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ABSTRACT
Characterizing and monitoring the long term performance of a geothermal well to determine it 
energy production can be challenging because downhole equipment and the well itself will degrade 
over time. Subsurface tools are lowered down the well to measure temperature, pressure, pH, and 
other parameters, but high temperatures, high pressures, and great depths pose many challenges to 
these instruments. Sensors used for measurements generate a small voltage signal and cannot relay 
the data across the great depths of the well. Thus, local data processing is required to convert the 
low analog signal to a digital signal that can be transmitted over greater lengths. However, there are 
very few components on the market that can survive such a harsh environment. In this study, we 
evaluated multiple high temperature microcontrollers capable of operating above 210˚C. We 
examined five microcontrollers (HT83C51, SM320F2812-HT, SM470R1B1M-HT, SM320F28335-
HT, and RC10001), documented the results, and provided recommendations regarding which 
should be used in today’s geothermal tools. In addition, one microcontroller was used to construct a 
high temperature data link for communicating across a single conductor wireline. Due to the limited 
memory of the RC10001, the RC2110836 memory chip was also evaluated. We recommend the 
SM470R1B1M-HT, SM320F28335-HT, and RC10001 with RC2110836 microcontrollers for 
geothermal applications. The SM320F28335-HT was used to demonstrate a high temperature data 
link unit. That data link has shown 30 kbps data rates across 1524 m (5000 ft) of single conductor 
wireline up to 170˚C. 



4

ACKNOWLEDGEMENTS
This research was funded by the U.S. Department of Energy Office of Energy Efficiency and 
Renewable Energy Geothermal Technologies Program. The authors wish to acknowledge the 
support of our colleagues and reviewers in the preparation of this report including Giorgia Bettin, 
Manuel Montano, Alfred Cochrane, Lori Dotson, Johnny Silva, and Jason Krein.



5

EXECUTIVE SUMMARY

Subsurface logging tools that measure temperature, pressure, pH, resistance, chemistry, radiation, 
and other parameters are critical for characterizing a geothermal well or for monitoring long-term 
well performance. However, capturing these measurements can be challenging due to the high 
temperatures, extreme depths, high pressures, and corrosive environments associated with a 
geothermal field. In addition, these sensors generate a small voltage signal that cannot be detected at 
the surface due to the long lengths of cable it must travel. These logging tools must be capable of 
operating at depths greater than 610 m (2000 ft), requiring a local processor to capture the signal 
directly. The signal data is then either saved locally or transmitted back to the ground surface, which 
requires a microcontroller. Sandia National Laboratories (SNL) evaluated five commercially available 
microcontroller units (MCUs) capable of withstanding temperatures in excess of 210˚C and used 
one in the development of a high temperature (HT) data link. This report will review the steps taken 
to evaluate these MCUs and design the data link and then present our results. This technology can 
enable greater sensor counts, decrease costs for real-time sensor data, and improve data accuracy.

Five HT MCUs (HT83C51, SM320F2812-HT, SM470R1B1M-HT, SM320F28335-HT, and 
RC10001) were evaluated. The RC2110836 memory chip was also used due to the limited memory 
of the RC10001. Based on our results, we recommend the SM470R1B1M-HT, SM320F28335-HT, 
and RC10001 with RC2110836 for geothermal applications. The SM320F28335-HT was also used to 
demonstrate an HT data link unit, which has produced 30 kbps data rates across a 1524 m (5000 ft) 
of single conductor wireline up to 170˚C. These five MCUs were chosen for evaluation because it is 
the very few options on the market that can operate above 210˚C. 

SNL designed and evaluated a data link with the SM320F28335-HT microcontroller. It remained 
operational throughout a 1524 m (5000 ft) single conductor wireline for up to 170˚C. It could not be 
operated up to 210˚C due to limitations with the amplifier stage. However, removing the amplifier 
and line driver stages from the data link and directly connecting the oscilloscope to the output of the 
digital-to-analog converter (DAC) enabled transmission of messages in temperatures up to 210˚C. 
Using the orthogonal frequency division multiplexer (OFDM) and binary phase shift keying (BPSK) 
communication technique, 30 kbps data rates were demonstrated at elevated temperatures. The 
printed circuit board (PCB) was designed to accommodate voltage regulation and access pins for the 
analog-to-digital converter (ADC) to allow power transfer through the wireline and to enable data to 
be received in future testing.

One of the major problems was package failures, which severely limited the testing on the RC10001 
microcontroller. We observed deformation of the PCB, degradation of the solder, mismatch of the 
coefficient of thermal expansion coefficient of thermal expansion (CTE), delamination of the 
integrated circuits (ICs), and shorting of internal traces. The reliability of the packaging will be 
improved by replacing the Rogers PCB with a ceramic PCB, gold/tin solder bonding or wire 
bonding, and an HT conformal coating. Ceramic can withstand temperatures greater than 300˚C, 
making it prone to degradation in these applications. Gold/tin solder would be ideal for the gold 
pins on the IC because the solder joint will not degrade. The alternative is wire bonding, which fuses 
gold wire to the pins and to the PCB pads. The wire is capable of operating at temperatures above 
300˚C and allows mechanical movement between the IC and PCB (CTE mismatch) at high 
temperatures. Finally, applying a conformal coating, consisting of a layer of an applied cured liquid 
epoxy covering the IC and PCB, can improve the strength between the IC and PCB as well prevent 
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oxidation to the metals. These packaging improvements can significantly improve the reliability of 
the logging tool electronics that will be exposed to high temperatures, mechanical shock, and 
vibration.

Future improvements to the data link can be conducted to improve data rates, operating 
temperatures, signal-to-noise ratio (SNR), error rates, and receiving data. The required operating 
temperatures can be achieved by replacing the SM320F28335-HT with the RC10001. Using an ADC 
enables signals to be received from the surface. Data rates can be significantly increased by 
increasing the constellation point by incorporating quadrature amplitude modulation (QAM) instead 
of BPSK. However, the signal integrity will need to be improved to use QAM. Signal integrity can 
be improved by channel coding, error correction coding, constant signal propagation profiling, 
increasing amplifier gain, and using pulse width modulation (PWM) DAC. Channel coding would 
include a few coding steps that work together to mitigate the effects of channel distortions. These 
steps may include interleaving the data followed by applying error correction code. Error correction 
techniques, such as Bose-Chaudhuri-Hocquenghem, can be incorporated into the code to improve 
the SNR of the system. The profile of wireline drops above 13 kHz can be compensated with the 
amplifier. Using a constant propagation profile, the amplitude modulation will be constant to the 
maximum desired operating bandwidth. Increasing the gain performance of the amplifier can further 
push the signal above the noise floor, mitigating noise degradation. Final methods to improve signal 
integrity could be replacing the resistor array DAC with a PWM DAC. This method would not 
experience the inaccuracies of each resistor because the resistors are not dividing the rail voltage 
accurately and evenly, which contribute to some noise being injected into the signal. 

These improvements to the data link will allow reliable real-time data collection up to 300˚C. This 
technology can be used in various applications such as subsurface array systems capturing tracer data 
or acoustics.
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ACRONYMS AND TERMS

Acronym/Term Definition
ADC analog-to-digital converter

ASIC application specific integrated circuit

BPSK binary phase shift keying

CAD computer-aided design

CPU central processing unit

CTE coefficient of thermal expansion

DAQ data acquisition

DSP digital signal processor

F28335 SM320F28335-HT

FPGA field programmable gate array

HT high temperature

I/O input/output

IC integrated circuit

JTAG Joint Test Action Group

MCU microcontroller unit

N/A not applicable

NI National Instruments

NMOSFET N-channel metal-oxide-semiconductor field-effect transistors

OFDM orthogonal frequency division multiplexer

opamp operational-amplifier

PCB printed circuit board

PWM pulse width modulation

QAM quadrature amplitude modulation

RAM random-access memory

RC RelChip

SMD surface mount device

SNL Sandia National Laboratories

SRAM static random-access memory

Td decomposition transition

Tg glass transition

TI Texas Instruments
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1. INTRODUCTION

Subsurface electronic tools are critical for characterizing geothermal wells and for monitoring their 
long-term performance. The high temperatures, extreme depths, high pressures, and corrosive 
environments associated with a geothermal field make it challenging to measure various parameters, 
such as temperature, pressure, pH, resistance, tracers, and radiation. Logging tools and sensors 
temporarily used to capture these measurements generate a small voltage signal that cannot travel 
long distances without falling below the noise floor. Logging tools are expected to operate at depths 
exceeding 610 m (2000 ft), so a local processor—in this case a microcontroller—is necessary to 
capture the signal directly, after which the data is either saved locally or transmitted back to the 
surface. Due to the elevated temperatures, the microcontroller also needs to operate above 210˚C. 
Sandia National Laboratories (SNL), evaluated microcontrollers on the market that can operate at or 
beyond 210˚C in addition to developing a high temperature data link—an electronic unit used to 
transmit data across a data line.

Five high temperature (HT) microcontroller units (MCU) were evaluated from the manufacturers 
Honeywell (HW), Texas Instruments (TI), and RelChip (RC). Honeywell’s HT83C51 served as a 
reference due to the product’s reputation and SNL’s prior experience using the MCU for geothermal 
applications. This research also evaluated TI’s SM320F2812-HT, SM470R1B1M-HT, and 
SM320F28335-HT as well as RC’s RC10001 and its associated RC2110836 memory chip. HT Data 
Link evaluated TI’s SM320F28335-HT MCU as the processor for developing a high temperature 
data link. This paper includes steps to evaluating these devices, designing a data link, and the 
elevated temperature results observed. This technology can enable greater sensor counts, improve 
data accuracy, and decrease costs associated with real-time sensor data.
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2. HT COMPONENTS AND HT DATA LINK

2.1. Evaluation of High Temperature Microcontrollers and Memory
SNL evaluated five commercially available microcontrollers with operating temperatures listed at 
210˚C or higher as shown in Table 1. RelChip’s RC10001 has comparatively limited memory for 
utilizing the integrated circuit (IC) in logging tools; therefore, the RC2110836 static random-access 
memory (SRAM) chip was also evaluated under this effort. As of June 2022, all listed MCUs are still 
available for purchase. 

Table 1. Five HT MCUs with Performance Details

Device Company CPU
Max 

Temp. 
(˚C)

Max 
Clock 
(MHz)

Internal 
Memory ADC Pack-

age

SM320F2
812-HT

Texas 
Instruments ©

32-bit 
C2000

220 150 128Kx16 
Flash, 
128Kx16 
ROM

16-
Channel 
12-bit

SMD

SM470R1
B1M-HT

Texas 
Instruments ©

32-bit 
ARM7

220 60 1MB Flash, 
64KB SRAM

12-
Channel 
10-bit

SMD

SM320F2
8335-HT

Texas 
Instruments ©

32-bit 
C2000

210 150 
(125˚C)

100 
(210˚C)

256KBx16 
Flash, 
34KBx16 
SRAM

16-
Channel 
12-bit

Thru

RC10001 RelChip® 32-bit 
Cortex-MO

300 4 4KB SRAM N/A SMD

HT83C51 Honeywell© 8-bit 8051 225 
(300 
for 1 
year)

16 8KB ROM N/A Thru

CPU=central processing unit
ADC=analog-to-digital converter
SMD=surface mount device
N/A=not applicable

Table 2 lists microcontrollers that can operate at 200˚C or higher, but these were not evaluated 
because our research focused on available components with modern microcontroller architectures 
capable of functioning above 210˚C. For example, TK8X51S would have been a desirable IC to 
evaluate; however, it is currently in the design phase and has not been fabricated at this time.



14

Table 2. Additional HT microcontrollers Commercially Available

Device Company CPU
Max 

Temp. 
(˚C)

Max 
Clock 
(MHz)

Internal 
Memory ADC Package

TK89H51B Tekmos 8-bit 
8051

210 16 1024 Byte 
RAM, 2K 
EEPROM

8-channel, 
8-bit

Thru or 
SMD

TK8X51S Tekmos N/A 250 N/A N/A N/A N/A

VA41600 Vorago 32-bit 
Cortex-
M4

200 100 64KB 
Data, 
256KB 
Program

8-
Channel, 
12-bit

SMD

VA10800 Vorago 32-bit 
Cortex-
M0

200 50 32KB 
Data, 
128KB 
Program

N/A SMD

RAM=random-access memory

2.2. Development and Evaluation of a High Temperature Data Link
We also developed and tested a data link—an electronic system designed to receive and/or transmit 
data to another telecommunication unit—at elevated temperatures. Within the scope of this 
experiment, the data link was designed to only transmit data across a single conductor wireline, a 
type of high strength coaxial cable. Data links often consist of a digital signal processor (DSP), a 
digital-to-analog converter (DAC), and an amplifier; however, an MCU can be used in place of a 
DSP. This experiment used the SM320F28335-HT as the MCU for the data link as discussed below.

Figure 1. National Instruments DAQ with HT resistor DAC array for 
developing a high-speed data link.
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The HT data link effort built upon a previous work conducted within the department. Under that 
effort, lower temperature components were used to demonstrate a high-speed data link [15]. The 
data link used a National Instruments data acquisition (DAQ) and a computer. Using MATLAB 
software, the team developed communication software that can produce an orthogonal frequency 
division multiplexer (OFDM) with quadrature amplitude modulation (QAM). This is a common 
technique used by Comcast, cell phones, Wi-Fi, and other networking that require high speed data 
rates. To build from the DAQ, the team developed a DAC using HT resistors, and an amplifier 
using Honeywell’s HT transistors. The team demonstrated 3.8 Mbps across 1524 m (5000 ft) of 
single conductor wireline. These data rates were not observed with the latest geothermal logging tool 
technology. The next phase of this effort was to replace the DAQ and computer with an HT 
microcontroller. 

2.3. Steps to Evaluating the Microcontrollers and Memory
After selecting the appropriate microcontroller, several steps were taken before testing began in an 
HT oven. First, we selected printed circuit board (PCB) material fit for evaluation and created a 
schematic based off the data sheets and/or referenced from a sister microcontroller evaluation 
board. Next, the PCB was designed using computer-aided design (CAD) software such as Altium. 
The design was fabricated and the PCB was evaluated in the oven at temperatures between 200 and 
300˚C. The microcontroller was then soldered to the PCB after which it was programmed to repeat 
a task. Finally, after setting up the oven/DAQ, the packaged microcontroller was evaluated in the 
oven at 200–300˚C. 

