
SANDIA REPORT
SAND20XX-XXXX
Printed Click to enter a date

High Temperature Component and
Data Link Evaluation
Andrew A. Wright, Avery T. Cashion, and Francis Tiong

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore,
California 94550

SAND2023-00068This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods/

mailto:reports@osti.gov
http://www.osti.gov/scitech
mailto:orders@ntis.gov
https://classic.ntis.gov/help/order-methods/

3

ABSTRACT
Characterizing and monitoring the long term performance of a geothermal well to determine it
energy production can be challenging because downhole equipment and the well itself will degrade
over time. Subsurface tools are lowered down the well to measure temperature, pressure, pH, and
other parameters, but high temperatures, high pressures, and great depths pose many challenges to
these instruments. Sensors used for measurements generate a small voltage signal and cannot relay
the data across the great depths of the well. Thus, local data processing is required to convert the
low analog signal to a digital signal that can be transmitted over greater lengths. However, there are
very few components on the market that can survive such a harsh environment. In this study, we
evaluated multiple high temperature microcontrollers capable of operating above 210˚C. We
examined five microcontrollers (HT83C51, SM320F2812-HT, SM470R1B1M-HT, SM320F28335-
HT, and RC10001), documented the results, and provided recommendations regarding which
should be used in today’s geothermal tools. In addition, one microcontroller was used to construct a
high temperature data link for communicating across a single conductor wireline. Due to the limited
memory of the RC10001, the RC2110836 memory chip was also evaluated. We recommend the
SM470R1B1M-HT, SM320F28335-HT, and RC10001 with RC2110836 microcontrollers for
geothermal applications. The SM320F28335-HT was used to demonstrate a high temperature data
link unit. That data link has shown 30 kbps data rates across 1524 m (5000 ft) of single conductor
wireline up to 170˚C.

4

ACKNOWLEDGEMENTS
This research was funded by the U.S. Department of Energy Office of Energy Efficiency and
Renewable Energy Geothermal Technologies Program. The authors wish to acknowledge the
support of our colleagues and reviewers in the preparation of this report including Giorgia Bettin,
Manuel Montano, Alfred Cochrane, Lori Dotson, Johnny Silva, and Jason Krein.

5

EXECUTIVE SUMMARY

Subsurface logging tools that measure temperature, pressure, pH, resistance, chemistry, radiation,
and other parameters are critical for characterizing a geothermal well or for monitoring long-term
well performance. However, capturing these measurements can be challenging due to the high
temperatures, extreme depths, high pressures, and corrosive environments associated with a
geothermal field. In addition, these sensors generate a small voltage signal that cannot be detected at
the surface due to the long lengths of cable it must travel. These logging tools must be capable of
operating at depths greater than 610 m (2000 ft), requiring a local processor to capture the signal
directly. The signal data is then either saved locally or transmitted back to the ground surface, which
requires a microcontroller. Sandia National Laboratories (SNL) evaluated five commercially available
microcontroller units (MCUs) capable of withstanding temperatures in excess of 210˚C and used
one in the development of a high temperature (HT) data link. This report will review the steps taken
to evaluate these MCUs and design the data link and then present our results. This technology can
enable greater sensor counts, decrease costs for real-time sensor data, and improve data accuracy.

Five HT MCUs (HT83C51, SM320F2812-HT, SM470R1B1M-HT, SM320F28335-HT, and
RC10001) were evaluated. The RC2110836 memory chip was also used due to the limited memory
of the RC10001. Based on our results, we recommend the SM470R1B1M-HT, SM320F28335-HT,
and RC10001 with RC2110836 for geothermal applications. The SM320F28335-HT was also used to
demonstrate an HT data link unit, which has produced 30 kbps data rates across a 1524 m (5000 ft)
of single conductor wireline up to 170˚C. These five MCUs were chosen for evaluation because it is
the very few options on the market that can operate above 210˚C.

SNL designed and evaluated a data link with the SM320F28335-HT microcontroller. It remained
operational throughout a 1524 m (5000 ft) single conductor wireline for up to 170˚C. It could not be
operated up to 210˚C due to limitations with the amplifier stage. However, removing the amplifier
and line driver stages from the data link and directly connecting the oscilloscope to the output of the
digital-to-analog converter (DAC) enabled transmission of messages in temperatures up to 210˚C.
Using the orthogonal frequency division multiplexer (OFDM) and binary phase shift keying (BPSK)
communication technique, 30 kbps data rates were demonstrated at elevated temperatures. The
printed circuit board (PCB) was designed to accommodate voltage regulation and access pins for the
analog-to-digital converter (ADC) to allow power transfer through the wireline and to enable data to
be received in future testing.

