by a data-out device requesting the reference information of a device.

See Also: CmdDeviceSetReferenceInfoRequest

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xac

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

device_uuid Uuid128
Field Description: The UUID for the device for which the reference information was re-
quested. Must match the UUID specified in the request.

subdetector_number uint8_t
Field Description: The subdetector the reference information is for. Must match
the DataOutDeviceReferenceInfoRequest::subdetector_number speci-
fied in the request. A value of zero indicates the information is for the device as a whole.

status_of_request
uint8_t enumerated by

DeviceReferenceInfoRequestStatus
Field Description: The status of the reference information query.

time_set UtcTimePoint
Field Description: Time when the coordinates reference information was set. Microseconds
after the UNIX epoch

name Short String
Field Description: Name for this device, or sub-device that should be used when storing in-
formation in N42 files, databases, or log files. For gamma and neutron sub-detectors, exam-
ples are: ’Aa1’, ’Ca1N’, ’Da2’. For RSPs (e.g., subdetector zero), examples are: ’Panel1’,
’RSP2’. For vehicle presence sensors, examples are: ’BreakBeam1’, ’EntranceCamera’.
Note that if no name is entered, it is unspecified what name should be used in N42 files or
databases, but some possibilities are the UUID of the device, a guessed name based on
location, or a randomly assigned name.

set_fields
uint8_t bits defined by

DeviceReferenceInfoSetFlags
Continued on next page

4.6 Data Out Interface 275

Table continued from previous page
Field Name Data Type

Field Description: Flags to indicate if ambiguous quantities have been set.
x_cm float

Field Description: The x-location; see CmdDeviceSetReferenceInfoRequest for
definition.

y_cm float
Field Description: The y-location; see CmdDeviceSetReferenceInfoRequest for
definition.

z_cm float
Field Description: The z-location; see CmdDeviceSetReferenceInfoRequest for
definition.

position_description Short String
Field Description: A free-form description of the location. Examples might be: ’Lower pas-
senger side RSP’, or ’Lower detection element’.

comment Short String
Field Description: A free-form text comment about this module or subdetector.

4.6.69 DataOutTimeStatisticsRequest Message

Message sent from a data out device to the control module in order to request time statistics of
all devices currently connected to the control module, as well as the control module itself.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x2d

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.6.70 DataOutTimeStatisticsReplyStatus Enumeration

The status of a reply to a DataOutTimeStatisticsRequest message.

Used in message: DataOutTimeStatisticsReply

Underlying integral representation: uint8_t

276 Detailed Message Descriptions

Enumerated values for DataOutTimeStatisticsReplyStatus:

FinalAllConnectedDevicesIncludedValue Value 0x00

The time statistics of all devices connected to the control module, as well as for the control
module itself, are included in this DataOutTimeStatisticsReply message.

FinalErrorGettingSomeDevicesResponsesValue Value 0x01

Querying at least one of the connected devices for time statistics failed. Statistics for the
devices for which it was successful are included in this DataOutTimeStatisticsReply
message.

WaitingOnResponseFromDevicesValue Value 0x02

The request has been received, and devices are being queried. Another DataOutTimeStatisticsReply
will be sent with a status of either DataOutTimeStatisticsReplyStatus::FinalAllConnectedDevicesIncludedValue
or DataOutTimeStatisticsReplyStatus::FinalErrorGettingSomeDevicesResponsesValue.

4.6.71 IdentifiedDeviceTimeStatistics Struct

This struct is not a RAPTER message, but is used as an element in an array of a RAPTER
message.

Message Contents:

Field Name Data Type
device_uuid Uuid128

Field Description:
timestamp UtcTimePoint

Field Description: The time at which these statistics were calculated. Microseconds since
the UNIX epoch.

current_uptime_seconds uint32_t
Field Description: The time, in seconds, since the device has been started or restarted.
Similar to ’uptime’ command in Linux and BSD.

current_session_time_seconds uint32_t
Field Description: For non-control modules, the number of seconds the current RAPTER
WebSocket session has been established for the device. For the control module, the amount
of time, in seconds, continuously available, up to the present, to accept WebSocket connec-
tions.

current_session_time_operating �

_seconds
uint32_t

Continued on next page

4.6 Data Out Interface 277

Table continued from previous page
Field Name Data Type

Field Description: For non-control modules, the number of seconds
the device has been in OperatingMode::OperatingValue dur-
ing the current RAPTER WebSocket session. Must be no greater than
IdentifiedDeviceTimeStatistics::current_session_time_seconds,
i.e., even if the device was operating when session began, because buffering was
enabled, this value should start accumulating at the beginning of the current ses-
sion, not when data acquisition actually started. For the control module, then this
should be the longest uninterrupted time that any connected device has been in
OperatingMode::OperatingValue.

current_operating_mode_time_se �

conds
uint32_t

Field Description: For devices, the number of seconds since the most re-
cent change of the device’s OperatingMode. May be larger than
IdentifiedDeviceTimeStatistics::current_session_time_seconds
if not a control module and the device was previously in the current state before the
RAPTER WebSocket connection was started. For the control modules, the time since
DataOutSystemStateChangePush::requested_system_operating_mode,
has been changed, or if it hasn’t been changed, the time since system start up.

cumulative_time_on_seconds uint32_t
Field Description: The number of seconds this device has been powered on. This value
should monotonically accumulate across power cycles, firmware upgrades, and if at all pos-
sible, hardware upgrades.

cumulative_time_operating_seconds uint32_t
Field Description: The number of seconds this device has been powered on and in the
OperatingMode::OperatingValue. This value should monotonically accumulate
across power cycles, firmware upgrades, mode changes, and if at all possible, hardware
upgrades.

number_restarts uint32_t
Field Description: Number of times, at the application level, the device has restarted. That
is, if the device is implemented as a software program application running within an operat-
ing system, this number would be incremented each time the application is started by the
operating system, wether due to it crashing, or the device power cycling. If the device is
implemented as a real time operating system, Unikernel, or dedicated hardware, this num-
ber would increment each power cycle. This value should monotonically accumulate across
power cycles, firmware upgrades, and if at all possible, hardware component upgrades.

number_websocket_connections_i �

nitiated
uint32_t

Field Description: If a device: cumulative number of WebSocket connection it has attempted
to initiate over its lifetime, whether the connection was successful or not. If a control mod-
ule: cumulative number of WebSocket connections devices have attempted to make to it,
whether the connection was successful or not. This value should monotonically accumu-
late across power cycles, firmware upgrades, and if at all possible, hardware component
upgrades.

number_completed_handshakes uint32_t
Continued on next page

278 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: The number of times a WebSocket connection resulted in at least negoti-
ating the message group. This value should monotonically accumulate across power cycles,
firmware upgrades, and if at all possible, hardware component upgrades.

4.6.72 DataOutTimeStatisticsReply Message

Message from the control module to the requesting device containing an array of elements, each
of which contains time statistics for an individual, identified device.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xad

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

reply_status
uint8_t enumerated by

DataOutTimeStatisticsReplyStatus
Field Description: The status of the reply, whether final, waiting, or error.

device_statistics
Short Array of
IdentifiedDeviceTimeStatistics

Field Description: Array of IdentifiedDeviceTimeStatistics. Each element of the array holds
the time statistics from one device. An element is included for each device in the system.

4.6.73 DataOutInterimAnalysisPush Message

Message pushed from the control module to each of the DataOut devices informing them of an
interim analysis received from the analysis module, with the occupancy still in progress.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x3a

Continued on next page

4.6 Data Out Interface 279

Table continued from previous page
Field Name Data Type

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

analysis_module_uuid Uuid128
Field Description: The UUID of the analysis module that produced this analysis result. Must
match the UUID given by DeviceInfoReply of the analysis module.

result_timestamp UtcTimePoint
Field Description: TODO: decide if we need a UUID for each analysis result The time the
analysis was started.

result_uuid Uuid128
Field Description: UUID generated by the analysis module for this result. This must be
generated in such a way that it uniquely identifies this result.

interim_analysis_status
uint16_t bits defined by

InterimAnalysisDataUsageStatusFlags
Field Description: Indication of whether the data are being used for background aggregation
or for the analysis of an item of interest.

alarm_type uint16_t bits defined by AlarmTypeFlags
Field Description: Bitwise OR of flags indicating a gamma, neutron, etc, alarm has been
triggered. If this is zero, then no alarm has been found.

sample_number uint32_t
Field Description: The item of interest number these results are for; must match
DataOutPacket::sample_number of the data this result is for.

analysis_confidence_value float
Field Description: Indication of confidence, as a percent ranging from 0.0 to 100.0 (speci-
fied with a filed value ranging from 0.0 to 1.0), in the overall accuracy of the analysis, where
increasing values indicate higher confidence. If a confidence is not ascribed, this should
be set to a negative value (other than negative infinity or negative 0), with the magnitude
having not carrying any meaning. (Taken roughly from N42 2012 standard for <Analysis-
ConfidenceValue >)

nuclides Short Array of NuclideResult
Field Description: The analysis algorithms identified results; does not strictly have to be
nuclides (e.x., U235, Co60, etc.), but may be other sources as well (e.x., Bremsstrahlung,
Annihilation, Gross Count, etc.). The same nuclide may be specified multiple times covering
different ranges of sample numbers.

analysis_result_description Short String
Continued on next page

280 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: Free-form text describing the overall conclusion of the analysis regarding
the source of concern. (See N42.42 2012 standard for
<AnalysisResultDescription >)

4.6.74 DataOutInterimAnalysisPushAck Message

A message acknowledging the receipt of a DataOutInterimAnalysisPush message
sent by the control module.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xba

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.6.75 DataOutFinalAnalysisPush Message

Message pushed from the control module to all DataOut devices informing and conveying to
them a final analysis received from the analysis module.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x3b

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Continued on next page

4.6 Data Out Interface 281

Table continued from previous page
Field Name Data Type

Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

analysis_module_uuid Uuid128
Field Description: The UUID of the analysis module that produced this analysis result. Must
match the UUID given by DeviceInfoReply of the analysis module.

result_timestamp UtcTimePoint
Field Description: Timestamp of when the analysis results were generated

result_uuid Uuid128
Field Description: UUID generated by the analysis module for this result. This must be
generated in such a way that it uniquely identifies this result.

item_number uint32_t
Field Description: The item of interest number these results are for; must match
DataOutPacket::item_number of the data this result is for.

analysis_results_status
uint16_t bits defined by

AnalysisFinalResultStatusFlags
Field Description: Bitwise OR of flags including the large picture final result of the ra-
diation data analysis, i.e., whether to refer the vehicle for further inspection. (See
DataOutFinalAnalysisPush::alarm_type field for additional alarm details, plus
results from occupancy sensors).

alarm_type uint16_t bits defined by AlarmTypeFlags
Field Description: Bitwise OR of AlarmTypeFlags indicating an
alarm has been triggered based on radiation data or vehicle pres-
ence data. If this is zero, then no alarm has been found. (See
DataOutFinalAnalysisPush::analysis_results_status for referral
recommendation and further alarm detail.)

analysis_confidence_value float
Field Description: Indication of confidence, as a percent ranging from 0.0 to 100.0 (speci-
fied with a filed value ranging from 0.0 to 1.0), in the overall accuracy of the analysis, where
increasing values indicate higher confidence. If a confidence is not ascribed, this should
be set to a negative value (other than negative infinity or negative 0), with the magnitude
having not carrying any meaning. (Taken roughly from N42 2012 standard for <Analysis-
ConfidenceValue >)

nuclides Short Array of NuclideResult
Field Description: The analysis algorithms identified results; does not strictly have to be
nuclides (e.x., U235, Co60, etc.), but may be other sources as well (e.x., Bremsstrahlung,
Annihilation, Gross Count, etc.). The same nuclide may be specified multiple times covering
different ranges of sample numbers.

analysis_result_description Short String
Continued on next page

282 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: Free-form text describing the overall conclusion of the analysis regarding
the source of concern. (See N42.42 2012 standard for
<AnalysisResultDescription >)

n42_xml Large String
Field Description: This string provides the UTF-8 encoded contents of a ANSI N42.42-2012
file, including analysis results. The N42.42 contents must include the data used to make the
determination of results.