2.3.1. Selecting the Printed Circuit Board
Under this effort, the PCB must operate between 200–300˚C and was therefore evaluated for the 
following criteria: high glass transition temperature, high decomposition temperature, and availability 
for fabrication from standard PCB fabrication companies. This device was solely tested in an oven 
and not be exposed to vibration, greatly simplifying the packaging design. Several materials in Table 
3 were considered. Two materials were ultimately selected for packaging. Rogers 3003 was used on 
the SRAM chip and Rogers 4003 for the microcontrollers. These were selected because they were 
readily available from Advanced Circuits’ PCB foundry.

Table 3. Standard PCBs Available by Advanced Circuits

Material Layer Count Company Tg (˚C) Td (C) Dielectric 
Constant

Rogers 3003 20 Rogers 
Corporation© 500 3

Rogers 3035 20 Rogers 
Corporation© 500 3.5

Rogers 3006 20 Rogers 
Corporation© 500 6.15

Rogers 3010 20 Rogers 
Corporation© 500 10.2

Rogers 
4003C 20 Rogers 

Corporation© 280 425 3.55
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Material Layer Count Company Tg (˚C) Td (C) Dielectric 
Constant

Rogers 5870 8 Rogers 
Corporation© 500 2.33

Rogers 5880 8 Rogers 
Corporation© 500 2.2

NF-30 Taconic® 515 3

TLX-8 Taconic® 535

Rogers 
Cuclad 250 20 Rogers 

Corporation© 500 2.97

Rogers CTLE 20 Rogers 
Corporation© 487 3

Tg=decomposition transition
Td=glass transition

2.3.2. Designing Circuit Board
After selecting the PCB, this effort created circuits around each device based on the device’s 
datasheet and evaluation board. The RC10001 was the only device whose evaluation board had a 
publicly available schematic. The listed TI MCUs did not have evaluation boards; however, their 
lower temperature sister chips did. As such the low temperature evaluation boards were used as a 
reference for the HT PCBs. The design consisted of the microcontroller and minimal external 
components, with most microcontrollers requiring only a small number of resistors.

2.3.2.1. HT83C51 Circuit
SNL has utilized the HT83C51 microcontroller in logging tools for over a decade. Although the 
chip was primarily used for 225°C applications previously, this experiment used it as a reference 
against newer microcontrollers, testing it at temperatures up to 300°C. SNL developed a custom 
evaluation board for the microcontroller to program the device. The evaluation board consists of a 
custom FPGA to interface with the microcontroller, multiple memory chips, and power regulation. 
Considering its availability, a simple evaluation board was needed, so that only the chip could be 
placed in the oven. The breakout board circuit is shown in Figure 2. It consists of the MCU, two 
power line filter capacitors, and thru hole pins for the HT wires that were routed outside the oven to 
the evaluation board. 

2.3.2.2. RC10001 Circuit
Originally released in April 2018, the RC10001 is one of two MCUs that can operate at 300°C—the 
other being the HT83C51, which uses older architecture with minimal features. RelChip supplies a 
low temperature evaluation board specifically for the RC10001 microcontroller combined with the 
RC2110836 SRAM. This circuit was simplified to just the RC10001 and only the necessary four 
resistors. Figure 3 shows a schematic for the microcontroller. For programming purposes, a Joint 
Test Action Group (JTAG) for programming the device was utilized. The board also contains power 
line filter capacitors and thru hole pins for the HT wires. 
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2.3.2.3. RC2110836 Circuit
Initially, a custom evaluation board was designed for the RC2110836 SRAM IC, which was a single 
board with the memory chip and a microcontroller. The NUC100VD3AN microcontroller was used 
to interface between the SRAM and a computer. Figure 6 shows a schematic for the microcontroller. 
The board was designed to be about two feet in length to allow the microcontroller to be placed 
outside the oven while the memory is placed within. This simplified the routing of the 68 pins of the 
memory chip. The issue with this approach is the long traces delaminated from the board as the 
temperature reached above 200˚C, which caused open or short circuits. To resolve the issue, a 
breakout board was made solely for the memory chip, which then connected to the evaluation board 
via HT wire. The circuit of the breakout board is shown in Figure 7. The breakout board routed the 
IC pins to header pins on the outer edge. The board also contained power line filter capacitors. 

2.3.2.4. SM320F2812-HT Circuit
Originally released around June 2009, the SM320F2812-HT is a highly desirable chip for its built-in 
DSP, which can be used to efficiently communicate between the logging tool and the surface 
computer. A potential drawback is size, the IC is the largest among the microcontrollers being 
evaluated. Although this board has a sister microcontroller, TMS320F2812, that board was designed 
over a decade ago and interfaces with a computer via a parallel port. Parallel ports were commonly 
used before the USB protocol. This board was also designed to be programmed with an external 
programmer via a JTAG. The evaluation board was simplified to basic components, just the 
microcontroller with optional capacitors. Necessary resistors were then added to the thru hole pins 
along the edge of the board. The resistors were not hard wired to the board because of 
programming issues reviewed in a later section.

2.3.2.5. SM470R1B1M-HT Circuit
The SM470R1B1M-HT is desirable for geothermal logging tools because it is the smallest >220˚C 
microcontroller on the market. SM470R1B1M-HT’s circuit was designed around its datasheet, which 
was originally released in September 2009, and the TI TMS470R1B512 evaluation board. 
TMS470R1B512 is a sister chip with the same MCU architecture and additional features. The 
evaluation board used an old programming connector protocol but can also be programmed via 
JTAG. A schematic of the HT board is shown in Figure 5. It has multiple resistors to set the 
microcontroller, two JTAG options, jumper pins to change settings, and several filtering capacitors. 
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Figure 2. HT83C51 circuit for breakout board.
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Figure 3. RC10001 microcontroller evaluation circuit.
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Figure 4. SM320F2812-HT microcontroller evaluation circuit.
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Figure 5. SM470R1B1M-HT microcontroller evaluation circuit.
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Figure 6. Custom evaluation board for the RC2110836. The NUC100VD3AN is used to interface 
with the memory chip.
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Figure 7. Breakout board for the RC2110836 SRAM memory IC.

2.3.2.6. SM320F28335-HT Data Link Circuit
Throughout this effort, the TMS320F2812-HT and SM470R1B1M-HT could not be programmed, 
and only the RC10001 remained in consideration; however, its lack of a floating-point function and 
minimal memory made it less than ideal. After discussions with other researchers, the 
SM320F28335-HT, released around December 2010, was added to the study. The SM320F28335-
HT supports MATLAB, which simplifies the programming process, making it the best choice for 
developing a data link. Programming knowledge and software using SM320F28335-HT may be 
expanded onto the RC10001 in the future.

The SM320F28335-HT circuit was designed around the datasheet and the TMS320F28335 (sister 
microcontroller) evaluation board. Considering this chip was used for the data link project, it was 
more difficult to enable communications across a single conductor wireline compared to the other 
MCUs. The circuit contains a DAC, amplifier, line driver, crystal oscillator, voltage regulation, and a 
JTAG port.
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Figure 8. SM320F28335-HT microcontroller and data link circuit.
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Figure 9 shows the circuits for the DAC, amplifier, and line driver. The DAC is an array of HT 
resistors. It operates by setting an output voltage based on one of the 12 pins from the MCU, 
making it a 12-bit DAC. Its output voltage ranged from 0–3.3V, considering the input/output (I/O) 
pins operate at 3.3V. To improve the integrity of the transmitted message, the signal did not exceed 
1 V. To boost the voltage signal of the DAC, a cascode amplifier was utilized. A cascode typology 
was used over the common-emitter typology because it does not suffer from the Miller feedback 
capacitance. With the cascode amplifier, which has a high output impedance, low output impedance 
is required to drive the low impedance single conductor wireline. This is accomplished using a line 
driver, a common-drain amplifier typology that can supply the current required. Honeywell’s HT N-
channel metal-oxide-semiconductor field-effect transistors (NMOSFET) were used to build the 
amplifier and line driver. Both the line driver and amplifier utilize a NMOSFET on the gate of the 
input transistor to auto bias the pins as the temperature changes. Ideally, this maintains constant gain 
profiles as the temperature increases. 

Figure 9. Circuit segment for SM320F28335-HT data link, (Top) resistor-based DAC, (Bottom Left) 
cascode amplifier, (Bottom Right) common drain-amplifier line driver.

Figure 10 shows the S-parameters for the combined performance of the amplifier and line driver. S-
parameters represent gain, reflection, and isolation. In this situation, S21 represents gain, S11 is the 
input port reflection, S22 is the output port reflection, and S12 is the isolation from the output port 
to the input port. As shown in Figure 10, the gain profile is about 10 dB from 30 kHz to 180 kHz. 
Also, the reflection is about -1dB with the 50-ohm impedance ports of the vector network analyzer. 
Typically, a good reflection is -20 dB, and acceptable reflection is around -10 dB. The performance 
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of the amplifier will need to be improved to minimize reflected energy. In the future, the cascode 
amplifier will be replaced with an operational-amplifier (opamp) available from Honeywell. Utilizing 
an opamp will have a higher gain, improve performance at higher temperatures, and lower port 
reflection profile.

Figure 10. S-parameters for the cascode amplifier and line driver.

Figure 11 shows the insertion loss profile for the 1524 m (5000 ft) single conductor wireline used in 
this experiment. As seen in the graph, the insertion loss is about 7 dB at 13 kHz and lower. The 
profile rolls off at 13 kHz. Utilizing the additional gain from the amplifier, the data link was pushed 
to operate up to 100 kHz where the wireline has an insertion loss of 27 dB. Increasing the 
bandwidth of the data link output can increase the data rate of the system.

Figure 11. Insertion loss profile of the 1524 m (5000 ft) single conductor wireline.
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The data link used the components listed in Table 4. It was designed to operate up to 210˚C, the 
operating temperature of the microcontroller, but is limited by the crystal oscillator. Due to budget 
and time constraints, it was decided to use the listed crystal. To push the operating temperature 
further, the crystal can be replaced with an external clock signal. 

Table 4. List of Components used on the Data Link
Component Company Part Number Temperature (C)
MCU Texas Instruments SM320F28335-HT 210
NMOSFET Honeywell HTNFET 225 (300 1-year)
Crystal Frequency Management 1931794 200
Resistor Vishay Dale ALSR011K000JE12 250 (works at 300)
Crystal Capacitor Vishay Vitramon VJ0402D220JXXAJHT 200
Capacitor Presidio Components HT1712X7R104J3P1R 250

2.3.3. Printed Circuit Board Design
After completing the schematics, a layout used to fabricate the PCB was created for each board, an 
example of which is pictured in Figure 12. The boards were designed using CAD software such as 
Altium. In order to mitigate failure at elevated temperatures, the copper traces were placed in the 
inner layers of the board to prevent them from lifting off. The board was also designed to be bolted 
to a metal plate to mitigate potential warping at elevated temperatures, hence the 12 screw holes 
surrounding the IC. 

Figure 12. PCB layout for the SM470R1B1M-HT.

With the material and layout defined, the board was fabricated by an external company, Advanced 
Circuits. Each PCB was relatively simple, containing a total of four metal layers. An important detail 
selected for the fabrication of the board was to have gold plating on the exposed metal traces. Bare 
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copper will oxidize and tinned pads can degrade the high temperature solder. It was later discovered 
that solder consumes gold plating at elevated temperatures. The board for the data link was designed 
during the evaluation of the other microcontrollers. We decided to fabricate the data link board with 
bare copper plating, accepting that any exposed copper will oxidize over time. Tinned pads is 
typically standard solder applied to the copper pads from the manufacturer. Standard solder is 60% 
tin and 40% lead and has a melting point of 190˚C, hereafter referred to as low temperature solder. 
HT solder used in this research is 97.5% lead, 1.5% silver, and 1% Sn, which has a melting point of 
slightly above 300˚C. Thus, fusing low temperature solder and HT solder can degrade the 
temperature performance.

2.3.4. PCB Oven Testing
After receiving the fabricated boards from Advanced Circuits, the boards were evaluated in the oven 
at elevated temperatures to observe degradation. Several degradation points were observed. The 
most obvious change is that the board transitioned from a green color at room temperature to a 
black color at temperatures above 200˚C and later to a white color after sitting at 300˚C for an 
extended period of time. The boards were coated with a thin non-conductive layer (solder mask) to 
prevent solder wicking across the metal traces during packaging. Most of the color change results 
from the solder mask. Figure 13 provides an example of degradation observed at 300˚C, showing 
the solder mask fractured and delaminated from the Rogers 4003 material. In addition, the Rogers 
4003 material was no longer planar; it could not lay flat on the table. Our research found that in 
multilayer boards, the two Rogers 4003 layers delaminated from each other, creating bubbles 
between the two layers. This probably resulted from moisture evaporating and causing pressure 
between the layers, which can be mitigated by baking-out the board at 100˚C for 24 hours.

Figure 13. Degradation of PCB at 300˚C. Solder mask changed from a green to a white color and 
delaminated from the Roger4003 material. The board planarization also degraded and was no 
longer flat. 

The bubbling is prominent in Figure 14, which depicts a cross-section of the PCB. The bubble in 
the center of the board formed while exposed to elevated temperatures. This can cause significant 
strain on the solder joints of the IC and PCB, which can lead to the IC debonding.
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Figure 14. Rogers 4003 four metal layer board with a bubble formed in the middle of the board 
after exposure to temperatures above 200˚C. The bubble developed between the two Rogers 4003 
layers, the lamination layer.

Figure 15 depicts a PCB with low temperature and HT solder applied to the metal pads. The low 
temperature solder changed from a silver gloss color to a matte gray color, which indicates the 
solder is degrading. Degraded solder will typically have higher electrical resistance and/or fracture. 
The high temperature solder remained a silver color after testing at elevated temperatures, but a 
black substance appeared surrounding the solder. Notably, the flux was removed from the boards 
before testing. It was necessary to place the board on a hot plate while using a solder iron to get a 
relatively decent joint, making it difficult to apply HT solder to the traces. Solder was added to the 
corner of the large gold metal pad in the middle. As shown in Figure 15, the solder consumed part 
of the large pad’s gold plating.

Figure 15. Degradation of PCB at 300˚C. Standard solder and HT solder has been applied to some 
of the gold-plated traces. Standard solder changed from a silver color to black. The HT solder 
slightly changed to a textured silver. The solder also consumed the gold plating. 

