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Abstract

Waveform diversity desires to optimize the Radar waveform given the constraints and objectives
of a particular task or scenario. Recent advances in electronics have significantly expanded the
design space of waveforms. The resulting waveforms of various waveform diverse approaches
possess complex structures which have temporal, spectral, and spatial extents. The utilization of
optimization in many of these approaches results in complex signal structures that are not imagined
a priori, but are instead the product of algorithms. Traditional waveform analysis using the
frequency spectrum, autocorrelation, and beampatterns of waveforms provide the majority of
metrics of interest. But as these new waveforms’ structure increases in complexity, and the
constraints of their use tighten, further aspects of the waveform’s structure must be considered,
especially the true occupancy of the waveforms in the transmission hyperspace. Time-Frequency
analysis can be applied to these waveforms to better understand their behavior and to inform future
design. These tools are especially useful for spectrally shaped random FM waveforms as well as
spatially shaped spatial beams. Both linear and quadratic transforms are used to study the
emissions in time, frequency, and space dimensions. Insight on waveform generation is observed

and future design opportunities are identified.
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1. Introduction and Background
Since the beginning of the 20" Century, Radar has provided mankind a new way of seeing the

physical world. Utilizing the same underlying physics as optical light, Radar has provided us with
a means to utilize frequencies far lower than capable of seeing with the human eye. From an initial
use of ranging and detecting targets, Radars have been used to search, track, and image [1, section
1.8] environments from across oceans [1, section 1.9] to across the human hand [2]. This diverse
set of applications in turn requires a diverse set of background knowledge, including mathematics,
electromagnetics, analog and digital electronics, signal processing, and many other disciplines
relevant to specific Radar applications. It is impossible to cover over 100 years of radar research
in a single paper, let alone a book. Instead, the key concepts relevant to this work will be covered
in this chapter. Emphasis will be given to the core signal processing techniques used for radar
measurements, the types of waveforms used in radar systems, and means of analyzing radar

waveforms.

1.1 Intro to Radar Signal Processing
Here, a basic understanding of the Radar concept and the key measurements made by a radar

system is discussed. Specifically, the concepts of pulse compression, Doppler processing, and

basic array processing.

1.1.1 Basic Principles
Radars utilize the reflections of electromagnetic waves anywhere from 1 MHz to over 100 GHz to

infer properties of the physical entities which reflect the waves back towards the radar. Depending
on the energy of the reflection, the delay of an echo, and frequency shifting of the echo all relate
to different mechanical properties of the reflector. These are in turn used to estimate the scatterer’s

range, velocity, and angular direction relative to the radar system.



1.1.2 Radar Range Equation
Using a Radar, an electromagnetic pulse is emitted from some transmitter, reflected off objects in

the environment, and then these reflections of the pulse are absorbed at some receiver. The ability
of a receiver to utilize the reflection is primarily a function of the signal-to-noise ratio (SNR),
which is described by the radar range equation [1, section 2.5], which for a monostatic case (co-

located receiver and transmitter) is given as:

2
SNR :M (1.1)
(47)°R°KT,FB

This equation can be broken down into the terms as they appear in the physical emission process.
Pt is the power of the transmitted signal, and Gt is the gain from the transmitted antenna in the
direction of the target. The transmitter’s emission radiates from the transmitter in the shape of a
sphere, and the power is spread over the surface of this spherical wavefront. The amount of signal
power at the object is divided by the surface area of this wavefront, which is given as 4nR2. X is
the radar cross section (RCS) of the object illuminated by radar a distance R away in meters. The
reflection then returns to the receiver, whose power is again divided by the surface area of this
wavefront, 4nR%. The receiving antenna scales the reflection by its effective area, which is given

as.:

_GA° 1.2
A =S4 (12)

Losses from the electronics and circuits inside both the transmitter and receiver are quantified in a
noise figure F. Finally, the resulting signal power is divided by the thermal noise power, given as:

N =kT,B (1.3



Where k is Boltzmann’s constant (1.38 x 102 watt-sec/K), To is the temperature of the receiver,
and B is the bandwidth of the receiver.

Any additional detrimental effects to the receiver’s ability to detect reflections from the
transmitter are quantified as interference 1. A signal-to-interference-noise ratio (SINR) can then

be determined as:

S
SINR = 1.4
I +N ( )

Where S is the signal power at the receiver. Depending on the environment the radar is utilized
in, I may or may not be a significant contribution in SINR. Interference is a particularly important
consideration in environments with multiple spectrum users within the spectral band of

operation.

1.1.3 Continuous Wave and Pulsed Operation
Radars are operated temporally in one of two ways: continuous wave (CW) mode and pulsed mode.

In a CW mode, the transmitter continuously illuminates the environment, and the receiver
continuously listens for echoes from the transmitter. In a pulsed mode, the transmitter turned on
and off periodically for a time z. While the transmitter is off, the receiver listens for echoes from
the transmitter until the transmitter begins emitting the next pulse. The rate at which the transmitter
emits a pulse is called the pulse repetition frequency (PRF).

CW mode provides constant power on a target, which can realize higher SNRs. Longer
target dwell times enable the detection of small doppler velocities, which is particularly important
in micro-Doppler applications [3]. Conversely, distortion on the receiver can occur if there exists
inadequate isolation between the transmitter and the receiver. Alternatively, pulsed operation does

not require as much isolation between the transmitter and receiver, as the pulse transmission and



reception generally occur at different points in time. In this work, it is assumed the radar is

operating in pulsed mode unless otherwise specified.

1.1.4 Radar Ranging
One of the basic measurements a radar system can make is a range measurement. In a monostatic,

pulsed radar, the time delay between the transmission of a pulse and the return of an echo is
proportional to the radial distance between the radar and the electromagnetic scatterer that
produced the echo. The electromagnetic wave travels at the speed of light ¢ (299,792,458 m/s) to

and from the scatterer, with the resulting range being [1, 1.2]:

CAT
R=21"_ 15
> (1.5)

The radar can only measure range unambiguously until the time that the next pulse is emitted
from the transmitter. Once a consecutive pulse is emitted from the radar, the echo could be from
the old pulse or the new pulse, and these delays correspond to different ranges. The unambiguous

maximum range is given as [1, 1.5]:

c
R = 1.6
‘@ 2PRF ( )

In order to resolve two closely spaced scatterers, the temporal extent of the radar pulse must
be smaller than the time delay between the return of the scatterer echoes. This can be restated as a

range resolution, which can be written as [1, 18.5]:

Ct
AR=" 17
5 (L.7)

Where 1 is the temporal extent of the radar pulse. To achieve finer range resolution, the temporal
extent of the radar pulse must be shortened. Otherwise, pulse compression techniques must be

utilized (see section 1.1.6).



1.1.5 Coherent Integration
One means of obtaining a smaller AR is for the transmitter to utilize a very small t. One

consequence of short pulses is that the resulting spectra will be very wide in frequency extent,
resulting in a large bandwidth. This large bandwidth will reduce the SNR of the radar according to
the radar range equation. One method of improving the SNR is to utilize coherent integration [1,
14.8]. By performing Mconh measurements of the same scene using Mcon transmitted pulses, the
resulting received, discrete signal from each measurement can be summed sample by sample. For

each received signal ym[n] = y(nTs), the resulting signal becomes:

Mcoh
Yo [N1= D Y] (1.8)

m
It is assumed that the signal component of each measurement is the same, while the noise
component is independently and identically distributed Gaussian noise. This process reduces the
noise signal by Mcon® and the noise power by Mcon. The radar range equation can now be written

as:

_ M coh PthGrﬂZO' _

SNR_, = _
" (47)°R*KT,FB coh

SNR (1.9)

1.1.6 Pulse Compression
Another means of both improving the SNR and achieving finer range resolution is by a process

known as pulse compression [1, Chapter 20], which decouples the temporal extent of the pulse
from range resolution. By applying a filter to the received signal, the temporal extent of the signals

is compressed by converting the received temporal signal into a correlation signal.



The most utilized filter for pulse compression is the matched filter, which is often described

as the pulse compression filter which maximizes SNR in the presence of white noise [1, 14.10].
For a transmitted radar pulse s(t), the matched filter is given as [1, 20.2.3]:

h(t) = s (-t) (1.10)

The matched filter response of a point scatterer is equivalent in structure to the

autocorrelation of s(t). The width of the mainlobe of this response is inversely proportional to the

bandwidth B of the power spectral density (PSD) of s(t) according to the Wiener-Khinchin

theorem, described as [4]:

Rss() = [, S(Ne*™Tdf (1.12)
where R (7) is the autocorrelation of s(t) and S(f) is the PSD of s(t). In order to resolve two
closely spaced scatterers in the matched filtered response, the mainlobe width of the responses

must be smaller than the time delay between the scatterer echoes. Thus, the resulting range

resolution now becomes:

Cc
AR = 1.12
o5 (1.12)

Pulse compression filters other than the matched filter can be used, known as mismatch
filters. One consequence of pulse compression is the presence of sidelobes, which can mask nearby
scatterers with smaller RCS values, such as in Figure 1.1 and 1.2%. Mismatch filters can create
responses with sidelobes lower than the matched filter. However, because they deviate from the
matched filter, they will result in some loss of SNR. Another adverse side effect is a potential

broadening of the mainlobe which occurs with some choices of mismatch filters.
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Figure 1.1: The matched filter pulse compression response of two equal power scatterers
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1.1.7 Doppler Processing

Another basic measurement a radar can perform is a measure of change in range, or radial velocity

relative to the radar. This is accomplished by the Doppler effect, a frequency shift on a reflected

1500
Range (m)

electromagnetic wave resulting from a moving scatterer.

Consider a monstatic pulsed radar which transmits a series of M pulses and, after some time
delay, receives the set of pulses back from the environment. Traditional Doppler processing
operates on this set of M pulse repetition intervals (PRI) known as a coherent pulse interval (CPI).
The set of the M received signal samples form a data grid in fast time (range) and slow time (pulse).

This grid is a single slice of the Radar data cube shown in figure 1.3>. The doppler shifts of the

2000

2500

3000

scatters are observed across slow time through phase shifts on a pulse-to-pulse basis.
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Figure 1.3: A geometric representation of the radar data cube. [ From Principles of Modern Radar,

Vol. 2, Section 5.2.2.3]

First, it is assumed that the scatterers in the CPI, though potentially moving, occupy the
same region of space such that they exist within the same range sample (which will be referred to
as a range bin) [1, 14.2.4]. Secondly, it is assumed that the scatters in the scene are moving at a
near constant velocity in range within the CPI (Such that they will be constrained to a single
Doppler bin). For a point scatterer, the received echo will have a constant phase shift from pulse

to pulse. The resulting slow time samples at the range of that scatter will form a complex tone,

represented mathematically as:

Ym = €Xp (jznfdtslow) (1-13)



Where fq is the doppler frequency shift from the radar’s center frequency, and tsiow IS a slow time

indexing vector, corresponding to the start time of each PRI.