4.6.76 DataOutFinalAnalysisPushAck Message

A message acknowledging the receipt of a DataOutFinalAnalysisPush message sent by the
control module.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x02

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xbb

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.7 Command Interface

4.7.1 CommandMsgType Enumeration

Values to indicate the type of message being sent as part of the command message group.
Command requests originate at a device and are directed to the control module. The control
module replies directly to the requesting device. The first byte of command messages shall
have a value of MessageGroup::CommandValue, and the second byte of the message
will have a value as indicated by this enum, which will then tell you how to decode the message.
For example a second byte value of 0X41 will tell you the message contents are specified by
CmdSystemStateChangeRequest.

Underlying integral representation: uint8_t

4.7 Command Interface 283

Enumerated values for CommandMsgType:

CmdSystemStateChangeRequestValue Value 0x41

Message from a command device to the control module requesting a change to the sys-
tem’s operational state.

See also: CmdSystemStateChangeRequest

CmdSystemStateChangeReplyValue Value 0xc1

Reply sent to the command device that issued a CmdSystemStateChangeRequest
message advising the device of the system state to be implemented by the control module
and the status of the state change, as of the time of this reply.

See also: CmdSystemStateChangeReply

CmdMeasurementTypeChangeRequestValue Value 0x42

Message from a MessageGroup::CommandValue device to the control module in-
forming it, from external information, about what is currently being measured (item, back-
ground, etc.).

See also: CmdMeasurementTypeChangeRequest , MeasurementTypeChangeRequest

CmdMeasurementTypeChangeReplyValue Value 0xc2

Reply sent in response to a CmdMeasurementTypeChangeRequest message.

See also: CmdMeasurementTypeChangeReply

CmdDeviceRelayRequestValue Value 0x43

Message from a command device to the control module requesting to forward an enclosed
request message to a specific target device (of any type). Note that this can also be used
to send the control module commands like changing a parameter value. Only request and
responding reply messages may be relayed.

See also: CmdDeviceRelayRequest

CmdDeviceRelayReplyValue Value 0xc3

The control module’s reply to a CmdDeviceRelayRequestmessage, giving the status
of the request, or a reply from the device that was the target of the request, or both. Multiple
replies may be sent. The requesting device determines whether the message transaction
is complete by examining the status field within the target device’s relayed reply.

See also: CmdDeviceRelayReplyValue

CmdDeviceSetReferenceInfoRequestValue Value 0x44

Message from a command device to the control module, informing it of the physical posi-
tion of a device or subdetector, relative to center of portal, road level. It also specifies the
device or subdetectors name, and free-form comments.

See also: CmdDeviceSetReferenceInfoRequestValue

CmdDeviceSetReferenceInfoReplyValue Value 0xc4

Message sent in response to a CmdDeviceSetReferenceInfoRequestmessage,
giving the success status of setting the requested reference information.

284 Detailed Message Descriptions

CmdDeviceEventAcknowledgmentRequestValue Value 0x45

Message sent to acknowledge any event specified by AcknowledgeableEventType.

CmdDeviceEventAcknowledgmentReplyValue Value 0xc5

Message sent in response to a CommandMsgType::CmdDeviceEventAcknowledgmentRequestValue
message.

4.7.2 CmdSystemStateChangeRequest Message

A request from a command device to the control module to change the operating state of
the system. The measurement type, operating mode, and data collection interval are ap-
plied uniformly to the entire system by this request, whereas data collection modes may be
separately applied to gamma, neutron, and vehicle presence modules. The control mod-
ule determines the OperatingMode and DataCollectionModes for DataOut, Com-
mand, Analysis, and Power Management devices; except for the analysis module, these
devices will typically be operating whenever possible, even if radiation data is not being
collected. Requests to individual modules are governed by the same limitations and re-
quirements as the ChangeDeviceStateRequest message. This command is use-
ful for getting a system with multiple detectors into a consistent operating state. If you
thereafter want heterogenous operation (for example two gamma detectors operating in dif-
ferent modes) use CmdDeviceRelayRequest to make the changes (but there is no
guarantee that the control module will support heterogeneous operation). The most re-
cently received state change request overrules any previously received state change re-
quest. Although there is a CmdSystemStateChangeReply to this message, monitoring
for DataOutSystemStateChangePush messages may be a more convenient way of de-
tecting the actual state change.

See Also: ChangeDeviceStateRequest , CmdSystemStateChangeReply ,
CommandMsgType::CmdSystemStateChangeRequestValue

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x01

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x41

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

Continued on next page

4.7 Command Interface 285

Table continued from previous page
Field Name Data Type

operating_mode uint8_t enumerated by OperatingMode
Field Description: The operating mode (operating, ready, or
standby) to bring the system to. If the operating mode is
OperatingMode::StandByValue or OperatingMode::ReadyValue (i.e.,
not OperatingMode::OperatingValue), then the collection modes must be
DataCollectionModes::NoOriginateValue, the measurement type must be
MeasurementType::NotSpecifiedValue, and the collection interval must be
zero.

gamma_data_collection_mode
uint8_t enumerated by

DataCollectionModes
Field Description: The requested data collection mode for all modules that detect gamma
radiation, even if the same module also detects neutrons

neutron_data_collection_mode
uint8_t enumerated by

DataCollectionModes
Field Description: The requested data collection mode for all modules that only detect neu-
trons.

vehicle_presence_data_collecti �

on_mode
uint8_t enumerated by

DataCollectionModes
Field Description:

measurement_type uint8_t enumerated by MeasurementType
Field Description: The requested type of measurement to perform, or being performed, by
the system (item of interest, background, not specified, possible interfering source, or active
maintenance). A value of MeasurementType::NotSpecifiedValue indicates no
change is being requested (e.g., keep using value determined via the vehicle presence
sensors or otherwise).

collection_interval_ms uint32_t
Field Description: Requested collection interval of the system when be-
ing put into the operating state. For OperatingMode::ReadyValue or
OperatingMode::StandByValue operating mode, this value must be zero.

requested_transition_time UtcTimePoint
Field Description: See ChangeDeviceStateRequest::requested_transition_time
for full semantics of this variable, but to summarize: if zero, or some time in the past, start
transition now. If some time in the future, aim to have the transition complete as close as
possible to that time. This transition time is managed by the individual devices in the sys-
tem, not the control module (to allow individual devices to account for their inherent delays
in state transitions, and thus get more accurate results). If you request a system state
change some time X in the future but then send an individual device a state change request
before X, then that device will no longer participate in the original state change request.

4.7.3 CmdSystemStateChangeReply Message

Reply from the control module to the requesting command device, advising the command device
of the changes to be made in response to the device’s CmdSystemStateChangeRequest
for a change in the system’s state. Multiple of these messages may need to be sent for

286 Detailed Message Descriptions

one transition. The CmdSystemStateChangeReply::status_of_transition
field of this reply message provides the current status of the transition, including if
it is finished or if there was an error. If there was an error, in addition to the
CmdSystemStateChangeReply::status_of_transition field being set to
the appropriate SystemStateChangeStatus value, a NotificationPush mes-
sage referencing the same message id may also be sent to provide additional informa-
tion. To monitor the status of individual devices or the status of the transitions, watch for
DataOutSystemStateChangePush messages.

See Also: DataOutSystemStateChangePush

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x01

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xc1

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

requested_operating_mode uint8_t enumerated by OperatingMode
Field Description: Reply from the control module to the requesting command device, advis-
ing the command device of the operating mode (operating, ready, or standby) to which the
system will transition in response to the request.

requested_gamma_data_collectio �

n_mode
uint8_t enumerated by

DataCollectionModes
Field Description: Reply from the control module to the requesting command device,
indicating the changes to be made in response to the request for gamma data col-
lection mode. All gamma detectors in the system must support the specified mode.
If there are no gamma detectors in the system, this value will be ignored. For
OperatingMode::ReadyValue or OperatingMode::StandByValue states,
this value must be set to DataCollectionModes::NoOriginateValue. For
OperatingMode::OperatingValue, this field gives the data collection mode of the
radiation detection modules that detect gamma radiation. However, if this value is set to
DataCollectionModes::NoOriginateValue, then detectors that detect gamma
radiation will be transitioned from OperatingMode::OperatingValue into state of
OperatingMode::ReadyValue. If a dwell mode is specified for gamma or neutron,
but not both, then the system state should last for the dwell measurement’s duration, and
the control module should take care of transitioning the other class of devices back to a
OperatingMode::ReadyValue state when the dwell finishes.

Continued on next page

4.7 Command Interface 287

Table continued from previous page
Field Name Data Type

requested_neutron_data_collect �

ion_mode
uint8_t enumerated by

DataCollectionModes
Field Description: Reply from the control module to the requesting command device, ad-
vising the command device of the changes to be made in response to the request for neu-
tron data collection mode. All neutron detectors in the system must support the specified
mode. If there are no neutron detectors in the system, this value will be ignored. For
OperatingMode::ReadyValue or OperatingMode::StandByValue states,
this value must be set to DataCollectionModes::NoOriginateValue. For
OperatingMode::OperatingValue, this field gives the data collection mode of the
radiation detection modules that detect neutron radiation. However, if this value is set to
DataCollectionModes::NoOriginateValue, then detectors that detect neutron
radiation will be transitioned from OperatingMode::OperatingValue into state of
OperatingMode::ReadyValue. If a dwell mode is specified for gamma or neutron,
but not both, then the system state should last for the dwell measurement’s duration, and
the control module should take care of transitioning the other class of devices back to a
OperatingMode::ReadyValue state when the dwell finishes.

requested_vehicle_presence_dat �

a_collection_mode
uint8_t enumerated by

DataCollectionModes
Field Description: Reply from the control module to the requesting command device, advis-
ing the command device of the change in vehicle presence data collection mode to be made
in response to the device’s CmdSystemStateChangeRequest. If there are no vehicle
presence detectors in the system, this value will be ignored.

requested_data_collection_inte �

rval_ms
uint32_t

Field Description: The control module’s reply for the collection interval when the sys-
tem is being put into the operating state. For OperatingMode::ReadyValue or
OperatingMode::StandByValue operating mode, this value must be zero.

requested_measurement_type uint8_t enumerated by MeasurementType
Field Description: Reply from the control module to the requesting command device, advis-
ing the command device of the changes to be made in response to the request for a change
in the system’s type of measurement to perform or being performed (item of interest, back-
ground, not specified, possible interfering source, or active maintenance).

status_of_transition
uint8_t enumerated by

SystemStateChangeStatus
Field Description: Reply from the control module to the requesting command device,
advising the command device of the status of the transition requested by the device’s
CmdSystemStateChangeRequest.

4.7.4 CmdMeasurementTypeChangeRequest Message

A request from a command device to the control module to change the measurement type (item
of interest, background, not specified, possible interfering source, or active maintenance) of the
system, in approximately real time.