One of the major problems was package failures, which severely limited the testing on the RC10001
microcontroller. We observed deformation of the PCB, degradation of the solder, mismatch of the
coefficient of thermal expansion coefficient of thermal expansion (CTE), delamination of the
integrated circuits (ICs), and shorting of internal traces. The reliability of the packaging will be
improved by replacing the Rogers PCB with a ceramic PCB, gold/tin solder bonding or wire
bonding, and an HT conformal coating. Ceramic can withstand temperatures greater than 300˚C,
making it prone to degradation in these applications. Gold/tin solder would be ideal for the gold
pins on the IC because the solder joint will not degrade. The alternative is wire bonding, which fuses
gold wire to the pins and to the PCB pads. The wire is capable of operating at temperatures above
300˚C and allows mechanical movement between the IC and PCB (CTE mismatch) at high
temperatures. Finally, applying a conformal coating, consisting of a layer of an applied cured liquid
epoxy covering the IC and PCB, can improve the strength between the IC and PCB as well prevent

6

oxidation to the metals. These packaging improvements can significantly improve the reliability of
the logging tool electronics that will be exposed to high temperatures, mechanical shock, and
vibration.

Future improvements to the data link can be conducted to improve data rates, operating
temperatures, signal-to-noise ratio (SNR), error rates, and receiving data. The required operating
temperatures can be achieved by replacing the SM320F28335-HT with the RC10001. Using an ADC
enables signals to be received from the surface. Data rates can be significantly increased by
increasing the constellation point by incorporating quadrature amplitude modulation (QAM) instead
of BPSK. However, the signal integrity will need to be improved to use QAM. Signal integrity can
be improved by channel coding, error correction coding, constant signal propagation profiling,
increasing amplifier gain, and using pulse width modulation (PWM) DAC. Channel coding would
include a few coding steps that work together to mitigate the effects of channel distortions. These
steps may include interleaving the data followed by applying error correction code. Error correction
techniques, such as Bose-Chaudhuri-Hocquenghem, can be incorporated into the code to improve
the SNR of the system. The profile of wireline drops above 13 kHz can be compensated with the
amplifier. Using a constant propagation profile, the amplitude modulation will be constant to the
maximum desired operating bandwidth. Increasing the gain performance of the amplifier can further
push the signal above the noise floor, mitigating noise degradation. Final methods to improve signal
integrity could be replacing the resistor array DAC with a PWM DAC. This method would not
experience the inaccuracies of each resistor because the resistors are not dividing the rail voltage
accurately and evenly, which contribute to some noise being injected into the signal.

These improvements to the data link will allow reliable real-time data collection up to 300˚C. This
technology can be used in various applications such as subsurface array systems capturing tracer data
or acoustics.

7

CONTENTS
Abstract...3
Acknowledgements...4
Executive Summary ..5
Acronyms and Terms ...11
1. Introduction ..12
2. HT Components and HT data link ...13

2.1. Evaluation of High Temperature Microcontrollers and Memory..13
2.2. Development and Evaluation of a High Temperature Data Link ...14
2.3. Steps to Evaluating the Microcontrollers and Memory...15

2.3.1. Selecting the Printed Circuit Board ...15
2.3.2. Designing Circuit Board..16
2.3.3. Printed Circuit Board Design...27
2.3.4. PCB Oven Testing ...28
2.3.5. Packaging and Programming Microcontroller...30

2.4. Evaluating Packaged Microcontrollers and Memory ...40
2.4.1. Evaluating HT83C51...40
2.4.2. Evaluating RC2110836..41
2.4.3. Evaluating RC10001 ..42
2.4.4. Evaluating SM320F28335-HT ...45

3. Conclusion...48
3.1. Future Efforts...49

References ..50
Appendix A...Main Appendix Title

...51
A.1. HT83C51 Hello World Code...51
A.2. RC10001 Pin Connection and Keil Software Setup...60
A.3. RC10001 GPIO Pulse Code ..71
A.4. RC2110836 Register Alternating Code...75
A.5. OFDM Tx_mbd: Procedure to modify the C code and sample the data for the