After performing pulse compression on each pulse, a Fourier transform is applied across

slow time at each range bin. This transforms the data grid from fast time by slow time to Range

(fast-time) by Doppler.
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Figure 1.4: Pulse compressed response for each pulse in the CPI.
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Figure 1.5: Range-Doppler map after Doppler Processing.
Ideally, the point scatterers would resolve as points on the range-doppler map, but the range
sidelobes from pulse compression prevent this. Additionally, any variation between the waveforms
between pulses will result in a sinc (sin(x)/x) structure when Fourier transformed, manifesting as
doppler sidelobes in the range-Doppler map. However, much like range sidelobes, a variety of

techniques have been developed to reduce doppler sidelobes, including windowing.

1.2 Advanced Waveforms
An important consideration in a radar system is the waveform. The waveform has many properties

which impact the entire radar system and its structure can vary depending on available resources

and potential application. Here, we provide a brief overview of a subset of Radar waveforms



relevant known as frequency modulated (FM) waveforms, as well a short discussion on waveform

diversity.

1.2.1 Deterministic FM Waveforms
FM waveforms can be both deterministically and pseudo-randomly generated. Here, we discuss

the deterministic FM waveforms.

1.2.1.1 Linear FM Waveforms
The earliest radar systems used a monotone as their waveform, as it was the simplest to generate.

However, as discussed in the pulse compression section, waveforms with wider bandwidths can
provide increased Radar performance. The easiest method to generate and recreate a waveform
with bandwidth was the linear frequency modulated waveform (LFM) [4], given as:

s(t) = exp 2n(kt + f)t) (1.14)
Where k is the chirp rate of the waveform, and f; is the starting frequency. The LFM is by and far
the most used Radar waveform [4] and has several defining characteristics. First, the
autocorrelation of the LFM has a characteristic sinc structure, with a peak sidelobe level (PSL) of
about -13dB as shown in figure X1.6. Secondly, the power spectral density (PSD) of an LFM has
a square band with roll-off, exhibiting a good degree of spectral containment shown in figure 1.7X.
Thirdly, the ambiguity function of the LFM exhibits a ridge in delay-doppler, demonstrating a

linear coupling between delay and doppler.



dB

1 m

_4{. i i i i i
-0.025 -0002 0.5 -0.01¢ 0005 O 0005 001 0.015 002 0025

Normalized Delay

Figure 1.6: Instantaneous frequency function of a tangent NLFM waveform.
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1.2.1.2 Deterministic Nonlinear FM
While the LFM has been used in many radar systems successfully, other FM waveforms have been

developed for various purposes. These waveforms are known as nonlinear FM waveforms
(NLFM). Some of these waveforms are altered to provide a communication structure. Others
attempt to alter the autocorrelation to reduce sidelobe levels, while still utilizing the matched filter
to maximize SNR.

The resulting sidelobes from the pulse compression of an LFM are relatively high.
However, these sidelobes and the general pulse compression shape of the waveform can be altered

by shaping the spectrum due to the Fourier relationship between the PSD and the autocorrelation.



One relatively simple way this can be done is by changing the instantaneous frequency function
from linear to nonlinear.

In a linear instantaneous frequency function, the waveform spends an equal amount of time
at each frequency (or frequency interval). By deviating from this, the spectrum can be shaped
according to the principle of stationary phase (PSP) [4].

The PSP describes the relationship between the rate of frequency change, or chirp rate, and

spectral energy density as an inverse relationship written as:

2 o o 92D
U(I* = 2m 350 (1.15)

Where ¢"'(t;) is the chirp-rate at time tx and g(t«) is the amplitude of the pulse at time tx (For FM
waveforms, this is a constant) [4]. This can be observed by comparing an LFM to a monotonically
increasing NLFM. In linear FM, the waveform’s spectrum is nearly even within the 3dB
bandwidth. The linear FM also spans the same frequency interval for each equal sized time
interval. Compare this to a monotonically increasing NLFM with a tangent instantaneous
frequency curve shown in figure 1.9. Here, the waveform spends very little time at the lowest and
highest frequency intervals while spending the most time at the middle frequency intervals. When
one studies the PSD of the tangent NLFM as shown in figure 1.910, the majority of the energy is

in the middle frequency interval, thus demonstrating the PSP.
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Figure 1.9: Instantaneous frequency function of a tangent NLFM waveform.
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Figure 1.10: PSD of a tangent NLFM waveform.

1.2.2 Random FM Waveforms
The waveforms described above have generally have a deterministic structure. However, not only

is it advantageous to shape the spectrum of a waveform, but also to have a waveform structure that
allows the generation of non-recurrent waveforms. One class of waveforms which utilizes a wide
number of unique waveforms are random FM waveforms. These waveforms utilize an FM
structure which is derived in part from some stochastic function.

A baseline, non-optimized FM noise waveform, studied in [5-9], can be expressed as

s(t) =exp( )2z j f(z)dz) =exp(jo(t)) (1.16)

for instantaneous frequency f(t), the modulating random process that, when integrated, provides a

random phase. The random process is assumed to be Gaussian. Much like the previous discussed



FM techniques, the random FM waveform possesses a single frequency at each instant in time.
The form provides, like the previous FM waveforms discussed, a constant envelope and a
continuous phase, providing amenability to high-power amplifiers.

While the baseline form of random FM has been around for decades [5-6], it has only been
in recent years that spectral shaping has been incorporated. Spectral shaping of random FM
provides a means to incorporate spectral containment for the waveforms, and the utilization of
spectral shapes which lead to low autocorrelation sidelobes due to the Weiner- Khinchin theorem.
Typically, the spectral shape utilized to provide low autocorrelation sidelobes is generally a
wideband Gaussian-shaped spectrum. Since the Fourier transform of a wide Gaussian is a narrow
Gaussian, this PSD shape will result in an autocorrelation that is nearly impulse like and possessing
theoretically no sidelobes. This has been recommended as an ideal template in several recent works
[10-15].

In total, random FM waveforms provide a constant amplitude and continuous phase for
amenability to high-power transmitters. Their generation via a noise modulation process provides
uniqueness which is preserved through spectral shaping. The spectral shaping provides spectral
containment and low autocorrelation sidelobes. Lastly, the noise-like structure provides non-
repetition and high dimensionality to the waveforms and waveform sets. All of these properties
have made random FM an attractive waveform choice not only for traditional radar sensing modes,
such as moving target indication and imaging applications, but also for novel sensing modes,

including complementary waveform sidelobe cancellation [15], and real-time sense and notch [16].

1.2.2.1 Optimized Random FM Noise
One means of providing spectral shaping for waveforms is through the use of optimization. While

the baseline case in 1.2.2 can provide a somewhat effective waveform, often time it is desirable to



maximize certain properties of the waveform. Additionally, waveforms for specific applications
may be subject to several constraints. Both the maximization of performance and satisfaction of
constraints can be accomplished via an optimization approach to Random FM Noise.

The optimization problem has a general structure of:

msin{J ()}, gi(s)=c;,h;(s) > d; (1.17)

forsomei=1.2,...,nand j=1,2,....m. J(S) is a cost function, which represents properties of the
waveform to minimize, subject to the equality constraints gi(s) and the inequality constraints h;(s)
[17]. The variable s usually corresponds to the waveform itself, but can also be formulated where
s corresponds to the phase function, instantaneous frequency function, or other compacted
waveform representations [18]. Several approaches to optimizing waveforms that have recently
been utilized for optimized random FM noise waveforms include a greedy search [19], alternating

projections on convex sets [20], and gradient descent methods [21-22].

1.2.2.2 Process-Based Random FM Noise
Sometimes the computational cost of optimization prohibits its use in the generation of Random

FM waveforms. As an alternative, various processes and algorithms can be used to shape the
baseline random FM in 1.2.2 to provide a more effective waveform. These approaches can vary as
widely, but their general operation involves an input random distribution which is then transformed
into a well-behaved random FM waveform. These approaches can utilize an optimized transform

structure, or they can simply exploit the mathematical behavior of the phase functions.

1.2.2.3 Waveform Diversity
A higher-level goal of optimizing waveforms is waveform diversity. Waveform Diversity, as

defined by the IEEE Standard 686-2008 definition, is “Optimization of the radar waveform to



maximize performance according to particular scenarios and tasks.” [23]. As the RF spectrum
becomes increasingly crowded with users, and the desire for improved radar performance grows,
it is important to consider the occupancy of the waveform emission within the transmission
hyperspace [24], and how best to utilize it. Here, several dimensions of the transmission hyperspace

are covered.

1.2.2.3.1 Temporal and Spectral Diversity
Two of the most important dimensions to consider are time and frequency dimensions. The

temporal extent, or pulse width of a waveform T, and the spectral extent, or bandwidth of a
waveform B, combine with the initial time to and center frequency f. provide a means to measure
a waveforms occupancy in time and frequency respectively. The time-bandwidth product, BT,
provides a measure of a dimensionality of a waveform, and the degrees of freedom available.
Several considerations must be made when describing a waveforms temporal and spatial
extent with its time-bandwidth product. One, there exist multiple definitions for both pulse width
and bandwidth. The most commonly used is the 3dB width, but can also include the null-to-null
width, RMS power, 99% power width, and others. Secondly, the waveforms under consideration
(FM) can only truly occupy a single frequency at a single point in time. Therefore, the spectral
extent over a smaller time interval is not the same as over a temporal extent T. Later, we will

consider time and frequency jointly, and provide a joint measure of temporal and spectral extent.

1.2.2.3.2 Spatial Diversity
Another set of dimensions to consider are the spatial dimensions. Since most RF emissions are not

uniform in power in all directions, some signals are stronger in some regions of space than others.

From a transmission perspective, spatial diversity is controlled by beamforming and steering,



either mechanically or electronically. The spatial extent of waveform is provided by the beamwidth
in both azimuth and elevation angles, and the direction of the beam, provided by faz. Sel, 0z, and
Ge1. Similar considerations to the temporal and spectral extent of the physical emission must be
considered for the azimuth and elevation dimensions. Additionally, a joint measure of the spatial

extent and either temporal or spectral extent can be formed as will be seen later in this thesis.

1.2.2.3.3 Other Forms of Waveform Diversity
There exist other dimensions in which to consider waveform diversity. When utilizing a code

sequence or a phase pattern, code diversity can be considered. This is a particularly important
dimension to consider in a joint Radar-Communications waveform, or when utilizing the coherent
integration gain of noise waveform autocorrelation sidelobes. Another dimension for consideration
is polarization diversity. By utilizing any two antipodal points on the Poincare sphere, the resulting
emmissions should be orthogonal [23]. This has recently been demonstrated with FM noise

waveforms [25].