Message Contents:

288 Detailed Message Descriptions

Field Name Data Type
message_group uint8_t with value 0x01

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x42

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

effective_timestamp UtcTimePoint
Field Description: Timestamp for when this state became effective; must be current
time or before, and may not be equal to or before any previous time specified by a
CmdMeasurementTypeChangeRequest. If you are unable to specify an effective
timestamp (ex you dont know when the background period began) then a value of 0 may
be indicated to mean taking effect ’now’. The primary purpose of this timestamp is to allow
devices to compensate for latencies in receiving this message, but as this message is in-
tended to be closer to a ’in real time’ type message, there is no requirements modules have
to compensate for these latencies.
See also:

• MeasurementTypeChangeRequest::effective_timestamp
measurement_type uint8_t enumerated by MeasurementType

Field Description: Request by a command device to change the type of mea-
surement to perform or being performed (item of interest, background, not
specified, possible interfering source, or active maintenance). For values of
MeasurementType::ItemValue, MeasurementType::BackgroundValue,
MeasurementType::PossibleInterferingSourceValue, and
MeasurementType::ActiveMaintenanceValue, that measurement
type should be assumed until the MeasurementType is changed by a
CmdMeasurementTypeChangeRequest or CmdSystemStateChangeRequest
message, or it becomes infeasible to continue. A value of
MeasurementType::NotSpecifiedValue indicates that the control module
should resume determining the MeasurementType to use.

4.7.5 CmdMeasurementTypeChangeReply Message

A reply by the control module to a CmdMeasurementTypeChangeRequest message sent
by a command device.

Message Contents:

4.7 Command Interface 289

Field Name Data Type
message_group uint8_t with value 0x01

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xc2

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

4.7.6 CmdDeviceRelayRequest Message

Message sent from a command device to the control module, to relay a specific request message
to a specific target device, or the control module itself. This message specifies the target device’s
UUID as well as the request message to send to it. Note that the control module will check that
the message is of the right type to send to the target device, and it is an appropriate time to send
it to the device. The control module will also possibly re-encode the message to a version the
target device is capable of understanding. This message is also how you can set parameters on
the control module, request log files, or similar.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x01

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x43

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

device_uuid Uuid128
Field Description: The UUID of the target device (i.e., the device that will receive the request
and issue a reply).

request_message Large Array of char
Continued on next page

290 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

Field Description: The encoded request message to send to the device. The message
should contain the standard 8-byte RAPTER header, but bytes 4 through 8, the mes-
sage ID, will be ignored, so does not have to be unique. The version of the request
message should be the version used by the requesting device. Note that the control
module will determine if the message should be sent to the target device, assign a
message ID, and translate the message into the version used by the target device (if nec-
essary). Note: only request messages can be relayed from the control module to the
targeted device. Also, the control module can choose to not allow some request mes-
sages through, like SupportedMessageGroupVersionsRequest message. (See
CmdDeviceRelayReplyStatus::CmdDeviceRelayReplyRequestRejectedValue)

4.7.7 CmdDeviceRelayReplyStatus Enumeration

Enumeration to indicate the status of a CmdDeviceRelayReply message. For request mes-
sages that are capable of more than one reply, to determine if the message exchange is com-
pleted, you have to inspect the contents (i.e., a status field) of the relayed message.

Used in message: CmdDeviceRelayReply

Underlying integral representation: uint8_t

Enumerated values for CmdDeviceRelayReplyStatus:

CmdDeviceRelayReplyFromDeviceValue Value 0x00

Indicates that CmdDeviceRelayReply::reply_message is the requested reply
message from the target device, that the control module is relaying back to the requesting
command device.

CmdDeviceRelayReplyMessageTypeInvalidValue Value 0x01

Indicates the CmdDeviceRelayRequest contained a message type that is not al-
lowed for passing through to the target device. For example, if the message group does
not match the device, or the contained message is a reply, push, or ack (only requests can
go through).

CmdDeviceRelayReplyInvalidUUIDValue Value 0x02

Indicates the CmdDeviceRelayRequest specified an invalid UUID for the target de-
vice.

CmdDeviceRelayReplyUnableToDecodeRequestValue Value 0x03

Indicates CmdDeviceRelayRequest::request_message was unable to be de-
coded by the control module.

CmdDeviceRelayReplyUnableToDecodeReplyValue Value 0x04

Indicates that the reply returned from the target device could not be decoded; message
content still attached.

4.7 Command Interface 291

CmdDeviceRelayReplyDeviceNotRespondingValue Value 0x05

Indicates communications with the requested device is not responding but still has an
established WebSocket connection; the control module could not send the command to
the device.

CmdDeviceRelayReplyDeviceNotConnectedValue Value 0x06

The device specified is not currently connected to the control module.

CmdDeviceRelayReplyUnableToTranslateRequestValue Value 0x07

Indicates the message could not be translated from the provided CmdDeviceRelayRequest::request_message
to a format the target device could understand. This could happen if the Command mes-
sage group is a newer version that contains a feature not included in the message group
version used by the target device.

CmdDeviceRelayReplyRequestRejectedValue Value 0x08

Indicates the control module opted to not pass the CmdDeviceRelayRequest through
to the target device for some reason. This might happen, for example, if there is currently
an occupancy, and an active calibration is requested (whether it happens or not is imple-
mentation defined), or your request tries to a control module decision, like version of the
message group to use.

4.7.8 CmdDeviceRelayReply Message

The reply by the control module to a CmdDeviceRelayRequest message sent by a com-
mand device. There may be multiple replies to the original message, since the device it-
self may reply multiple times. Also, if the command does something the data out devices
should be updated about (ex. parameter update, or energy calibration update), then those
respective updates will be sent to all data out devices, including the one that issued the
CmdDeviceRelayRequest.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x01

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xc3

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

Continued on next page

292 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

device_uuid Uuid128
Field Description: The UUID of device the reply is coming from (i.e., the device that was the
target of the relay request).

reply_status
uint8_t enumerated by

CmdDeviceRelayReplyStatus
Field Description: The status of this relayed reply. Use this to determine if there is an error or
issue with the request or reply. Note that this indicates the status of receiving the reply from
the target device, not the status the message returned by the target device may indicate
(e.g., this status may indicate successful, but the actual response from the target device
may indicate failure).

reply_message Large Array of char
Field Description: The reply message from the target de-
vice, if CmdDeviceRelayReply::reply_status is equal to
CmdDeviceRelayReplyStatus::CmdDeviceRelayReplyFromDeviceValue,
otherwise must have length zero. Note that the first 8 bytes are as normal, but the mes-
sage ID should not be assumed to be meaningful (e.g. might be zero, might be equal
to the CmdDeviceRelayReply::message_id of this message, or completely ran-
dom). Also, the message may have been re-encoded by the control module to deal with
any message group versioning issues.

4.7.9 CmdDeviceSetReferenceInfoRequest Message

A request from a command device to the control module to set manually entered reference
information (position, name, comment) of a device or subdetector within the device. To set the
information for the device, specify a subdetector number of zero. To set the information for a
subdetector of the device, specify the appropriate (non-zero) subdetector number. For a given
device, a combination of, all, or none of the subdetectors and/or device reference information
may be set. The name specified is useful for referencing to detectors in N42 files, databases,
and log files. Some analysis algorithms may need subdetector position to perform calculations.
Note that all reference information is set, so if you want to only change one field you will first need
to retrieve the current reference information and copy the other fields over to the information you
send the control module. Portal physical configuration, coordinate system, and position settings
of devices are discussed in RAPTER Interface Specification, Chapter 2.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x01

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x44

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

Continued on next page

4.7 Command Interface 293

Table continued from previous page
Field Name Data Type

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

device_uuid Uuid128
Field Description: The UUID of device (or module) for which the position is being requested
to be set.

subdetector_number uint8_t
Field Description: The subdetector this position is for. For a device that does not have
subdetectors, then this value must be zero.

name Short String
Field Description: Name for this device, or sub-device that should be used when storing in-
formation in N42 files, databases, or log files. For gamma and neutron sub-detectors, exam-
ples are: ’Aa1’, ’Ca1N’, ’Da2’. For RSPs (e.g., subdetector zero), examples are: ’Panel1’,
’RSP2’. For vehicle presence sensors, examples are: ’BreakBeam1’, ’EntranceCamera’.
Note that if no name is entered, it is unspecified what name should be used in N42 files or
databases, but some possibilities are the UUID of the device, a guessed name based on
location, or a randomly assigned name.

set_fields
uint8_t bits defined by

DeviceReferenceInfoSetFlags
Field Description: Flags to indicate if ambiguous quantities have been set.

x_cm float
Field Description: The x-location; see CmdDeviceSetReferenceInfoRequest for
definition.

y_cm float
Field Description: The y-location; see CmdDeviceSetReferenceInfoRequest for
definition.

z_cm float
Field Description: The z-location; see CmdDeviceSetReferenceInfoRequest for
definition.

position_description Short String
Field Description: A free-form description of the location. Examples might be: ’Lower pas-
senger side RSP’, or ’Lower detection element’.

comment Short String
Field Description: A free-form text comment about this module or subdetector.

4.7.10 SetReferenceInfoStatus Enumeration

Enumeration to give the success status of a request to set the position of a device.

Used in message: CmdDeviceSetReferenceInfoReply

Underlying integral representation: uint8_t

294 Detailed Message Descriptions

Enumerated values for SetReferenceInfoStatus:

ReferenceInfoSetSuccessfullyValue Value 0x00

Everything is good, position was set in the control module.

InvalidUuidValue Value 0x01

The UUID does not match any connected device. The request to set position failed.

InvalidSubDeviceNumberValue Value 0x02

An invalid sub device was specified. The request to set position failed.

OtherErrorSettingReferenceInfoValue Value 0x03

Some other issue. You should also attach a notification to the reply.

4.7.11 CmdDeviceSetReferenceInfoReply Message

Reply by the control module to a CmdDeviceSetReferenceInfoRequest sent by a com-
mand device. This reply gives the status of setting the device’s position.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x01

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xc4

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

status
uint8_t enumerated by

SetReferenceInfoStatus
Field Description: The completion status of implementing the requested position setting.

4.7.12 CmdDeviceEventAcknowledgmentRequest Message

Message used to request an acknowledgement of a condition that can be acknowledged. Cur-
rently, the only condition to be acknowledged is alarming final analysis results. The acknowl-
edgement is to be made by a CmdDeviceEventAcknowledgmentReply message.

Message Contents:

4.7 Command Interface 295

Field Name Data Type
message_group uint8_t with value 0x01

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0x45

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

acknowledgment_timestamp UtcTimePoint
Field Description: The time at which this acknowledgement was generated.

event_type
uint32_t enumerated by

AcknowledgeableEventType
Field Description: The type of event to be acknowledged.

event_uuid Uuid128
Field Description: The UUID of the event being acknowledged.
See also:

• AnalysisItemFinalResultData::result_uuid
• InterimAnalysisData::result_uuid

acknowledgment_type
uint32_t enumerated by

EventAcknowledgmentType
Field Description: The type of acknowledgement this is.

message Short String
Field Description: Optional free form UTF-8 message associated with this acknowledge-
ment. This can be used to, for example, indicate the user logged into the system that did
the acknowledgement, or to include other information into the event record.
See also:

• DataOutEventAcknowledgementPush::message_from_acknowledger

4.7.13 CmdDeviceEventAcknowledgmentReply Message

A reply to a CmdDeviceEventAcknowledgmentRequest message.

Message Contents:

Field Name Data Type
message_group uint8_t with value 0x01

Field Description: The RAPTER MessageGroup this message corresponds too.
message_type uint8_t with value 0xc5

Field Description: The type of message within the specified message_group, that this mes-
sage corresponds to.

Continued on next page

296 Detailed Message Descriptions

Table continued from previous page
Field Name Data Type

message_group_version uint8_t
Field Description: The version of the message_group being used.

message_flags uint8_t bits defined by MsgFlags
Field Description: Flags indicating if this message has a notification attached, is a list of
messages, or has previously been buffered.

message_id uint32_t
Field Description: The message ID that uniquely identifies the request/reply or
push/awknowledge message exchange between the control module and a specific device.