SM320F28335-HT data link...78
A.5.1. Moving data calculations outside the interrupt service ..92

A.6. Data Link Software..96
A.6.1. Main C code ..96
A.6.2. SM320F28335-HT Clock Register Settings ...98

Distribution..101

LIST OF FIGURES
Figure 1. National Instruments DAQ with HT resistor DAC array for developing a high-speed

data link. ..14
Figure 2. HT83C51 circuit for breakout board. ...18
Figure 3. RC10001 microcontroller evaluation circuit. ...19
Figure 4. SM320F2812-HT microcontroller evaluation circuit. ..20
Figure 5. SM470R1B1M-HT microcontroller evaluation circuit...21

8

Figure 6. Custom evaluation board for the RC2110836. The NUC100VD3AN is used to interface
with the memory chip. ..22

Figure 7. Breakout board for the RC2110836 SRAM memory IC. ..23
Figure 8. SM320F28335-HT microcontroller and data link circuit. ...24
Figure 9. Circuit segment for SM320F28335-HT data link, (Top) resistor based DAC, (Bottom

Left) cascode amplifier, (Bottom Right) common drain-amplifier line driver.25
Figure 10. S-parameters for the cascode amplifier and line driver..26
Figure 11. Insertion loss profile of the 1524 m (5000 ft) single conductor wireline..............................26
Figure 12. PCB layout for the SM470R1B1M-HT. ...28
Figure 13. Degradation of PCB at 300˚C. Solder mask changed from a green to a white color and

delaminated from the Roger4003 material. The board planarization also degraded and was no
longer flat. ...29

Figure 14. Rogers 4003 four metal layer board with a bubble formed in the middle of the board
after exposure to temperatures above 200˚C. The bubble developed between the two Rogers
4003 layers, the lamination layer. ...29

Figure 15. Degradation of PCB at 300˚C. Standard solder and HT solder has been applied to
some of the gold-plated traces. Standard solder changed from a silver color to black. The HT
solder slightly changed to a textured silver. The solder also consumed the gold plating.30

Figure 16. HT83C51 soldered to Rogers 4003 breakout board with HT wires......................................31
Figure 17. Custom SNL evaluation board for the HT83C51. Utilizes an FPGA with custom code

to program the microcontroller. Evaluation board also includes memory and power
regulation...32

Figure 18. Custom SNL HT application specific integrated circuit (ASIC) programmer for the
HT83C51. Utilized for programming the microcontroller while operating at elevated
temperatures. ..32

Figure 19. HT83C51 in the process of programming with the development board.33
Figure 20. RC10001 soldered on Rogers 4003 PCB with HT wires...34
Figure 21. SM320F2812-HT HFG 172-pin soldered on Rogers 4003 PCB. ..35
Figure 22. SM470R1B1M-HT soldered on Rogers 4003 PCB. ...36
Figure 23. SM320F28335-HT soldered on Rogers 4003 PCB. PCB designed for data link

application. Incorporates HT resistor DAC, HT amplifier, and HT line driver. Design also
includes power regulation, but components were not utilized. ..36

Figure 24. Illustration of the basic keying technique for transmitting data. ..37
Figure 25. Sample constellation diagram for a 4-QAM. ...38
Figure 26. Received data on the oscilloscope, transmitted from the data link. (Left) Image of

constellation plot of the BPSK signal and (Right) messages that were received.39
Figure 27. RC2110836 low temperature soldered to Rogers 3003 PCB with HT wires. Pictures of

the packaged device were not taken before the oven evaluation. Originally the board was a
green color. ...40

Figure 28. HT83C51 on the breakout board after 300˚C evaluation. The board transitioned from
a green solder mask to a white color, forming various fractures..41

Figure 29. RC2110836 and packaging after evaluation at 300˚C for over a month. Pictured on
the right is the microcontroller with a weight on top to mitigate IC deformation..........................42

Figure 30. RC10001 connection pins. The center two pins are soldered, while the remaining gold-
plated pins were left unsoldered. At elevated temperatures, the solder consumed the gold
plating off the two pins. ..43

9

Figure 31. RC10001 microcontroller with a metal weight on top to mitigate deformation under
elevated temperature evaluation. ...44

