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Machine Learning (ML) Surrogates and Optimization
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Dose Weight Age Effectiveness

… … … …

Motivation
• ML surrogates are powerful in their ability to describe complex functional relationships
• New optimization formulations allow decision-making with trained ML models e.g.

• Verification of neural network surrogates (Haddad et al., 2022)
• Sequential auction optimization (Verwer et al., 2017)
• Personalized chemotherapy regimens (Bertsimas et al., 2016)

• Embedding ML surrogates into optimization problems allows for utilization of global optimization techniques.

?
Mixed-Integer Linear and
Nonlinear Programming



OMLT: Optimization and Machine Learning Toolkit
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Neural Networks

Gradient Boosted Decision Trees

2) We will show how IDAES and OMLT can integrate 
on either end of the workflow
• Autothermal Reformer Example
• Optimal Heat Exchanger Design

1) Overview of OMLT and its capabilities.

3) Discussion of other potenVal use cases for OMLT 
e.g. flexibility analysis



Neural Network Formulations
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Smooth  Activations: Full Space vs Reduced Space
<latexit sha1_base64="hz7AkXnfV8LCLKy8hT9x+XR6d7Y="></latexit>

For a network with m inputs, r outputs, and N�m hidden nodes,

xi = zi 8i 2 {1, ...,m}

ẑi =
i�1X

j=1

wijzj + bi 8i 2 {m+1, ..., N}

zi = �(ẑi) 8i 2 {m+1, ..., N}

yi =
NX

j=1

wijzj + bi 8i 2 {N+1, ..., N+r}

<latexit sha1_base64="YR2xvFai0S2gNpp/FpBHQNjucHA="></latexit>

x : inputs

y : outputs

�(·) : activation fn

z, ẑ : intermediates

[Tjandraatmadja, Christian, et al. "The convex relaxation barrier, revisited: Tightened single-neuron relaxations 
for neural network verification." Advances in Neural Information Processing Systems 33 (2020): 21675-21686.]

• Full space formulation includes all the intermediate equalities and variables 
• Results in a large-scale optimization problem (branch-and-bound)

• Reduced space formulation generates functional form and eliminates intermediate variables.
• Can be difficult to generate large expression tree in the algebraic modelling language
• Often have weaker relaxations when propagated through large neural networks 

(Schweidtmann & Mitsos, 2019) 

ReLU Mixed-Integer Linear Programming FormulationsSmooth Activation ⇒ NLP

ReLU AcVvaVon ⇒ MIP

MIP representation based on Big-M (Fischetti and Jo, 2018)

Extensions:
• Strong reformulations – convex hull (Anderson et al., 2020)
• Partition-based formulations (Tsay et al., 2021)

Big M Partition-based

Example for a single neuron



Link 𝑥! to the correct interval defined by 
the splits corresponding to the selected leaf

Ensure splits occur in the correct order

Select a leaf only if all the corresponding splits occur

Only select one leaf per tree in the ensemble

Return the value of the selected leaf 𝐹",ℓ for each tree

Gradient Boosted Decision Trees
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Mixed-Integer Linear Program (MILP)

[Mistry et al. 2021], [Mišić, 2020]



Support for Linear Model Decision Trees Coming Soon!
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Linear Model Decision Trees Formulations



Optimization of an Autothermal Reformer
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The Idea
Replace complex first principles models with data driven surrogates.
Motivation
1) Some first principles models are calculated through compiled codes (thermodynamics) and replacing them with surrogates makes the

problem completely equation oriented.
2) High fidelity models may also have difficult non-convex and non-linear properties

https://github.com/cog-imperial/OMLT

Inputs: Reformer bypass fraction, ratio of natural gas (NG) to steam
Outputs: Steam flow, reformer duty, [Ar], [C2H6], [C3H8], [C4H10], 
[CH4], [CO], [CO2], [H2], [H2O], [N2]

Data Generated using the IDAES Framework

Sigmoid ReLU

Bypass Fraction 0.1 0.1

NG/Steam Ratio 1.12 1.12

[H2] 0.331 0.331

[N2] 0.34 0.34

https://github.com/IDAES/idaes-pse



Optimal Design of a Heat Exchanger
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Motivation
• IDAES currently performs 

thermodynamic calculations using 
external functions and compiled C++ 
codes which prevents use of global 
solvers such as BARON

The Idea
• Train an ML surrogate on steam 

properties and embed the model 
into a formulation capable of global 
optimization to compare with 
locally optimal IDAES model.

Liquid Vapor

Vapor + 
Liquid

2118 Leaves

Solver 𝑨
[ 𝒎𝟐 ]

𝑭𝒔
[ 𝒌𝒈𝒔 ]

Annual Cost
[ $𝒚𝒓 ]

IDAES Model IPOPT 2924 60.31 4.78 million

Linear Tree BARON 2926 60.27 4.78 million



Applications to Flexibility Analysis
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Feasibility Test
Given a design 𝑑 and uncertain parameters θ, is there a control action 𝑧 I can take to ensure all constraints 𝑔$ 𝑑, 𝑧, 𝜃 ≤ 0 are satisfied 
within expected uncertainty 𝜃% ≤ 𝜃 ≤ 𝜃&.

Current Solution Strategies
• If constraints meet the sufficient 

conditions for vertex solutions, can use 
vertex enumeration (Swaney and 
Grossmann, 1985)

• If convex, active set strategy may improve 
scalability (Grossmann & Floudas, 1986)

• If non-convex, must use global branch and 
bound approach for the active set strategy 
(Floudas et al.,  2001)

• If mixed-integer linear or mixed-integer 
convex quadratic, a multi-parametric 
optimization approach proposed by 
(Avraamidou & Pistikopoulos, 2019)

The Idea
Use Machine Learning to learn the inner control problem and convert to a single level 
optimization problem
Motivation
Potential to improve scalability and can provide a guaranteed conservative estimate

[Swaney and Grosmann, 1985]



Applications to Flexibility Analysis
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Method δ

True 
Solution 1

Vertex 1

ReLU NN 0.152

Linear Tree 0.890

Active Set 0.300

𝜃+ = 22.5
Δ𝜃, = 42.5
Δ𝜃- = −42.5

Conclusions
• Since the surrogate is at best the exact control policy, the calculated index is conservative

• Desirable property for safety considerations in process design
• Linear model decision tree gives a better solution than ReLU NN because it can model discontinuities



Conclusions and Key Ideas
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Key Ideas
• ML Surrogates can model complex behavior inherent within data 
• We can represent ML surrogates using mathematical programming (neural networks, tree ensembles etc…)
• OMLT streamlines embedding ML surrogates in optimization problems
• IDAES and OMLT can integrate to extract data (HX Design) or even substitute for a unit in a flow sheet (Autothermal 

Reformer)
• Using ML surrogates to model the optimal control policy in flexibility analysis can provide a conservative estimate 
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