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Machine Learning (ML) Surrogates and Optimization
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/Motivation
* ML surrogates are powerful in their ability to describe complex functional relationships

* New optimization formulations allow decision-making with trained ML models e.g.
* \Verification of neural network surrogates (Haddad et al., 2022)
* Sequential auction optimization (Verwer et al., 2017)
* Personalized chemotherapy regimens (Bertsimas et al., 2016)
k. Embedding ML surrogates into optimization problems allows for utilization of global optimization techniques. /
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OMLT: Optimization and Machine Learning Toolkit

Yo |

1) Overview of OMLT and its capabilities.

2) We will show how IDAES and OMLT can integrate
on either end of the workflow
e Autothermal Reformer Example

e Optimal Heat Exchanger Design

Gradient Boosted Decision Trees

3) Discussion of other potential use cases for OMLT
e.g. flexibility analysis
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Neural Network Formulations

MIP representation based on Big-M (Fischetti and Jo, 2018)

Extensions:
* Strong reformulations — convex hull (Anderson et al., 2020)

* Partition-based formulations (Tsay et al., 2021)

Example for a single neuron

For a network with m inputs, r outputs, and N—m hidden nodes,

o) -0
T = % Vied{l,...m
x : Inputs Z; = Zwiij + b; Vi € {m+1, ,N} wa + b S 0 'UJTI' + b>0
y : outputs j=1
o(+) : activation fn 2 = o(%) Vi € {m+1,...,N}
N . .
2] ' : Big M Partition-based
z, 2 : intermediates vi = Zwijzj + b, Vi€ {N+1, .., N+r} g
j=1
8 ~ , A
*  Full space formulation includes all the intermediate equalities and variables Yy > (w T+ b) y=0 P
*  Results in a large-scale optimization problem (branch-and-bound) . _ y < (Wl +b) - (1 —0)LB » \/ = Z 2+ b
*  Reduced space formulation generates functional form and eliminates intermediate variables. b<0 =1
*  Can be difficult to generate large expression tree in the algebraic modelling language y < oUB° Z Zptbs
. | p=1 i | Yy <0
*  Often have weaker relaxations when propagated through large neural networks

\ (Schweidtmann & Mitsos, 2019) /

[Tjandraatmadija, Christian, et al. "The convex relaxation barrier, revisited: Tightened single-neuron relaxations

for neural network verification." Advances in Neural Information Processing Systems 33 (2020): 21675-21686.] Carnegle Mellon UnlverS]-ty



Gradient Boosted Decision Trees

Mixed-Integer Linear Program (MILP)

reR"
yi,j € {Oa 1} Vi S [’)’L],] € [mz]
20 € {0,1} VieT, €L

[Mistry et al. 2021], [Misi¢, 2020]

Return the value of the selected leaf F; , for each tree

Only select one leaf per tree in the ensemble

Select a leaf only if all the corresponding splits occur

Ensure splits occur in the correct order

Link x; to the correct interval defined by
the splits corresponding to the selected leaf
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Support for Linear Model Decision Trees Coming Soon!
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Optimization of an Autothermal Reformer

~

/The Idea
Replace complex first principles models with data driven surrogates.

Motivation
1) Some first principles models are calculated through compiled codes (thermodynamics) and replacing them with surrogates makes the

problem completely equation oriented.
kZ) High fidelity models may also have difficult non-convex and non-linear properties /
Natural Gas ’

max |[Hs]
’ > ot [Ny] <034
' ‘::’__._»

%K X
‘l‘\'
Expander e
- «**  To Power
---- Island
recuperator m.fs.product Sigmoid RelLU

'
* Preheated
+ Natural Gas

i

Nmfal 2'::"6“ potmia) Bypass Fraction 0.1 0.1

NG/Steam Ratio 1.12 1.12
[Data Generated using the IDAES Framework ] [Hz] 0.331 0.331
[N,] 0.34 0.34

Inputs: Reformer bypass fraction, ratio of natural gas (NG) to steam
Outputs: Steam flow, reformer duty, [Ar], [C,H¢], [C5Hs], [C4H 0],

[CH,), [CO], [€O3], [Ha], [H0], [N5] IDAES

https://github.com/cog-imperial/OMLT https://github.com/IDAES/idaes-pse Carnegie Mellon University



Optimal Design of a Heat Exchanger IDAES

Fs
out [ 3
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Liquid
/I\/Iotivation \ /The Idea \
. A Fg Annual Cost
* IDAES currently performs * Train an ML surrogate on steam Solver [m?] (ke [%1
thermodynamic calculations using properties and embed the model
. . . . IDAES Model IPOPT 2924 60.31 4.78 million
external functions and compiled C++ into a formulation capable of global
codes which prevents use of global optimization to compare with Linear Tree BARON 2926 60.27 4.78 million
\ solvers such as BARON / \ locally optimal IDAES model. /

8 Carnegie Mellon University




Applications to Flexibility Analysis

Feasibility Test

Given a design d and uncertain parameters 6, is there a control action z | can take to ensure all constraints g; (d,z,0) < 0 are satisfied
within expected uncertainty 8- < 9 < 9V,

X(d) — maX min g(d’ Z, 0) Feasible Region R > /
5 . V14,0120 Current Solution Strategies

* |If constraints meet the sufficient
conditions for vertex solutions, can use

o i vertex enumeration (Swaney and
‘ Grossmann, 1985)
X<d> — Imnax g(dv 2, 9)  If convex, active set strategy may improve
0 scalability (Grossmann & Floudas, 1986)
s.t. 2z = ML(Q) * If non-convex, must use global branch and
— bound approach for the active set strategy
[Swaney and Grosmann, 1985] e, o

' (Floudas et al., 2001)
4 N\ * If mixed-integer linear or mixed-integer
The Idea . . .
convex quadratic, a multi-parametric

Use Machine Learning to learn the inner control problem and convert to a single level o
optimization broblem optimization approach proposed by

p .. P vAvraamidou & Pistikopoulos, 2019) /
Motivation

\Potential to improve scalability and can provide a guaranteed conservative estimate )
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Applications to Flexibility Analysis
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\
Conclusions
* Since the surrogate is at best the exact control policy, the calculated index is conservative
* Desirable property for safety considerations in process design
( Linear model decision tree gives a better solution than ReLU NN because it can model discontinuities y
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Conclusions and Key ldeas

/Key Ideas \

e ML Surrogates can model complex behavior inherent within data

* We can represent ML surrogates using mathematical programming (neural networks, tree ensembles etc...)

* OMLT streamlines embedding ML surrogates in optimization problems

* |IDAES and OMLT can integrate to extract data (HX Design) or even substitute for a unit in a flow sheet (Autothermal
Reformer)

k. Using ML surrogates to model the optimal control policy in flexibility analysis can provide a conservative estimate /
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