1.2.2.4 Waveform Agility
Often, the transmission hyperspace with respect to other spectrum users is not static, but dynamic.

This results in smaller unoccupied subspaces of the transmission hyperspace throughout the entire
CPI. One way to compensate for a dynamically changing environment is waveform agility. By
changing the waveform on a pulse-to-pulse basis, greater subspaces of the transmission hyperspace
will be open for the waveform to occupy. While these waveforms are often generated and chosen
in advance, it is possible to adapt some features of the waveform based on the environment. This

usually requires some form of cognitive sensing, in which the RF environment is sensed, a



determination of the other spectrum users is made, and then future waveforms are modified to
adapt to the updated RF environment.

Since Random FM waveforms by their nature have a time-varying, non-stationary instantaneous
frequency, it is useful to utilize the toolkit provided by time-frequency analysis. Time-Frequency
transforms will be used to study a variety of random FM waveforms with different generation

methods and different spectral profiles.

1.2.3 Waveform Designs under Consideration
Recently, there has been substantial active research on different random FM waveforms. Due to

the large volume of random FM design approaches, it would be impossible to cover them all in a
single work. Rather, a subset of waveforms will be considered which have properties that are

amenable to high power emission and good range sidelobe performance.

1.2.3.1 PRO-FM Waveforms
The first waveform type to be considered are Pseudo Random Optimized FM waveforms (PRO-

FM). PRO-FM waveforms are generated via an alternating projections on convex sets optimization
approach [20]. The PRO-FM process begins by specifying an ideal frequency template U. Next, a
random phase waveform is generated and is projected into the frequency domain, where it is
shaped to the magnitude U. After spectral shaping, the resulting spectrum is transformed back into
the time domain, and the phase of the shaped waveform is used as the phase trajectory of a new
FM waveform. This approach is repeated for K iterations until it converges. The optimized
waveform will generally follow the template closely within a couple normalized frequencies, but
will not closely follow the template for frequencies farther away from the center frequency. Figures

1.11 and 1.12 show the optimized waveform relative to a spectral template.
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Figure 1.11: Power Spectral Density of a single PRO-FM waveform.
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Figure 1.12: Mean power spectral density of 100 PRO-FM waveforms.

1.2.3.2 FTE and Log-FTE Waveforms
The second waveform type to be considered are frequency template error (FTE) waveforms [21].

Unlike PRO-FM, FTE attempts to minimize a cost function. The FTE cost function is written as:
J =l(4s)* — u?|I? (1.18)
The cost function is a scalar function of an input signal vector s, where the vector representation
of the power spectral density is computed via A, an LxN discrete Fourier transform matrix. The
cost function becomes the Frobenious norm squared of the difference in the computed PSD and
the ideal template PSD.
One advantage FTE has over PRO-FM is, by having a cost function, a wide variety of
optimization methods exist to utilize. The norm squared operation in the cost function enforces a

convex structure on the function, making a local minimizer possible. One method that has been



demonstrated to work well with FTE [21] is a conjugate gradient descent. To minimize J, the
gradient is computed with respect to the input signal s. The next iteration of s is obtained by
subtracting off a scaled version of the gradient, written as:
Sn+1 = Sn — an Vs {J(5)} (1.19)
Where an is the step size at the nth iteration. A fixed step size can be used, but it is recommended
to adjust the step size with each iteration to improve convergence speed. The heavy ball method,
discussed in [21], is recommended to avoid converging to poor local minima of J.
A modified version of this approach is log-FTE, where the cost function is modified to:
J = Illog((4s)?) — log (u?)|I? (1.20)
Where log is the logarithm function with base 10. By evaluating a difference on a log (or dB) scale,
this modified cost function allows for faster convergence to minimizers of J. The tradeoff is that
smaller, more subtle details in the spectrum will not be emphasized as strongly as it would with

the linear FTE cost function.

1.2.3.3 TTE Waveforms
The design approach used with FTE and Log-FTE waveforms started with an unoptimized random

FM waveform and attempted to minimize the difference between the optimized waveform’s PSD
and the desired PSD. Another approach is to start off with the desired PSD template and shape the
temporal envelope to be constant modulus. These waveforms are known as temporal template error
(TTE) waveforms. The cost function for the TTE waveforms is written as:

J=|Is*©s—ul? (1.21)
where u is some desired temporal envelope from 0 to T [22]. This approach serves as a time-

domain equivalent of FTE and is effective when small amounts of AM are acceptable. Even if the



waveform must possess a constant amplitude envelope, a recommended final step in the

optimization process is a projection of the phase of s onto the desired temporal magnitude.

1.2.3.4 StoWGe Waveforms
While optimization can be an effective approach to generate high fidelity waveforms, the non-

recurrent nature of random FM means that the real-time computational costs are important to
consider. One way to mitigate the computational cost is an approach known as Stochastic
Waveform Generation (StoWGe) [26]. Instead of optimizing a single waveform or a set of
waveforms, a set of basis vectors and a mean vector are optimized instead.
First, a phase vector is defined as a linear function written as:

d=Bx+ p (1.22)
where B is a matrix whose columns b; are basis vectors, x is a random seed vector, and 1 is mean
vector. This phase vector is used to generate a new StoWGe waveform for each new random phase

vector X. The optimization process then involves minimizing the following cost function:

2 2

=[] -] 02
where u is the desired spectral template, such as ones used in FTE and log-FTE waveforms. Rather
than minimize the difference between the waveform’s PSD and a desired PSD, StoWGe aims to
minimize the difference between the expected PSD and a desired PSD. This results in waveforms
that, though their individual PSD’s might not be particularly close to a desired PSD, the average
PSD will be very close to the desired PSD, a property that works well with coherent integration.
To accomplish this, the optimization algorithm attempts to find both a B and a p that minimizes J.

Gradient-descent based methods [26] such as used for FTE and TTE waveforms are recommended.



Regardless of the method used, instead of optimizing N values as required in FTE and TTE,
StoWGe requires the optimization of N(M+1) values, where M is the size of the random seed vector
X. This naturally results in a higher computational cost for StoWGe optimization compared to the
previous methods. However, once B and [ have been optimized, new waveforms can be generated
with the desired spectral template, with the only limit being the number of values available in the
random number generator. Thus, the real-time computation required for StoWGe is only the

composition of the phase from B, X, and L.

1.2.3.5 CE-OFDM Waveforms
While StOWGe is an effective means to avoid optimization in the real-time computational costs,

its representation is not particularly compact. Another approach to avoiding optimization while
also maintaining a compact representation is Constant Envelope Orthogonal Frequency Division
Multiplexing (CE-OFDM) [27-30]. CE-OFDM is a process-based random FM waveform which
uses the Orthogonal Frequency Division Multiplexing (OFDM) signal structure often utilized in
communication systems to generate the phase of the waveforms. The use of CE-OFDM as a
random FM radar waveform has recently been shown [31] to be an effective random FM radar
waveform.

OFDM is composed of a sum of complex sinusoids each modulated with a complex valued
communication symbol pulled from some constellation [27]. Each individual subcarrier can be
written as:

Un (t) = Bnexp (j21fyt) (1.24)

Where f3,, is the nth communications symbol at the subcarrier frequency f,,. A minimum

difference in frequency is maintained between each subcarrier to ensure orthogonality. The



OFDM signal structure is utilized to generate the FM phase trajectory for the CE-OFDM
waveform using the following expression:

Zun(t)D for0 <t <T (1.25)

n=1

s(t) = exp (jZnhiR

As noted in [31], the resulting waveforms phase is composed of a repeated sum of cosine
functions. The non-linear complex exponentiation transforms the sum of cosines into a repeated
product of non-linear FM functions with limited bandwidth. Further, this repeated product in the
time domain becomes a repeated convolution in the frequency domain, and provided the carriers
have been properly selected, will result in a Gaussian spectral envelope in a like manner to the
central limit theorem in statistics. While the waveforms autocorrelation performance is not as
good as other optimized RFM waveform designs, the lack of optimization greatly reduces the
computational complexity of CE-OFDM’s generation relative to other methods. Additionally, by
only needing the subcarrier locations and modulation value to recreate a waveform, the
waveforms are generally more compact then methods requiring a full temporal representation of

the waveform.

1.3 Waveform Analysis Tools
In order to evaluate waveforms, a set of tools for analysis is required. Both linear and quadratic

representations of the waveform are needed to understand many of the critical aspects of a

waveform.



1.3.1 Fourier Analysis
Besides considering the time evolution of a waveform, the most commonly used way to analyze a

waveform is by studying its frequency spectrum generated by a Fourier transform (FT). The FT of

a signal can be written as
Ffs(t)]= T s(t)exp(—j27 ft)dt (1.26)
and its inverse can be written as
F[S(f)]= T S(f)exp(+j2r ft)df (1.27)

Where S(f) is the Fourier transform of s(t). Computing the FT of a time-domain signal provides a
frequency-domain representation of the signal, which provides a magnitude and phase of each
frequency that composes the time-domain signal. The FT is a linear transform and as a result it
satisfies the principle of superposition.

The power spectral density (PSD) of a waveform can also be computed from the FT by
PSD(f)=[S(f) (1.28)

where S(f) is the FT of the waveform s(t). The PSD provides a measure of the waveform’s power
at each frequency. Additionally, the PSD is a quadratic transform of s(t) as compared to the FT
which is a linear transform. This distinction is important, as two different waveforms can be used
in the computation of (equation of PSD), which results in a cross-power spectral density. The

cross-power spectral density is sometimes used to correlate between two different spectra.



1.3.2 Autocorrelation and Cross-Correlation
Similar to how the PSD is a quadratic representation of the waveform in frequency, quadratic

representations of the signals can be provided in the time domain. Autocorrelation is a quadratic

representation of a waveform s(t) defined as
R, (7) = j s(t+7)s (t)dt (1.29)

where 1 is a measure of time called delay. The autocorrelation provides a measure of the self-
similarity of a waveform and a time-delay shifted, complex conjugated copy of itself. The shape
of a waveform’s autocorrelation is equivalent to its matched filter response, and is therefore a
useful representation of the waveform for evaluating a waveforms performance in range
measurements.

Another way of computing the autocorrelation is via the Weiner-Khinchin theorem, which

relates the autocorrelation to the PSD by

R, (r)=F “[PSD(f)] (1.30)
where F! is the inverse FT. Thus, the spectral shape of the PSD has a direct impact on the
autocorrelation (and as an extent, the Radar performance) of the waveform.