Figure 32. (Left) RC10001 package set on a hot plate with a pedestal underneath to focus the heat
on the IC pins. (Right) RC10001 soldered to the PCB with HT solder only on the necessary
pins. ..44

Figure 33. RC10001 and packaging exposed to a max of 234˚C for 157 hours.45
Figure 34. The data link after operating at 210˚C for 288 hours. ..46
Figure 35. Constellation plot for the full data link and 1524 m (5000 ft) wireline (Left) and plot

for the data link when bypassing the amplifier, line driver, and 1524 m (5000 ft) wireline
(Right). ...47

LIST OF TABLES
Table 1. Five HT MCUs with Performance Details..13
Table 2. Additional HT microcontrollers Commercially Available ..14
Table 3. Standard PCBs Available by Advanced Circuits...15
Table 4. List of Components used on the Data Link ...27
Table 5. Recommendations for MCUs Evaluated Under this Effort...48

10

This page left blank

11

ACRONYMS AND TERMS

Acronym/Term Definition
ADC analog-to-digital converter

ASIC application specific integrated circuit

BPSK binary phase shift keying

CAD computer-aided design

CPU central processing unit

CTE coefficient of thermal expansion

DAQ data acquisition

DSP digital signal processor

F28335 SM320F28335-HT

FPGA field programmable gate array

HT high temperature

I/O input/output

IC integrated circuit

JTAG Joint Test Action Group

MCU microcontroller unit

N/A not applicable

NI National Instruments

NMOSFET N-channel metal-oxide-semiconductor field-effect transistors

OFDM orthogonal frequency division multiplexer

opamp operational-amplifier

PCB printed circuit board

PWM pulse width modulation

QAM quadrature amplitude modulation

RAM random-access memory

RC RelChip

SMD surface mount device

SNL Sandia National Laboratories

SRAM static random-access memory

Td decomposition transition

Tg glass transition

TI Texas Instruments

12

1. INTRODUCTION

Subsurface electronic tools are critical for characterizing geothermal wells and for monitoring their
long-term performance. The high temperatures, extreme depths, high pressures, and corrosive
environments associated with a geothermal field make it challenging to measure various parameters,
such as temperature, pressure, pH, resistance, tracers, and radiation. Logging tools and sensors
temporarily used to capture these measurements generate a small voltage signal that cannot travel
long distances without falling below the noise floor. Logging tools are expected to operate at depths
exceeding 610 m (2000 ft), so a local processor—in this case a microcontroller—is necessary to
capture the signal directly, after which the data is either saved locally or transmitted back to the
surface. Due to the elevated temperatures, the microcontroller also needs to operate above 210˚C.
Sandia National Laboratories (SNL), evaluated microcontrollers on the market that can operate at or
beyond 210˚C in addition to developing a high temperature data link—an electronic unit used to
transmit data across a data line.

Five high temperature (HT) microcontroller units (MCU) were evaluated from the manufacturers
Honeywell (HW), Texas Instruments (TI), and RelChip (RC). Honeywell’s HT83C51 served as a
reference due to the product’s reputation and SNL’s prior experience using the MCU for geothermal
applications. This research also evaluated TI’s SM320F2812-HT, SM470R1B1M-HT, and
SM320F28335-HT as well as RC’s RC10001 and its associated RC2110836 memory chip. HT Data
Link evaluated TI’s SM320F28335-HT MCU as the processor for developing a high temperature
data link. This paper includes steps to evaluating these devices, designing a data link, and the
elevated temperature results observed. This technology can enable greater sensor counts, improve
data accuracy, and decrease costs associated with real-time sensor data.

13

2. HT COMPONENTS AND HT DATA LINK

2.1. Evaluation of High Temperature Microcontrollers and Memory
SNL evaluated five commercially available microcontrollers with operating temperatures listed at
210˚C or higher as shown in Table 1. RelChip’s RC10001 has comparatively limited memory for
utilizing the integrated circuit (IC) in logging tools; therefore, the RC2110836 static random-access
memory (SRAM) chip was also evaluated under this effort. As of June 2022, all listed MCUs are still
available for purchase.

