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Learning Objectives

1.To understand the impacts of climate change in different communities.

2.To understand the risk analysis method at a community scale using building energy
simulations.

3.To understand how extreme heat wave events have different effects in different climate
Zones.

4.To understand how heat waves affect heat emission and energy consumption from
buildings, and the heterogeneity of heat emission across different building types and local

climates.
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Background
* Why future weather?
* Global warming impacts
* History of future weather approaches

Multi-scenario Extreme Weather Simulator
* Objectives/Overview
* Algorithm/Working hypotheses

Worcester-Houston Study Results
* Climate Scenarios
* Heat wave distributions
* Building Energy
 Thermal Comfort

Conclusions

How dependent are you on air
nditioning to survive?

A member of a civil engineering squadron suffers from heat
exhaustion during Exercise READINESS CHALLENGE 87



Q: Why future weather? A: The Global

Climate Crisis

b) Change in global surface temperature (annual average) as observed and
simulated using human & natural and only natural factors (both 1850-2020)

°C
2.0

15 Figure SPM.1

' Intergovernmental Panel

[ . on Climate Change

simulated  )pCC) Working Group |

natural — The Physical Science
Basis Sixth Assessment
Report (AR6) (approved
for release for education

simulated  on climate change issues

natural only to societ
(solar & Z

volcanic)

See ASHRAE fundamentals chapter 36
on climate change

observed

1.0

0.5

-0.5

1'350 1900 1950 2000 20'2L Approximate building
o %f & HVAC timescales




Impacts of Global Warming

IPCC (Intergovernmental Panel on
Climate Change) Sixth Assessment
Report 2021:

“...human influence has warmed the
atmosphere, ocean and land. Widespread
and rapid changes in the atmosphere, ocean,
cryosphere and biosphere have occurred...
Evidence of observed changes in extremes
such as heatwaves, heavy precipitation,
droughts, and tropical cyclones...”

Research Goal:

Quantify effects of global warming on
extreme weather for energy and resilience
modeling
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United States, heatwave characteristics, average across 50 large metropolitan areas, by decade
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Extreme Event Effect

Heat Waves Temperature Rise
Cold Snaps Temperature Drop
Winter Storms High Winds
Tornados Flooding

Heavy Rainfall Multiple Effects
Hurricanes

Droughts

Floods

Example US Extreme Weather Since 2000:

Aug. 2005 | 1,800 deaths

Winter Storm Uri Feb. 2021 250+ deaths
June 2021 100 deaths

Oregon Heat Wave

NASA — public domain image

Hurricanes

NOAA — public domain image

Tornadoes

NOAA — public domain image

Floods v



Why future weather? A: Increased frequency,

and intensity of extreme weather

Hot temperature extremes over land

10-year event 50-year event
Frequency and increase in intensity of extreme temperature Frequency and increase in intensity of extreme temperature
event that occurred once in 10 years on average event that occurred once in 50 years on average
in a climate without human influence in a climate without human influence
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Future Weather in Buildings Infrastructure

“Although the potential changes in weather conditions associated with
changes in both global climate change and the surrounding context could
have a significant effect on the operating energy over the next 50-100
years, they remain extremely difficult to both predict and account for in
the analysis.”

Raymond J. Cole and Paul C. Kernan
“Life Cycle Energy Use in Office Buildings” Building and Environment 1996



Future Weather History

Extreme Meteorological years and
Extreme Reference years (Crawley and
Lawrie , 2019; Pernigotto et. al. 2020)

“Morphing”
statistical

15t Regional Climate model doyvrTscaImg for

dynamic downscaling b.U|Id|ng- energy Stochastic Stochastic variations Population

(Dickinson et. al, 1989; simulation weather of normal weather inclusive earth

Giorgi & Bates, 1989) (Belcher, 2002) generation (Rastogi, 2016) systems models
(Williams et. al., Giorgi, 2022
2011)

Uncertainty in _ Stochastic
Recognition that morphing Dynamic variations on
weather variations technique via downscal!ng extreme weather
matter for BEM running variation characterizes events
(Crawley and Huang, of climate extreme heat
1997; models (Jones et. freque_ncy/ Multi-scenario
Williams et. al., 1996) al., 2009) Intensity extreme weather

increases (Zobel,

simulator (Villa et.
2017) al., 2022)