Appendices

Appendix A

General Message Encoding/Decoding Ex-
ample

An example of encoding and decoding a RAPTER message to the binary format suitable for
sending over the network, in the C language is given bellow. To encode the message, a
WRITE_FIELD macro is defined and used to encode the message field-by-field; this method
is is independent of how the struct is laid out in memory. A check is then performed to see if
the struct’s memory layout is compatible with the RAPTER message structure, and if it is, a
briefer method of decoding the message is used (a similar brief method of encoding could have
been used as well). This code assumes a little-endian based computer architecture, with IEEE-
754 compatible floating point representation, and only a limited amount of crude error checking
is performed.

[]

1
2 #include <stddef.h> //offsetof
3 #include <stdint.h> //sized ints (uin8_t, int64_t, etc)
4 #include <string.h> //memcpy
5 #include <stdio.h> //printf
6 #include <sys/time.h> //gettimeofday (UNIX)
7 #include <assert.h> //assert
8 #include <stdlib.h> //malloc / free
9

10 // Compiler specific (GCC, Clang, others) test for a little- -
endian machine

11 #if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__
12 error("Requires little endian; alter code to swap byte order -

for integral types");
13 #endif
14
15 #ifndef __STDC_IEC_559__
16 #pragma message("May not be using IEEE-754 floats (but could -

be, or close enough)")
17 #endif

300 General Message Encoding/Decoding Example

18
19 // Example of getting timestamp in (UNIX specific)
20 int64_t current_timestamp()
21 {
22 struct timeval abs_time;
23 gettimeofday(&abs_time, NULL);
24 return ((int64_t)abs_time.tv_sec) * 1000000 + abs_time. -

tv_usec;
25 }
26
27 //Represent the SendLogsReply message contents as a C-struct. -

Note order of
28 // fields, and integral widths are consistent with RAPTER -

specification
29 struct SendLogsReplyMsg
30 {
31 uint8_t message_group;
32 uint8_t message_type;
33 uint8_t message_group_version;
34 uint8_t message_flags;
35 uint32_t message_id;
36
37 uint8_t reply_status;
38 int64_t start_time;
39 int64_t end_time;
40 uint32_t log_data_length;
41 const char *log_data;
42 };
43
44 //Define a macro to write integer fields into the buffer
45 #define WRITE_FIELD(buf,buflen,field) do{\
46 /* Get number of bytes to be written to buffer */ \
47 const size_t width = sizeof(field); \
48 /* Make sure to start writing the field at a multiple of -

its size */ \
49 const size_t num_pad_bytes = (buflen % width) ? width - (-

buflen % width) : 0; \
50 /* (optional) write zeros to any padding bytes we need to -

add in */ \
51 memset(buf + buflen, 0, num_pad_bytes); \
52 buflen += num_pad_bytes; \
53 /* Make sure we dont write past end of buffer. */ \
54 assert(buflen+width < sizeof(buf)); \
55 /* Copy value into the buffer */ \
56 memcpy(buf + buflen, &field, width); \
57 /* Increment the length of the buffer by how much we wrote -

*/ \
58 buflen += width; \

301

59 }while(0)
60
61
62 int main()
63 {
64 uint8_t buffer[1024]; // what we will be sending out over -

the network
65 uint32_t buffer_len = 0;
66 struct SendLogsReplyMsg reply;
67
68 reply.message_group = 0x00; //Message belongs to Core -

message group
69 reply.message_type = 0x8C; //Message is a -

SendLogsReply type
70 reply.message_group_version = 0; //Version of Core message -

group being used
71 reply.message_id = 32521; //randomly chosen message -

id
72 reply.reply_status = 0; //Indicate -

LogRetrievedSuccessValue
73
74 reply.start_time = current_timestamp(); //example value -

only
75 reply.end_time = current_timestamp(); //example value -

only
76
77 reply.log_data = "An example log message";
78 reply.log_data_length = strlen(reply.log_data);
79
80 buffer_len = 0;
81 //Write message header to buffer[]
82 WRITE_FIELD(buffer, buffer_len, reply.message_group);
83 WRITE_FIELD(buffer, buffer_len, reply.message_type);
84 WRITE_FIELD(buffer, buffer_len, reply. -

message_group_version);
85 WRITE_FIELD(buffer, buffer_len, reply.message_flags);
86 WRITE_FIELD(buffer, buffer_len, reply.message_id);
87
88 //Write message contents to buffer[]
89 WRITE_FIELD(buffer, buffer_len, reply.reply_status);
90 WRITE_FIELD(buffer, buffer_len, reply.start_time);
91 WRITE_FIELD(buffer, buffer_len, reply.end_time);
92 WRITE_FIELD(buffer, buffer_len, reply.log_data_length);
93
94 //Perform a memcpy of string contents into buffer, starting -

immediatly
95 // after the strings length.
96 memcpy(buffer + buffer_len, reply.log_data, reply. -

302 General Message Encoding/Decoding Example

log_data_length);
97 buffer_len += reply.log_data_length;
98
99 //buffer[], with length of buffer_len bytes is ready to be -

sent
100
101 //Lets also check if devices memory layout happens to match -

RAPTER message
102 // format, and if so decod the message in a simpler way.
103 if(offsetof(struct SendLogsReplyMsg, message_group) == 0
104 && offsetof(struct SendLogsReplyMsg, message_type) == 1
105 && offsetof(struct SendLogsReplyMsg, -

message_group_version) == 2
106 && offsetof(struct SendLogsReplyMsg, message_flags) == -

3
107 && offsetof(struct SendLogsReplyMsg, message_id) == 4
108 && offsetof(struct SendLogsReplyMsg, reply_status) == 8
109 //reply_status was one byte, so add in 7 bytes of -

padding
110 && offsetof(struct SendLogsReplyMsg, start_time) == 16
111 && offsetof(struct SendLogsReplyMsg, end_time) == 24
112 && offsetof(struct SendLogsReplyMsg, log_data_length) -

== 32)
113 {
114 printf("Memory layout allows simpler message encoding/ -

decoding.\n");
115
116 //Get length up through, and including log_data_length
117 size_t decode_len = ((void*)&reply.log_data_length - (-

void*)&reply)
118 + sizeof(reply.log_data_length);
119
120 struct SendLogsReplyMsg decoded;
121 memcpy(&decoded, &buffer, decode_len);
122
123 //A quick sanity check
124 assert((decode_len + decoded.log_data_length) == -

buffer_len);
125
126 //Copy string data. Note undefined behavior if -

log_data_length == 0
127 if(decoded.log_data_length)
128 decoded.log_data = (const char *)malloc(decoded. -

log_data_length);
129 memcpy((void *)decoded.log_data, buffer + decode_len, -

decoded.log_data_length);
130
131 //Lets check that everything made the round trip okay

303

132 assert(decoded.message_group == reply.message_group);
133 assert(decoded.message_type == reply.message_type);
134 assert(decoded.message_group_version == reply. -

message_group_version);
135 assert(decoded.message_flags == reply.message_flags);
136 assert(decoded.message_id == reply.message_id);
137 assert(decoded.reply_status == reply.reply_status);
138 assert(decoded.start_time == reply.start_time);
139 assert(decoded.end_time == reply.end_time);
140 assert(decoded.log_data_length == reply.log_data_length -

);
141 assert(!memcmp(reply.log_data, decoded.log_data, reply. -

log_data_length));
142
143 //If message was from unknown source would also check -

that enumerated fields
144 // have valid values, times are valid, and strings are -

UTF-8
145
146 free((void *)decoded.log_data); //prevent memory leak
147 }
148
149 printf("Message contents: [");
150 for(size_t i = 0; i < buffer_len; ++i)
151 printf("%s%#x", (i?", ":""), (unsigned int)buffer[i]);
152 printf("]\n");
153
154 return 1;
155 }

304 General Message Encoding/Decoding Example

Appendix B

Parameter Encoding and Decoding

A full description of “parameters” can be found in Section 2.1.1. Encoding and decoding of
parameter messages follow the rules specified in Section 3.3.3, however the fact that the pa-
rameters can be boolean, integer, floating point, or strings introduces the complication that the
messages are interpreted differently based on the type of information. Each of the relevant
messages specify the data type being relayed, so the messages can be interpreted without ex-
ternal reference (e.g., knowing that a parameter of a given name is a given type). Booleans and
integers are represented as signed 32-bit integers; for booleans any value besides zero is in-
terpreted as a true value. Floats are represented as a little-endian, four-byte, IEEE 754-2008
floats [18] (Infs, NaNs, and denormal values prohibited), and strings are represented as a four
byte unsigned integer that specifies the string byte length, followed by that many bytes of charac-
ter data. The values are encoded/decoded using the same rules as in Section 3.3.3. An example
C language encoding and decoding of the ParameterInfoReply message (the largest of all the
parameter related messages) is given bellow.

[]

1
2
3 #include <math.h> //fabs
4 #include <stdint.h> //sized ints (uin8_t, int64_t, etc)
5 #include <string.h> //memcpy
6 #include <stdio.h> //printf
7 #include <errno.h> //for errno
8 #undef NDEBUG //Will use assert for error checking
9 #include <assert.h> //assert

10 #include <stdlib.h> //malloc / free
11 #include <inttypes.h> //PRId64
12
13 // Compiler specific (GCC, Clang, others) test for a little-endian machine
14 #if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__
15 #pragma error("Requires little endian; alter code to swap" \
16 " byte order for integral types")
17 #endif
18
19 #if !defined(__STDC_IEC_559__) && !defined(__GCC_IEC_559)
20 #pragma message("May not be using IEEE-754 floats" \
21 " (but could be, or close enough)")
22 #endif
23
24 //Extract some convenient enums from RAPTER Interface
25 // Specification
26 enum ParameterReplyValidity
27 {
28 ValidValue = 0,
29 InvalidNameValue = 1
30 };
31
32 enum ParameterValueDataType
33 {
34 BooleanValue = 0x00,
35 IntegerValue = 0x01,
36 FloatValue = 0x02,
37 Utf8StringValue = 0x03,
38 FloatingPointListValue = 0x04,

306 Parameter Encoding and Decoding

39 IntegerListValue = 0x05
40 };
41
42 enum HealthSeverityLevel
43 {
44 NotApplicableValue = 0x0,
45 NoProblemValue = 0x1,
46 WarningNotAffectingDeviceOperationValue = 0x2,
47 WarningAffectingDeviceOperationValue = 0x3,
48 FatalEffectOnDeviceOperationValue = 0x4,
49 IntentionalPreventionOfDeviceOperationValue = 0x5,
50 NotAbleToMeasureValue = 0x6
51 };
52
53 enum ParameterPropertiesFlags
54 {
55 ValueFixedFlag = 0x1,
56 SettableFlag = 0x2,
57 MeasuredFlag = 0x4,
58 HealthyValueRangedFlag = 0x8,
59 SetValueRangedFlag = 0x10,
60 ReportOnChangeFlag = 0x20,
61 ReportOnChangeDeltaSettableFlag = 0x40,
62 HealthyLimitsSettableFlag = 0x80,
63 AffectsHealthWithoutLimitsFlag = 0x100,
64 NotSettableWhileOperatingFlag = 0x200,
65 SettableWithPredefinedValuesOnlyFlag = 0x400
66 };
67
68 /** Represent a general ParameterInfoReply as a C-struct,
69 * similar to how you might do on the control module.
70 *
71 * For illustration only, and not a safe or efficient
72 * representation.
73 */
74 struct ParameterInfoReply
75 {
76 uint8_t message_group;
77 uint8_t message_type;
78 uint8_t message_group_version;
79 uint8_t message_flags;
80 uint32_t message_id;
81
82 uint8_t reply_status;
83 uint8_t value_type;
84 uint8_t parameter_health_impact;
85 uint8_t subdetector_number;
86
87 uint32_t value_properties;
88 int64_t set_timestamp;
89 int64_t effective_timestamp;
90
91 char *parameter_name; // ShortString
92
93 char *set_value; // ShortString
94 char *measured_value; // ShortString
95 char *lower_healthy_measured_value; // ShortString
96 char *upper_healthy_measured_value; // ShortString
97 char *lower_settable_value; // ShortString
98 char *upper_settable_value; // ShortString
99 char *reportable_change_delta; // ShortString