PCB layers delaminating at the center (bubble)

Edge of PCB
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2.3.5. Packaging and Programming Microcontroller

2.3.5.1. HT83C51
HT83C51 was the simplest microcontroller to package considering the large spacing between pins, 
thru hole pins, and small pin count. As shown in Figure 16, the chip was directly soldered to the 
Rogers 4003 board. HT wires were soldered to the breakout pins on the edge of the board. 
Packaging details for the HT83C51 are as follows: four metal layered Rogers 4003 PCB with routed 
metal traces in the inner layers of the board; gold plated pads with 39 mil trace width and clearance; 
HT solder to attach HT wires; and the thru hole microcontroller. Filter capacitors were not 
populated (which was not required).

Figure 16. HT83C51 soldered to Rogers 4003 breakout board with HT wires.

The evaluation board for the HT83C51 microcontroller is shown in Figure 17. The evaluation board 
was custom made by SNL over a decade ago. It contains memory, power regulation, and custom 
firmware to program the HT83C51. Honeywell did not supply hardware to program the HT83. To 
use the microcontroller, SNL developed technology to program the device. One method developed 
to program the HT83C51 involved using a field programable gate array (FPGA). SNL developed 
firmware for the FPGA to enable communications between the computer and the HT83C51. 



31

Figure 17. Custom SNL evaluation board for the HT83C51. Utilizes an FPGA with custom code to 
program the microcontroller. Evaluation board also includes memory and power regulation.

After developing the FPGA and firmware, SNL enabled the programmer technology to operate at 
the same temperature as the HT83C51 by converting the firmware code into a transistor format. An 
effort was then put together to fabricate the IC utilizing Honeywell’s SOI HT IC fabrication 
technology.  This enabled the ability to program the HT83C51 while the entire board is exposed to 
elevated temperatures deep within a borehole. Figure 18 shows the fabricated programmer for the 
HT83C51 chip.

Figure 18. Custom SNL HT application specific integrated circuit (ASIC) programmer for the 
HT83C51. Utilized for programming the microcontroller while operating at elevated temperatures.

The breakout board is essentially an extension cord from the evaluation board to the IC. The 
evaluation board remains at room temperature, while the IC is exposed to high temperatures. The 
issue that occurred with this approach is that the microcontroller could not be programmed 
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properly. The long wires either caused noise or a timing inaccuracy even though all the wires were 
made to be the same length. To bypass this issue, the breakout board was connected directly to the 
evaluation board as shown in Figure 19. Once the chip was programmed, the breakout board was 
removed, and the software continued to operate as expected. This was not ideal for evaluating the 
IC, but due to budge limitations, it was enough to compare to the other microcontrollers. The 
software used was simple, the MCU constantly transmitted a digital string of characters, “Hello 
World!” If the message stopped, either the MCU became corrupted and required reprogramming or 
the MCU was no longer functioning. The code used to evaluate the microcontroller is listed in 
Appendix A.1.

Figure 19. HT83C51 in the process of programming with the development board.

2.3.5.2. RC10001
The RC10001 was initially soldered to the Rogers 4003 PCB with low temperature solder. Low 
temperature solder was chosen because it only needed to operate for one month and would not be 
exposed to vibration. This chip was evaluated at 300˚C, thus the solder would be in a liquid state. 
Ultimately, the chip was soldered with HT solder to mitigate packaging failures observed in Section 
2.4.3. The board consists of a four metal layered Rogers 4003 PCB with routed metal traces in the 
inner layers of the board as well as gold plated pad with 6 mil clearance for the IC pads and 9 mil 
routed trace clearance. To program the device, we used Keil software and a Keil Ulink2 
programmer. Steps to program the device are listed in Appendix A.2. the code used for the 
RC10001 was even simpler than the HT83C51 software. Building off the RC10001 example code, 
the microcontroller pulsed an I/O pin continuously. Evaluation code used for the oven testing is 
listed in Appendix A.3. Only four wires were soldered to the board as shown in Figure 20: two for 
power, one for an external clock, and the last for the I/O pin, which was to be observed during 
testing. 
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Figure 20. RC10001 soldered on Rogers 4003 PCB with HT wires.

2.3.5.3. SM320F2812-HT
Board details for the TMS320F2812-HT are as follows: four metal layers with a majority of 
connection traces in the inner layers; gold plated pads, 7 mils trace width and clearance; and Rogers 
4003 material. A picture of the packaged IC with the PCB is shown in Figure 21. The board has 
connections for the HT wires and the microcontroller. Resistors were soldered to the breakout pins 
on the edge of the board to properly set the microcontroller. TMS320F2812-HT was soldered with 
low temperature solder to the Rogers 4003 PCB. The microcontroller is a surface mount device, but 
it has a rail around the pins. The rail can be removed, but the team decided to leave the rail attached 
and flipped the chip in reverse. The rail was left for the packaging aspect because of the additional 
bonding strength from the solder. In additional, the rail’s mounting hole points can be used to 
attach screws that strengthen the mechanical structure between the IC and PCB.

Unfortunately, after the effort of packaging the device, no attempt allowed the user to program the 
microcontroller. Many approaches were attempted to program the device. Firstly, Code composer 
10 with the XDS200 programmer was used but with no success. This was followed by replacing the 
XDS200 with the XDS100v2, XDS510, or XDS510 plus, but the IC was not detected. All the solder 
connections were triple checked by two electronics engineers as well as ensuring proper settings and 
JTAG connections. Later, the Spectrum Digital eZdsp TMS320F2812-HT evaluation board was 
purchased. This evaluation board contained the sister chip of the SM320F2812-HT IC. It also 
contained the TMS320F2812-HT microcontroller, which is the low temperature version of the IC. 
The same programming approach was used again, this time on the evaluation board. When that 
failed, Code Composer 3 was used in an attempt to detect the device. Again, the software could not 
recognize either the package device or the evaluation board. The effort attempted two final 
approaches: an older version of the Windows OS was used and the parallel port on the evaluation 
board was used with an old computer to try and detect the device. With all attempts failing to 
program the device, the SM320F2812-HT was abandoned under this effort and was not evaluated at 
elevated temperatures. 
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Figure 21. SM320F2812-HT 172-pin soldered on Rogers 4003 PCB.

2.3.5.4. SM470R1B1M-HT
Board details for the SM470R1B1M-HT are as follows: four metal layers with a majority of the 
connection traces in the inner layers; gold plated pads, 7 mil trace width and clearance; and Rogers 
4003 material. The package is pictured in Figure 22. The board has connections for the HT wires, 
the surface mounted microcontroller, eight HT resistors, and the JTAG header. SM470R1B1M-HT 
was soldered with low temperature solder to the Rogers 4003 PCB. 

To program the device, ULINK Pro and Keil software was used. TI Code Composer could not be 
used because the IC is no longer supported by the software. The IC was released when Code 
Composer 3 originally came out, like the TMS320F2812-HT. Keil was used to program the device 
because it had a library for the TMS470R1B1M (TMS470) IC, the low temperature version of the 
IC. Initially, it was challenging to properly configure the external resistors to the IC. As such, the 
TMS470R1B512 (similar low temperature IC) evaluation board was initially used to confirm 
detection of the chip with the Keil software. After confirming detection of the TMS470 and 
properly configuring the SM470R1B1M-HT, the Keil software successfully detected the 
SM470R1B1M-HT. In an attempt to program the device, the team ran into an issue. Even though 
the TMS470 was like the SM470, there were differences that hampered the ability to easily program 
the SM470R1B1M-HT. The TMS470 has features such as additional I/O blocks. Even when trying 
to program the SM470R1B1M-HT with the TMS470 library, the registry to configure the I/O port 
would not work, even though the Keil software would note the chip was programmed properly. To 
program the IC, a library would need to be handwritten to define all the registries of the IC, 
something the project budget could not support. Later it was discovered that another software, IAR 
Systems, had the library set to program the SM470R1B1M-HT specifically. Unfortunately, 
considering the cost, the budget could not support the software’s purchase. Near the end of the 
effort, an external company successfully programmed the device, indicating the IC could potentially 
be used in HT applications; however, considering SNL could not program the device at the time, it 
was not evaluated under this effort.
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Figure 22. SM470R1B1M-HT soldered on Rogers 4003 PCB.

2.3.5.5. SM320F28335-HT
Unlike other microcontrollers, the SM320F28335-HT was also used for evaluating a data link for 
communications across 1524m (5000 ft) of single conductor wireline as discussed in Section 2.3.2. 
Population of the PCB is shown in Figure 23. The microcontroller is the large gray IC with a gold 
square pad in the middle. Considering it would only be evaluated 210˚C, this circuit was built on a 
Rogers 4003 PCB and bonded using low temperature solder. Board details for the SM320F28335 are 
as follows: four metal layers with majority of the connection traces in the inner layers; bare copper 
pads; and 10 mils trace width and clearance.

Figure 23. SM320F28335-HT soldered on Rogers 4003 PCB. PCB designed for data link 
application. Incorporates HT resistor DAC, HT amplifier, and HT line driver. Design also includes 
power regulation, but components were not utilized.

Along with a more complex PCB, the SM320F28335-HT used a more complicated software 
compared to the other devices. Like the other devices, the code continuously output a set of data; 
however, complexity arose when the digital message was converted to an analog signal using keying 
techniques. As noted earlier, the data link is designed to send messages at high-speed across a single 
conductor wireline. There are several manipulations that can occur to a sinusoidal signal to represent 
a digital bit. These can include turning on and off the sine wave, changing the frequency, amplitude, 
or phase. Keying techniques are shown in Figure 24. By combining these techniques, data rates can 



36

be increased significantly. As reviewed earlier, a previous effort utilized OFDM+QAM which is the 
manipulation of frequency, amplitude, and phase with the high resolution and wide frequency 
bandwidth of the wireline. The goal was to duplicate the effort but replace the National Instruments 
DAQ with an HT MCU, but ultimately the code was simplified and used OFDM+ binary phase 
shift keying (BPSK). OFDM+BPSK is manipulation of the frequency and only two-phase shifts. As 
such, this has a much lower data rate compared to previous efforts. This slower technique was used 
because it would be challenging to convert the original MATLAB code into C code for the 
microcontroller. The effort determined it would be better to start simple and rewrite the MATLAB 
code using the built-in MATLAB BPSK libraries. 

Figure 24. Illustration of the basic keying technique for transmitting data.

Johnny Silva from SNL made the basic OFDM+BPSK MATLAB code as a proof of concept on the 
computer and demonstrated the capability to convert it to C code using the built-in MATLAB tools. 
This was then transferred to Francis Tiong from MathWorks to optimize the code and get it to 
operate on physical hardware. A procedure was written describing how to use the XDS200 
programmer, MATLAB, and TI Code Composer 10 to program and alter settings for the 
SM320F28335 data link, which can be found in Appendix A.5. Partial code for the data link can be 
found in Appendix A.6.

For the experiment, the code transmitted the message “Live long and prosper, from the 
Communications Toolbox Team at MathWorks!” The microcontroller would then repeat the 
message continuously. To do this, the message was transposed into the OFDM+BPSK format. This 
was outputted from the microcontroller to its 12 I/O pins. Those 12-bits were then converted to an 
analog signal with the resistor DAC, which was amplified and propagated through the 1524 m (5000 
ft) single conductor wireline. The signal was then captured by Pico Technology’s PicoScope 
oscilloscope. The data was saved in a MATLAB format with the PicoScope software, after which 
the signal was converted back to the original message using a MATLAB script. Along with that, the 
MATLAB script plotted a constellation diagram, which represents a digital modulation scheme. 
Shown in Figure 25 is a sample constellation diagram. There are four blue dots (symbols) on the 
diagram representing a quadrature phase shift keying (QPSK) constellation, to which each symbol 
represents 2 bits. The larger the constellation, the larger number of bits that can transmit per 
symbol. 
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Figure 25. Sample constellation diagram for a 4-QAM.

A constellation diagram is important because it can show interference that may have occurred when 
the signal was first generated to the receiver. There are many ways a signal can degrade, including 
random EM signals in the air, motion to the cables, power supply noise, thermal noise, and even 
radiation from the sun. 

Figure 26 shows the received signal’s constellation diagram and the messages received. On the left is 
the constellation diagram for the messages received by the oscilloscope. Considering the technique 
used is BPSK, there are only two symbols in the diagram. Each symbol represents a single bit. The 
symbols are not a single point on the diagram, instead the points are spread around the expected 
point on the diagram. This is due to noise the data link and wireline experienced. The points are in 
the general region within the acceptable threshold defined by the MATLAB script. The signal was 
then converted to the messages shown in the image to the right. When there is noise on the signal, it 
can degrade the message, hence the reason for the incorrect characters seen in some of the 
messages. There are multiple ways to improve the signal integrity, which will be explored in future 
efforts. 

 
Figure 26. Received data on the oscilloscope, transmitted from the data link. (Left) Image of 
constellation plot of the BPSK signal and (Right) messages that were received. 
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2.3.5.6. RC2110836
Board details for the RC2110836 are as follows: four metal layers with a majority of the connection 
traces in the inner layers; gold plated pads, 12 mils trace width and clearance; and Rogers 3003 
material. A picture of the package IC with the PCB is shown in Figure 27. The board has 
connections for HT wires, the surface mounted microcontroller, and filtering capacitors. The IC was 
soldered with low temperature solder to the Rogers 3003 PCB.

The NUC100VD3AN microcontroller was used to set each register to a 1 or 0 bit on the 
RC2110836 SRAM. The MCU would then read each register and transmit the data to the computer. 
The computer then displayed and saved the data as a hex value, representing the bits of the registers. 
After all the registers were set and data saved, the microcontroller then flipped the bit and repeated 
the process. The flipping of the bits repeated continuously. If any register failed to flip, the hex value 
would change, indicating to the user that a register had failed. MATLAB software on the computer 
was used to interact with the microcontroller. The code is shown Appendix A.4.

Figure 27. RC2110836 low temperature soldered to Rogers 3003 PCB with HT wires. Pictures of 
the packaged device were not taken before the oven evaluation. Originally the board was a green 
color.

2.4. Evaluating Packaged Microcontrollers and Memory
The four ICs were evaluated considering factors from the previous section. This includes the 
HT83C51, RC10001, RC2110836, and the SM320F28335.

