
P R E S E N T E D B Y

Sandia National Laboratories is a multimission

laboratory managed and operated by National

Technology & Engineering Solutions of Sandia,

LLC, a wholly owned subsidiary of Honeywell

International Inc., for the U.S. Department of

Energy’s National Nuclear Security

Administration under contract DE-NA0003525.

NASA

Performance-portable extensions to
ice-sheet modeling in MALI

Je r r y Wa t k i n s , M a x C a r l s o n , I r i n a Te z a u r , M a u r o Pe r e g o, Jo n a t h a n H u

SIAM Confe rence on Computa t i ona l Sc i ence and Eng inee r ing

SAND

March 2nd, 2023

SAND2023-12730C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

Outline2

1) Motivation - Why are we interested in performance portability in ice-sheet modeling?

2) MALI software

3) Current Performance Results

4) Future Performance Goals

5) Conclusions

Motivation

Why are we interested in performance por tability
in ice-sheet modeling?

Motivation4

High-fidelity simulations of the DOE E3SM’s ice sheet model, MALI, on exascale systems

• As part of DOE’s Earth System Model - provide actionable predictions of 21st century
sea-level change (including uncertainty bounds)

Target systems:

OLCF Summit
NVIDIA V100 GPU

ALCF Aurora
Intel Xe GPU

OLCF Frontier
AMD Instinct GPU

NERSC Perlmutter
NVIDIA A100 GPU

GPUs in open-science are here, need efficient access to computational power

Performance portability for exascale computing5

Challenges:

• Diverse set of HPC vendors and architectures
• Intel, AMD, NVIDIA, IBM, ARM-based
• CPUs with vector processing; GPUs

• Software life cycle is much longer than hardware

Different architectures, trend remains the same

• Need algorithms with higher arithmetic intensity (total ops/byte)

• Need fundamental abstractions during code development

Performance portability: A reasonable level of performance is achieved across a wide variety
of computing architectures with the same source code.

Approaches:

• Libraries – High-level abstractions with specified input/output (e.g. BLAS)

• Task-based – Data-centric abstractions for mapping tasks to resources (e.g. Legion)

• MPI+X – Algorithmic-level abstractions for distributed (MPI) and shared (X) memory
parallelism (e.g. Directives: OpenMP, OpenACC; Frameworks: Kokkos, RAJA, OCCA)

Different architectures, trend remains the same

MALI software

What software tools are we using?

MALI (MPAS-Albany Land Ice) software7

MPAS:

• Thickness/Temperature evolution

Albany Land Ice:

• First-order Stokes velocity solver

Trilinos:

• Mesh tools (STK)

• Discretization tools (Intrepid2)

• Nonlinear/Linear solver (NOX/Belos)

• Distributed memory linear algebra (Tpetra)

• Multigrid Preconditioner (MueLu)

• Field DAG (Phalanx)

• Automatic differentiation (Sacado)

• Shared memory parallelism (Kokkos)

• Many more…

https://github.com/MALI-Dev/E3SM / https://github.com/sandialabs/Albany / https://github.com/trilinos/Trilinos

https://github.com/MALI-Dev/E3SM
https://github.com/sandialabs/Albany
https://github.com/trilinos/Trilinos

First Order (FO) Stokes/Blatter-Pattyn Model8

Stokes(𝒖, 𝑝) in Ω ∈ ℝ3

FO Stokes(𝑢, 𝑣) in Ω ∈ ℝ3

Hydrostatic approximation +
scaling argument based on the fact
that ice sheets are thin and normals

are almost vertical

Discussion:

• Nice “elliptic” approximation to full Stokes.

• 3D model for two unknowns (𝑢, 𝑣) with nonlinear 𝜇.

• Valid for both Greenland and Antarctica and used in
continental scale simulations.