Approaches — Dynamic Downscaling

High resolution regional climate models provide GCM RCM
dynamically downscaled results that are high = 555555555555:*35@55 AS%2 LESSIIBRRRH:
enough resolution to provide reasonable meso- =~ . RSk 050 VR U Sedtelessed 38T
scale extreme events such as heat waves and Z TN o ag. el WEIRERiRiieg
hurricanes, precipitation, and strong winds : », S BERE et ittt ot e T e st 1a0
Disadvantages for resilience analysis o 5:*‘*;..‘ g e
More transient extreme events such as . IO NI TR N T
tornadoes, localized extreme precipitation/hail ; i e e e it Mo S s s S
are unlikely to be captured with a regional LA -l 1%|; EQ,PS | /Buffer.Zone (LBC Relaxation}:
approach iy T 4-12 km
— . (data available at
Probability distributions via ensembles of runs \ = 5Sbs 1-3 )
intractable for supercomputers i j ! ImpaCtS
Water, food, energy,
Reanalysis of RCM for historic conditions is essential : ecosystem services,
- 100km resolution biodiversity, migration
to extreme weather pattern statistical ) =
characterization coastal areas, tourism

Used with permission Giorgi, 2019. “Thirty years of regional climate modeling: where are we and where are we going
next? JGR Atmospheres https://doi.org/10.1029/2018JD030094



Typical Meteorological Year (TMY) and

Extreme Meteorological Year (XMY)

TMY timeseries are derived from a procedure for selecting historical months based on statistical criteria of an
ensemble of years (Wilcox, 2008)

New procedure from Oak Ridge samples across both climate models and years to select typical months in the
future (New and Bass, 2022)

New procedures for eXtreme Meteorological Years (XMY - Crawley and Lawrie , 2019) and Extreme Reference
Years (ERY - Pernigotto et. al. 2020)

-- Have competing objectives for different applications

Disadvantages for resilience analysis

Cannot quantify probability of outcomes (i.e. gives min/avg/max range with a specific statistical priority)

When multiple objectives in an analysis exist (i.e. resilience and energy efficiency) this approach does not
provide conservative bounds for each objective (Gasparella et. al., 2021)



Statistical Downscaling

» Use a combination of historical data, climate model output and data-driven methods to
provide detailed weather for a local site.

* Uncertainty via variations of GCM/RCM runs accomplished (Jones et. al., 2009)

« Stochastic weather generators that do not cover extreme events in current forms
(Rastogi, 2016; Williams et. al., 2011))

* New direction:

* New methods that emphasize statistical accuracy of weather extremes in a stochastic
way are needed

 Disadvantages

« Such methods may not fit normal conditions as well since they prioritize fitting extreme
conditions

* High computational burden when using a stochastic method
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1. Stochastic weather file generation for building energy modeling
(BEM) resilience analysis

» Outputs weather files for major BEM tools
2. Used for a site-wide energy assessment for SNL New Mexico site

3. Open-source python ~28,000 lines of code
(https://github.com/sandialabs/MEWS)

15


https://github.com/sandialabs/MEWS

MEWS Objectives

1. Provide extreme weather files that contain statistically realistic increases in
severity and frequency based on climate model predictions and historical data

» Extreme temperature (heat waves and extreme cold)
* Future:

Extreme Precipitation, Drought, Hurricanes, ...
2. Quickly generate files with reasonable output using a data-driven approach

Data here includes climate model outputs

* Fuse historical data and climate projections into “best-guess” sampling
distributions and Markov processes

3. Keep the algorithm simple (as possible!)

16



New algorithm theory

Goal: A low-order stochastic model that:

1) Has enough parameters that can fit arbitrary shifts in event characteristics

2) Has enough parameters to fit historical data (or climate model reanalysis output)

3) General enough to handle multiple types of events

Solution:

* 12 models for each month of the year to capture seasonal variations

* Duration normalized intensity and total energy fit to truncated Gaussian distributions
« Stochastic time stepping process with time dependence of probability within an event
« Specialized shape functions that smoothly add new weather events



Algorithm Overview

ALGORITHMS Results

INPUTS

Future fit numeric
histograms and

[PCC thresholds

3. Shift stochas-
tic model from
historic to future

IPCC shift
factors

A

Solution file
for quick gen-
eration of files

CMIP6 en-
semble surface

Section 3.3: Cal-
culate climate

temperatures scenario polynomials

' Create weather
files with shifted

stochastic model

NOAA cli-

Section 3.2:
Historic fit to
stochastic model

mate norms

Historic fit nu-
meric histograms

NOAA daily

summaries

IPCC = Intergovernmental Panel on
Climate Change

CMIP6 = Sixth Coupled Model
Intercomparison Project

NOAA = National Oceanic and
Atmospheric Association



Hypotheses

1. Heat wave peak temperature and total energy have positive correlation to heat wave
duration

2. Duration normalized heat wave peak temperature and energy distributions are
represented well by truncated Gaussian distributions

3. A stochastic process with a time transient matrix of the specific form on the next
slide can characterize heat wave and cold snap frequencies and durations

4. IPCC shift in frequency and intensity factors can scale for frequency and shift for
temperature factors

5. Linear extrapolation beyond 4°C to 6°C does not produce a significant error

6. The difference between baseline surface temperature for climate norms and daily
summary data is negligible (2 slides down)