2.4.1. Evaluating HT83C51
The HT83C51 board was evaluated in an oven reaching 300˚C. Altogether, we evaluated two 
packaged HT83C51s. The first package operated at 200˚C for 67 hours with no issues. After the 
oven temperature was increased to 300˚C, the IC operated for 6 hours before failure. The oven was 
deactivated and left to cool after which the chip was power cycled and reprogrammed. The device 
operated again, outputting the “Hello World!” message, but as the temperature of the oven was 
slightly increased, the IC failed again. The evaluation determined that the IC can only operate at 
room temperature. A second IC was packaged, and the temperature was increased slowly to collect 
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more data. This time, the PCB was baked-out at 100˚C for over 24 hours to remove any moisture 
from the board. Testing started at 200–215˚C for 125 hours with no observable errors. Next, the 
temperature was increased to 225–235˚C for 206 hours, 250˚C for 118 hours, and 255–265˚C for 50 
hours with no observable issues. Finally, the temperature was increased to about 275˚C, after which 
the IC failed at 12.8 hours. In the datasheet for the IC, it is designed to operate at 225˚C and is 
capable of one year of operation at 300˚C. As the results show, one of the evaluated ICs operated at 
300˚C for only 6 hours. Further testing is required to understand why the ICs failed prematurely. 
One unlikely possibility is the age of the IC. The ICs evaluated were fabricated over 10 years ago, so 
there might be a chance the transistors of the IC degraded by sitting on the shelf. During testing, we 
monitored the current and observed the IC drew about 38 mA at room temperature and 30 mA at 
300˚C. Typically, current increases with elevated temperatures, but with the HT83C51, the current 
decreased. After the packaged device was exposed to temperatures of 300˚C, several degradations 
were observed on the board. The green solder mask changed to a white color as shown in Figure 28. 
One can also see fractures lines occurring above the routed traces between the IC and breakout pins. 
It is unclear why the traces encouraged that effect considering they are within the inner layers. The 
HT solder has blackened as previously shown in Section 2.3.4. Finally, the text on the top of the IC 
(gold region) faded away. 

Figure 28. HT83C51 on the breakout board after 300˚C evaluation. The board transitioned from a 
green solder mask to a white color, forming various fractures.

2.4.2. Evaluating RC2110836
During the test, a cylindrical metal weight was placed on top of the memory IC to mitigate 
delamination from the PCB. A second hollow metal cube was placed on top of the PCB to help 
mitigate deformation of the PCB near the IC. At room temperature, 200˚C, and 300˚C, the current 
draw of the chip was 2.5 mA, 3.5 mA, and 21 mA, respectively. During evaluation of the IC at 
300˚C, the packaging failed after the IC debonded from the PCB as a result of strain from the 
deformation of the board and the degradation of the low temperature solder. Considering the 
challenges associated with HT solder, the same chip was resoldered with low temperature solder. 
Following the repair, the board continued the evaluation. The packaged device operated at 300˚C for 
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a total of 528 hours with no additional failures. To push the IC further, the temperature was 
increased to 305˚C, where the device operated for another 816 hours before failing. The packaged 
microcontroller, with and without the weight after the evaluation in the oven, is pictured in Figure 
29. The board started as a green color, changing to a white color after hundreds of hours at 300˚C. 
The surface of the board contained many fractures and visibly warped around the edges. 

Figure 29. RC2110836 and packaging after evaluation at 300˚C for over a month. Pictured on the 
right is the microcontroller with a weight on top to mitigate IC deformation.

2.4.3. Evaluating RC10001
One of the most challenging HT ICs evaluated under this effort was RC10001 due to it being a 
surface mount device (SMD) as well as various issues associated with the PCB’s exposure to high 
temperatures. With the packaging techniques we had available, a total of three packages were 
assembled to obtain the best results in the allotted time. Following the success of testing the SRAM 
IC, the first RC10001 was soldered with low temperature solder due to the difficulty of working with 
HT solder on a tight pin pitch on the IC. The set was exposed to temperatures above 200˚C for 42.5 
hours without failure until the temperature reached 276˚C. The chip failed after de-bonding from 
the board. As described in Section 2.3.4, the board bubbled and the solder degraded. As shown in 
Figure 30, the solder degraded and consumed the gold plating after being exposed to elevated 
temperatures for an extended period. Two pins in the image were soldered while the other pins were 
not. The gold plating on the pins was completed stripped off at elevated temperatures. Along with 
these challenges, there was a coefficient of thermal expansion (CTE) mismatch between the IC and 
PCB. CTE mismatch occurs when there is a delta in physical expansion between two materials as 
the temperature increases. As the CTE mismatch increases it causes strain on the solder joint, and 
the IC physically removed itself from the board.
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Figure 30. RC10001 connection pins. The center two pins are soldered, while the remaining gold-
plated pins were left unsoldered. At elevated temperatures, the solder consumed the gold plating 
off the two pins.

Due to budget constraints, the same board design was utilized (ten duplicate PCBs were fabricated), 
and low temperature solder was used again. This time, a large metal weight was placed on top of the 
microcontroller as shown in Figure 31. Ideally, the weight would mitigate deformation of the PCB. 
With a new IC and PCB, the board was placed in the oven at 100˚C for four hours to remove any 
moisture. The temperatures were then increased to 256˚C, where it failed after 2.4 hours. After 
failing, the board was left in the oven. Power to the board was left on and the temperature was 
increased to 300˚C, where records show the package’s power lines shorted. The IC was exposed to 
those temperatures for 19 hours before being removed. After it was removed from the oven, the 
packaged device was evaluated under the microscope. The chip did not delaminate from the PCB, 
but it appeared the solder slightly expanded between the pins, potentially causing digital and power 
line shorts, resulting in the initial failure at 256˚C. The power line shorted as the board was sitting at 
300˚C. The expanded solder was cleaned with a micro chisel. After cleaning the solder, the short 
remained. Thus, the IC was removed from the board to investigate further. Even after removing the 
chip and cleaning all the solder, the short could not be found, indicating that it most likely occurred 
within the inner layers. 
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Figure 31. RC10001 microcontroller with a metal weight on top to mitigate deformation under 
elevated temperature evaluation.

To mitigate the issues observed in the second package, the third package used HT solder. It is 
challenging to use HT solder on the RC10001 when processing by hand, so to simplify the process, 
only the necessary pins were soldered. The board had to be placed on a hot plate to use the HT 
solder. To focus heat on the chip, a small block slightly larger than the IC was placed below the 
board and aligned with the chip as shown in Figure 32. The hot plate temperature was increased to 
210˚C and a special soldering iron that flows inert gas (nitrogen) over the iron and solder was used 
to apply HT solder without oxidizing the metal. 

Figure 32. (Left) RC10001 package set on a hot plate with a pedestal underneath to focus the heat 
on the IC pins. (Right) RC10001 soldered to the PCB with HT solder only on the necessary pins.

The third package recycled the RC10001 from the second package but used a new PCB. The set was 
placed in the oven at 100–110˚C for 41 hours to ensure there was no moisture in the board. Again, 
the metal weight was placed on top of the IC. Temperatures were increased slowly to obtain as 
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much data as possible. The temperature was increased to 200˚C and the package sat for 117 hours 
with no issues. Next, the temperature increased to 220–234˚C and the package operated for 157 
hours until failure. Unfortunately, the power lines shorted again before reaching 300˚C. Notably, the 
recycled microcontroller was exposed to 300˚C in an off state for 19 hours; however, this does not 
indicate the chip would function at 300˚C. Considering the results obtained from the SRAM chip, 
which uses the same transistor technology, the IC should function at 300˚C. During the three 
experiments, the current draw increased approximately 3–4 mA at elevated temperatures.

Figure 33. RC10001 and packaging exposed to a max of 234˚C for 157 hours.

2.4.4. Evaluating SM320F28335-HT
As noted previously, the software for the SM320F28335-HT was the most complex among the 
devices evaluated under in this study. That said, the packaging was the easiest to deal with largely 
because the microcontroller can only operate up to 210˚C and is a thru hole device. These factors 
made the packaging significantly more reliable compared to operating an SMD device at 300˚C. The 
evaluated data link is shown in Figure 34.

The setup used to evaluate the data link include the following: three external power supplies used to 
power the data link, including 1.9 V, 3.3 V and 12 V sources; a PicoScope oscilloscope used to 
receive the ODFM+BPSK signal from the data link output; and a 1524 m (5000 ft) single conductor 
wireline placed between the output of the data link and the input of the oscilloscope. The wireline 
was placed outside the oven because of its size. An on-board crystal oscillator was initially used to 
clock the microcontroller and PicoScope oscilloscope software was used to save the data. Finally, 
MATLAB was used in post-processing to display the messages and create a constellation plot.
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Figure 34. The data link after operating at 210˚C for 288 hours.

For the first elevated temperature test, the microcontroller current draw was 221 mA, 200 mA, and 
75 mA for 1.9 V, 3.3 V, and 12 V, respectively. As a precaution, the board was heated to 100˚C for 
24 hours to bake-out moisture. Following this, the temperature was increased but stopped at 110˚C 
when the transmitted messages became corrupted. After debugging the clock and software, we 
determined the error occurred because the microcontroller operated at 150 MHz. The code written 
for the microcontroller was built off the library for a device that operates at lower temperatures. 
According to the data sheet, the IC can operate at 150 MHz but only below 125˚C. It needs to use a 
derated clock of 100 MHz when operating at above 200˚C. The IC has a built-in clock multiplier 
which takes the external low clock signal and multiplies it to a higher frequency. A 30 MHz HT 
crystal was purchased for the board to match the low temperature sister board frequency. With that, 
the multiplier was adjusted in the code to get close to a 100 MHz internal clock; however, an exact 
100 MHz could not be achieved due to the multiplier’s limited settings. After this adjustment, the 
operating temperature of the board did not improve much. Thus, the crystal was removed and an 
external clock from a DAQ was used in its place to produce a 20 MHz signal that enabled an exact 
100 MHz internal clock. With this correction, the data link could send messages up to 170˚C. We 
observed current draw of 176 mA, 185 mA, and 80 mA, for 1.9 V, 3.3 V, and 12 V, respectively, 
after updating the code and using the external clock. The next issue occurred because of the cascode 
amplifier and line driver. As the temperature increased the amplifier and line driver attenuated the 
signal prematurely. The amplifier circuit will need to be redesigned to compensate for the elevated 
temperature. In the next data link design, Honeywell’s opamp will be used instead, considering it is 
most likely designed to compensate for elevated temperatures. To continue the study of the 
microcontroller, the amplifier, line driver, and 1524 m (5000 ft) wireline were bypassed, and the 
signal was received directly from the output of the DAC. With the bypass, the messages were 
received to 210˚C. The chip was then tested at 210˚C for 288 hours with no issues. 

Figure 35 shows the constellation diagram for the data link. The left image is the constellation from 
the output of the wireline at 170˚C and the right image is the constellation from the output of DAC 
at 210˚C. In the left image, the points are further spread relative to room temperature operation 
because of thermal noise. As the temperature increased, noise was generated on all conductive 
elements. Unfortunately, the noise cannot be prevented, but various techniques can be used to 
confirm messages from the data link are received correctly. Results from this effort can be used to 
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significantly improve the performance of the data link including data rates, operating temperature, 
and noise performance.

Figure 35. Constellation plot for the full data link and 1524 m (5000 ft) wireline (Left) and plot for 
the data link when bypassing the amplifier, line driver, and 1524 m (5000 ft) wireline (Right).
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3. CONCLUSION
We evaluated five microcontrollers, one memory IC, and a data link designed to operate at or above 
210˚C under this effort sponsored by Department of Energy Geothermal Technology Office. Figure 
5 shows the five microcontrollers we evaluated, and we recommend the three highlighted ones for 
use in geothermal applications. These recommendations are based on the ability to program the 
device and/or good performance results. SM320F2812-HT and SM470R1B1M-HT could not be 
programmed and were not evaluated under this effort. However, considering an external company’s 
success programming the SM470R1B1M-HT and its small form factor, we decided to recommend 
the device for geothermal applications. SM320F28335-HT is highly recommended as it is easily 
programmable with Code Composer or MATLAB. Considering the device is a thru hole device, it 
makes packaging highly reliable. Despite its temperature capabilities, the HT83C51 was not 
recommended because of its limited capabilities and programming difficulties for new users. 
RC10001 is highly recommended for geothermal applications assuming the device remains available. 
As of 2022, RelChip is being acquired by another company, leaving the future of the RC10001 
uncertain. However, if the IC continues to be manufactured, it is the only device rated to operate at 
300˚C temperatures, making it unique compared to other options. 

Table 5. Recommendations for MCUs Evaluated Under this Effort.
Device Comments Recommendations

SM320F2812-HT Outdated microcontroller. Was not able to detect 
device with TI software, thus could not program device.

Not Recommended

SM470R1B1M-HT Outdated microcontroller. Successfully detected the 
device with KEIL software but could not be 
programmed. IAR Systems software maybe able to 
interface with it.

External company 
claimed to successfully 
program device

SM320F28335-HT Successfully programmed with both TI Code 
Composer and MATLAB.

Recommended for use

HT83C51 Outdated microcontroller with minimal features. 
Successfully programmed with custom programmer.

Not recommended

RC10001 Successfully programmed with Keil. Issues with device 
delaminated from PCB. Owner is currently in the 
process of selling the company, device maybe 
discontinued.

Recommended if 
component is still 
available

SNL designed and evaluated a data link with the SM320F28335-HT microcontroller. It operated 
fully through a 1524 m (5000 ft) single conductor wireline up to 170˚C. The full data link did not 
operate up to 210˚C due to limitations with the amplifier stage. After removing the amplifier and 
line driver stages from the data link and directly connecting the oscilloscope to the output of the 
DAC, the data link transmitted messages up to 210˚C. Using the OFDM+BPSK communication 
technique, it yielded 30 kbps data rates at elevated temperatures. For future testing, the PCB was 
designed to accommodate voltage regulation and access pins for the analog-to-digital converter 
(ADC), allowing for power transfer through the line and the ability to receive data. 
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3.1. Future Efforts
A major problem in this research was packaging failures, which severely limited testing on the 
RC10001 microcontroller. The team observed deformation of the PCB, degradation of the solder, 
CTE mismatch, delamination of the ICs, and shorting of internal traces. To improve future 
reliability of the packaged device, the Rogers PCB will be replaced with a ceramic PCB, and we will 
use either gold/tin solder bonding or wire bonding as well as an HT conformal coating. These will 
hopefully resolve the various issues observed during testing. Ceramic can survive much higher 
temperatures than 300˚C. Gold/tin solder would be ideal for the gold pins on the IC as the solder 
joint would not degrade. An alternative method would be wire bonding, which fuses gold wire to the 
pins and to the PCB pads. The wire is capable of operating at temperatures above 300˚C and would 
allow mechanical movement between the IC and PCB (CTE mismatch) at elevated temperatures. 
Finally, the conformal coating, a layer of cured liquid epoxy covering the IC and PCB, could 
improve the strength between the IC and PCB as well as prevent oxidation to the metals. This 
packaging improvement technique could significantly improve the reliability of the logging tool 
electronics, which will be exposed to high temperatures, mechanical shock, and vibration.