100
101 char *parameter_description; // MediumString
102 };
103
104
105 /** Example of representing a high voltage parameter
106 * like you might do on a gamma detector. E.g., dont
107 * store float values as strings, or information that
108 * wont change, but convert floats to string, and add
109 * non-changing information during serialization.
110 */
111 struct HighVoltagParameter
112 {
113 uint8_t subdetector_number;
114 int64_t set_timestamp;
115 int64_t effective_timestamp;
116
117 double set_value;
118 double measured_value;
119 };
120
121
122 /** Helper function to compare strings that both may be null. */
123 void check_str_equal(const char * const lhs,
124 const char * const rhs)
125 {
126 assert((!lhs && !rhs) || strcmp(lhs,rhs)==0);
127 }
128
129
130 /** Helper function to safe-free strings. */
131 void checked_free(char **str)
132 {
133 if(*str)
134 free(*str);
135 *str = NULL;
136 }
137

307

138 /** Helper function to free strings in a ParameterInfoReply */
139 void free_string_fields(struct ParameterInfoReply *msg)
140 {
141 checked_free(&msg->set_value);
142 checked_free(&msg->measured_value);
143 checked_free(&msg->lower_healthy_measured_value);
144 checked_free(&msg->upper_healthy_measured_value);
145 checked_free(&msg->lower_settable_value);
146 checked_free(&msg->upper_settable_value);
147 checked_free(&msg->reportable_change_delta);
148 checked_free(&msg->parameter_name);
149 checked_free(&msg->parameter_description);
150 };
151
152 /** Define a macro to write int and float fields into the buffer */
153 #define WRITE_NUMERIC_FIELD(buf,bufpos,max_buff_len,field) do { \
154 /* Get number of bytes to be written to buffer */ \
155 const size_t w = sizeof(field); \
156 /* Start writing the field at a multiple of its size */ \
157 const size_t npad_bytes = (bufpos % w) ? w - (bufpos % w) : 0; \
158 /* Write zeros to any padding bytes we need to add in */ \
159 memset(buf + bufpos, 0, npad_bytes); \
160 bufpos += npad_bytes; \
161 /* Make sure we dont write past end of buffer. */ \
162 assert(bufpos+w < max_buff_len); \
163 /* Copy value into the buffer */ \
164 memcpy(buf + bufpos, &field, w); \
165 /* Increment the length of the buffer by how much we wrote */ \
166 bufpos += w; \
167 } while(0)
168
169 /** Define a macro to write string fields into the buffer */
170 #define WRITE_STRING_FIELD(buf,pos,max_buff_len,field) do { \
171 /* Strings start at a multiple of 4 from message begining */ \
172 const size_t npad_start = (pos % 4) ? 4 - (pos % 4) : 0; \
173 const uint32_t str_len = (field ? strlen(field) : (size_t)0); \
174 /* Strings end with >=1 zero byte, and length multiple of 4*/ \
175 const size_t end_pos = pos + npad_start + 4 + str_len; \
176 const size_t npad_end = (end_pos % 4) ? 4 - (end_pos % 4) : 4; \
177 assert(end_pos + npad_end <= max_buff_len); \
178 pos += npad_start; /* padding byte values not specified */ \
179 WRITE_NUMERIC_FIELD(buf,pos,max_buff_len,str_len); \
180 if(str_len) memcpy(buf + pos, field, str_len); \
181 pos += str_len; \
182 assert(pos == end_pos); \
183 /* Terminated with 1 to 4 zero-valued bytes. */ \
184 memset(buf + pos, 0, npad_end); \
185 pos += npad_end; \
186 } while(0)
187
188
189 /** Encodes a ParameterInfoReply into a buffer.
190 * @param msg Message to encode.
191 * @param buffer Buffer to create the RAPTER message in
192 * @param buff_size The maximum bytes that can be written to buffer
193 * @returns The number of bytes written to the buffer.
194 */
195 size_t encode_ParameterInfoReply(const struct ParameterInfoReply * const msg,
196 uint8_t *buffer, const size_t buff_size)
197 {
198 assert(buff_size >= 104); //minimum size of this struct
199
200 size_t len = 0;
201 //Belongs to Core Interface
202 assert(msg->message_group == 0x00);
203
204 //Make sure a ParameterInfoReply
205 assert(msg->message_type == 0x93);
206
207 //Only supporting version 0 of Core Interface
208 assert(msg->message_group_version == 0x00);
209
210 // Attached Notifications, list, and buffering not
211 // supported in example code
212 assert(msg->message_flags == 0x00);
213
214 WRITE_NUMERIC_FIELD(buffer, len, buff_size, msg->message_group);
215 WRITE_NUMERIC_FIELD(buffer, len, buff_size, msg->message_type);
216 WRITE_NUMERIC_FIELD(buffer, len, buff_size, msg->message_group_version);
217 WRITE_NUMERIC_FIELD(buffer, len, buff_size, msg->message_flags);
218 WRITE_NUMERIC_FIELD(buffer, len, buff_size, msg->message_id);
219 assert(msg->reply_status == ValidValue
220 || msg->reply_status == InvalidNameValue);
221 WRITE_NUMERIC_FIELD(buffer, len, buff_size, msg->reply_status);
222 assert(msg->value_type == BooleanValue
223 || msg->value_type == IntegerValue
224 || msg->value_type == FloatValue
225 || msg->value_type == Utf8StringValue
226 || msg->value_type == FloatingPointListValue
227 || msg->value_type == IntegerListValue);
228
229 WRITE_NUMERIC_FIELD(buffer, len, buff_size, msg->value_type);
230 //assert(msg->parameter_health_impact is valid value);
231 WRITE_NUMERIC_FIELD(buffer, len, buff_size, msg->parameter_health_impact);
232 WRITE_NUMERIC_FIELD(buffer, len, buff_size, msg->subdetector_number);
233
234 //assert(msg->value_properties only has valid combination of bits set)
235 WRITE_NUMERIC_FIELD(buffer, len, buff_size, msg->value_properties);
236 WRITE_NUMERIC_FIELD(buffer, len, buff_size, msg->set_timestamp);

308 Parameter Encoding and Decoding

237 WRITE_NUMERIC_FIELD(buffer, len, buff_size, msg->effective_timestamp);
238
239 WRITE_STRING_FIELD(buffer, len, buff_size, msg->parameter_name);
240 WRITE_STRING_FIELD(buffer, len, buff_size, msg->set_value);
241 WRITE_STRING_FIELD(buffer, len, buff_size, msg->measured_value);
242 WRITE_STRING_FIELD(buffer, len, buff_size, msg->lower_healthy_measured_value);
243 WRITE_STRING_FIELD(buffer, len, buff_size, msg->upper_healthy_measured_value);
244 WRITE_STRING_FIELD(buffer, len, buff_size, msg->lower_settable_value);
245 WRITE_STRING_FIELD(buffer, len, buff_size, msg->upper_settable_value);
246 WRITE_STRING_FIELD(buffer, len, buff_size, msg->reportable_change_delta);
247 WRITE_STRING_FIELD(buffer, len, buff_size, msg->parameter_description);
248
249 return len;
250 }
251
252
253 /** Encode a HighVoltagParameter as a RAPTER ParameterInfoReply message. */
254 size_t encode_HighVoltagParameter(const struct HighVoltagParameter * const par,
255 uint8_t *buffer, const size_t buff_size)
256 {
257 assert(buff_size >= 104); //minimum size of this struct
258
259 size_t len = 0;
260 buffer[len++] = 0x00; //Belongs to Core Interface
261 buffer[len++] = 0x93; //ParameterInfoReply msg type
262 buffer[len++] = 0x00; //version 0 of Core Interface
263 buffer[len++] = 0x00; //No notification, list, buffering
264 uint32_t message_id = 3333;
265 WRITE_NUMERIC_FIELD(buffer, len, buff_size, message_id);
266 buffer[len++] = ValidValue;
267 buffer[len++] = FloatValue;
268 buffer[len++] = NoProblemValue;
269 buffer[len++] = 1; //subdector number
270
271 uint32_t value_properties = (SettableFlag
272 | MeasuredFlag
273 | HealthyValueRangedFlag
274 | ReportOnChangeFlag
275 | NotSettableWhileOperatingFlag);
276
277 WRITE_NUMERIC_FIELD(buffer, len, buff_size, value_properties);
278 WRITE_NUMERIC_FIELD(buffer, len, buff_size, par->set_timestamp);
279 WRITE_NUMERIC_FIELD(buffer, len, buff_size, par->effective_timestamp);
280
281 const char *par_name = "high_voltage";
282 WRITE_STRING_FIELD(buffer, len, buff_size, par_name);
283
284 char tmpbuf[64];
285 snprintf(tmpbuf, sizeof(tmpbuf), "%f", par->set_value);
286 WRITE_STRING_FIELD(buffer, len, buff_size, tmpbuf);
287
288 snprintf(tmpbuf, sizeof(tmpbuf), "%f", par->measured_value);
289 WRITE_STRING_FIELD(buffer, len, buff_size, tmpbuf);
290
291 WRITE_STRING_FIELD(buffer, len, buff_size, "100.0");
292 WRITE_STRING_FIELD(buffer, len, buff_size, "2000.0");
293 WRITE_STRING_FIELD(buffer, len, buff_size, NULL);
294 WRITE_STRING_FIELD(buffer, len, buff_size, NULL);
295 WRITE_STRING_FIELD(buffer, len, buff_size, "1.5");
296
297 const char *par_desc = "A parameter that is settable, measured, has a"
298 " define range of healthy values, changes are"
299 " reported every 1.5 volts.";
300 WRITE_STRING_FIELD(buffer, len, buff_size, par_desc);
301
302 return len;
303 }
304
305
306 /** Define macro to read int and float fields from the buffer */
307 #define READ_NUMERIC_FIELD(buf,pos,max_buff_pos,field) do{ \
308 const size_t w = sizeof(field); \
309 pos += (pos % w) ? w - (pos % w) : 0; \
310 assert(pos+w <= max_buff_pos); \
311 memcpy(&field, buf + pos, w); \
312 pos += w; \
313 } while(0)
314
315
316 /** Define a macro to read a string from the buffer. Note memory
317 * is allocated for non-empty strings; make sure to free.
318 */
319 #define READ_STRING_FIELD(buff,pos,max_buff_pos,field) do{ \
320 uint32_t str_len; /* string length specified by uint32_t */ \
321 READ_NUMERIC_FIELD(buff, pos, max_buff_pos, str_len); \
322 const size_t end_pos = pos + str_len; \
323 /* Strings are padded w/ between 1 and 4 '\0' bytes at end */ \
324 /* so overall length for the field used is a multiple of 4 */ \
325 const size_t npad_end = (end_pos % 4) ? 4 - (end_pos % 4) : 4; \
326 assert((pos + str_len + npad_end) <= max_buff_pos); \
327 for(size_t i = 0; i < npad_end; ++i) { \
328 assert(buff[pos+str_len+i] == '\0'); \
329 } \
330 /* Allocate memory to hold string. Depending on use */ \
331 /* context, you could avoid the allocation and instead */ \
332 /* set pointer to buff+pos. */ \
333 if(str_len) { \
334 field = (char *)malloc(str_len + 1); \
335 memcpy(field, buff + pos, str_len + 1); \