Two different signals can be utilized in a way similar to the autocorrelation with the cross-

correlation function, written as

R, (7) = T s(t+7)v (t)dt = T v(t+7)s (t)dt (1.31)

—00 —0

where s(t) and v(t) are two different signals. Cross-correlation provides a measure of similarity of
two different signals, one of which is time-delayed and complex conjugated. Just as the
autocorrelation has the shape of a matched filter response, the cross-correlation provides the shape

of a mismatched filter response, which can be useful in determining how interference responds to



the matched filter, or how a waveform behaves depending on the structure of the mismatched filter.
Further, the cross-correlation of two waveforms provides an effective measure of their separability
in a radar sense. Just as the cross-correlation provides the shape of a mismatch filter between a
waveform and filter, and the reduction in peak provides a measure of mismatch, the peak of the
cross-correlation of two waveforms provides a measure of mismatch, or separability, between the

two waveforms.

1.3.3 Delay-Doppler Ambiguity Function
Just as the relationship of the delay-shifted versions of a signal with itself can be represented by a

function like autocorrelation, the relationship of frequency-shifted versions of a signal with itself
can be considered. The combination of both delay-shifts and frequency-shifts can be described via

the Delay-Doppler Ambiguity function, written as
(7, £) = [ s(t)s”(t—7)exp(j2r ftydt (1.32)

Which is both a function of delay and a frequency-shift referred to as Doppler. Like autocorrelation
and PSD, the ambiguity function is a quadratic transform of s(t). However, unlike autocorrelation
and PSD, the ambiguity is a two-dimensional function, considering both delay and doppler. The
ambiguity function has been described as a measure of the performance of a radar waveform. The
delay dimension provides a measure of the range performance, and the doppler dimension provides
a measure of the doppler performance of a waveform for Range-Doppler maps. Again, just like
with cross-correlation and cross-power spectral density, a cross ambiguity function can be defined

between two signals.



1.3.4 Time-Frequency Analysis
The ambiguity function provides a way to consider both the effect of delay and doppler shift of a

waveform jointly. In a similar manner, it can be useful to consider the time and frequency behavior
of a waveform jointly.

When analyzing a time-varying signal, particularly a non-stationary signal such as random
FM waveforms, the time-domain representation does not clearly show what frequencies are present
at a particular period of time. Conversely, the frequency representation does not easily describe at
what periods of time particular ranges of frequency are present in the signal. Evaluation of this

relationship necessitates the use of a joint time-frequency representation [32-33].

1.3.4.1 Linear Time-Frequency Transforms
When the FT is applied to a time-limited signal, a measurement of the frequencies present during

the temporal extent of the signal is provided. A simple approach to obtaining a joint time-frequency
approach is to consider the FT over different periods of time. This approach is formalized as the

Short-Time Fourier Transform, written as

STFT,(t, f) = I[s(r)y* (z—t)]lexp(—j2xfr)dr (1.33)

where y(t) is a window function with some specified time support. In this thesis, a rectangular
window whose extent is a fraction of the pulse width will be used unless otherwise specified.
Similar to the relationship between the frequency spectrum of a waveform and the PSD, a
spectrogram can be computed by obtaining the squared magnitude of the STFT.

The STFT is a linear transform, applied over different time swaths. Several other linear
time-frequency transforms have been used in literature before, including wavelet transforms (with

a wide variety of wavelets) [34]. Regardless of the transform used, linear TF transforms generally



involve a trade-off between temporal resolution and spectral resolution and, depending on the
sampling rate, can hinder the characterization of sophisticated intra-pulse behavior [35].

Many other linear transforms exist. Generally, these are formulated as piecewise linear
operations which are then composed in a 2-dimensional structure, such as the STFT. The other
transforms are usually linear transforms, where the transform has an adjustable variable. Most of
these transforms can be written as an integral transform, where they are integrated over the entire
domain (-o0,00) and transformed into another domain (just like the Fourier Transform goes from
time domain to the frequency domain). These transforms can be defined by their kernel, or a
function in the integrand which can be varied to achieve different transforms.

One integral transform of interest is the Fractional Fourier Transform, which can be

written mathematically as

Fe {s(O} = [FL%D 6xp{j0.5 cot(a) u?} fjooo exp {j(0.5cot (@) t? — csc(a) ut)}s(t)dt  (1.34)

t->u 21

where cot(-) and csc(-) are the cotangent and cosecant operators respectively, and o and u
correspond to the angle and radial variables of the Fractional Transform. The Fractional Fourier
Transform rotates the signal about the time-frequency plane by an angle a. A classical Fourier
Transform performs a 90° rotation of the time-frequency plane and a classical inverse Fourier
transform performs a -90° rotation of the time-frequency plane. These in-between domains behave
where time and frequency couplings amplitudes are represented, instead of a purely time of
frequency amplitude.

The fractional Fourier transform can be used to generate a 2-dimensional time-frequency
distribution known as the Radon-Wigner transform (RWT). The RWT can be written

mathematically as:

Ry(a,u) = ti au{s(t)s*(t)} for 0° < o < 180° (1.35)



The specific portion of the WRT corresponding to the Fourier transform is 90°, which also
corresponds to the rotation of the time-frequency plane as previously discussed. The resulting

transform

1.3.4.2 Quadratic Time-Frequency Transforms
Another class of joint time-frequency transforms are quadratic (or bilinear) time-frequency

transforms. Instead of a tradeoff between time and frequency resolutions, quadratic TF transforms
trade off joint time-frequency resolution (AtAf) and interference cross-terms [32].

A popular quadratic TF representation is the Wigner-Ville transform (WVD), as many
other TF transforms can be easily derived from it [34]. The WVD of a waveform s(t) is defined

mathematically as
W, (t, f)=F f[s(t+%)s*(t—%)] (1.36)

and provides a TF transform that is well-suited for analyzing signals at full temporal and spectral
resolution. Several of the nice properties of the WVD include:

- Integrating over the entire WVD in both time and frequency results in the energy of

the waveform.

- Integrating over the time dimension results in the PSD of the waveform.

- Integrating over the time dimension results in the power of the waveform over time.
Naturally, the WVD can not be fully represented in the digital world, and thus a discretization
must be applied to the WVD. The same is true for all other quadratic time-frequency
transformation which are defined analytically. However, with adequate sample support, these

transforms can be accurately represented in the digital domain.



Along with these integration properties, many other joint distributions can be derived from
the WVD. By applying a Fourier Transform across the time dimension, a different distribution

called the spectral correlation function (SCF) is obtained, and is mathematically written as:
SCF(v,f) = (wvD(t, )} (1.37)
) t N V )

This transform provides a measure of the frequency of the WVD across time. This can be useful
for visualizing spectral nulls in the waveform that can be difficult to pick out in the WVD.
If instead an inverse Fourier transform is taken across frequency, then the instantaneous

autocorrelation function is obtained, which is written mathematically as:

IAF(tT) = 0 _IT{WVD(t, m (1.38)

f -

Where 7 is delay. This provides a measure of the autocorrelation of the signal as it varies
in time. Just as a random FM waveform is in theory only at a single frequency at a given point in
time, each time interval of the IAF should in theory be constant across delay, much like the Fourier
relationship between a constant and an impulse, integrating over the time dimension results in the
autocorrelation of the waveform.

If a Fourier transform is also taken over the time dimension of the 1AF, then the ambiguity
function discussed in chapter 1 will be obtained. In a similar way, an inverse Fourier transform
across the frequency dimension of the SCF will also result in the ambiguity function (AF). This
creates a relationship between the WVD, SCF, IAF, and AF, all connected by Fourier relationships
across the 2 dimensions, shown as:

AF@,D) = f JUAF(E D} = fT _:1T{SCF(V, £} = tf F fT :T{va(t, AR (1.39)

Understanding the Fourier relationships between the AF and the WVD provides a means

to better interpret the results of the WVD. Consider the case of AWGN; the ambiguity function



will be a thumbtack. If the WVD is a thumbtack, then the WVD should be constant amplitude
across all of time and frequency. Wideband signals will result in narrow doppler in the AF, and
long temporal signals will have narrow delay in the AF. Another important aspect of the Fourier
relationships is that the delay-doppler domain is the natural domain for designing filters for the
WVD. Many quadratic time-frequency transforms can be viewed as a filtered WVD, with a
structured filter considered in the ambiguity domain. This is often done to reduce the impact of

interference cross-terms in the WVD at the cost of a reduction in resolution.



2. Time-Frequency Analysis of Random FM Waveforms
While random FM have been studied in detail on an individual basis in classical time and

frequency representations, little attention has been given to their joint time-frequency
representations. Here, six random FM waveform classes (PRO-FM, CE-OFDM, FTE, Log FTE,
TTE, and StoWGe) are studied first with one dimensional representations, and later with joint
time-frequency representations. The waveforms compared have all been generated with BT=100
and an oversampling factor of 6 (such that fs = 6B). The statistical measurements are performed

over 1,000 waveforms of each class unless specified otherwise.

2.1 Traditional Analysis of Gaussian spectral shapes
Typically, waveforms are analyzed based on their linear and quadratic representations in the time

and frequency domains. In this work, the one dimensional domains that the waveforms will be

studied in are their time representation, frequency representation, autocorrelation, and PSD.

2.1.1 Time Domain Analysis
In the time domain, the primary consideration for the linear representation using sinc basis

functions is the waveform’s amplitude. This is primarily used to validate that these random FM
waveforms are constant amplitude. This is the case for all the waveforms by the fact that they are
all FM. In reality, once the waveform signals reach the transmit antenna, they will likely obtain
some degree of AM due to distortions along the transmit chain. As a metric for determining the
degree of constant amplitude, peak-to-average power ratio (PAPR) is generally used as a figure of

merit. The PAPR of the waveform is defined as:

max({|s(t)|*}

PAPR = 21 Is@)|2dt

(2.1)

For a waveform s(t) that is defined between 0 <t < T.



Figure 1 shows a comparison of the envelopes of each of the waveforms in loopback. While
they may not appear completely flat, they have been measured after amplification where the
constant amplitude constraint is not nearly as necessary. Table 1 shows the resulting PAPR for
each of the waveform classes in both simulation and in loopback measurements. As expected, the
simulated have perfect PAPR of 1 with 0 variance due to their FM structure. While the loopback

results do possess a degree of AM, their PAPR values are relatively small.
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Figure 2.1: Comparison of several waveform amplitudes.



Table 2.1: Comparison of different waveform class amplitudes.