Table 1. Five HT MCUs with Performance Details

Device Company CPU
Max

Temp.
(˚C)

Max
Clock
(MHz)

Internal
Memory ADC Pack-

age

SM320F2
812-HT

Texas
Instruments ©

32-bit
C2000

220 150 128Kx16
Flash,
128Kx16
ROM

16-
Channel
12-bit

SMD

SM470R1
B1M-HT

Texas
Instruments ©

32-bit
ARM7

220 60 1MB Flash,
64KB SRAM

12-
Channel
10-bit

SMD

SM320F2
8335-HT

Texas
Instruments ©

32-bit
C2000

210 150
(125˚C)

100
(210˚C)

256KBx16
Flash,
34KBx16
SRAM

16-
Channel
12-bit

Thru

RC10001 RelChip® 32-bit
Cortex-MO

300 4 4KB SRAM N/A SMD

HT83C51 Honeywell© 8-bit 8051 225
(300
for 1
year)

16 8KB ROM N/A Thru

CPU=central processing unit
ADC=analog-to-digital converter
SMD=surface mount device
N/A=not applicable

Table 2 lists microcontrollers that can operate at 200˚C or higher, but these were not evaluated
because our research focused on available components with modern microcontroller architectures
capable of functioning above 210˚C. For example, TK8X51S would have been a desirable IC to
evaluate; however, it is currently in the design phase and has not been fabricated at this time.

14

Table 2. Additional HT microcontrollers Commercially Available

Device Company CPU
Max

Temp.
(˚C)

Max
Clock
(MHz)

Internal
Memory ADC Package

TK89H51B Tekmos 8-bit
8051

210 16 1024 Byte
RAM, 2K
EEPROM

8-channel,
8-bit

Thru or
SMD

TK8X51S Tekmos N/A 250 N/A N/A N/A N/A

VA41600 Vorago 32-bit
Cortex-
M4

200 100 64KB
Data,
256KB
Program

8-
Channel,
12-bit

SMD

VA10800 Vorago 32-bit
Cortex-
M0

200 50 32KB
Data,
128KB
Program

N/A SMD

RAM=random-access memory

2.2. Development and Evaluation of a High Temperature Data Link
We also developed and tested a data link—an electronic system designed to receive and/or transmit
data to another telecommunication unit—at elevated temperatures. Within the scope of this
experiment, the data link was designed to only transmit data across a single conductor wireline, a
type of high strength coaxial cable. Data links often consist of a digital signal processor (DSP), a
digital-to-analog converter (DAC), and an amplifier; however, an MCU can be used in place of a
DSP. This experiment used the SM320F28335-HT as the MCU for the data link as discussed below.

Figure 1. National Instruments DAQ with HT resistor DAC array for
developing a high-speed data link.

15

The HT data link effort built upon a previous work conducted within the department. Under that
effort, lower temperature components were used to demonstrate a high-speed data link [15]. The
data link used a National Instruments data acquisition (DAQ) and a computer. Using MATLAB
software, the team developed communication software that can produce an orthogonal frequency
division multiplexer (OFDM) with quadrature amplitude modulation (QAM). This is a common
technique used by Comcast, cell phones, Wi-Fi, and other networking that require high speed data
rates. To build from the DAQ, the team developed a DAC using HT resistors, and an amplifier
using Honeywell’s HT transistors. The team demonstrated 3.8 Mbps across 1524 m (5000 ft) of
single conductor wireline. These data rates were not observed with the latest geothermal logging tool
technology. The next phase of this effort was to replace the DAQ and computer with an HT
microcontroller.

2.3. Steps to Evaluating the Microcontrollers and Memory
After selecting the appropriate microcontroller, several steps were taken before testing began in an
HT oven. First, we selected printed circuit board (PCB) material fit for evaluation and created a
schematic based off the data sheets and/or referenced from a sister microcontroller evaluation
board. Next, the PCB was designed using computer-aided design (CAD) software such as Altium.
The design was fabricated and the PCB was evaluated in the oven at temperatures between 200 and
300˚C. The microcontroller was then soldered to the PCB after which it was programmed to repeat
a task. Finally, after setting up the oven/DAQ, the packaged microcontroller was evaluated in the
oven at 200–300˚C.

2.3.1. Selecting the Printed Circuit Board
Under this effort, the PCB must operate between 200–300˚C and was therefore evaluated for the
following criteria: high glass transition temperature, high decomposition temperature, and availability
for fabrication from standard PCB fabrication companies. This device was solely tested in an oven
and not be exposed to vibration, greatly simplifying the packaging design. Several materials in Table
3 were considered. Two materials were ultimately selected for packaging. Rogers 3003 was used on
the SRAM chip and Rogers 4003 for the microcontrollers. These were selected because they were
readily available from Advanced Circuits’ PCB foundry.