309

336 } else { \
337 field = NULL; \
338 } \
339 pos += str_len + npad_end; \
340 /* assert(string should be UTF8 encoded) */ \
341 } while(0)
342
343
344 /** Helper function to make sure the data represented by a string
345 * is the type of data it should be. For illustration only, not
346 * rigorous.
347 */
348 void check_valid_data(const char * const val, const uint8_t val_type)
349 {
350 assert(val);
351 assert(strlen(val) <= 255); //Filed values are ShortString
352
353 switch(val_type)
354 {
355 case BooleanValue:
356 assert(strcmp(val,"true")==0 || strcmp(val,"false")==0
357 || strcmp(val,"0")==0 || strcmp(val,"1")==0);
358 break;
359
360 case IntegerValue:
361 {
362 int64_t dummy;
363 const int nargs = sscanf(val, "%"PRId64, &dummy);
364 assert(nargs == 1);
365 break;
366 }
367
368 case FloatValue:
369 {
370 double dummy;
371 const int nargs = sscanf(val, "%lf", &dummy);
372 assert(nargs == 1);
373 break;
374 }
375
376 case Utf8StringValue:
377 //assert(is UTF-8 encoded);
378 break;
379
380 case FloatingPointListValue:
381 {
382 errno = 0;
383 size_t nval = 0;
384 const char *pos = val;
385 do
386 {
387 char *nextpos;
388 const double thisval = strtod(pos, &nextpos);
389 assert(errno == 0);
390 ++nval;
391 pos = (nextpos && (*nextpos)) ? nextpos+1 : nextpos;
392 }while(pos && (*pos));
393
394 assert(nval > 0);
395
396 break;
397 }
398
399 case IntegerListValue:
400 {
401 errno = 0;
402 size_t nval = 0;
403 const char *pos = val;
404 do
405 {
406 char *nextpos;
407 const long long thisval = strtoll(pos, &nextpos, 10);
408 assert(errno == 0);
409 ++nval;
410 pos = (nextpos && (*nextpos)) ? nextpos+1 : nextpos;
411 }while(pos && (*pos));
412
413 assert(nval > 0);
414
415 break;
416 }
417
418 default:
419 assert(0);
420 }
421 }
422
423
424 /** Decodes a RAPTER message from the input buffer to the supplied
425 * ParameterInfoReply.
426 * Asserts on error.
427 * @returns Number of bytes read from buffer if successful.
428 */
429 size_t decode_ParameterInfoReply(struct ParameterInfoReply * const msg,
430 const uint8_t * const buffer,
431 const size_t buff_size)
432 {
433 assert(buff_size >= 76); //minimum size of this struct
434

310 Parameter Encoding and Decoding

435 size_t pos = 0;
436 READ_NUMERIC_FIELD(buffer, pos, buff_size, msg->message_group);
437 READ_NUMERIC_FIELD(buffer, pos, buff_size, msg->message_type);
438 READ_NUMERIC_FIELD(buffer, pos, buff_size, msg->message_group_version);
439 READ_NUMERIC_FIELD(buffer, pos, buff_size, msg->message_flags);
440 READ_NUMERIC_FIELD(buffer, pos, buff_size, msg->message_id);
441
442 //Check is a core interface message
443 assert(msg->message_group == 0x00);
444 //Check message is a ParameterInfoReply
445 assert(msg->message_type == 0x93);
446 //Version 0 of core interface
447 assert(msg->message_group_version == 0x00);
448 //Attached notifications, list, or buffering not supported in ex. code
449 assert(msg->message_flags == 0x00);
450
451 READ_NUMERIC_FIELD(buffer, pos, buff_size, msg->reply_status);
452 assert(msg->reply_status == ValidValue
453 || msg->reply_status == InvalidNameValue);
454
455 READ_NUMERIC_FIELD(buffer, pos, buff_size, msg->value_type);
456 assert(msg->value_type == BooleanValue
457 || msg->value_type == IntegerValue
458 || msg->value_type == FloatValue
459 || msg->value_type == Utf8StringValue
460 || msg->value_type == FloatingPointListValue
461 || msg->value_type == IntegerListValue);
462
463 READ_NUMERIC_FIELD(buffer, pos, buff_size, msg->parameter_health_impact);
464 //assert(msg->parameter_health_impact is valid value);
465
466 READ_NUMERIC_FIELD(buffer, pos, buff_size, msg->subdetector_number);
467 READ_NUMERIC_FIELD(buffer, pos, buff_size, msg->value_properties);
468 //assert(msg->value_properties only has valid combination of bits set)
469
470 READ_NUMERIC_FIELD(buffer, pos, buff_size, msg->set_timestamp);
471 READ_NUMERIC_FIELD(buffer, pos, buff_size, msg->effective_timestamp);
472
473 READ_STRING_FIELD(buffer, pos, buff_size, msg->parameter_name);
474 READ_STRING_FIELD(buffer, pos, buff_size, msg->set_value);
475 READ_STRING_FIELD(buffer, pos, buff_size, msg->measured_value);
476 READ_STRING_FIELD(buffer, pos, buff_size, msg->lower_healthy_measured_value);
477 READ_STRING_FIELD(buffer, pos, buff_size, msg->upper_healthy_measured_value);
478 READ_STRING_FIELD(buffer, pos, buff_size, msg->lower_settable_value);
479 READ_STRING_FIELD(buffer, pos, buff_size, msg->upper_settable_value);
480 READ_STRING_FIELD(buffer, pos, buff_size, msg->reportable_change_delta);
481 READ_STRING_FIELD(buffer, pos, buff_size, msg->parameter_description);
482
483
484 //Check the string values we expect exist, and are properly formatted.
485 if(msg->value_properties & SettableFlag)
486 check_valid_data(msg->set_value, msg->value_type);
487 else { assert(!msg->set_value); }
488
489 if(msg->value_properties & MeasuredFlag)
490 check_valid_data(msg->measured_value, msg->value_type);
491 else { assert(!msg->measured_value); }
492
493 if(msg->value_properties & HealthyValueRangedFlag)
494 check_valid_data(msg->lower_healthy_measured_value, msg->value_type);
495 else { assert(!msg->lower_healthy_measured_value); }
496
497 if(msg->value_properties & HealthyValueRangedFlag)
498 check_valid_data(msg->upper_healthy_measured_value, msg->value_type);
499 else { assert(!msg->upper_healthy_measured_value); }
500
501 if(msg->value_properties & SetValueRangedFlag)
502 check_valid_data(msg->lower_settable_value, msg->value_type);
503 else { assert(!msg->lower_settable_value); }
504
505 if(msg->value_properties & SetValueRangedFlag)
506 check_valid_data(msg->upper_settable_value, msg->value_type);
507 else { assert(!msg->upper_settable_value); }
508
509 if(msg->value_properties & ReportOnChangeFlag)
510 check_valid_data(msg->reportable_change_delta, msg->value_type);
511 else { assert(!msg->reportable_change_delta); }
512
513 assert(msg->parameter_name);
514 // Check name only has ascii characters
515 for(const char *p = msg->parameter_name; *p; ++p)
516 { assert(((unsigned char)*p) <= 127); }
517
518 const size_t namelen = strlen(msg->parameter_name);
519 assert(msg->parameter_name && namelen>0 && namelen <= 255);
520
521 assert(!msg->parameter_description
522 || strlen(msg->parameter_description) <= 65535);
523
524 return pos;
525 }
526
527
528 int main()
529 {
530 /* We will create a ParameterInfoReply struct and fill its information
531 out, serialize it to a buffer that could be sent as a RAPTER message
532 then deserialize the buffer back into a ParameterInfoReply struct.
533

311

534 Then we will serialize a HighVoltagParameter struct to a RAPTER
535 ParameterInfoReply message in a buffer, and then deserialize it
536 to a ParameterInfoReply struct.
537 */
538
539 struct ParameterInfoReply msg;
540
541 //Initialize msg to all zeros.
542 memset(&msg, 0, sizeof(struct ParameterInfoReply));
543
544 msg.message_group = 0; //Message belongs to Core Interface
545 msg.message_type = 0x93; //Message is a ParameterInfoReply
546 msg.message_group_version = 0; //Version of Core interface
547 msg.message_flags = 0; //no notif., not list, not buffered
548 msg.message_id = 3333; //Message id
549
550 msg.reply_status = ValidValue;
551 msg.value_type = FloatValue;
552 msg.parameter_health_impact = NoProblemValue;
553 msg.value_properties = (SettableFlag
554 | MeasuredFlag
555 | HealthyValueRangedFlag
556 | ReportOnChangeFlag
557 | NotSettableWhileOperatingFlag);
558 msg.set_timestamp = 1508830130000000;
559 msg.effective_timestamp = 1508830130000000;
560
561 msg.subdetector_number = 1;
562
563 const char *par_name = "high_voltage";
564 msg.parameter_name = (char *)malloc(strlen(par_name) + 1);
565 strcpy(msg.parameter_name, par_name);
566
567
568 const char *par_desc = "A parameter that is settable, measured, has a"
569 " define range of healthy values, changes are"
570 " reported every 1.5 volts.";
571 msg.parameter_description = (char *)malloc(strlen(par_desc) + 1);
572 strcpy(msg.parameter_description, par_desc);
573
574
575 const char *set_value = "1330";
576 msg.set_value = (char *)malloc(strlen(set_value) + 1);
577 strcpy(msg.set_value, set_value);
578
579 const char *measured_value = "1331.32";
580 msg.measured_value = (char *)malloc(strlen(measured_value) + 1);
581 strcpy(msg.measured_value, measured_value);
582
583 const char *low_healthy = "100.0";
584 msg.lower_healthy_measured_value
585 = (char *)malloc(strlen(low_healthy) + 1);
586 strcpy(msg.lower_healthy_measured_value, low_healthy);
587
588 const char *up_healthy = "2000.0";
589 msg.upper_healthy_measured_value
590 = (char *)malloc(strlen(up_healthy) + 1);
591 strcpy(msg.upper_healthy_measured_value, up_healthy);
592
593 msg.lower_settable_value = NULL;
594 msg.upper_settable_value = NULL;
595
596 const char *change_delta = "1.5";
597 msg.reportable_change_delta
598 = (char *)malloc(strlen(change_delta) + 1);
599 strcpy(msg.reportable_change_delta, change_delta);
600
601
602
603 //Lets write msg to a buffer as a RAPTER message
604 const size_t buffer_size = 2048;
605 uint8_t buffer[buffer_size] = { 0 };
606
607 size_t encoded_len = encode_ParameterInfoReply(
608 &msg, buffer, buffer_size);
609
610 //Now test that we can decode a ParameterInfoReply message from buffer
611 struct ParameterInfoReply decoded_msg;
612 size_t decoded_len = decode_ParameterInfoReply(
613 &decoded_msg, buffer, encoded_len);
614
615 //Lets make sure we made the round trip okay
616 assert(encoded_len == decoded_len);
617
618 assert(msg.message_group == decoded_msg.message_group);
619 assert(msg.message_type == decoded_msg.message_type);
620 assert(msg.message_group_version
621 == decoded_msg.message_group_version);
622 assert(msg.message_flags == decoded_msg.message_flags);
623 assert(msg.message_id == decoded_msg.message_id);
624
625 assert(msg.reply_status == decoded_msg.reply_status);
626 assert(msg.value_type == decoded_msg.value_type);
627 assert(msg.parameter_health_impact
628 == decoded_msg.parameter_health_impact);
629 assert(msg.subdetector_number
630 == decoded_msg.subdetector_number);
631
632 assert(msg.value_properties == decoded_msg.value_properties);