−𝛻 ∙ (2𝜇 ሶ𝝐1) = −𝜌𝑔
𝜕𝑠

𝜕𝑥

−𝛻 ∙ (2𝜇 ሶ𝝐2) = −𝜌𝑔
𝜕𝑠

𝜕𝑦

, in Ω

ቊ
−𝛻 ∙ 𝝉 + 𝛻𝑝 = 𝜌𝒈

𝛻 ∙ 𝒖 = 0
, in Ω

➢ Fluid velocity vector: 𝒖 = 𝑢1, 𝑢2, 𝑢3

➢ Isotropic ice pressure: 𝑝

➢ Deviatoric stress tensor: 𝝉 = 2𝜇𝝐

➢ Strain rate tensor: 𝜖ij =
1

2

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖

➢ Glen’s Law Viscosity*: 𝜇 =
1

2
𝐴(𝑇)−

1

𝑛
1

2
σ𝑖𝑗 𝝐𝑖𝑗

2

1

2𝑛
−
1

2

➢ Flow factor: 𝐴(𝑇) = 𝐴0𝑒
−

𝑄

𝑅𝑇

Ice behaves like a very viscous non-Newtonian shear-thinning fluid (like lava flow)
and is modeled quasi-statically using nonlinear incompressible Stokes equations.

Basal boundary Γ𝛽
)

Lateral boundary Γ𝑙

Ice sheet

Surface boundary Γ𝑠

(Neumann)

(Neumann, Stress-Free)

(Robin)

MueLu/Belos – preconditioned iterative solver9

Problem: Ice sheet meshes are thin with high
aspect ratios

• First, matrix-dependent structured
multigrid to coarsen vertically

• Second, smoothed aggregation AMG on
single layer

• Implemented in Trilinos – MueLu

Algebraic
Structured MG

Unstructured
AMG

Algebraic
Structured MG

Solver: Preconditioned Newton-Krylov

• MDSC-AMG is used as preconditioner for GMRES

• Performance portability through Trilinos/MueLu (multigrid) + Trilinos/Belos (GMRES)

See (Tezaur et al., 2015), (Tuminaro et al., 2016)

Solution: Matrix dependent semi-
coarsening algebraic multigrid (MDSC-AMG)

Phalanx – directed acyclic graph (DAG)10

Advantages:

• Increased flexibility, extensibility, usability

• Arbitrary data type support

• Potential for task parallelism

Disadvantage:

• Performance loss through fragmentation

Extension:

• Performance gain through memoization

DAG Example (memoization)DAG Example

Single CPU

or GPU

DAG provides flexibility; Memoization improves performance

Sacado – automatic differentiation (AD)11

• AD provides exact derivatives - no Jacobian derivation or hand-coding required

• Allows for advanced analysis capabilities – easily construct any derivative, hessian
• Ex: Optimization, sensitivity analysis

• Sacado data types are used for derivative components via class templates
• DFad (most flexible) – size set at run-time

• SLFad (flexible/efficient) – max size set at compile-time

• SFad (most efficient) – size set at compile-time

Fad Type Comparison: Tetrahedral elements (4 nodes), 2 equations, ND = 4*2 = 8

AD capability allows for advanced analysis while maintaining performance portability

Kokkos – performance portability12

• Kokkos is a C++ library that provides performance portability across multiple
shared memory computing architectures

• Abstract data layouts and hardware features for optimal performance on current
and future architectures

• Allows researchers to focus on application or algorithmic development instead of
architecture specific programming

With Kokkos, you write an algorithm once for multiple hardware architectures.

https://github.com/kokkos/kokkos/

https://github.com/kokkos/kokkos/

Phalanx Evaluator – templated Phalanx node 13

A Phalanx node (evaluator) is constructed as a
C++ class

• Each evaluator is templated on an
evaluation type (e.g. residual, Jacobian)

• The evaluation type is used to determine
the data type (e.g. double, Sacado data
types)

• Kokkos RangePolicy is used to parallelize
over cells over an Execution Space (e.g.
Serial, OpenMP, CUDA)

• Inline functors are used as kernels

• MDField data layouts
• Serial/OpenMP – LayoutRight (row-major)

• CUDA – LayoutLeft (col-major)

template<typename EvalT, typename Traits>

void StokesFOResid<EvalT, Traits>::

evaluateFields(typename Traits::EvalData workset) {

Kokkos::parallel_for(

Kokkos::RangePolicy<ExeSpace>(0,workset.numCells),

*this);

}

template<typename EvalT, typename Traits>

KOKKOS_INLINE_FUNCTION

void StokesFOResid<EvalT, Traits>::

operator() (const int& cell) const{

for (int node=0; node<numNodes; ++node){

Residual(cell,node,0)=0.;

}

for (int node=0; node < numNodes; ++node) {

for (int qp=0; qp < numQPs; ++qp) {

Residual(cell,node,0) +=

Ugrad(cell,qp,0,0)*wGradBF(cell,node,qp,0) +

Ugrad(cell,qp,0,1)*wGradBF(cell,node,qp,1) +

force(cell,qp,0)*wBF(cell,node,qp);

}

}

}

Template parameters are used to get hardware specific features.