Waveform PRO-FM FTE Log-FTE TTE CE-OFDM StoWwGe
Mean PAPR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
PAPR Variance 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean PAPR 1.0636 1.1492 1.0653 1.0256 1.0393 1.0115
(Loopback)
PAPR Variance 3.65E-04 9.87E-04 5.79E-04 1.98E-05 8.05E-06 6.75E-06
(Loopback)

2.1.2 Frequency Domain Analysis
In terms of the waveform’s spectrum and PSD, two factors are of primary importance with

a Gaussian template: Gaussian shape and spectral containment. Validation of the Gaussian shape
is best measured via the autocorrelation, since the Gaussian shape is what provides the low sidelobe
autocorrelation structure. The second property to consider is spectral containment. If the waveform
is not well contained spectrally, it could interfere with other spectrum users. Good spectral
containment prevents with nearby users and prevents aliasing onto the mainband of the waveform.
Three performance metrics are utilized: roll-off level, percent out-of-band (OOB), and the OOB
ratio. The roll-off level is defined as the PSD values at +/- fs/2. Percent OOB is the energy within
the 3dB bandwidth relative to the total energy of the waveform. OOB ratio is the energy outside
the 3dB bandwidth over the energy within the 3dB bandwidth.

For each waveform class, figure 2.2 shows the PSD of a single waveform from each class
in simulation. On an individual basis, the waveforms have significant magnitude variation across
frequency but their average is relatively smooth. Figure 2.3 shows the average PSD across a set of

1,000 waveforms from each waveform class. Varying degrees of spectral containment is present.
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Figure 2.2: Comparison of several waveform PSDs.
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Figure 2.3: Comparison of the average PSD of several waveform classes.



For each waveform class, figure 2.4 shows the mean PSD of 1,000 loopback-captured
waveforms. While on an individual basis, the waveforms can appear to have a significant amount
of magnitude variation in their power spectral density, on average they all map very closely to the
desired template, especially within 3dB bandwidth. While some differences between each class

can be distinguished individually, such as their roll-off pattern, the use of metrics may be more

illuminating.
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Figure 2.4: Comparison of mean PSD for each waveform class.

Table 2.2 shows the various PSD metrics for each of the different waveform classes
captured in loopback. Most of these metrics are consistent across waveform class, which shows
that all of these approaches, in terms of spectral containment, are fairly equivalent once applied
to real hardware. Certainly, the impact of the filter and amplifier distortion should not be ignored

when interpreting the loopback results, as that is certainly a limiting factor in the fidelity of the



comparison. However, it is interesting to note that the roll-off level variance is the most varied
amongst the waveform classes. Specifically, Log-FTE shows extreme consistency in roll-off
level, while StoWGe shows drastically varying levels on a waveform to waveform basis.

Nonetheless, they all, on average, tend to have the same level of spectral roll-off.

Table 2.2: Comparison of different waveform class PSD metrics in loopback

Waveform PRO-FM FTE Log-FTE TTE CE-OFDM StoWwGe
(Loopback)
Mean Roll-off -33.39 -33.39 -33.53 -33.44 -33.53 -33.06
Level (dB)
Roll-off Level 4.3938 1.5182 0.4857 33.9136 15.4010 50.4555
Variance (dB)
Mean Percent 24.89% 24.18% 21.45% 23.01% 23.63% 23.89%
0OOB
Percent OOB 0.0588% 0.0509% 0.0347% 0.0372% 1.16% 1.33%
Variance
Mean OOB 0.3328 0.3201 0.2739 0.2998 0.3388 0.3479
Ratio
OOB Ratio 0.0018 0.0015 0.0009 0.0011 0.0460 0.0535
Variance

2.1.3 Delay Domain Analysis
In terms of the autocorrelation, the performance of the waveforms can be judged based on

how closely their autocorrelation approaches an impulse. To quantify this, we can measure the
peak sidelobe levels (PSL) and integrated sidelobe levels (ISL). Both of these metrics can be

represented by:

lws Or||P
[lwpLOT||P

GISL = (2.2)

which is known as Generalized Integrated Sidelobe Level (GISL) [26]. When p = 2, the function

is equivalent to the ISL, and when p approaches infinity (generally, 7 is appropriate for



optimization implementation), the function approaches the PSL. ISL is useful in quantifying the
average sidelobe level relative to the mainlobe level. PSL is useful in quantifying the level of the
mainlobes. Ideally, an impulse like autocorrelation has an extremely narrow mainlobe. But
sometimes, when optimizing waveforms, the mainlobe is either wider than an impulse, or the
mainlobe has a wider region at a lower level known as shoulder lobes.

The other consideration for autocorrelation performance is its coherently combined
response. Because the phase of the autocorrelation sidelobe levels should be relatively random,
when the autocorrelation of a set of random FM waveforms are coherently integrated, they should
provide an improvement of M to the mainlobe-sidelobe ratio, where M is the number of waveforms
whose autocorrelations are coherently combined. If the waveforms are truly random, this is always
the case. But because optimized random FM waveforms are not entirely random, the improvement
due to coherent combination will be sublinear, even if the performance is very close to linear.

Figure 2.5 shows the average autocorrelation response of each waveform class captured in
loopback, while Table 2.3 shows the PSL and ISL metrics mean and variance for the loopback

waveforms.
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Figure 2.5: Average autocorrelation for different waveform classes.

Table 2.3: Comparison of different waveform class autocorrelation metrics.

Waveform PRO-FM FTE Log-FTE TTE CE-OFDM StoWwGe
(Loopback)
PSL Mean (dB) -17.79 -17.39 -17.7 -18.04 -14.7 -14.48
PSL Variance 1.05 1.09 1.21 1.05 3.49 3.7
(dB)
ISL Mean (dB) -28.74 -28.91 -28.01 -28.65 -26.68 -26.66
ISL Variance 0.0942 0.0945 0.0252 0.0681 1.3765 1.5537
(dB)




2.2 Joint Time-Frequency Analysis of Gaussian Spectral Shapes
With a traditional, single-domain analysis completed, it is time to consider a joint time-frequency

of these waveform classes. The spectral template that tends to be used most for these waveforms
is a wide Gaussian spectral shape. Here, the Gaussian spectrally shaped waveforms are analyzed

with various time-frequency perspectives.

2.2.1 Angle-Based Instantaneous Frequency Analysis
FM waveforms can have their instantaneous frequency can be accurately estimated from the phase

angle of the waveforms, provided there is minimal distortion, other interfering signals, or noise.
While the overall instantaneous frequency values may vary significantly on a per-waveform basis,
the distribution of values across a waveform set is relatively stationary. For each class, a histogram

is generated from the entire waveform set’s instantaneous frequency values.

2.2.1.1 PRO-FM Instantaneous Frequency
Figure 2.6 shows the histogram of instantaneous frequency values for PRO-FM in simulation.

While the observed distribution technically best fits a truncated normal distribution, it is observed

that the distribution of values is close enough to zero that the truncation is of minimal impact.
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Figure 2.6: Histogram of 1,000 PRO-FM instantaneous frequency values in simulation.

Figure 2.7 shows the histogram of instantaneous frequency values for PRO-FM captured
in loopback. While the normal distribution shape is still present with a similar standard deviation,
heavier tails are present in this distribution, with a rise around +/- pi. The heaver ends of the
distribution are likely due to the pulse edges, which exhibit the most AM behavior of the pulse.
This can be visually observed from (PAPR Figure) where an oscillation can be seen at the

beginning of the pulse.
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Figure 2.7: Histogram of 1,000 PRO-FM instantaneous frequency values captured in loopback.

2.2.1.2 FTE Instantaneous Frequency
Figure 2.8 shows the histogram of instantaneous frequency values for FTE in simulation. While

the observed distribution technically best fits a truncated normal distribution, it is observed that

the distribution of values is more spread out than with PRO-FM.
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Figure 2.8: Histogram of 1,000 FTE instantaneous frequency values in simulation.

Figure 2.9 shows the histogram of instantaneous frequency values for FTE captured in loopback.

Like PRO-FM loopback results, a slight rise is present on the tails of the distribution.
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Figure 2.9: Histogram of 1,000 FTE instantaneous frequency values captured in loopback.

2.2.1.3 Log-FTE Instantaneous Frequency
Figure 2.10 shows the histogram of instantaneous frequency values for Log-FTE in simulation.

Here, the instantaneous frequency values have a much harder roll-off, ending around +/- 1. This is
likely due to the log-FTE creating a stronger emphasis on the spectral roll-off than the mainband,

given the logarithmic scaling of the cost function.
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Figure 2.10: Histogram of 1,000 log-FTE instantaneous frequency values in simulation.

Figure 2.11 shows the histogram of instantaneous frequency values for log-FTE captured in
loopback. Similar to previous results, the main distribution from simulation is preserved, but the

raised tails from the transmit and receive chain is still present.
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Figure 2.11: Histogram of 1,000 log-FTE instantaneous frequency values captured in loopback.

2.2.1.4 TTE Instantaneous Frequency
Figure 2.12 shows the histogram of instantaneous frequency values for TTE in simulation. The

results here are similar to those seen for log-FTE, with TTE resembling a uniform distribution

more than a Gaussian one.
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Figure 2.12: Histogram of 1,000 TTE instantaneous frequency values in simulation.

Figure 2.13 shows the histogram of instantaneous frequency values for TTE captured in loopback.
Results similar to previous waveforms are observed, while also noting a small dip in the values

around O.
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Figure 2.13: Histogram of 1,000 TTE instantaneous frequency values captured in loopback.

2.2.1.5 CE-OFDM Instantaneous Frequency
Figure 2.14 shows the histogram of instantaneous frequency values for CE-OFDM in simulation.

The results resemble the gaussian distribution of FTE.



120 T T T T T T T

100

Samples
=3
o
T

40 1

20T

-3 -2 -1 0 1 2 3
Instantaneous Frequency

Figure 2.14: Histogram of 1,000 CE-OFDM instantaneous frequency values in simulation.

Figure 2.15 shows the histogram of instantaneous frequency values for CE-OFDM captured in
loopback. Notably a spike in values can be observed at DC. It is possible this is due to the

summation nature of CE-OFDM.
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Figure 2.15: Histogram of 1,000 CE-OFDM instantaneous frequency values captured in loopback.

2.2.1.6 StoWGe Instantaneous Frequency
Figure 2.16 shows the histogram of instantaneous frequency values for StoWGe in simulation.

Notably, a tail can be seen present in the simulation values, albeit a small one.
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Figure 2.16: Histogram of 1,000 StoWGe instantaneous frequency values in simulation.

Figure 2.17 shows the histogram of instantaneous frequency values for StoWGe captured in
simulation. Notably, unlike all the other cases, their isn’t a heavy tail or spike around +/-z. It is
possible that, due to the CW context of StoWGe, rising and falling edges do not impact the

waveform fidelity as much as the other classes of waveform.
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Figure 2.17: Histogram of 1,000 StoWGe instantaneous frequency values captured in loopback.