Future improvements to the data link can be conducted to improve data rates, operating 
temperatures, signal-to-noise ratio (SNR), error rates, and receiving data. Operating temperatures 
can be accomplished by replacing the SM320F28335-HT with the RC10001. Data can be received 
using an ADC, which would enable signals to be received from the surface. Data rates can 
significantly be increased by increasing the constellation point, which can be done by incorporating 
QAM instead of BPSK. To use QAM, the signal integrity will need to be improved. Signal integrity 
can be improved by channel coding, error correction code, constant signal propagation profile, 
increasing amplifier gain, and using a pulse width modulation (PWM) DAC. Channel coding would 
include coding steps that work together to mitigate the effects of channel distortions. These steps 
may include interleaving the data followed by applying error correction code. Error correction code, 
such as the Bose-Chaudhuri-Hocquenghem technique, can be incorporated to improve the SNR of 
the system. The profile of wireline drops above 13 kHz which can be compensated for by an 
amplifier. With a constant propagation profile, the amplitude modulation can be constant to the 
maximum desired operating bandwidth. Increasing the gain performance of the amplifier could 
further push the signal above the noise floor, mitigating noise degradation to the signal. Finally, the 
resistor array DAC could be replaced with a PWM DAC. This method would result in less resistor 
inaccuracies. The current resistors did not divide the rail voltage accurately and evenly, which 
injected some noise into the signal. 

These improvements to the data link would allow for reliable real-time data collection up to 300˚C. 
This technology can be used in various applications such as subsurface array system capturing tracer 
data or acoustics. 
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APPENDIX A. MAIN APPENDIX TITLE

A.1. HT83C51 Hello World Code
#include <8052.h>
#include <stdint.h>
#include <stdio.h>

#define TOGGLE_IO_0 (__xdata uint8_t*) 0x0100
#define TOGGLE_IO_5 (__xdata uint8_t*) 0x0200
#define MEMORY_MUX_CLEAR (__xdata uint8_t*) 0x0300
#define DATA_MUX_CLEAR (__xdata uint8_t*) 0x2400
#define DATA_MUX_SELECT (__xdata uint8_t*) 0x2300
#define ADC_123_CONVERT (__xdata uint8_t*) 0x2500
#define ADC_123_BYTE_SELECT (__xdata uint8_t*) 0x2600
#define ADC_123_MUX_SELECT (__xdata uint8_t*) 0x2700
#define ADC_123_MUX_CLEAR (__xdata uint8_t*) 0x2800
#define DATA_BUS_SELECT (__xdata uint8_t*) 0x2900
#define ADC_1_CS (__xdata uint8_t*) 0x2A00
#define ADC_2_CS (__xdata uint8_t*) 0x2B00
#define ADC_3_CS (__xdata uint8_t*) 0x2C00
#define TOGGLE_IO_1 (__xdata uint8_t*) 0x3000
#define SPINNER_BYTE_SELECT (__xdata uint8_t*) 0x3200
#define SPINNER_CLEAR_START (__xdata uint8_t*) 0x3300
#define ASIC_RESET (__xdata uint8_t*) 0x3C00

#define SAMPLE_NUM 40

#define CLK_5MHZ

#ifdef CLK_5MHZ
#define COUNT_20US 0xFFF6

#else
#define COUNT_20US 0xFFEC

#endif

uint8_t toggleasic(__xdata uint8_t* address);
void toggleasicx(__xdata uint8_t* address, uint8_t num);
void setup();
void putchar(char c);
char getchar();
void delay(uint16_t count);
void printf_pico(__code char* str);
void printf_hex(uint8_t num);
uint8_t nibble2ascii(uint8_t num);
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uint16_t adc_read(uint8_t channel);
void spinner_read();
void send_packetASCII(uint32_t frame_count);
void send_packet(uint32_t frame_count);

//Global Variables
volatile __bit TI_safe = 0;
volatile __xdata uint8_t spinner_data[3];
volatile __xdata uint8_t spinner_isr_data[3];
volatile __xdata uint32_t adc_filt_data[7];
volatile __xdata uint16_t adc_data_1[7];
volatile __xdata uint16_t adc_data_2[7];
volatile __xdata uint32_t cc_filt_data;
volatile __xdata uint16_t cc_data_1[SAMPLE_NUM];
volatile __xdata uint16_t cc_data_2[SAMPLE_NUM];
uint8_t sec_counter = 6;
volatile __bit osef = 0;
volatile __bit data_ready = 0;
volatile uint8_t sample_count = 0;
volatile __bit buffer_flag = 0;

void main()
{

uint32_t frame_count = 0;
//Code
EA = 0;
setup();

printf_pico("Welcome to the Monitor Program\r\n");
TR2 = 1;
while(1)
{

if(data_ready)
{

//P1_2 = 1;
//data_ready = 0;
//send_packetASCII(frame_count);
//frame_count++;
//P1_2 = 0;

printf_pico("Hello World\r\n");
}

}
}

//It seems that the HT83C51 likes to hang when pooling on the TI flag directly
//This ISR bypasses this problem
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void serial_isr(void) __interrupt(4)
{

if(TI==1)
{

TI_safe = 1;
TI = 0;

}
if(RI==1) //Return to the bootloader (fails to reprogram correctly after that?)
{

RI = 0;
/*if(SBUF == 0x03)
{

__asm
LJMP 0x0000
__endasm;

}*/
}

}

//Putchar is not allowed in the ISR, it will hang!
void timer2_isr(void) __interrupt(5)
{

volatile __xdata uint16_t* cc_data;
volatile __xdata uint16_t* adc_data;

TF2 = 0; //Reset the timer flag
P1_3 = 1; //Debug

//Select correct buffer do put data into
if(!buffer_flag) 
{

cc_data = cc_data_1;
adc_data = adc_data_1;

}
else
{

cc_data = cc_data_2;
adc_data = adc_data_2;

}

//Sample the data and store
cc_data[sample_count] = adc_read(9); //colar Counter
adc_filt_data[0] += adc_read(10);//Other Sensors
adc_filt_data[1] += adc_read(11);
adc_filt_data[2] += adc_read(12);
adc_filt_data[3] += adc_read(13);
adc_filt_data[4] += adc_read(14);
adc_filt_data[5] += adc_read(15);
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adc_filt_data[6] += adc_read(16);
sample_count++;

//Sample spinner every 6s; base on the one second signal from ASIC
if(P1_5 != osef)
{

osef = !osef;
sec_counter--;

}

if(sec_counter <= 0)
{

sec_counter = 6;
spinner_read();

}

//if SAMPLE_NUM reached average the slow sensors and set data ready flag
//Copy the spinner_isr_data into spinner data for the output purposes
if(sample_count>=SAMPLE_NUM)
{

uint8_t i = 0;
for(i = 0; i<7; i++ )
{

adc_data[i] = adc_filt_data[i]/SAMPLE_NUM;
adc_filt_data[i] = 0;

}

spinner_data[0] = spinner_isr_data[0];
spinner_data[1] = spinner_isr_data[1];
spinner_data[2] = spinner_isr_data[2];

sample_count = 0;
data_ready = 1;
buffer_flag = !buffer_flag;

}

P1_3 = 0;
}

//The counter counts up so the value set must be 0XFFFF-numbercycles to count
void delay(uint16_t count) //Using timer 0
{

TL0 = (uint8_t) count;
TH0 = (uint8_t) (count >> 8);
TR0 = 1;
while(!TF0);
TR0 = 0;
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TF0 = 0;
}

uint16_t adc_read(uint8_t channel)
{

uint16_t value = 0;
P1_1 = 1;
toggleasic(ADC_123_MUX_CLEAR);//Clear analog mux
toggleasicx(ADC_123_MUX_SELECT, channel-1); //Select output of analog mux
toggleasic(ADC_123_CONVERT); //The original assembly code converts twice?
delay(COUNT_20US);
toggleasic(ADC_123_CONVERT); //Convert
delay(COUNT_20US);//Wait 20us
//Data out of the ADC.  1st byte bits 11-7, 2nd byte bits 3-0 (they are located in the uper 

nibble of the byte)
value = toggleasic(ADC_1_CS) << 4;
toggleasic(ADC_123_BYTE_SELECT);
value |= toggleasic(ADC_1_CS) >> 4;
toggleasic(ADC_123_BYTE_SELECT);
P1_1 = 0;
return value;

}

//Read the spinner values.  Assumes the data is  ready.  Can be read every 6s.  Returns 2*spin 
rate/s.
void spinner_read()
{

toggleasic(DATA_MUX_CLEAR);
toggleasicx(DATA_MUX_SELECT, 11);
//Read 1st byte
spinner_isr_data[0] = toggleasic(DATA_BUS_SELECT);
toggleasic(SPINNER_BYTE_SELECT);
//Read 2nd byte
spinner_isr_data[1] = toggleasic(DATA_BUS_SELECT);
toggleasic(SPINNER_BYTE_SELECT);
//Read 3rd byte
spinner_isr_data[2] = toggleasic(DATA_BUS_SELECT);
toggleasic(SPINNER_BYTE_SELECT);
//Reset Spin Count
toggleasic(SPINNER_CLEAR_START);

}

void send_packet(uint32_t frame_count)
{

__xdata uint16_t* cc_data;
__xdata uint16_t* adc_data;
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uint8_t i;

if(buffer_flag)
{

cc_data = cc_data_1;
adc_data = adc_data_1;

}
else
{

cc_data = cc_data_2;
adc_data = adc_data_2;

}
//Send Header 4bytes
putchar(0xAA);
putchar(0x55);
putchar(0xAA);
putchar(0x55);

//Send frame_count 4 bytes
putchar(frame_count >> 24);
putchar(frame_count >> 16);
putchar(frame_count >> 8);
putchar(frame_count);

//Send spiner data 3 bytes
putchar(spinner_data[0]);
putchar(spinner_data[1]);
putchar(spinner_data[2]);

//Send ADC data 7*2 = 14 bytes
for(i=0; i<7; i++)
{

putchar(adc_data[i]>>8);
putchar(adc_data[i]);

}
//Send Colar Counter readings 2*SAMPLE_NUM
for(i=0; i<SAMPLE_NUM; i++)
{

putchar(cc_data[i]>>8);
putchar(cc_data[i]);

}
//Send data_ready flag to make sure we are not overflowing 1byte

putchar(data_ready);

//total bytes sent = 154

}
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void send_packetASCII(uint32_t frame_count)
{

__xdata uint16_t* cc_data;
__xdata uint16_t* adc_data;
uint8_t i,j;

if(buffer_flag)
{

cc_data = cc_data_1;
adc_data = adc_data_1;

}
else
{

cc_data = cc_data_2;
adc_data = adc_data_2;

}
//Send Header 1bytes
putchar('+');

//Send frame_count 6 bytes
printf_hex(frame_count >> 16);
printf_hex(frame_count >> 8);
printf_hex(frame_count);

//Send spiner data 6 bytes
printf_hex(spinner_data[0]);
printf_hex(spinner_data[1]);
printf_hex(spinner_data[2]);

//This loop is setup for SAMPLE_NUM = 40!!
//Send ADC data 7*(5+1)*4 = 168 bytes
for(i=0; i<7; i++)
{

for(j=0; j<5; j++)
{

printf_hex(cc_data[5*i+j]>>8);
printf_hex(cc_data[5*i+j]);

}
printf_hex(adc_data[i]>>8);
printf_hex(adc_data[i]);

}
//send last CC data set 4*5  = 20 bytes
for(j=0; j<5; j++)
{

printf_hex(cc_data[5*i+j]>>8);
printf_hex(cc_data[5*i+j]);

}
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//Send data_ready flag to make sure we are not overflowing 3byte
printf_hex(data_ready);
putchar('\r');
putchar('\n');

//total bytes sent = 204
}

//if this it changed whole code will stop working!
uint8_t toggleasic(__xdata uint8_t* address)
{

uint8_t temp = 0;
P1_7 = 1;
temp = *address;
P1_7 = 0;
return temp;

}

void toggleasicx(__xdata uint8_t* address, uint8_t num)
{

while(num>0)
{

toggleasic(address);
num--;

}
}

void setup()
{

IE = 0; //Disable all interrupts

P1_7 = 0;
P1_5 = 1; //Set for input
P1_6 = 1; //Set for input

toggleasic(ASIC_RESET);
toggleasic(DATA_MUX_CLEAR);
toggleasic(MEMORY_MUX_CLEAR);
toggleasic(TOGGLE_IO_1); //Power to the Reed switches in SC
toggleasic(SPINNER_CLEAR_START);
//Serial Port Setup and Timer 0,1

PCON |= 0x80; //Set SMOD bit in PCON for 5.5296 Mhz clock

TH1 = 0xF4; //Set baud rate to 2400 
TL1 = 0x00;
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TMOD = 0x21;

TCON = 0x40;
SCON = 0x52;
TR1 = 1; //Enable the timer1 for serial port

RI = 0;
TI = 0;

//Setup interrupts
IP = 0; //Reset interrupt priorities
ES = 1; //Enable serial interrupt
TI_safe = 1; //Enable local ready to send flag
PS = 1; //Elevate priroirity of serial interrupt for testing

//Timer 2 determines sampling frequency.

ET2 = 1; //Enable timer2 interrupt

TH2 = 0xC3; //for the 5.5296 Mhz clock and ASCII aoutput 30.006hz sampling freq
TL2 = 0xFF; //MATLAB: dec2hex(0xFFFF-round((5.5296e6/12)/30))
RCAP2H = 0xC3;
RCAP2L = 0xFF;

EA = 1; //Enable interrups
}

void putchar(char c) //This function is required for the printf_tiny() to work
{

while(TI_safe==0); //Wait for the TI flag to be set
TI_safe = 0; //Clear the TI flag
SBUF = c;
return;

}
char getchar() //This function is required for the printf_tiny() to work
{

char temp;
while(RI==0); //wait for the RI flag to be set
temp = SBUF;
RI = 0;
return temp;

}
void sleep(uint8_t count)
{

uint8_t i;
for(i=0; i<count; i++);

}
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void printf_pico(__code char* str)
{

uint8_t i;
for(i=0; str[i]!=0; i++)
{

putchar(str[i]);
}

}

void printf_hex(uint8_t num)
{

putchar(nibble2ascii((num >> 4) & 0x0F));
putchar(nibble2ascii(num & 0x0F));

}

uint8_t nibble2ascii(uint8_t num)
{

if(num < 10)
{

return num + 48;
}
else if (num <= 16)
{

return num + 55;
}
else
{

return 'X';
}

}

A.2. RC10001 Pin Connection and Keil Software Setup
To program the Relchip on its own board, away from the development board:

• Apply clock to XTAL1 pin. XTAL2 is float. The clock is supposed to be CMOS input but 
we found a sine wave to be more stable to avoid ringing effects over long cables. The sine 
wave goes from minimum 0V to maximum 5V. Make sure the waveform generator is in 
“High Z” mode and not in 50 Ohm. We did 3.6 MHz.