Current Performance Results

How well does MALI perform?

Performance Overview15

Major improvements to finite element assembly time

• Memoization to avoid unnecessary data movement and computation

• Tpetra::FECrsMatrix refactor to reduce memory footprint and data movement

• Boundary condition refactor to reduce memory footprint and data movement

Solver portability on Cori and Summit

• MueLu SemiCoarsen refactor using Kokkos

• Ifpack2 portable smoothers tuned to GPU hardware

Automated performance testing/tuning

• Changepoint detection for performance monitoring

• Bayesian optimization for performance tuning

Watkins, J., Carlson, M., Shan, K., Tezaur, I., Perego, M., Bertagna, L., Kao, C. et al.
“Performance portable ice-sheet modeling with MALI.” (Submitted, IJHPCA) https://arxiv.org/abs/2204.04321

Applications

Albany-
standalone

DOE Pre-Exascale

NERSC Cori

OLCF Summit

Performance

Performance
Optimization

https://arxiv.org/abs/2204.04321

Major improvements to finite element assembly16

Improvements (GIS [1-7km])

• ~2x CPU speedup over original

• ~27x GPU speedup over original

Wall-clock time (GIS [1-7km])

• ~11x GPU speedup over CPU (node)

Scalability (AIS [16,1km], TW [1-10km])

• Weak Efficiency: ~82% CPU/GPU

• Strong Efficiency: ~99% CPU, ~70% GPU

0

20

40

60

80

100

120

2018 2019 2020 2021

W
a
ll
-c

lo
c
k
 T

im
e
 (

s)

Calendar Year

CPU GPU

80

85

90

95

100

1 4 16 64 256

E
ff

ic
ie

n
c
y
 (

%
)

Number of Nodes

CPU GPU

60

80

100

4 8 16

E
ff

ic
ie

n
c
y
 (

%
)

Number of Nodes

CPU GPU

Solver portability on Cori and Summit17

Setup:

• Same input file for all cases
• Performance portable point smoothers

• No architecture specific tuning

Results:

• Performance degrades at higher resolutions
• (645->1798 total linear iterations)

• GPU scaling slightly better

• Speedup on GPU
• 3.2-4.1x speedup Summit over Cori

• 2.1-2.3x speedup V100 over POWER9

Speedup achieved over MPI-only simulations
without architecture specific tuning

Automated performance testing/tuning18

Changepoint Detection

• Autodetects performance
regressions/improvements

Bayesian Optimization

• Autotunes performance parameters

Example: Kokkos regression/improvement Example: Optimizing multigrid parameters using GPTune

Carlson, M., Watkins, J., Tezaur, I. “Automatic performance tuning for MPAS-Albany Land Ice.” (Submitted, JCAM)

Future Performance Goals

What are next steps for MALI performance?

Future Performance Overview20

Applications

E3SM + MALI

MALI-standalone

DOE Exascale

NERSC Perlmutter

OLCF Frontier

ALCF Aurora

Performance

Algorithmic improvements

Performance Optimization

Applications21

E3SM+MALI

• Dynamic ocean/ice-sheet interface
• Quantify performance characteristics

• Quantify load balancing

• Establish benchmarks

MALI-standalone

• Level sets, mesh adaptivity, initialization
• Quantify performance characteristics

• Quantify load balancing

• Establish benchmarks

DOE Exascale22

NERSC Perlmutter (NVIDIA GPU)

• Automated MALI testing

• Performance optimization
• AMD EPYC & NVIDIA A100

• Establish benchmarks

OLCF Frontier (AMD GPU)

• All TPLs have support

• Unified Virtual Memory (UVM) optional

• Start testing on Crusher

ALCF Aurora (Intel GPU)

• Kokkos/SYCL

• Identify what’s needed in Trilinos

Performance23

Algorithmic Improvements

• Improve convergence of linear
solver on GPUs
• Damped block Jacobi for fine grid

smoother

Performance Optimizations

• Scalability study on Perlmutter
• Benchmarks for forward solve/initialization

• Fix CUDA-Aware MPI

• OpenMP build for CPU

Example: AIS 1km Block Gauss-Seidel & Jacobi
(Jonathan Hu)