2.2.1.7 Instantaneous Frequency statistical parameters
It is useful to compute basic statistical parameters for each of the previously discussed waveform

class histograms. Tables 2.4 and 2.5 show the mean, variance, and 99" percentile values for each
of the distributions in simulation and loopback respectively. All the means of the distribution are
effectively zero, although CE-OFDM and StoWGe have a much smaller mean. The variance of
the waveforms also varies from class to class. Notably, even though the higher tails can be seen
present in the loopback results, the 99'" percentile of the distributions barely changes from
simulation to loopback. Strangely, in some of the cases with a raised tail, the actual distribution
tightens, leading to a lower 99™" percentile value.

Table 2.4: Instantaneous frequency metrics for various simulated waveform classes.



Waveform PRO-FM FTE Log-FTE TTE CE-OFDM StoWwGe
(Simulation)
Mean -1.42E-3 -1.17E-3 2.16E-4 -7.00E-5 -3.36E-5 8.20E-4
Variance 0.2159 0.3409 0.1850 0.1867 0.1619 0.2005
99t Percentile 1.135 2.122 0.8537 0.8578 1.06 1.20

Table 2.5: Instantaneous frequency metrics for various waveform classes captured in loopback.

Waveform PRO-FM FTE Log-FTE TTE CE-OFDM StoWGe
(Loopback)
Mean -3.46E-3 -3.81E-3 -2.92E-3 -1.92E-3 2.26E-4 -5.06E-4
Variance 0.2258 0.3141 0.2186 0.1981 0.1959 0.1936
99™ Percentile 1.144 1.887 1.241 0.9386 1.166 1.173

2.2.2 Spectrogram Analysis

While the instantaneous frequency computed from angle difference can provide a joint time

frequency representation at the smallest time window for a single signal, it is not particularly

effective in the presence of noise and interference. Therefore, it is worth looking at the waveforms

in a fully 2D joint time frequency transform. Firstly, the waveforms are studied using the most

commonly utilized joint time-frequency representation, the spectrogram obtained from the Short-

Time Fourier Transform (STFT).

The settings used in the spectrogram initially will be a rectangular window, with sample-

by-sample overlap. The temporal extent of the window will be varied to provide different degrees

of temporal and spectral resolution. For random FM waveforms, three regimes of behavior exist

depending on the window size used.




- Large window size: When the window is large enough, the waveform mimics the PSD
of the waveform. Since a sufficient number of samples are included in each Fourier
Transform in the STFT that generates the spectrogram, it will match up closely to the
Fourier Transform of the entire waveform i.e. the PSD.

- Medium window size: When the window size decreases, the frequency extent of the
waveform begins to contract and expand at certain times, correlating with the
instantaneous frequencies around that particular time.

- Small window size: When the window size decreases further, the spectrogram will
match up to the instantaneous frequency of the waveform with a particular amount of
bandwidth at each time slice, corresponding to the available frequency resolution.

Depending on the sampling frequency, not all of these domains may be present. Just as the
sampling rate must be high enough to capture the full band of interest, so must the sampling rate
be high enough to transition between these three window size domains. For the results of this
section, a 10% time window and a 1% time window are used.

Figure 2.18 shows an example spectrogram of a PRO-FM waveform using a 10% of pulse
width wide window, where the horizontal axis is time and the vertical axis is frequency. Though
the waveform’s energy varies across time, it relatively constrained within the 3dB bandwidth.
Conversely, figure 2.19 shows a spectrogram of a PRO-FM waveform using a 1% of pulse width
wide window. While the frequency resolution of the spectrogram has been degraded by a factor of
10, the energy now varies significantly across frequency, and closely resembles the angle-based

instantaneous frequency profile of the waveform.
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Figure 2.18: Spectrogram of a PRO-FM waveform using a 10% time window.
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Figure 2.19: Spectrogram of a PRO-FM waveform using a 1% time window.



To further quantify the results, similar metrics to those used in section (spectral analysis section)
are utilized to characterize the spectrograms. First, the average roll-off level across time at the
edges in frequency are computed. Secondly, the percent OOB energy is computed by finding the
ratio of energy in the spectrogram outside of the 3dB bandwidth over the total energy in the
spectrogram. Table 2.6 shows the results of the analysis for simulation waveforms, while Table
2.7 shows the results for waveforms captured in loopback. Notably, as the time window of
observation becomes smaller, the percent OOB energy increases. This is consistent with what we
have seen earlier with the instantaneous frequency values; as the observation time interval
decreases, the FM waveform appears to more closely resemble a single tone at the value of
instantaneous frequency. Since the instantaneous frequency isn’t inherently constrained, combined
with degraded frequency resolution, results in decreased spectral containment.

Table 2.6: Spectrogram metrics for various waveform classes in simulation.

Waveform PRO-FM FTE Log-FTE TTE CE-OFDM StowGe
(Simulation)

(10%) Mean -47.03 -33.63 -52.54 -54.34 -55.11 -52.76
Roll-off Level
(dB)

(10%) Roll-off 1.59 2.48 0.19 0.14 0.28 0.46
Level Variance
(dB)

(10%) Mean 43.99% 49.68% 39.85% 39.89% 30.23% 36.99%
Percent OOB

(10%) Percent 0.023% 0.026% 0.02% 0.02% 0.30% 0.14%
OOB Variance

(1%) Mean Roll- -54.16 -49.02 -54.29 -54.81 -59.43 -57.63
off Level (dB)

(1%0) Roll-off 0.36 0.54 0.16 0.21 1.62 0.99
Level Variance
(dB)




(1%) Mean 61.37% 63.30% 60.66% 60.68% 59.92% 60.67%
Percent OOB

(1%0) Percent ~0% 0.01% ~0% ~0% ~0% 0.01%
OOB Variance

Table 2.7: Spectrogram metrics for various waveform classes captured in loopback.

Waveform PRO-FM FTE Log-FTE TTE CE-OFDM StoWGe
(Loopback)
(10%) Mean -55.00 -54.60 -55.06 -55.07 -54.85 -55.07
Roll-off Level
(dB)
(10%) Roll-off 0.16 0.16 0.16 0.16 0.22 0.20
Level Variance
(dB)
(10%) Mean 43.61% 46.98% 38.93% 39.81% 27.90% 27.54%
Percent OOB
(10%) Percent 0.03% 0.03% 0.02% 0.02% 0.86% 0.96%
OOB Variance
%) Mean Roll- -53. -48. -54. -54, -58. -58.
(1%) M Roll 53.30 48.78 54.79 54.69 58.11 58.27
off Level (dB)
(1%) Roll-off 61.33% 62.66% 60.54% 60.68% 60.51% 60.48%
Level Variance
(dB)
(1%) Mean 61.33% 62.66% 60.54% 60.68% 60.51% 60.48%
Percent OOB
(1%0) Percent ~0% ~0% ~0% ~0% 0.02% 0.02%

OOB Variance

2.2.3 Wigner-Ville Distribution Analysis
As seen above with the spectrogram, linear time-frequency transforms require a trade of between

temporal and spectral resolution. However, with a quadratic transformation, there is no trade off
between the finest temporal and spectral frequencies. Here, the waveform classes are analyzed

using the WVD.



Figure 2.20 shows the WVD for a PRO-FM waveform. The distribution appears to be extremely
noisy, but it is in fact self-interference. Figure 2.21 shows a smoothed WVD for the same PRO-
FM waveform. The smoothed WVD is a filtered version of the WVD, and is similar to using
longer time windows in the spectrogram. Here, the cross-terms have been heavily suppressed,

but at the cost of coarser time and frequency resolutions.
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Figure 2.20: Wigner-Ville distribution of a PRO-FM waveform.
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Figure 2.21: Smoothed Wigner-Ville distribution of a PRO-FM waveform.

Table 2.8 shows the results of the waveform classes for the WVD, and table 2.9 shows the results
of the waveform classes for the smoothed WVD. Notably, while the spectral containment results
for the WVD and smoothed WVD match up with our expected results in the 1% time window
spectrogram, the actual roll-off level is significantly lower in the smoothed WVD. Thanks to the
finer resolution in time and frequency, this regime more closely follows the instantaneous
frequency while providing a much sharper roll-off, unlike the 1% time window spectrogram
which has a very slow, broad roll-off across frequency.

Table 2.8: WVD metrics for various waveform classes in simulation.

Waveform PRO-FM FTE Log-FTE TTE CE-OFDM StowGe
(Simulation)




WVD Mean -47.03 -33.63 -52.54 -54.34 -55.11 -52.76
Roll-off Level
(dB)

WVD Roll-off 1.59 2.48 0.19 0.14 0.28 0.46
Level Variance
(dB)

WVD Mean 43.99% 49.68% 39.85% 39.89% 30.23% 36.99%
Percent OOB

WVD Percent 0.023% 0.026% 0.02% 0.02% 0.30% 0.14%
OOB Variance

Smooth WVD -54.16 -49.02 -54.29 -54.81 -59.43 -57.63
Mean Roll-off
Level (dB)

Smooth WVD 0.36 0.54 0.16 0.21 1.62 0.99
Roll-off Level
Variance (dB)

Smooth WVD 61.37% 63.30% 60.66% 60.68% 59.92% 60.67%
Mean Percent
OOB

Smooth WVD ~0% 0.01% ~0% ~0% ~0% 0.01%
Percent OOB
Variance

Table 2.9: WVD metrics for various waveform classes captured in loopback.

Waveform PRO-FM FTE Log-FTE TTE CE-OFDM StowGe
(Loopback)

WVD Mean -59.64 -53.59 -61.93 -61.09 -60.23 -59.39
Roll-off Level
(dB)

WVD Roll-off 0.4499 0.7046 0.0786 0.6167 0.1787 0.1173
Level Variance
(dB)

WVD Mean 58.13% 60.81% 54.85% 55.66% 49.95% 49.46%
Percent OOB

WVD Percent 0.0177% 0.0157% 0.0141% 0.0115% 0.5946% 0.6615%
OOB Variance




Smooth WVD -89.05 -80.62 -99.97 -98.93 <-300 <-300
Mean Roll-off
Level (dB)

Smooth WVD 1.747 2.162 1.164 1.185 >10 >10
Roll-off Level
Variance (dB)

Smooth WVD 56.45% 54.70% 53.59% 55.19% 56.53% 56.36%
Mean Percent
(0]0] =)

Smooth WVD 0.0177% 0.01% ~0% ~0% ~0% 0.01%
Percent OOB
Variance

2.2.4 Instantaneous Autocorrelation Function Analysis
As noted before in section 1.3.4.2, the instantaneous autocorrelation can provide a measure of

randomness at different points throughout the pulse. Figure 2.22 shows the IAF of a single PRO-
FM waveform. The hexagon pattern can be seen, implying that the WVD has such large amounts
of oscillating cross-terms that the vertical slices are not particularly random at such a small time-
scale. However, figure 2.23 shows the smoothed IAF of a single PRO-FM waveform. Here, a
mainlobe can be clearly seen across the horizontal axis, providing a useful measure of

randomness throughout the waveform.
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Figure 2.22: Instantaneous Autocorrelation of a PRO-FM waveform.
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Figure 2.23: Smoothed Instantaneous Autocorrelation of a PRO-FM waveform.