312 Parameter Encoding and Decoding

633 assert(msg.set_timestamp == decoded_msg.set_timestamp);
634 assert(msg.effective_timestamp == decoded_msg.effective_timestamp);
635
636 check_str_equal(msg.set_value,
637 decoded_msg.set_value);
638
639 check_str_equal(msg.measured_value,
640 decoded_msg.measured_value);
641
642 check_str_equal(msg.lower_healthy_measured_value,
643 decoded_msg.lower_healthy_measured_value);
644
645 check_str_equal(msg.upper_healthy_measured_value,
646 decoded_msg.upper_healthy_measured_value);
647
648 check_str_equal(msg.lower_settable_value,
649 decoded_msg.lower_settable_value);
650
651 check_str_equal(msg.upper_settable_value,
652 decoded_msg.upper_settable_value);
653
654 check_str_equal(msg.reportable_change_delta,
655 decoded_msg.reportable_change_delta);
656
657 check_str_equal(msg.parameter_name,
658 decoded_msg.parameter_name);
659
660 check_str_equal(msg.parameter_description,
661 decoded_msg.parameter_description);
662
663
664 //
665 struct HighVoltagParameter simplepar;
666 simplepar.set_value = 1330;
667 simplepar.measured_value = 1331.32;
668 simplepar.set_timestamp = msg.set_timestamp;
669 simplepar.effective_timestamp = msg.effective_timestamp;
670
671 memset(buffer, 0, buffer_size);
672 encoded_len = encode_HighVoltagParameter(
673 &simplepar, buffer, buffer_size);
674
675 //Lets reuse decoded_msg, so free its strings, and zero it out
676 free_string_fields(&decoded_msg);
677 memset(&decoded_msg, 0, sizeof(decoded_msg));
678
679 decoded_len = decode_ParameterInfoReply(
680 &decoded_msg, buffer, encoded_len);
681
682 //Check to make sure the HighVoltagParameter decoded to a
683 // ParameterInfoReply gave values expected.
684 assert(encoded_len == decoded_len);
685 assert(decoded_msg.value_type == FloatValue);
686 assert(fabs(1330 - atof(decoded_msg.set_value)) < 0.0001);
687 assert(fabs(1331.32 - atof(decoded_msg.measured_value)) < 0.0001);
688
689 free_string_fields(&msg);
690 free_string_fields(&decoded_msg);
691
692 printf("Passed encoding/decoding checks.\n");
693
694 return 1;
695 }

Bibliography

[1] S. Bradner, “Key words for use in RFCs to Indicate Requirement Levels,” RFC 2119, The
Internet Society, March 1997. 7, 8, 10

[2] A. M. I. Fette, “The WebSocket Protocol,” RFC 6455, The Internet Society, December 2011.
11, 24, 29

[3] “Ieee standard for a precision clock synchronization protocol for networked measurement
and control systems - redline,” IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002) -
Redline, pp. 1–300, July 2008. 17, 29

[4] “American national standard data format for radiation detectors used for homeland security,”
ANSI N42.42-2012 (Revision of ANSI N42.42-2006), pp. 1–248, April 2013. 18, 20

[5] C. Hornig, “A Standard for the Transmission of IP Datagrams over Ethernet Networks,” RFC
894, The Internet Society, April 1984. 24

[6] e. a. J. Mogu, “INTERNET PROTOCOL DARPA INTERNET PROGRAM PROTOCOL
SPECIFICATION,” RFC 791, The Internet Society, September 1981. 24

[7] R. H. S. Deering, “Internet Protocol, Version 6 (IPv6) Specification,” RFC 2460, The Internet
Society, December 1998. 24

[8] B. H. S. Deering, W. Fenner, “Multicast Listener Discovery (MLD) for IPv6,” RFC 2710, The
Internet Society, October 1999. 24

[9] L. S. Committee, “Ieee standard for ethernet,” IEEE Std 802.3 - 2015 (Revision of IEEE Std
802.3-2012), pp. 1–698, September 2015. 24

[10] L. S. Committee, “Part 11: Wireless lan medium access control (mac) and physical layer
(phy) specifications,” IEEE Std 802.11 - 2012 (Revision of IEEE Std 802.11-2007), pp. 1–
300, March 2012. 25

[11] “Ieee standard for information technology - telecommunications and information exchange
between systems - local and metropolitan area networks - specific requirements,” IEEE Std
802.3af-2003 (Amendment to IEEE Std 802.3-2002, including IEEE Std 802.3ae-2002),
pp. 1–121, 2003. 25

[12] e. a. R. Droms, J. Bound, “Dynamic Host Configuration Protocol for IPv6 (DHCPv6),” RFC
3315, The Internet Society, July 2003. 25

[13] e. a. K. Stouffer, “Guide to Industrial Control Systems (ICS) Security,” NIST Pubs, NIST,
June 2015. 25

314 BIBLIOGRAPHY

[14] E. R. T. Dierks, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC 5246, The
Internet Society, August 2008. 26

[15] S. Bellovin, “Guidelines for Specifying the Use of IPsec Version 2,” RFC 5406, The Internet
Society, February 2009. 26

[16] e. a. A. Donoho, “Upnp device architecture 2.0,” UPnP Forum, pp. 1–196, Febraury 2015.
26, 28

[17] T. Yoshino, “Compression Extensions for WebSocket,” RFC 7692, The Internet Society,
December 2015. 29

[18] “Ieee standard for floating-point arithmetic,” IEEE Std 754-2008, pp. 1–70, Aug 2008. 45,
47, 305

[19] I. Sun Microsystems, “XDR: External Data Representation Standard,” RFC 1014, The In-
ternet Society, June 1987. 47

[20] M. Wildgrube, “Structured Data Exchange Format,” RFC 3072, The Internet Society, March
2001. 47

[21] e. a. R. Housley, W. Ford, “Internet X.509 Public Key Infrastructure Certificate and CRL
Profile,” RFC 2459, The Internet Society, January 1999.

[22] e. a. J. Mogul, D. Mills, “Pulse-Per-Second API for UNIX-like Operating Systems, Version
1.0,” RFC 2783, The Internet Society, March 2000.

[23] e. a. A. Presser, “Upnp device architecture 1.1,” UPnP Forum, pp. 1–129, October 2008.

[24] e. a. D. Mills, “Network Time Protocol Version 4: Protocol and Algorithms Specification,”
RFC 5905, The Internet Society, June 2010.

	List of Abbreviations
	List of Terms
	1 Overview
	1.1 Overview
	1.2 Introduction
	1.3 RAPTER Modules
	1.3.1 Control Module
	1.3.1.1 Hardware for Control Module
	1.3.1.2 Logic for Control Module
	1.3.1.3 Relay command messages

	1.3.2 Radiation Detector Modules
	1.3.3 Vehicle Presence Module
	1.3.4 Analysis Module
	1.3.5 Power Management Module

	1.4 Introduction to Message Groups
	1.4.1 Analysis Message Group
	1.4.2 Command Message Group
	1.4.3 Core Message Group
	1.4.4 Data-Out Message Group
	1.4.5 Radiation Detector Message Group
	1.4.6 Power Management Message Group
	1.4.7 Vehicle Presence Message Group

	1.5 Device Networking
	1.5.1 Establishing Device Connections
	1.5.2 WebSocket Connection
	1.5.3 Network based Precision Time Protocol
	1.5.4 Physical interfaces

	2 Portal and Device Operations
	2.1 Portal Configuration
	2.1.1 Parameter Mechanism – Settings and Status
	2.1.1.1 Device Position Settings
	2.1.1.2 Update Mechanism

	2.1.2 Device Operating State
	2.1.2.1 Device Operating Mode
	2.1.2.2 Data Collection Mode
	2.1.2.3 Measurement Collection Interval
	2.1.2.4 Measurement Type

	2.1.3 System Operating State
	2.1.3.1 System Measurement Type

	2.2 Relay Commands

	3 RAPTER Messaging
	3.1 Message Groups
	3.2 Message Group Versioning
	3.3 Message Contents
	3.3.1 Primitive Data Types Used
	3.3.2 Message Header Format
	3.3.2.1 Message Modifier Flags

	3.3.3 Message Body Format

	3.4 Message Transaction Model
	3.5 RAPTER Handshake
	3.5.1 Enforcement of RAPTER Communications
	3.5.2 Message Buffering

	3.6 Messages Devices Must Respond to

	4 Detailed Message Descriptions
	4.1 Core Interface
	4.1.1 RapterConstants Enumeration
	4.1.2 MessageGroup Enumeration
	4.1.3 CoreMsgType Enumeration
	4.1.4 MsgFlags Enumeration
	4.1.5 SupportedMessageGroupVersionsRequest Message
	4.1.6 SupportedMessageGroupVersionsReply Message
	4.1.7 UseMessageGroupVersionRequest Message
	4.1.8 UseMessageGroupVersionStatus Enumeration
	4.1.9 UseMessageGroupVersionReply Message
	4.1.10 NotificationSeverity Enumeration
	4.1.11 NotificationCause Enumeration
	4.1.12 Notification Struct
	4.1.13 NotificationPush Message
	4.1.14 NotificationPushAck Message
	4.1.15 DeviceInfoRequest Message
	4.1.16 DataCollectionModes Enumeration
	4.1.17 DeviceFeaturesFlags Enumeration
	4.1.18 ComponentVersionInformation Struct
	4.1.19 DeviceInfoReply Message
	4.1.20 DeviceStatusRequest Message
	4.1.21 DeviceStatusFlags Enumeration
	4.1.22 OperatingMode Enumeration
	4.1.23 MeasurementType Enumeration
	4.1.24 DeviceStatusReply Message
	4.1.25 DeviceBufferStatusRequest Message
	4.1.26 BufferStatusFlags Enumeration
	4.1.27 DeviceBufferStatusReply Message
	4.1.28 DeviceStatusPush Message
	4.1.29 DeviceStatusPushAck Message
	4.1.30 DeviceTimeStatisticsRequest Message
	4.1.31 DeviceTimeStatisticsReply Message
	4.1.32 HeartbeatPacket Struct
	4.1.33 HeartbeatPush Message
	4.1.34 HeartbeatPushAck Message
	4.1.35 BufferRecoveryMode Enumeration
	4.1.36 BufferedMessagesRequest Message
	4.1.37 BufferedDataRequestStatus Enumeration
	4.1.38 BufferedMessagesReply Message
	4.1.39 BufferingSetOptionRequest Message
	4.1.40 BufferingSetOptionsStatus Enumeration
	4.1.41 BufferingSetOptionReply Message
	4.1.42 PingRequest Message
	4.1.43 PingReply Message
	4.1.44 PowerDownOption Enumeration
	4.1.45 PowerDownRequest Message
	4.1.46 PowerDownStatus Enumeration
	4.1.47 PowerDownReply Message
	4.1.48 SendLogsRequest Message
	4.1.49 LogReplyStatus Enumeration
	4.1.50 SendLogsReply Message
	4.1.51 DeviceOperabilityCheckRequest Message
	4.1.52 DeviceOperabilityStatus Enumeration
	4.1.53 DeviceOperabilityCheckReply Message
	4.1.54 SupportedDataCollectionIntervalsRequest Message
	4.1.55 SupportedDataCollectionIntervalsType Enumeration
	4.1.56 SupportedDataCollectionIntervalsReply Message
	4.1.57 ChangeDeviceStateRequest Message
	4.1.58 CommandReplyStatus Enumeration
	4.1.59 ChangeDeviceStateReply Message
	4.1.60 MeasurementTypeChangeRequest Message
	4.1.61 MeasurementTypeChangeReply Message
	4.1.62 FirmwareUpgradeRequest Message
	4.1.63 FirmwareUpgradeStatus Enumeration
	4.1.64 FirmwareUpgradeReply Message
	4.1.65 ParameterNamesRequest Message
	4.1.66 ParameterNameAndSubDetectorNumber Struct
	4.1.67 ParameterNamesReply Message
	4.1.68 ParameterUpdateOption Enumeration
	4.1.69 ParameterInfoRequest Message
	4.1.70 ParameterInfoStatus Enumeration
	4.1.71 ParameterValueDataType Enumeration
	4.1.72 HealthSeverityLevel Enumeration
	4.1.73 ParameterPropertiesFlags Enumeration
	4.1.74 ParameterInfoReply Message
	4.1.75 ParameterField Enumeration
	4.1.76 SetParameterRequest Message
	4.1.77 SetParameterReply Message
	4.1.78 ParameterUpdatePush Message
	4.1.79 ParameterUpdatePushAck Message