Example: Issues with AIS weak scalability on Perlmutter
(Max Carlson)

Conclusions

Conclusions25

• HPC software/hardware is changing rapidly which poses a significant challenge for
open-science

• Multiple performance portable features exist in the MALI software stack to meet
this challenge

• Performance & portability for exascale is a work in progress
• 1.9x speedup of V100 node over POWER9 node in total solve time

• CPU scales better than GPU using best solvers (65.1% vs. 41.2% weak scaling efficiency)

• Maintaining performance and portability is crucial for an active code base
• Changepoint detection adds level of confidence to performance regressions/improvements

• Bayesian optimization adds level of confidence to optimal parameters for given system

Watkins, J., Carlson, M., Shan, K., Tezaur, I., Perego, M., Bertagna, L., Kao, C. et al.
“Performance portable ice-sheet modeling with MALI.” (Submitted, IJHPCA) https://arxiv.org/abs/2204.04321

https://arxiv.org/abs/2204.04321

Funding/Acknowledgements26

Support for this work was provided by Scientific Discovery through Advanced Computing (SciDAC) projects funded

by the U.S. Department of Energy, Office of Science (OS), Advanced Scientific Computing Research (ASCR) and

Biological and Environmental Research (BER).

Computing resources provided by the National Energy Research Scientific

Computing Center (NERSC) and Oak Ridge Leadership Computing Facility (OLCF).

Backup

Weak Scalability Study28

Architectures:

• NERSC Cori-Haswell (HSW): 32 cores/node

• NERSC Cori-KNL (KNL): 68 cores/node

• OLCF Summit-POWER9-only (PWR9): 44 cores/node

• OLCF Summit-POWER9-V100 (V100): 44 cores/node
+ 6 GPU/node

Benchmark:

• First-order Stokes, hexahedral elements

• 16 to 1km structured Antarctica meshes, 20 layers

• 1 to 256 compute nodes
Mesh Example: 16km, structured Antarctica

mesh (2.20E6 DOF - 20 layer, 2 equations)
Benchmark used to assess performance

Autotuned performance portable smoothers29

Smoother parameters:

• Limited to three levels, two smoothers

• Good parameter ranges provided by
Trilinos/MueLu team

Results:

• Applied to four cases (Greenland, 3-20km)
• Different architectures (blake: 8 CPU nodes/weaver:

GPU)
• Different equations (vel: FOStokes/ent: Enthalpy)

• 100 iterations, random search

• Timer: Preconditioner + Linear Solve

Autotuning framework: Carolyn Kao

Random search used to improve performance of multigrid smoothers on GPU

Performance on Cori and Summit30

Setup:

• Tuned input files
• CPU block preconditioner

• Autotuned GPU point smoothers

• Multiple samples for confidence

Results:

• CPU scales better than GPU
• 16->18 avg. linear iterations on CPU

• 88->194 avg. linear iterations on GPU

• Speedup on GPU
• 1.9->1.2 speedup V100 over POWER9

• Speedup degrades at higher resolutions

Speedup over MPI-only simulations;
Tuned CPU model scales better

Areas to improve31

Weak Scaling Efficiency:

• Higher is better

• Areas of improvement
• CPU/GPU preconditioner construction

• GPU linear solve (better precond.)

Proportions of total solve time:

• Improve assembly on CPU
• 40-60% of total solve time

• Improve GPU linear solver
• 80-90% of total solve time

Focus on improving GPU solver

Changepoint detection for performance testing32

• Changepoint detection: process of finding abrupt variations in time series data

• Manual testing and analysis is increasingly infeasible

Total Time for a 2-to-20 km resolution Antarctica mesh, executed nightly in Albany Land Ice

Two STDs

Changepoint Detection: Kyle Shan

Maintaining/improving performance and portability in the presence of active development is essential

Detecting performance regressions/improvements33

Total Fill time for a 1-to-7 km resolution Greenland mesh, executed nightly in Albany Land Ice

Example: Transition to Kokkos 3.5.0 caused a performance regression but was soon fixed

Regression Improvement

Two STDs

Algorithmic performance comparisons34

Speedup of Total Fill time from memoization for a 1-to-7 km resolution Greenland mesh, executed nightly in Albany Land Ice

Example: Memoization comparison (w. & w.o.) shows that relative performance has increased

99% confidence interval
for the mean