• The two boot select pins (45 and 46) need to be held high at 5V in order to set the chip to 
be programmed from the SWD interface. You can just pull them high and leave them that 
way if you plan to just use SWD. The development board pulls them high using 100 kΩ 
resistors. We just soldered a wire to hold them high.

• SCANEN (Pin 134) and TRM (Pin 138) should be pulled low with 1MΩ resistors.

• HARDRST (Pin 10) is pulled high with a 100 kΩ resistor.
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• WAKEUP (Pin 14) is pulled low with a 100 kΩ resistor.

• SOFT Reset is pulled high.

• The programmer used is the ARM KEIL ULINK2 device. The wires required are VDD, 
GND, SWCLK, and SWDIO. The development kit uses the ULINK-ME device but it is 
not practical for developing your own board because the ULINK-ME device is a 3.3V 
devices and the RC10001 is a 5V device. The development board has a bidirectional level 
shifter circuit to convert 3.3 V to 5 V and vice-versa. The UNLINK2 can be used without 
any level shift.

• GPIO_0 blinks using the BLINKY project.

• There is no flash on this chip so you must turn off the flash programming options in the 
target options menus in uvision (Keil software). The chip actually gets programmed by 
starting the debugger. Debug > Start/Stop Debug Session. Then click Run code. Once you 
run the code in the debugger, you can unplug the ULINK2 and the code will keep running 
on the chip.

• We used Keil uvision5 (MDK-Arm) to program the chip using the 3rd party uvision 
software pack for the Relchip part provided by RelChip.

• https://www.keil.com/download/product/

• Require Keil MDK v4 Legacy Support Software Pack, it contains the RC10001 within the 
library. The chip is a Cortex-M device.

• https://www2.keil.com/mdk5/legacy/

Target Options Settings:
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Target Options Settings:
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A.3. RC10001 GPIO Pulse Code
RC10001 example blink code was available in the Keil library set (MDK v4 Legacy Support).

Main C code: “RC10001 Blink.c”

/*******************************************************************************
 *******************************************************************************
 **
 **     File:        blinky.c
 **     Author:  RelChip, Inc.
 **     Date:      August 10, 2015
 **
 ** Copyright(c) 2015 RelChip, Inc. All Rights Reserved except
 ** as granted below.
 **
 **     Description:
 **     A demonstration program to display a sequence of LED
 ** lights on the development board. The program is stored 
 ** stored internally and boot loaded with the Keil serial debug
 ** port.
 **     The LEDs sequence in a counter fashion. Pressing the
 ** GPIO3_0 switch will slow down the LED sequence, while
 ** pressing the GPIO2_11 switch will increase the LED
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 ** sequence speed.
 **
 ** THIS SOFTWARE IS PROVIDED "AS IS".  NO WARRANTIES,
 ** WHETHER EXPRESS, IMPLIED OR STATUTORY,
 ** INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES
 ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 ** PURPOSE APPLY TO THIS SOFTWARE. RELCHIP SHALL
 ** NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL,
 ** INCIDENTAL,  OR CONSEQUENTIAL DAMAGES, FOR ANY
 ** REASON WHATSOEVER.
 **
 ** LICENSE IS GRANTED TO USE THIS CODE FREELY AT
 ** YOUR OWN RISK.
 **
 *******************************************************************************
 *******************************************************************************
 */

#include "RC10001.h"                      /* RC10001 definitions */

uint32_t LoopCount;                       /* Delay Count */

/*******************************************************************************
 *******************************************************************************
 **
 **     Interrupt Routines
 **
 */
/*******************************************************************************
 *******************************************************************************
 **
 **     GPIO3 Interrupt
 **
 ** Description:
 **     Speeds LED Frequency Up
 ** Input: None
 ** Return: None
 **
 */
void GPIO2_IRQHandler(void)
{
  RC_GPIO2->ICR = 0xfff;                 /* Clear Interrupts */
  LoopCount = LoopCount >> 1;      /* Count Divide by 2 */
}
/*******************************************************************************
 *******************************************************************************
 **
 **     GPIO3 Interrupt
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 **
 ** Description:
 **     Slows LED Frequency Down
 ** Input: None
 ** Return: None
 **
 */
void GPIO3_IRQHandler(void)
{
  RC_GPIO3->ICR = 0xfff;                 /* Clear Interrupts */
  LoopCount = LoopCount << 1;      /* Count Times 2 */
}

/*******************************************************************************
 *******************************************************************************
 **
 **     Main
 **
 */
int main (void) {

  uint32_t i;
uint16_t count = 0;

  LoopCount = 0;
  RC_GPIO2->ICR = 0xfff;                 /* Clear Interrupts */
  RC_GPIO3->ICR = 0xfff;                 /* Clear Interrupts */
                                                            /* */
  /* Infinite Loop */
  while(1) {
    /* Wait with Dummy */

count++;
if( count >= 1000 )
{

count = 0;
/* Watch out that this does not get optimized out */
for ( i = 0; i < LoopCount; i++ )  { i=i; }
RC_GPIO0->MASKED_ACCESS [0xff] =

RC_GPIO0->MASKED_ACCESS[0xff] + 1;
}

  }
}

Peripheral C code: “system_RC10001.c”

/*******************************************************************************
 *******************************************************************************
 *
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 * @file system_RC10001.h
 *
 * @brief CMSIS Cortex-M0 Device Peripheral Access Layer Source File for
 * the RelChip RC10001 Device
 *
 * @version V0.20
 * @date 02 November 2014
 *
 * @note Copyright (C) 2011-2014 RelChip, Inc. All Rights Reserved.
 *
 * @par
 * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, 
IMPLIED,
 * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS 
SOFTWARE.
 * RELCHIP SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, 
INCIDENTAL,
 * OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
 *
 *******************************************************************************
 ******************************************************************************/
#define __SYSTEM_RC10001_C

#include <stdint.h>
#include "RC10001.h"

#define CLOCK_SETUP 1
#define SYSAHBCLKDIV_Val 1 // Reset: 0x001

/*------------------------------------------------------------------------------
  Check the Register Settings
 *----------------------------------------------------------------------------*/
#define CHECK_RANGE(val, min, max) ((val < min) || (val > max))
#define CHECK_RSVD(val, mask) (val & mask)

#if (CHECK_RANGE((SYSAHBCLKDIV_Val), 0, 255))
    #error "SYSAHBCLKDIV: Value out of range!"
#endif

/*------------------------------------------------------------------------------
  DEFINES
 *----------------------------------------------------------------------------*/

/*------------------------------------------------------------------------------
  Define Clocks
 *----------------------------------------------------------------------------*/
#define __XTAL (3686400UL) /* Oscillator Frequency */
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#define __SYS_OSC_CLK (   __XTAL) /* Main Oscillator Frequency */
#define __SYSTEM_CLOCK(__SYS_OSC_CLK)

/*------------------------------------------------------------------------------
  Clock Variable Definitions
 *----------------------------------------------------------------------------*/
uint32_t SystemCoreClock = __SYSTEM_CLOCK; /*!< System Clock Frequency */

/**
 *
 * Initialize the System
 *
 * @param none
 * @return none
 *
 * @brief Initialize the Microcontroller System. Substitute for this
 *              code to configure the system before entering "main"
 * Initialize the System. 
 */
void SystemInit (void) {
      RC_GPIO0->DIR = 0xFF;          /* LED Output */
  RC_GPIO0->DATA = 0x00;         /* LED ON */
  
  /* GPIO2 Interrupt */
  RC_GPIO2->IS = 0;              /* Set Low Going Edge */
  RC_GPIO2->IEV = 0;
  RC_GPIO2->IE = 0x800;          /* Enable 2_11 */
  
  /* GPIO3 Interrupt */
  RC_GPIO3->IS = 0;              /* Set Low Going Edge */
  RC_GPIO3->IEV = 0;
  RC_GPIO3->IE = 0x1;            /* Enable 3_0 */

  /* NVIC Enable */
  NVIC_EnableIRQ(GPIO2_IRQn);
  NVIC_EnableIRQ(GPIO3_IRQn);
}

A.4. RC2110836 Register Alternating Code
Code used to evaluate the RC2110836 was written in MATLAB and interfaced via the 
NUC100VD3AN microcontroller.

RAM_Data_Analysis.m
% This script is for reading comma delimited files from the RC2110836 HT
% RAM device
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clear all;
close all;

%Read in the Original data file which the new data will be compared to
Filename1 = 'C:\Users\atcashi\Documents\Component Testing\Relchip Ram 
Tests\Ram_Oven_Data\RAM_Chip 1\250C_8-29-14_458PM_9-2-14_857AM_29mA.txt';

Original_data = dlmread(Filename1);

% % %Cut off the initial Errors
 Crop_Data = Original_data;
% % while (Crop_Data(1,1) ~= 170 || Crop_Data(1,2) ~= 170 || Crop_Data(1,3) ~= 170 || 
Crop_Data(1,4) ~= 170) && (Crop_Data(1,1) ~= 85 || Crop_Data(1,2) ~= 85 || Crop_Data(1,3) 
~= 85 || Crop_Data(1,4) ~= 85)
% %     Crop_Data(1,:) = [];
% % end

%Extract Error Array
error_rows = find(Crop_Data(:,1) == 0 & Crop_Data(:,2) == 0 & Crop_Data(:,3) == 0 & 
Crop_Data(:,4) == 0);

ErrorCount = length(error_rows)/2;

ind = 1;
for i = 1:length(error_rows)
    
    if sum(Crop_Data(error_rows(i)+1 ,1:4)) == 1020 && sum(Crop_Data(error_rows(i)+4 ,1:4)) 
== 0 && sum(Crop_Data(error_rows(i)+5 ,1:4)) == 1020
        Errors(ind,1) = error_rows(i);  %Errors will be formatted as 
[Row,Address1,Address2,Address3,Address4,received1,received2,received3,received4,timestamp]
        Errors(ind,2) = Crop_Data(error_rows(i) + 2, 1); %Address1
        Errors(ind,3) = Crop_Data(error_rows(i) + 2, 2); %Address2
        Errors(ind,4) = Crop_Data(error_rows(i) + 2, 3); %Address3
        Errors(ind,5) = Crop_Data(error_rows(i) + 2, 4); %Address4
        Errors(ind,6) = Crop_Data(error_rows(i) + 3, 1); %Received1
        Errors(ind,7) = Crop_Data(error_rows(i) + 3, 2); %Received1
        Errors(ind,8) = Crop_Data(error_rows(i) + 3, 3); %Received1
        Errors(ind,9) = Crop_Data(error_rows(i) + 3, 4); %Received1
        Errors(ind,10) = Crop_Data(error_rows(i), 5); %Timestamp
        ind = ind + 1;
    end
    
end

Error_Timestamps_Str = datestr(Errors(:,10));

%Calculate bit error rate
for i = 1:length(Errors)



75

  fir = dec2bin(Errors(i,6));
  
  for g = 1:length(fir)
  end
  sec = dec2bin(Errors(i,6));
  thi = dec2bin(Errors(i,6));
  fou = dec2bin(Errors(i,6));
    
end

Log_SerialData.m
clear all;
close all;

if instrfind ~= 0
fclose(instrfind);
delete(instrfind);
end

LogFileName = 'TestLogging.txt';
%fopen('DataLog.txt');

Baud = 4420;
Bits = 8;

SerPort = serial('COM5', 'BaudRate', Baud, 'DataBits', Bits);

fopen(SerPort);

byteA = 0;
while byteA ~= 47
 byteA = fread(SerPort, 1);
end

byteB = 0;
while byteB ~= 110
 byteB = fread(SerPort, 1);
end

true = 1;
row = 1;
while true == 1
%Read in a line of data
 byte1 = fread(SerPort, 1);
 byte2 = fread(SerPort,1);
 byte3 = fread(SerPort, 1);
 byte4 = fread(SerPort,1);
 byte5 = fread(SerPort, 1);
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 byte6 = fread(SerPort,1);
 
 if byte5 ~= 47 || byte6 ~= 110
     disp('Data is staggered');
     break;
 end

  DataLine = [byte1, byte2, byte3, byte4];
  dlmwrite(LogFileName, DataLine,'-append');

end

A.5. OFDM Tx_mbd: Procedure to modify the C code and sample the data for 
the SM320F28335-HT data link

Release version: 10
Date: 25th Feb./ 2022
Author: Francis Tiong, ftiong@mathworks.com

Contents
Introduction
Prerequisite – Installing Texas Instruments C2000 support package
Instructions to run the code in MATLAB
Instructions to simulate the Tx code in Simulink
Instructions to generate/run code for the target board in Simulink
Brief description of the files included
Instructions to download and run the code using Code Composer Studio instead of using Simulink
Instructions to modify the C code in Code Composer Studio
Setting the GPIOs efficiently
Moving data calculations outside the interrupt service
Instructions to sample data from Picoscope and to recover the message

Introduction
This document describes how to run the code in OFDMTx_mbd and how it can be used to 
generate embedded code for a target processor.  The project is intended to send OFDM signals 
through a hardware board with TI Delfino F2833x.  The chip was selected since it can operate in 
high temperature.  Further, the modified C section would describe how to modify the C code using 
the Code Composer.  The section sampling the data through Picoscope would describe the 
procedure to sample the data.
Prerequisite – Installing Texas Instruments C2000 support package
1, In MATLAB, on the top row select the “HOME” tab.
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2, On the top bar look for the tri-color cubes with the word “Add-Ons” and click on the down 
arrow to see the drop down manual.

3, At the drop down manual select “Get Hardware Support Packages”
4, In the Add-On Explorer search box type “TI”. 
5, Select “Embedded Coder Support Package for Texas Instruments C2000 Processors”.
 