7. Asingle 3 parameter shape function represents all future extreme waves in a
stochastic context without significantly changing analysis outcomes (3 slides down)



Stochastic process

1-— Phw,m — Pcs,m
M, =|1-Ps_ (t)
1—-P S;m..m(t)

Decay function form
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Baseline

Use the data or not use the data when

1 an anomaly is detected?
70 years historic data is barely enough!
AT; >1.0°
® Discontinuities
= _ between historical
g Average Cllrrlate norms CMIP6 ensemble and
FEL ATnorms,~0.9°C future results \
o AT i N 1 L A B T It
[__. | Y e e =
= AT}, ~0.7%C 1--ommmmm e T
o Average HW ATy,
= ’_\_/_\/ HW data
S AT =0 7 end
hﬁ ~
(- >
1850 1900 -
| 7 HW data begin 2014 (IPCC baseline)
' _ Pre-industrial period — 1900 to 1950 _
Fixed via CMIP6 IPCC HW increase factors NOAA daily
summaries

model ensemble baseline



Shape function
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Case Study Hot and Cold Climates:
Houston vs. Worcester



Study characteristics

 TMY3 data for Houston and Worcester airports

* Ran 3 Shared socio-economic pathways SSP2-4.5, SSP3-7.0, and SSP5-8.5

* Ran 4 future years 2025, 2050, 2075, and 2100. Only some SSP’s for 2100 were under 6°C
* Ran IPCC confidence intervals on heat wave shifts for 5%, 50%, and 95%

* Used 2.5e6 hours of stochastic simulation time for each month to %ptimize probability
dISttrlli)Il)Jtlon fits. Kolmogorov-Smirnov test statistic p-test 95% confidence passed in most (but
not all) cases

* Created 100 weather futures for shifted heat waves and historic cold waves per year, SSP,
and confidence interval for a total of 3600 runs per location

. Userc]zl énsaéimum number of CMIP6 ensemble results for surface temperature as available for
eac

* Ran Medium office building International Energy Conservation Code (IECC) 2018 prototype
models using EnergyPlus v 9.6.0

* No readjustment of HVAC sizing for future conditions — allow thermal discomfort to grow
» Verification process for Tool 1 still underway




Climate scenarios

 Polynomial fit increase in temperature added to future weather in addition to
heat wave and cold snap differences

« Clearly more change in the North WO rcester
Houston

—— Historical Regression
Historical Data 95% ClI
—— SSP1-1.9 Regression
SSP1-1.9 Data 95% ClI
—— SS5P1-2.6 Regression
SSP1-2.6 Data 95% ClI
SSP2-4.5 Regression
SSP2-4.5 Data 95% ClI
—— SSP3.70 Regression
SSP3.70 Data 95% Cl
—— S5P5-8.5 Regression
SSP5-8.5 Data 95% ClI

Change in Temperature from 2014 (°C)

-2 -2

1960 1980 2000 2020 2040 2060 2080 2100 : ; ! !
Year 1960 1980 2000 2020 2040 2060 2080 2100
Year




Extreme temperature shifts

Probability of
temperature
shift given that
a wave has
occurred

Houston
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Extreme Temperature Shifts 2
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Duration — no shift

—— historic cs
Duration 4100 =
>
not . \ —w= | Worcester
increased _—.
E N\
ERPE \
50 100 150 200 250 300
Duration of wave (hr)
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e
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Total Building Electricity (Medium Office)

Worcester (left) Houston (right)

& BN SSP245 & B SSP245
- I ssP370 - [ ssP370
= 5 | - sspses —~ 45 - SSP585
> >
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- O 35
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L w 30

2025 2050 i@jg\ 2100 2935/ 2050 2075 2100

Hypothesis: Southern climates have differences between climate scenarios sooner




Building HVAC Peak Electricity

Predicted need for new equipment sizes by 2050
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Peak Electricity

Much larger increases of peak electric load in Worcester
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Cooling Setpoint
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ASHRAE Standard 55-2004 thermal comfort

 Overall thermal comfort will increase in the north but decrease in the south
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The study performed shows promise for using Tool 1 to conduct BEM studies of
future climates

Probably > 100 runs per future scenario are needed.
Better statistical ways of analyzing the vast output data are under development

There are marked differences between southern and northern climates
« Southern heat wave changes are less extreme shifts than Northern
 Southern has less difference into the future than Northern

* When HVAC sizing kept constant southern thermal comfort will reduce
while northern will increase

 Electricity use for Northern climates increases 2-3 times as much as
Southern as air-conditioning begins to run much more.

Much more work is needed to look at resilience metrics that isolate performance
during heat waves

Tool 1 needs to be connected to Regional Climate Modeling
Mapping of Tool 1 study for 12 climate zones is underway
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