	4.2 Radiation Detector Interface
	4.2.1 RadDetectorMsgType Enumeration
	4.2.2 RadSubDetectorInformationRequest Message
	4.2.3 RadSubDetectorType Enumeration
	4.2.4 RadDetDeviceFeaturesFlags Enumeration
	4.2.5 RadDetectorKind Enumeration
	4.2.6 RadDetectorGeometry Enumeration
	4.2.7 RadSubDetectorInfo Struct
	4.2.8 RadSubDetectorInformationReply Message
	4.2.9 RadDataReadoutFlags Enumeration
	4.2.10 RadChannelDataPush Message
	4.2.11 RadChannelDataPushAck Message
	4.2.12 ListModeEvent Struct
	4.2.13 RadListModeDataPush Message
	4.2.14 RadListModeDataPushAck Message
	4.2.15 EnergyCalCoefficientType Enumeration
	4.2.16 EnergyCalibrationStatus Enumeration
	4.2.17 EnergyCalMethodFlags Enumeration
	4.2.18 RadEnergyCalibrationUpdatePush Message
	4.2.19 RadEnergyCalibrationUpdatePushAck Message
	4.2.20 RadEnergyCalibrationRequest Message
	4.2.21 RadEnergyCalibrationReplyStatus Enumeration
	4.2.22 RadEnergyCalibrationReply Message
	4.2.23 RadUseExternalEnergyCalInstructions Enumeration
	4.2.24 RadUseExternalEnergyCalRequest Message
	4.2.25 EnergyCalUseStatus Enumeration
	4.2.26 RadUseExternalEnergyCalReply Message

	4.3 Vehicle Presence Interface
	4.3.1 VehiclePresenceMsgType Enumeration
	4.3.2 VehiclePresenceSubDetectorInformationRequest Message
	4.3.3 VehiclePresenceSubDetectorType Enumeration
	4.3.4 VehiclePresenceSubDetectorInformation Struct
	4.3.5 VehiclePresenceSubDetectorInformationReply Message
	4.3.6 RecommendedPresenceStatus Enumeration
	4.3.7 VehiclePresenceReadOutFlags Enumeration
	4.3.8 VehiclePresenceBinaryStatus Struct
	4.3.9 VehiclePresenceBinaryDataPush Message
	4.3.10 VehiclePresenceBinaryDataPushAck Message
	4.3.11 VehiclePresenceCurrentBinaryDataRequest Message
	4.3.12 VehiclePresenceReplyStatus Enumeration
	4.3.13 VehiclePresenceCurrentBinaryDataReply Message
	4.3.14 VehiclePresenceReadingPush Message
	4.3.15 VehiclePresenceReadingPushAck Message
	4.3.16 VehiclePresenceCurrentReadingRequest Message
	4.3.17 VehiclePresenceCurrentReadingReply Message
	4.3.18 VehiclePresenceImageType Enumeration
	4.3.19 VehiclePresenceImagePush Message
	4.3.20 VehiclePresenceImagePushAck Message
	4.3.21 VehiclePresenceCurrentImageRequest Message
	4.3.22 VehiclePresenceCurrentImageReply Message

	4.4 Power Management
	4.4.1 PowerManagementMsgType Enumeration
	4.4.2 PwrMngmtInformationRequest Message
	4.4.3 PwrMngmtLineOutProtectionType Enumeration
	4.4.4 PwrMngmtLineOutPropertiesFlags Enumeration
	4.4.5 PwrMngmtSupplyPropertiesFlags Enumeration
	4.4.6 PwrMngmtLineOutInformation Struct
	4.4.7 PwrMngmtInformationReply Message
	4.4.8 PwrMngmtLineOutStatusRequest Message
	4.4.9 PwrMngmtLineOutStatusFlags Enumeration
	4.4.10 PwrMngmtLineOutStatus Struct
	4.4.11 PwrMngmtLineOutStatusReply Message
	4.4.12 PwrMngmtSupplyStatusRequest Message
	4.4.13 PwrMngmtSupplyStatusFlags Enumeration
	4.4.14 PwrMngmtBatteryStatusFlags Enumeration
	4.4.15 PwrMngmtBatteryStatus Struct
	4.4.16 PwrMngmtSupplyStatusReply Message
	4.4.17 PwrMngmtLineOutEventPush Message
	4.4.18 PwrMngmtLineOutEventPushAck Message
	4.4.19 PwrMngmtSupplyEventPush Message
	4.4.20 PwrMngmtSupplyEventPushAck Message
	4.4.21 PwrMngmtTestType Enumeration
	4.4.22 PwrMngmtSelfTestRequest Message
	4.4.23 PwrMngmtTestStatus Enumeration
	4.4.24 PwrMngmtSelfTestReply Message
	4.4.25 PwrMngmtAutomaticSelfTestResultPush Message
	4.4.26 PwrMngmtAutomaticSelfTestResultPushAck Message
	4.4.27 PwrMngmtLineOutPowerCycleRequest Message
	4.4.28 PwrMngmtLineOutPowerCycleRequestStatus Enumeration
	4.4.29 PwrMngmtLineOutPowerCycleReply Message

	4.5 Analysis Interface
	4.5.1 AnalysisMsgType Enumeration
	4.5.2 AnalysisInterimResultRequest Message
	4.5.3 InterimAnalysisDataUsageStatusFlags Enumeration
	4.5.4 AlarmTypeFlags Enumeration
	4.5.5 NuclideResult Struct
	4.5.6 AnalysisInterimResultReply Message
	4.5.7 AnalysisItemFinalResultsRequest Message
	4.5.8 AnalysisFinalResultStatusFlags Enumeration
	4.5.9 AnalysisItemFinalResultsReply Message

	4.6 Data Out Interface
	4.6.1 DataOutMsgType Enumeration
	4.6.2 DataOutDataPropertiesFlags Enumeration
	4.6.3 DataOutDataFramePropertiesFlags Enumeration
	4.6.4 DeviceStatus Struct
	4.6.5 ParameterUpdate Struct
	4.6.6 EnergyCalibration Struct
	4.6.7 ListModeDataPacket Struct
	4.6.8 ChannelDataPacket Struct
	4.6.9 BinarySensorsData Struct
	4.6.10 ImageData Struct
	4.6.11 VehiclePresenceReadingInfo Struct
	4.6.12 PwrMngmtSupplyStatus Struct
	4.6.13 PwrMngmtSelfTestResult Struct
	4.6.14 RequestReceivedSummary Struct
	4.6.15 DataOutDataFrame Struct
	4.6.16 DataOutDataPacketPush Message
	4.6.17 DataOutDataPacketPushAck Message
	4.6.18 DataOutDevicesInfoRequest Message
	4.6.19 DataOutDeviceInfo Struct
	4.6.20 DataOutDevicesInfoReply Message
	4.6.21 DataOutDeviceParametersRequest Message
	4.6.22 DataOutDeviceParametersRequestStatus Enumeration
	4.6.23 ParameterInfo Struct
	4.6.24 DataOutDeviceParametersReply Message
	4.6.25 AcknowledgeableEventType Enumeration
	4.6.26 EventAcknowledgmentType Enumeration
	4.6.27 DataOutEventAcknowledgementPush Message
	4.6.28 DataOutEventAcknowledgementPushAck Message
	4.6.29 DataOutSubDetectorInformationRequest Message
	4.6.30 DataOutSubDetectorInformationReplyStatus Enumeration
	4.6.31 PwrMngmtSupplyInformation Struct
	4.6.32 DataOutSubDetectorInformationReply Message
	4.6.33 DataOutGetStatusOfDeviceRequest Message
	4.6.34 DataOutDeviceStatusFlags Enumeration
	4.6.35 DataOutGetStatusOfDeviceReply Message
	4.6.36 DataOutSystemOperabilityCheckRequest Message
	4.6.37 SystemOperabilityStatus Enumeration
	4.6.38 DataOutSystemOperabilityCheckReply Message
	4.6.39 DeviceConnectionLevel Enumeration
	4.6.40 DataOutDeviceConnectedPush Message
	4.6.41 DataOutDeviceConnectedPushAck Message
	4.6.42 DeviceDisconnectReason Enumeration
	4.6.43 DataOutDeviceDisconnectedPush Message
	4.6.44 DataOutDeviceDisconnectedPushAck Message
	4.6.45 DataOutHandshakeFinishedPush Message
	4.6.46 DataOutHandshakeFinishedPushAck Message
	4.6.47 DataOutResponseErrorType Enumeration
	4.6.48 DataOutDeviceResponseIssuePush Message
	4.6.49 DataOutDeviceResponseIssuePushAck Message
	4.6.50 BufferingForDataOutOption Enumeration
	4.6.51 DataOutBufferingEnableRequest Message
	4.6.52 DataOutBufferingStatus Enumeration
	4.6.53 DataOutBufferingEnableReply Message
	4.6.54 DataOutBufferedMessagesRequest Message
	4.6.55 DataOutBufferedMessagesReply Message
	4.6.56 SystemStateChangeStatus Enumeration
	4.6.57 DeviceStateChangeInfo Struct
	4.6.58 DeviceNotification Struct
	4.6.59 DataOutSystemStateChangePush Message
	4.6.60 DataOutSystemStateChangePushAck Message
	4.6.61 DataOutCurrentSystemStateRequest Message
	4.6.62 DataOutCurrentSystemStateReply Message
	4.6.63 DataOutMiscNotificationPush Message
	4.6.64 DataOutMiscNotificationPushAck Message
	4.6.65 DataOutDeviceReferenceInfoRequest Message
	4.6.66 DeviceReferenceInfoRequestStatus Enumeration
	4.6.67 DeviceReferenceInfoSetFlags Enumeration
	4.6.68 DataOutDeviceReferenceInfoReply Message
	4.6.69 DataOutTimeStatisticsRequest Message
	4.6.70 DataOutTimeStatisticsReplyStatus Enumeration
	4.6.71 IdentifiedDeviceTimeStatistics Struct
	4.6.72 DataOutTimeStatisticsReply Message
	4.6.73 DataOutInterimAnalysisPush Message
	4.6.74 DataOutInterimAnalysisPushAck Message
	4.6.75 DataOutFinalAnalysisPush Message
	4.6.76 DataOutFinalAnalysisPushAck Message

	4.7 Command Interface
	4.7.1 CommandMsgType Enumeration
	4.7.2 CmdSystemStateChangeRequest Message
	4.7.3 CmdSystemStateChangeReply Message
	4.7.4 CmdMeasurementTypeChangeRequest Message
	4.7.5 CmdMeasurementTypeChangeReply Message
	4.7.6 CmdDeviceRelayRequest Message
	4.7.7 CmdDeviceRelayReplyStatus Enumeration
	4.7.8 CmdDeviceRelayReply Message
	4.7.9 CmdDeviceSetReferenceInfoRequest Message
	4.7.10 SetReferenceInfoStatus Enumeration
	4.7.11 CmdDeviceSetReferenceInfoReply Message
	4.7.12 CmdDeviceEventAcknowledgmentRequest Message
	4.7.13 CmdDeviceEventAcknowledgmentReply Message

	Appendices
	A General Message Encoding/Decoding Example
	B Parameter Encoding and Decoding
	References