Instructions to run the code in MATLAB
Note that in MATLAB one can simulate the transmitter, the propagation channel and the receiver.  
This is a good way to check if the transmitter code is working correctly.
1, unzip the code “OFDMTx_mbd_9_3_02082022.zip” into a folder.  From now on we will assume 
the unzipped files are in a folder called “OFDMTx_mbd_9_3_02082022”.
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2, In MATLAB, change the directory of the current workspace to be in the folder 
“OFDMTx_mbd_9_3_02082022”.
>>cd G:\Downloads\Sandia\OFDMTx_mbd_9_3_02082022
3, In MATLAB, run the script “OFDMSynchronizationExample.m”
>> OFDMSynchronizationExample
4, If one would like to run the whole system again including the constructors then it is necessary to 
clear the persistent variables defined first before running.  
>>clear classes
>> OFDMSynchronizationExample
Instructions to simulate the Tx code in Simulink
Note that in Simulink one can simulate the transmitter.  The transmitted signal can be observed in 
the scope that is connected to the OFDM Tx block.  
1, In MATLAB, change the directory of the current workspace to be in the folder 
“OFDMTx_mbd_9_3_02082022”.
>>cd G:\Downloads\Sandia\OFDMTx_mbd_9_3_02082022
2, click on the file “OFDMTx.slx” from the folder window or enter “OFDMTx”
>>OFDMTx
3, On the top left corner of the Simulink window select the tab “SIMULATION”.  At the top row 
around the middle click on the green “Run” button.

Instructions to generate/run code for the target board in Simulink
Like simulating the signal one can select the build function under the hardware tab to generate the 
target embedded code.  A code generation report will pop out upon completion.
1, In MATLAB, change the directory of the current workspace to be in the folder 
“OFDMTx_mbd_9_3_02082022”.
>>cd G:\Downloads\Sandia\OFDMTx_mbd_9_3_02082022
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2, click on the file “OFDMTx.slx” from the folder window or enter “OFDMTx”
>>OFDMTx
3, On the top row of the Simulink window select the tab “HARDWARE”.  At the top right end 
click on the drop down arrow to see the Manuel under “Build”. 
4, click on the “Build” button to generate the target code.  If it is desired to build, download and run 
the code on the board then one can click on “Build Deploy & Start” instead.
5, While the coding is being compiled one can click on the words “View diagnostics” at the very 
bottom of the screen to see verbose display of the compilation process.  

Brief description of the files included
It seems this OFDM project was originated from an OFDM example from MathWorks -- 
https://www.mathworks.com/help/comm/ug/ofdm-synchronization.html.  The files provided in 
the zip file “OFDMTx_mbd_9_3_02082022” have been heavily optimized.  There are comments 
that resides with the code that will explain what the variables and operations are intending to 
achieve.  A stack diagram illustrating the relationship between files is shown below:

OFDMSynchronizationExample.m myConstants.m

initOFDM_mbd.m getOFDMPreambleAndPilot.m

rotup.m

generateOFDMSignal.m myOFDMTransmitter.m genDataLinIndx.m

OFDMModulatorRe.m ofdmModulateRe_single.m

applyOFDMChannel.m

rotDown.m

receiveOFDMSignal.m OFDMReceiver.m

calculateOFDMBER.m
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From the diagram, the caller files are on the left and the callee is on the right.  For example, the file 
initOFDM_mbd.m will call two files – getOFDMPreambleAndPilot and rotup.  The file 
initOFDM_mbd is called by OFDMSucrhoizationExample.

OFDMSynchronizationExample.m --- This is the main calling script for MATLAB.  Inside this file 
one can also find documented description of the overall system.  It will prepare a message to be 
sent, generate an OFDM signal, simulate the signal going through a propagation channel, 
demodulate the received signal, recovered the message sent and then calculate the error rate.  Note 
that comparing to the original code the signal now being sent into applyOFDMChannel has now 
gone through a Hilbert transform first in order to obtain the complex equivalent values before 
applying the channel distortion.
myConstants.m – This is a constant class structure that contains important constants that are used 
throughout the simuation.
initOFDM_mbd.m – This script initiates a message to be sent out, creates an array for the preamble 
sequence and an array for the pilot symbols.  These fixed data are to be generated during 
construction time to reduce code space and execution time.  This file is also used in the Simulink 
model.
getOFDMPreambleAndPilot.m – this function generates the preamble sequence and the pilot 
symbols needed.  In code generation the generated data would be used, and this code would not be 
ported into program code.
rotup.m – this code would double the sampling frequency and a complex rotation of the input.  This 
code would not be generated as program code.
generateOFDMSignal.m – This is the entry point of the transmitter.  This code is used in both he 
Matlab simulation as well as in the Simulink.  All this function does is to create an instance of the 
class myOFDMTransmitter.
myOFDMTransmitter.m – This code has been highly optimized to reduce memory and cycles usage.  
The minimal buffering memory needed would be to have the code generates one IFFT data frame 
per call.  Thus, every time this code is called it will generate one IFFT data frame (or 160 samples).  
In the stepImpl function there is a state machine that depends on the frameIdx value, a different 
data would be used to generate the OFDM signal.  Each message would be transmitted with the 
preamble sequence first followed by a message content.  The preamble would take 4 IFFT data 
frames to transmit and the message will take 11 IFFT data frames.  The preamble is precalculated as 
stored in an array while the message would be converted as BPSK complex payload bits and then 
pass into OFDMModulatorRe.
genDataLinIndx.m – This is a function that generates an index table.  The table would indicate 
which FFT bin would be used to transmit message data.  This function currently resides in the 
constructor and thus it would not be code generated.  The table would be stored and used instead.  
This code can be moved to be used during run-time if there is a need to reduce the memory usage.
OFDMModulatorRe.m – This function does the loading of the message bits as well as the pilot 
symbols onto the FFT bins.  After loading the complex array would be send to 
ofdmModulateRe_single.
ofdmModulateRe_single.m – this function does the IFFT, up-rotation and the appending of cyclic 
prefix to generate the OFDM signal.  Note that the up-rotation is done through doubling of the 
IFFT bins.  A real (non-complex) signal at the output of the IFFT is ensured when the complex 
frequency domain signal is complex conjugate.
applyOFDMChannel.m – There is a slight modification to the original code.  Here the frequency 
offset has been scaled according to an input value – freqOffPPM.  The input freqOffPPM is the 
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parts-per-million offset which serves as the PPM offset between the transmitter and the receiver 
oscillators.  Note that the input to this function is expected to be complex valued.  
rotDown.m -- this code would do complex rotation down and then down sample by half.  This code 
is being used only the receiver.
receiveOFDMSignal.m – this function creates an instance of the class OFDMReceiver.
OFDMReceiver.m – This is the main code for the receiver.  It calls the function “locatePreamble”, 
“frameEqualization”, “comm.OFDMDemodulator”  and then “comm.BPSKDemodulator”.  Some 
optimization has been done to simplify the code structure.  In addition, the function 
coarseFreqCorrection has been disabled.  It was found that the function is simply not needed in this 
application.  Even with high clock rate difference the pilot tone tracking method to be applied in the 
frameEqualization function is enough to mitigate the effect.  In the frameEqualization function the 
interpolation of the phase error based on the pilot tones onto the data bins are to be done through 
the interpolation function and not the resample function as in the original code.  More descriptions 
of the receiver can be found inside OFDMSynchronizationExample.m.
calculateOFDMBER.m – This function calculates the bit error rate and the frame error rate.

In addition to the files listed above there are a few more included in the zip file.
OFDMTx.slx – This is the model to be used in Simulink.  It calls the function genOneFrame to get 
a data frame of size 160 samples and then sends it out through the GPIOs of the board one sample 
at a time.  Notice that inside the “send to GPIO” Matlab function block the input value have been 
scaled to (input*0.4+0.5). This is a crude way to get by the sign bit issue.  The proper scaling would 
depend on the driver that follows the congregated GPIOs.
genOneFrame.m – This function does nothing but calling generateOFDMSignal.
pltConstel.m – This function plots the constellation points before and after the frame equalization.  
Set a breakpoint inside OFDMReciever after calling of frameEqualization. When the breakpoint is 
reached, run pltConstel at the command prompt in Matlab workspace. 
modified_demodulator.zip – This zip file contain files that have been partially optimized on the 
receiver side.  These files includes: frameEqualization, mydemodulate, mygetDataLinearIndex, 
myOFDMDemodulator.  The files are at a state where they are usable but not yet fully debugged.

Instructions to download and run the code using Code Composer Studio instead of using Simulink
1. Install Code composer Studio --  I am using version 10.2.0.00009.  
2. Inside code composer, select File -> Open Projects from File System 
3. At “Import source” select “Directory”.  And set it to the project directory generated by 
Simulink “CCS_Project”.  This folder is inside “OFDMTx_mbd_9_3/OFDMTx_ert_rtw”.
4. Click “Finish”, At this point the project is loaded and one can see the list of C files in the 
“Project Explorer” of the code composer studio, it is the window at the left margin.
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5. Assuming that at this point the board is connected to the PC.
6. Right click on the Project name “OFDMTx” and select “Properties”.  One can do so also by  
typing “Alt-Enter”.
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7. The “Properties for OFDMTx” window pop out.  At the second selection on the left margin 
select “General”.  This is the general settings page.  
8. At the general settings page, under the “project” tab, observe the “Variant:” row is set to 
“Custom C2000 Device”.  Change it to “TM320F28335”.  Please see the picture below. 
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9. At the “Connection:” row, set it to “Texas Instruments XDS100v1 USB Debug Probe”.  
You may also click “Verify” to see the confirmation message.
10. Select “Apply and Close”, and you are now back to the workspace view.  However, an extra 
file has now been added and need to be removed.
11. In the “Project Explorer” window, delete the file “28335_RAM_lnk.cmd” by right click and 
select delete.
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12. Click on “Project” -> “Build All”.
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13. Build the project by clicking “Project”-> “Build Project”.

14. Click on “Run”-> “Load” -> “Select Program to Load”.  
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15. Select the OFDMTx.out file.  After clicking “OK”, it  will download and run on the board.

Instructions to modify the C code in Code Composer Studio
In version 10 (OFDMTx.slx) there are minor changes on the model code in Simulink.  First, the 
GPIO outputs have been grouped together and be sent out in two blocks.  Please see the picture 
below.  Second, inside the block “OFDM Tx” calling of the data calculations “genOneFrame” has 
been placed at the end of the function.  One can proceed to generate the C code for the TI chip 
using this model.
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There are two changes that are needed to be modified in the generated C code.  The first change 
would reduce the erroneous spikes lines generated due to the asynchronous setting of the GPIOs.  
The second change would allow the code to be run at a much higher speed by moving the 
calculation of the data outside the interrupt service.
Setting the GPIOs efficiently
In OFDMTx.c, comment out setting of each GPIO bit and replace it with setting all the bits 
together in one line.  The resulting code is shown below:
uint32_T tmp; // extend this word to 32 bits

/* SignalConversion generated from: '<Root>/Digital Output1' incorporates:
     *  MATLAB Function: '<Root>/Send to GPIO'
     *  SignalConversion generated from: '<Root>/Digital Output'
     */
    GpioDataRegs.GPADAT.all = tmp;   // this will set all the GPIOs together

// All the below codes are commented out
#if 0
  OFDMTx_B.TmpSignalConversionAtDigitalOut[0] = ((tmp & 1U) != 0U);
  OFDMTx_B.TmpSignalConversionAtDigitalOut[1] = ((tmp & 2U) != 0U);
  OFDMTx_B.TmpSignalConversionAtDigitalOut[2] = ((tmp & 4U) != 0U);
  OFDMTx_B.TmpSignalConversionAtDigitalOut[3] = ((tmp & 8U) != 0U);
  OFDMTx_B.TmpSignalConversionAtDigitalOut[4] = ((tmp & 16U) != 0U);
  OFDMTx_B.TmpSignalConversionAtDigitalOut[5] = ((tmp & 32U) != 0U);
  OFDMTx_B.TmpSignalConversionAtDigitalOut[6] = ((tmp & 64U) != 0U);
  OFDMTx_B.TmpSignalConversionAtDigitalOut[7] = ((tmp & 128U) != 0U);

  /* S-Function (c280xgpio_do): '<Root>/Digital Output' */
  {
    if (OFDMTx_B.TmpSignalConversionAtDigitalOut[0])
      GpioDataRegs.GPASET.bit.GPIO0 = 1;
    else
      GpioDataRegs.GPACLEAR.bit.GPIO0 = 1;
    if (OFDMTx_B.TmpSignalConversionAtDigitalOut[1])
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      GpioDataRegs.GPASET.bit.GPIO1 = 1;
    else
      GpioDataRegs.GPACLEAR.bit.GPIO1 = 1;
    if (OFDMTx_B.TmpSignalConversionAtDigitalOut[2])
      GpioDataRegs.GPASET.bit.GPIO2 = 1;
    else
      GpioDataRegs.GPACLEAR.bit.GPIO2 = 1;
    if (OFDMTx_B.TmpSignalConversionAtDigitalOut[3])
      GpioDataRegs.GPASET.bit.GPIO3 = 1;
    else
      GpioDataRegs.GPACLEAR.bit.GPIO3 = 1;
    if (OFDMTx_B.TmpSignalConversionAtDigitalOut[4])
      GpioDataRegs.GPASET.bit.GPIO4 = 1;
    else
      GpioDataRegs.GPACLEAR.bit.GPIO4 = 1;
    if (OFDMTx_B.TmpSignalConversionAtDigitalOut[5])
      GpioDataRegs.GPASET.bit.GPIO5 = 1;
    else
      GpioDataRegs.GPACLEAR.bit.GPIO5 = 1;
    if (OFDMTx_B.TmpSignalConversionAtDigitalOut[6])
      GpioDataRegs.GPASET.bit.GPIO6 = 1;
    else
      GpioDataRegs.GPACLEAR.bit.GPIO6 = 1;
    if (OFDMTx_B.TmpSignalConversionAtDigitalOut[7])
      GpioDataRegs.GPASET.bit.GPIO7 = 1;
    else
      GpioDataRegs.GPACLEAR.bit.GPIO7 = 1;
  }

  /* SignalConversion generated from: '<Root>/Digital Output1' incorporates:
   *  MATLAB Function: '<Root>/Send to GPIO'
   */
  OFDMTx_B.TmpSignalConversionAtDigitalOut[0] = ((tmp & 256U) != 0U);
  OFDMTx_B.TmpSignalConversionAtDigitalOut[1] = ((tmp & 512U) != 0U);
  OFDMTx_B.TmpSignalConversionAtDigitalOut[2] = ((tmp & 1024U) != 0U);
  OFDMTx_B.TmpSignalConversionAtDigitalOut[3] = ((tmp & 2048U) != 0U);

  /* S-Function (c280xgpio_do): '<Root>/Digital Output1' */
  {
    if (OFDMTx_B.TmpSignalConversionAtDigitalOut[0])
      GpioDataRegs.GPASET.bit.GPIO8 = 1;
    else
      GpioDataRegs.GPACLEAR.bit.GPIO8 = 1;
    if (OFDMTx_B.TmpSignalConversionAtDigitalOut[1])
      GpioDataRegs.GPASET.bit.GPIO9 = 1;
    else
      GpioDataRegs.GPACLEAR.bit.GPIO9 = 1;
    if (OFDMTx_B.TmpSignalConversionAtDigitalOut[2])
      GpioDataRegs.GPASET.bit.GPIO10 = 1;
    else
      GpioDataRegs.GPACLEAR.bit.GPIO10 = 1;
    if (OFDMTx_B.TmpSignalConversionAtDigitalOut[3])
      GpioDataRegs.GPASET.bit.GPIO11 = 1;
    else
      GpioDataRegs.GPACLEAR.bit.GPIO11 = 1;
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  }
#endif

A.5.1. Moving data calculations outside the interrupt service 
There are two main parts to this change.  This first part is to extract part of the function 
OFDMTx_step inside OFDMTx.c into a new function OFDMTx_output.  The second part is to 
modify the main loop in ert_main.c to run OFDMTx_step and running OFDMTx_output inside 
rt_OneStep.