While it is difficult with PRO-FM to interpret the IAF and smoothed IAF, CE-OFDM provides
some intuition about the function. Figure 2.24 shows the IAF of a single CE-OFDM and figure
2.25 shows the smoothed IAF of a single CE-OFDM waveform. Notably, a smoothed pattern can
be seen within the hexagon of the IAF. But perhaps more intuitive is the smoothed IAF, where the
mainlobe widens and narrows relative to time, and has less occurring “sidelobe flashes”. But when
compared side to side with the smoothed WVD, shown in figure 2.26, the sidelobe flashes in the
smooth IAF correspond to zero crossings in the smooth WVD, and the mainlobe narrows as the
chirp rate increases. The narrowing is consistent with the idea that higher chirp rates correspond

to instantaneous bandwidths, resulting in narrower autocorrelation.
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Figure 2.24: Instantaneous Autocorrelation of a CE-OFDM waveform.
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Figure 2.25: Smoothed IAF of a CE-OFDM waveform.
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Figure 2.26: Smoothed WVD of a CE-OFDM waveform.



2.2.5 Radon-Wigner Transform Analysis
Lastly, it is useful to briefly consider the Radon-Wigner Transform as a means of viewing the

waveform. Figure 2.27 shows the RWT of a PRO-FM Waveform.
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Figure 2.27: Radon-Wigner Transform of a PRO-FM waveform.
Given that the column at alpha = 0 is the time domain, and the column at alpha = pi/2 is the
frequency domain, the RWT shows which portions in time correspond to a given frequency bin in
the PSD. Since PRO-FM can have a different instantaneous frequency at each time sample, many
curves can be seen from each time sample to its contribution in the frequency domain. Conversely,
figure 2.28 shows the RWT for a CE-OFDM waveform. Here the smoother instantaneous
frequency function results in broadened curves, with more temporally isolated areas of a given

instantaneous frequency value or range.
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Figure 2.28: Radon-Wigner transform of a CE-OFDM waveform.

2.3 Traditional Analysis of Notched Gaussian Spectral Shapes
While the metrics previously discussed are effective for waveforms with symmetric spectrum,

additional metrics should be considered with asymmetric spectra. One particularly interesting
shape is a notched Gaussian spectral shape, where a gap is placed within the mainband. These can
be particularly deep given the optimization capabilities of some classes of random FM [16, 33, 36-
38]. As with the Gaussian spectral shape waveforms, the one dimensional domains that will be
studied are their time representation, frequency representation, autocorrelation, and PSD.
However, for this particular shape, CE-OFDM and StoWGe will be excluded from the analysis.

Additionally, only the loopback captured results will be considered for this particular section.



2.3.1 Time Domain Analysis
Figure 2.29 shows a comparison of the envelopes of each of the waveforms in loopback. While

they may not appear completely flat, they have been measured after amplification where the
constant amplitude constraint is not nearly as necessary. Table 2.10 shows the resulting PAPR for
each of the waveform classes in both simulation and in loopback measurements. As expected, the
simulated have perfect PAPR of 1 with 0 variance due to their FM structure. While the loopback

results do possess a degree of AM, their PAPR values are relatively small.
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Figure 2.29: Comparison of several waveform amplitudes.



Table 2.10: Comparison of different waveform class amplitudes.

Waveform PRO-FM FTE Log-FTE TTE
Mean PAPR 1.2840 1.2481 1.1927 1.2014
PAPR Variance 0.0016 0.0015 0.0030 0.0027

2.3.2 Frequency Domain Analysis

For each waveform class, figure 2.30 shows the PSD of a single waveform from each class. On an
individual basis, the waveforms have significant magnitude variation across frequency but their
average is relatively smooth. Figure 2.31 shows the average PSD across a set of 1,000 waveforms

from each waveform class. While the notch for FTE isn’t particularly deep, the other 3 classes are

fairly close together.
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Figure 2.30: Comparison of several waveform PSDs.
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Figure 2.31: Comparison of the average PSD of several waveform classes.

Along with the previous metrics used for the frequency domain, two additional metrics
are utilized for the notched waveforms: notch depth and notch width. For these metrics, the
notched portion of the spectrum is compared to the mirrored unnotched region for reference. The
notch depth is the mean difference from the unnotched levels throughout the notched region. The
notch width is the effective width of the notch below a notch depth threshold of -10dB, and is
reported as a percentage of the 3dB bandwidth. It is expected that other means of computing the
notch depth and width could be considered, but these two metrics will be sufficient for this
analysis.

Table 2.11 shows the various PSD metrics for each of the different waveform classes

captured in loopback. Notably, even though PRO-FM, Log-FTE, and TTE all have relatively



similar notch depth and widths, the variation on a pulse to pulse basis is significantly different

between them.

Table 2.11: Comparison of different waveform class PSD metrics in loopback

Waveform PRO-FM FTE Log-FTE TTE
(Loopback)
Mean Roll-off -32.71 -32.84 -32.81 -32.67
Level (dB)
Roll-off Level 5.4146 6.3111 3.0293 3.3071
Variance (dB)
Mean Percent 25.54% 21.66% 22.14% 22.70%
0O0B
Percent OOB 0.0399% 0.0327 0.0279% 0.0521%
Variance
Mean OOB 0.3440 0.2771 0.2850 0.2949
Ratio
OOB Ratio 0.0013 0.0008 0.0008 0.0015
Variance
Mean Notch 37.73 17.39 34.95 36.63
Depth (dB)
Notch Depth 16.07 5.33 11.36 38.43
Variance (dB)
Mean Notch 12.58% 6.82% 12.48% 11.52%
Width
Notch Width 1.31% 3.56% 1.17% 0.81%
Variance

2.3.3 Delay Domain Analysis
Figure 2.32 shows the average autocorrelation response of each waveform class captured in

loopback, while Table 2.12 shows the PSL and ISL metrics mean and variance for the loopback

waveforms.
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Figure 2.32: Average autocorrelation for different waveform classes.

Table 2.12: Comparison of different waveform class autocorrelation metrics.

Waveform PRO-FM FTE Log-FTE TTE
(Loopback)
PSL Mean (dB) -18.51 -18.53 -18.55 -17.12
PSL Variance 1.78 1.54 1.50 1.32
(dB)
ISL Mean (dB) -30.97 -30.82 -30.49 -28.79
ISL Variance 0.06 0.07 0.08 0.28
(dB)




2.4 Joint Time-Frequency Analysis of Notched Gaussian Spectral Shapes
With a traditional analysis of notched Gaussian waveforms completed, it is time to consider the

various joint time-frequency domains as was done in 2.2.

2.4.1 Angle-Based Instantaneous Frequency Analysis
For each class, a histogram is generated from the entire waveform set’s instantaneous frequency

values. Figures 2.33, 2.34, 2.35, and 2.36 show the histograms of PRO-FM, FTE, Log-FTE, and

TTE notched waveforms respectively.
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Figure 2.33: Instantaneous Frequency distribution for notched PRO-FM captured in loopback.
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Figure 2.34: Instantaneous frequency distribution for notched FTE captured in loopback.
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Figure 2.35: Instantaneous frequency distribution for notched Log-FTE captured in loopback.
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Figure 2.36: Instantaneous frequency distribution for notched TTE captured in loopback.

Table 2.13 shows show the mean, variance, and 99" percentile values for each of the

distributions in simulation and loopback respectively. PRO-FM, FTE, and Log-FTE have notably

shifted means towards the side of the spectrum without a notch, while less notably so with TTE.

Table 2.13: Instantaneous frequency metrics for various notched waveform classes captured in

loopback.
Waveform PRO-FM FTE Log-FTE TTE
(Loopback)
Mean -0.1073 -0.9510 -0.1088 -0.0159
Variance 0.7888 0.6975 0.6488 -0.7116
99t Percentile 2515 2.116 2.000 2.280




2.4.2 Spectrogram Analysis
To characterize the behavior of the notch temporally throughout the waveform, they must be

viewed in a fully 2D joint time frequency transform. First, the waveforms are studied using the
STFT-based spectrogram previously shown in 2.2.2.

Unlike the symmetric Gaussian spectral random FM waveforms, the presence of a notch
will greatly alter the behavior of the spectrogram. For notched random FM waveforms, three
regimes of notch behavior exist depending on the window size used [33].

- Large window size: When the window is large enough, the notch is visibly present

during all times in the waveform.

- Medium window size: When the window size decreases, the notch will narrow and

appear as a series of nulls across time.

- Small window size: When the window size decreases further, the spectrogram will

match up to the instantaneous frequency of the waveform, with no notch present.
As previously noted, the sampling frequency and oversampling factor used will greatly the time
window percentages in which these various behaviors occur.

Figure 2.37 shows an example spectrogram of a PRO-FM waveform using a 20% of
pulse width wide window, where the horizontal axis is time and the vertical axis is frequency.
The notch can be seen clearly throughout the entirety of the waveform. Figure 2.38 shows a
spectrogram of a PRO-FM waveform using a 5% of pulse width wide window. Though the notch
region is still present, it more closely resembles a series of nulls than a continuous low energy
region. Lastly, figure 2.39 shows a spectrogram of a PRO-FM waveform using 1% of pulse
width wide window. While the frequency resolution is coarse, the spectrogram resembles the

instantaneous frequency of the waveform, with no spectral notch visibly present.
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Figure 2.37: Spectrogram of a notched PRO-FM waveform using a 20% time window
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Figure 2.38: Spectrogram of a notched PRO-FM waveform using a 5% time window
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Figure 2.39: Spectrogram of a notched PRO-FM waveform using a 1% time window

To further quantify the results, similar metrics to those used in section 2.3.2 are utilized to
characterize the spectrogram notches. Both notch depth and width are computed again, but they
are averaged over the time axis as well. They are computed regardless of whether or not the notch
is visible in the transform, as it is still insightful to determine if less energy is placed in that region
of the spectrogram.

Table 2.14 shows the results of the analysis for a 10% time window, while Table 2.15
shows the results for a 1% time window. Notably, the notch is present in all of the 10% window
spectrograms, even though FTE isn’t nearly as deep as the rest. For the 1% case, no significant
notch is present, though all the waveforms consistently show less energy in the expected notch

region than would be observed for an unnotched waveform.



Table 2.14: Spectrogram metrics for various notched waveform classes using 10% time window.