 1, Create a new function OFDMTx_output.  The content of this function is extracted from 
OFDMTx_step.
void OFDMTx_output(void)
{
    real_T rtb_y;
    real_T v;
    uint32_T tmp;

    /* MATLAB Function: '<Root>/OFDM Tx' incorporates:
     *  Constant: '<Root>/Message'
     */
    if (OFDMTx_DW.timeCount == 1.0) {
      OFDMTx_DW.genFlag = true;
      OFDMTx_DW.outTogFlag = !OFDMTx_DW.outTogFlag;
      OFDMTx_DW.frameCount++;
      if (OFDMTx_DW.frameCount > 15.0) {
        OFDMTx_DW.frameCount = 1.0;
      }
    }

    OFDMTx_DW.timeCount++;
    if (OFDMTx_DW.timeCount > 160.0) {
      OFDMTx_DW.timeCount = 1.0;
    }

    if (OFDMTx_DW.outTogFlag) {
      rtb_y = OFDMTx_DW.outputBuf1[(int16_T)OFDMTx_DW.timeCount - 1];
    } else {
      rtb_y = OFDMTx_DW.outputBuf2[(int16_T)OFDMTx_DW.timeCount - 1];
    }

    /* MATLAB Function: '<Root>/Send to GPIO' */
    rtb_y = (rtb_y * 0.2 + 0.2) * 4096.0;
    v = fabs(rtb_y);
    if (v < 4.503599627370496E+15) {
      if (v >= 0.5) {
        rtb_y = floor(rtb_y + 0.5);
      } else {
        rtb_y *= 0.0;
      }
    }

    if (rtb_y < 4096.0) {
      if (rtb_y >= 0.0) {
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        tmp = (uint16_T)rtb_y;
      } else {
        tmp = 0U;
      }
    } else {
      tmp = 4095U;
    }

    /* SignalConversion generated from: '<Root>/Digital Output1' incorporates:
     *  MATLAB Function: '<Root>/Send to GPIO'
     *  SignalConversion generated from: '<Root>/Digital Output'
     */
    GpioDataRegs.GPADAT.all = tmp;

}
void OFDMTx_step(void)
{

  if (OFDMTx_DW.genFlag) {
    if (!OFDMTx_DW.outTogFlag) {
      if (!OFDMTx_DW.OFDMTX_not_empty) {
        OFDMTx_DW.OFDMTX.isInitialized = 0L;
        memcpy(&OFDMTx_DW.OFDMTX.pPreamble[0], &OFDMTx_P.params.pPreamble[0],
               640U * sizeof(real_T));
        memcpy(&OFDMTx_DW.OFDMTX.pPilots[0], &OFDMTx_P.params.pPilots[0], 44U *
               sizeof(real_T));
        OFDMTx_DW.OFDMTX.matlabCodegenIsDeleted = false;
        OFDMTx_DW.OFDMTX_not_empty = true;
      }

      OFDMTx_SystemCore_step(&OFDMTx_DW.OFDMTX, OFDMTx_P.messageBinary,
        OFDMTx_DW.outputBuf1);
    } else {
      if (!OFDMTx_DW.OFDMTX_not_empty) {
        OFDMTx_DW.OFDMTX.isInitialized = 0L;
        memcpy(&OFDMTx_DW.OFDMTX.pPreamble[0], &OFDMTx_P.params.pPreamble[0],
               640U * sizeof(real_T));
        memcpy(&OFDMTx_DW.OFDMTX.pPilots[0], &OFDMTx_P.params.pPilots[0], 44U *
               sizeof(real_T));
        OFDMTx_DW.OFDMTX.matlabCodegenIsDeleted = false;
        OFDMTx_DW.OFDMTX_not_empty = true;
      }

      OFDMTx_SystemCore_step(&OFDMTx_DW.OFDMTX, OFDMTx_P.messageBinary,
        OFDMTx_DW.outputBuf2);
    }

    OFDMTx_DW.genFlag = false;
  }

}
2, Add the new function OFDMTx_output into the header file OFDMTx.h.  
extern void OFDMTx_step(void);
extern void OFDMTx_output(void);
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3, Inside ert_main.c, calling OFDMTx_output inside rt_OneStep and calling OFDMTx_step inside 
the main function under the while(runModel).
void rt_OneStep(void)
{
  /* Check for overrun. Protect OverrunFlag against preemption */
  if (OverrunFlag++) {
    IsrOverrun = 1;
    OverrunFlag--;
    return;
  }

//  enableTimer0Interrupt();
  OFDMTx_output();

  /* Get model outputs here */
//  disableTimer0Interrupt();
  OverrunFlag--;
}

Int main(void)
{

   while (runModel) {

      OFDMTx_step();

      stopRequested = !( rtmGetErrorStatus(OFDMTx_M) == (NULL));
  }
}

Instructions to sample data from Picoscope and to recover the message
1, Set the sampling frequency to a value which the scope can support.  The sampling frequency can 
be set inside the Simulink model or in the generated C code.  Inside the “Message” block of the 
model, one can set the proper sampling frequency.  The “Sample time” field of the block should be 
set to 1/sampling Frequency.    
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The sample time can also be changed inside the file ert_main.c, the first line in the main function,
float modelBaseRate = 0.0001;

2, On the PicoScope 6 application, adjust the time per division and frame size until the target sample 
rate is achieved.  The sample rate is displayed on the right margin under “properties”.
 

3, To save the captured samples into a file, click on “File” -> “Save As”.  At the window that 
popped out select the “Save as type” as “MATLAB 4 files (*.mat)”.
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4, Modify prepData.m to have the variable “label” set to the folder of the latest “mat” file saved.  
Run prepData.m followed by “justDoReceive.m”.  The received constellation and the demodulated 
message would be displayed.

A.6. Data Link Software

A.6.1. Main C code
/*
 * File: ert_main.c
 *
 * Code generated for Simulink model 'OFDMTx'.
 *
 * Model version                  : 2.109
 * Simulink Coder version         : 9.6 (R2021b) 14-May-2021
 * C/C++ source code generated on : Tue Feb 22 10:15:15 2022
 *
 * Target selection: ert.tlc
 * Embedded hardware selection: Texas Instruments->C2000
 * Code generation objectives: Unspecified
 * Validation result: Not run
 */

#include "OFDMTx.h"
#include "rtwtypes.h"

volatile int IsrOverrun = 0;
static boolean_T OverrunFlag = 0;
void rt_OneStep(void)
{
  /* Check for overrun. Protect OverrunFlag against preemption */
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  if (OverrunFlag++) {
    IsrOverrun = 1;
    OverrunFlag--;
    return;
  }

//  enableTimer0Interrupt();
  OFDMTx_output();

  /* Get model outputs here */
//  disableTimer0Interrupt();
  OverrunFlag--;
}

volatile boolean_T stopRequested;
volatile boolean_T runModel;
int main(void)
{
  float modelBaseRate = 0.00001;
  float systemClock = 100;

  /* Initialize variables */
  stopRequested = false;
  runModel = false;
  c2000_flash_init();
  init_board();

#ifdef MW_EXEC_PROFILER_ON

  config_profilerTimer();

#endif

  ;
  rtmSetErrorStatus(OFDMTx_M, 0);
  OFDMTx_initialize();
  globalInterruptDisable();
  configureTimer0(modelBaseRate, systemClock);
  runModel =
    rtmGetErrorStatus(OFDMTx_M) == (NULL);
  enableTimer0Interrupt();
  globalInterruptEnable();
  while (runModel) {

      OFDMTx_step();

    stopRequested = !(
                      rtmGetErrorStatus(OFDMTx_M) == (NULL));
  }

  /* Terminate model */
  OFDMTx_terminate();
  globalInterruptDisable();
  return 0;
}
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/*
 * File trailer for generated code.
 *
 * [EOF]
 */

A.6.2. SM320F28335-HT Clock Register Settings
// TI File Revision: /main/8 
// Checkin Date: October 23, 2007   11:29:25 
//###########################################################################
//
// FILE:   DSP2833x_Examples.h
//
// TITLE:  DSP2833x Device Definitions.
//
//###########################################################################
// $TI Release: DSP2833x Header Files V1.10 $
// $Release Date: February 15, 2008 $
//###########################################################################

#ifndef DSP2833x_EXAMPLES_H
#define DSP2833x_EXAMPLES_H

#ifdef __cplusplus
extern "C" {
#endif

/*-----------------------------------------------------------------------------
      Specify the PLL control register (PLLCR) and divide select (DIVSEL) value.
-----------------------------------------------------------------------------*/
//#define DSP28_DIVSEL   0   // Enable /4 for SYSCLKOUT
//#define DSP28_DIVSEL   1 // Enable /4 for SYSCKOUT
#define DSP28_DIVSEL     2 // Enable /2 for SYSCLKOUT
//#define DSP28_DIVSEL     3 // Enable /1 for SYSCLKOUT

#define DSP28_PLLCR   10
//#define DSP28_PLLCR    9
//#define DSP28_PLLCR    8
//#define DSP28_PLLCR    7
//#define DSP28_PLLCR    6
//#define DSP28_PLLCR    5
//#define DSP28_PLLCR    4
//#define DSP28_PLLCR    3
//#define DSP28_PLLCR    2
//#define DSP28_PLLCR    1
//#define DSP28_PLLCR    0  // PLL is bypassed in this mode
//----------------------------------------------------------------------------

/*-----------------------------------------------------------------------------
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      Specify the clock rate of the CPU (SYSCLKOUT) in nS.

      Take into account the input clock frequency and the PLL multiplier
      selected in step 1.

      Use one of the values provided, or define your own.
      The trailing L is required tells the compiler to treat
      the number as a 64-bit value.

      Only one statement should be uncommented.

      Example 1:150 MHz devices:
                CLKIN is a 30MHz crystal.

                In step 1 the user specified PLLCR = 0xA for a
                150Mhz CPU clock (SYSCLKOUT = 150MHz).

                In this case, the CPU_RATE will be 6.667L
                Uncomment the line:  #define CPU_RATE  6.667L

      Example 2:  100 MHz devices:
                  CLKIN is a 20MHz crystal.

              In step 1 the user specified PLLCR = 0xA for a
              100Mhz CPU clock (SYSCLKOUT = 100MHz).

              In this case, the CPU_RATE will be 10.000L
                  Uncomment the line:  #define CPU_RATE  10.000L
-----------------------------------------------------------------------------*/
//#define CPU_RATE    6.667L   // for a 150MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE    7.143L   // for a 140MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE    8.333L   // for a 120MHz CPU clock speed (SYSCLKOUT)
#define CPU_RATE   10.000L   // for a 100MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE   13.330L   // for a 75MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE   20.000L   // for a 50MHz CPU clock speed  (SYSCLKOUT)
//#define CPU_RATE   33.333L   // for a 30MHz CPU clock speed  (SYSCLKOUT)
//#define CPU_RATE   41.667L   // for a 24MHz CPU clock speed  (SYSCLKOUT)
//#define CPU_RATE   50.000L   // for a 20MHz CPU clock speed  (SYSCLKOUT)
//#define CPU_RATE   66.667L   // for a 15MHz CPU clock speed  (SYSCLKOUT)
//#define CPU_RATE  100.000L   // for a 10MHz CPU clock speed  (SYSCLKOUT)

//----------------------------------------------------------------------------

/*-----------------------------------------------------------------------------
      Target device (in DSP2833x_Device.h) determines CPU frequency
      (for examples) - either 150 MHz (for 28335 and 28334) or 100 MHz
      (for 28332). User does not have to change anything here.
-----------------------------------------------------------------------------*/
#if DSP28_28332                   // DSP28_28332 device only
  #define CPU_FRQ_100MHZ    1     // 100 Mhz CPU Freq (20 MHz input freq)
  #define CPU_FRQ_150MHZ    0
#else
  #define CPU_FRQ_100MHZ    1     // DSP28_28335||DSP28_28334
  #define CPU_FRQ_150MHZ    0     // 150 MHz CPU Freq (30 MHz input freq) by DEFAULT
#endif
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//---------------------------------------------------------------------------
// Include Example Header Files:
//

#include "DSP2833x_GlobalPrototypes.h"         // Prototypes for global functions 
within the
                                              // .c files.

#include "DSP2833x_EPwm_defines.h"             // Macros used for PWM examples.
#include "DSP2833x_Dma_defines.h"              // Macros used for DMA examples.
#include "DSP2833x_I2c_defines.h"              // Macros used for I2C examples.

#define PARTNO_28335  0xFA
#define PARTNO_28334  0xF9
#define PARTNO_28332  0xF8

// Include files not used with DSP/BIOS
#ifndef DSP28_BIOS
#include "DSP2833x_DefaultISR.h"
#endif

// DO NOT MODIFY THIS LINE.
#define DELAY_US(A)  DSP28x_usDelay(((((long double) A * 1000.0L) / (long 
double)CPU_RATE) - 9.0L) / 5.0L)

#ifdef __cplusplus
}
#endif /* extern "C" */

#endif  // end of DSP2833x_EXAMPLES_H definition

//===========================================================================
// End of file.
//===========================================================================
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