Waveform PRO-FM FTE Log-FTE TTE
(Loopback)
Mean Roll-off -53.64 -53.60 -53.93 -53.91
Level (dB)
Roll-off Level 0.0728 0.0728 0.0885 0.1470
Variance (dB)
Mean Percent 41.32% 38.56% 38.47% 38.23%
0OOB
Percent OOB 0.0157% 0.0154% 0.0125% 0.0331%
Variance
Mean Notch 17.95 8.89 16.79 13.06
Depth (dB)
Notch Depth 1.45 1.51 1.34 4.23
Variance (dB)
Mean Notch 7.56% 7.08% 7.54% 7.53%
Width
Notch Width 1.02E-6 1.21E-4 2.23E-06 2.49E-06
Variance

Table 2.15: Spectrogram metrics for various notched waveform classes using 1% time window.

Waveform PRO-FM FTE Log-FTE TTE
(Loopback)

Mean Roll-off -39.08 -39.71 -40.42 -40.95
Level (dB)

Roll-off Level 0.1687 0.2255 0.1739 0.3518

Variance (dB)

Mean Percent 45.33% 43.65% 43.23% 43.10%

0O0B

Percent OOB 0.0070% 0.0327% 0.0279% 0.0521%
Variance

Mean Notch 1.27 1.14 1.27 0.53

Depth (dB)




Notch Depth 0.18 0.17 0.21 0.27
Variance (dB)

Mean Notch 0% 0% 0% 0%
Width
Notch Width 0 0 0 0
Variance

2.5 Traditional FM Design Perspective
After studying these classes of random FM waveforms, the results for the notched waveforms

might appear counterintuitive based on traditional waveform design. Specifically, these
waveforms represent a departure from the well-known principle of stationary phase (PSP) which
was previously discussed.

So why doesn’t the PSP seem to apply to the notched random FM waveforms? The PSP
makes an assumption about the waveform, namely, that the instantaneous frequency f(t) as a

function of time is the inverse of group delay T(f). These quantities and this relationship can be

written as:
£ =T7(f),
Where
_1dd
f(t) = P
And
__, dd
T(f) = —Zﬂﬁ

When the instantaneous frequency is monotonically increasing or decreasing, this assumption can
reasonably be made, as a one-to-one relationship between instantaneous frequency and group delay
will be present so the inverse of group delay will exist. However, if the instantaneous frequency is

not monotonic, then the relationship is no longer one-to-one but rather one-to-many. Therefore, an



inverse will not exist, and this assumption underlying the PSP no longer holds. This is noticeably
the case with random FM waveforms, as their instantaneous frequency will be randomly
distributed, almost never being entirely monotonic and crossing over the same instantaneous
frequency many times. With respect to spectrally notched random FM, the mechanism which
causes the deep spectral notches is not a result of the PSP, but something else [33].

Looking back on what was observed in several of the time-frequency distributions, it was
clear that the notch was only apparent over time intervals that were sufficiently long enough.
Specifically, when studying the spectrograms of different window lengths, the spectral notch
became more prominent as the time window of the spectrogram increased. What is observed is a
notch formation that is achieved through means of cancellation over the pulse width. The
instantaneous frequency of these notched waveforms creates time-frequency distributions which

destructively interfere in the notched spectral bands at sufficiently long time intervals.

2.6 Waveform Analysis Conclusions
The data obtained from the Monte Carlo simulation metrics and experimental testing provide

quantitative insight into the variation of random FM waveform classes. However, it is also
valuable to determine key trends observed from the data, given the imperfections potentially
present in the data (imperfect bandwidth match, random number generator behavior,

measurement hardware effects, etc.)

- Random FM waveforms exhibit relatively consistent behavior for a given spectral
template, even if no inherent template is specified in the design.

- Optimized waveforms tend to behave more similarly to each other than they do
algorithmically generated waveforms. The same is true for algorithmically generated

waveforms.



The optimized waveforms tend to have more varying instantaneous frequency
functions than the algorithmically generated ones. This underlying behavior is the
most probable cause for the difference in the two sets of waveform classes.

The greatest difference between waveform classes can be seen in their instantaneous
frequency distributions, suggesting that joint time-frequency methods are the most
effective way at observing subtleties of random FM waveforms.

Both waveform class and hardware are limiting components to spectral containment
of waveforms. The waveforms exhibited significant variation in spectral containment
in simulation but were limited by the hardware when observed in loopback.

The notches formed by random FM waveform are the result of a cancellation effect,
contrary to those formed by quickly chirping through the notch band.

The notches are only present at sufficiently long time-scales; the notch disappears as

the time window of observation decreases.



3. Instantaneous Frequency Estimation of Random FM.
In section 2, the waveforms that were studied were generated in simulation or recovered in a

loopback capture. However, the same approach cannot be use to recover the waveforms from
freespace, especially in the presence of interference and noise. Here, methods for estimating the

instantaneous frequency of random FM in open air are shown.

3.1 Instantaneous Frequency Estimation using the Spectrogram
It is possible to try and used the angle-based instantaneous frequency approach utilized in section

2.2.1. However, in the presence of noise, multipath, or other interference, this method will fail,
since the angle-based IF estimation treats the signal as mono-component, as compared to a multi-
component signal that an open-air capture would be. Therefore, a joint time-frequency method is
more effective at estimating the IF of a random FM signal. Using small time-windows, the
spectrogram tends to put the majority of its energy at the frequency value of the instantaneous
frequency for a given point in time. Therefore, by estimating the center of the energy across

frequency, one should be able to obtain the instantaneous frequency.

3.1.1 Bayesian Estimation of Instantaneous Frequency using the Spectrogram
The question arises on what exactly is the center of a particular time cut of the spectrogram? Here,

several statistical measures of central tendency are used [39], namely, the arithmetic mean, median,
and mode. More appropriately, these estimators utilize the following cost function from Bayesian

risk estimation given as:
Cel) = ) pPlenl?
n

From this cost function, the median corresponds to p = 1, the mean corresponds to the MMSE

estimate p = 2, and the mode corresponds to the MAP estimate p = o. Once the IF has been



estimated across each time bin, these N instantaneous frequency estimates form a vector f, that can
be reconstructed into a discrete, random FM waveform by using:

§ = exp(JLf)
Where L is a lower diagonal matrix of ones.
Figure 3.1 shows the reconstructed PRO-FM waveform from IF estimation using the three
estimators. While the estimate is relatively poor using p = 1 or p =2, the p = o estimator, or the

mode (max) is a close approximation to the PRO-FM waveform.
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Figure 3.1: Estimated spectrum from different estimators on the spectrogram.

3.1.2 Reiterative Bayesian Estimation of Instantaneous Frequency using the Spectrogram.
The initial estimate provided by the median and mean across frequency provides a poor

reconstruction of the initial signal. While the estimator using the mode is somewhat effective at



estimating the instantaneous frequency, it is not perfect. However, a reiterative approach can
substantially improve the estimation [32]. Here, a reiterative estimation approach is applied to
estimate the signals true IF.
Recall the reconstructed signal in (1) which is now denoted as §,, which can be constructed from
the vector of IF estimates f, The original signal can be modulated by the conjugate of the
reconstructed signal to obtain a residual signal by:
r=s0©38,

Where 1 is the first residual of s. The spectrogram of the residual signal is computed, and
the instantaneous frequency estimate is computed from the residual spectrogram, resulting in f;.
This can reconstruct a new residual signal r, in the same way that ; was computed. This can be
performed reiteratively for K iterations where:

T = Te—1 O exp(Lfi-1)

After K iterations, the original signal can be reconstructed by:

So that after a sufficient number of iterations, the residual signal will simply be a constant across
time, and thus the reiterative estimate should converge on the IF of the signal.

Figures 3.2 to 3.4 show the original PSD of a PRO-FM signal captured in loopback, the
reconstruction of the first estimate, and reconstruction of the tenth iterative estimate of the IF, with
figure 3.2 using the p = 1 estimator, figure 3.3 using the p = 2 estimator, and figure 3.4 using the
p = oo estimator. It is clear from the figures that, while the initial estimate may be poor, after 10

iterations, each estimator converges upon the true signal.
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Figure 3.2: Reiterative spectrum estimate using the p=1 estimator for 10 iterations.
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Figure 3.3: Reiterative spectrum estimate using the p=2 estimator for 10 iterations.
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Figure 3.4: Reiterative spectrum estimate using the p=co estimator for 10 iterations.

Figure 3.5 shows a comparison of the mean squared error (MSE) for each of the 3
estimators on average for 1,000 PRO-FM waveforms captured in loopback. The estimation was
applied for 100 iterations, with the performance evaluated at each iteration. While the MAP
estimator performs the best initial guess, it is not well suited for reiterative estimates on the
spectrogram. The median and MMSE estimates, however, start off significantly more poorly, but
converge to more accurate estimates after a number of iterations. However, in all cases, a point is

reached where the iterative approach no longer can improve the IF estimate.
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Figure 3.5: Comparison of estimators versus iterations on PRO-FM.

The estimators in all cases tend to perform better with smoother phase functions. Figure
3.6 shows a comparison of the MSE for each of the 3 estimators on average for 1,000 CE-OFDM
waveforms captured in loopback. Again, the estimation was applied for 100 iterations, with the

performance evaluated at each iteration.
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Figure 3.6: Comparison of estimators versus iterations on PRO-FM.
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4. Conclusions & Future Work
Waveform diverse designs can be analyzed in many different domains to observe various

properties about the waveform classes. Variations in performance can be observed between these
classes of waveforms even when controlled to the same desired spectral template. The choice of
optimization impacts many of these metrics, providing more noise-like waveforms than those that
do not utilize optimization. The effects of hardware on the different waveform classes were also
observed to deviate from their simulated forms.

The use of joint time-frequency analysis provided the deepest insights into the various
waveform behaviors. This suggests that joint time-frequency methods are the most effective way
at observing subtle behaviors of the waveforms. These results demonstrate the importance of the
observation time scale in correctly understanding the waveforms spectral interaction. This
behavior is most readily observed in the notched waveforms, where the formation and depth of the
notch was dependent on the observation time scale. This is due to the cancellation behavior of the
notches across the length of the waveform. The histograms, spectrograms, and WVDs of the
notched waveforms clearly show that the waveform does not simply chirp through the notched
region.

The insights provided by the analysis were leveraged to accurately estimate the
instantaneous frequency profiles of the random FM waveforms using a reiterative approach. The
choice of estimator was shown to impact both the accuracy and convergence rate of the estimation.
The use of time-frequency estimation can provide accurate estimation even in the presence of noise
and interference, providing an alterative to filter based approaches which may alter the subtleties
of the waveform classes.

The use of joint time-frequency techniques provide additional tools for not only

understanding existing waveform classes, but in the processing algorithms and future designs.



Future work should include leveraging these insights to improve the design of existing random
FM approaches or developing entirely novel ones. Utilizing the analysis performed in this work
on a wider array of hardware may also better characterize alterations to the waveforms due to

hardware as opposed to their particular design approach.
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