Table 3. Standard PCBs Available by Advanced Circuits

Material Layer Count Company Tg (˚C) Td (C) Dielectric
Constant

Rogers 3003 20 Rogers
Corporation© 500 3

Rogers 3035 20 Rogers
Corporation© 500 3.5

Rogers 3006 20 Rogers
Corporation© 500 6.15

Rogers 3010 20 Rogers
Corporation© 500 10.2

Rogers
4003C 20 Rogers

Corporation© 280 425 3.55

16

Material Layer Count Company Tg (˚C) Td (C) Dielectric
Constant

Rogers 5870 8 Rogers
Corporation© 500 2.33

Rogers 5880 8 Rogers
Corporation© 500 2.2

NF-30 Taconic® 515 3

TLX-8 Taconic® 535

Rogers
Cuclad 250 20 Rogers

Corporation© 500 2.97

Rogers CTLE 20 Rogers
Corporation© 487 3

Tg=decomposition transition
Td=glass transition

2.3.2. Designing Circuit Board
After selecting the PCB, this effort created circuits around each device based on the device’s
datasheet and evaluation board. The RC10001 was the only device whose evaluation board had a
publicly available schematic. The listed TI MCUs did not have evaluation boards; however, their
lower temperature sister chips did. As such the low temperature evaluation boards were used as a
reference for the HT PCBs. The design consisted of the microcontroller and minimal external
components, with most microcontrollers requiring only a small number of resistors.

2.3.2.1. HT83C51 Circuit
SNL has utilized the HT83C51 microcontroller in logging tools for over a decade. Although the
chip was primarily used for 225°C applications previously, this experiment used it as a reference
against newer microcontrollers, testing it at temperatures up to 300°C. SNL developed a custom
evaluation board for the microcontroller to program the device. The evaluation board consists of a
custom FPGA to interface with the microcontroller, multiple memory chips, and power regulation.
Considering its availability, a simple evaluation board was needed, so that only the chip could be
placed in the oven. The breakout board circuit is shown in Figure 2. It consists of the MCU, two
power line filter capacitors, and thru hole pins for the HT wires that were routed outside the oven to
the evaluation board.

2.3.2.2. RC10001 Circuit
Originally released in April 2018, the RC10001 is one of two MCUs that can operate at 300°C—the
other being the HT83C51, which uses older architecture with minimal features. RelChip supplies a
low temperature evaluation board specifically for the RC10001 microcontroller combined with the
RC2110836 SRAM. This circuit was simplified to just the RC10001 and only the necessary four
resistors. Figure 3 shows a schematic for the microcontroller. For programming purposes, a Joint
Test Action Group (JTAG) for programming the device was utilized. The board also contains power
line filter capacitors and thru hole pins for the HT wires.

17

2.3.2.3. RC2110836 Circuit
Initially, a custom evaluation board was designed for the RC2110836 SRAM IC, which was a single
board with the memory chip and a microcontroller. The NUC100VD3AN microcontroller was used
to interface between the SRAM and a computer. Figure 6 shows a schematic for the microcontroller.
The board was designed to be about two feet in length to allow the microcontroller to be placed
outside the oven while the memory is placed within. This simplified the routing of the 68 pins of the
memory chip. The issue with this approach is the long traces delaminated from the board as the
temperature reached above 200˚C, which caused open or short circuits. To resolve the issue, a
breakout board was made solely for the memory chip, which then connected to the evaluation board
via HT wire. The circuit of the breakout board is shown in Figure 7. The breakout board routed the
IC pins to header pins on the outer edge. The board also contained power line filter capacitors.

2.3.2.4. SM320F2812-HT Circuit
Originally released around June 2009, the SM320F2812-HT is a highly desirable chip for its built-in
DSP, which can be used to efficiently communicate between the logging tool and the surface
computer. A potential drawback is size, the IC is the largest among the microcontrollers being
evaluated. Although this board has a sister microcontroller, TMS320F2812, that board was designed
over a decade ago and interfaces with a computer via a parallel port. Parallel ports were commonly
used before the USB protocol. This board was also designed to be programmed with an external
programmer via a JTAG. The evaluation board was simplified to basic components, just the
microcontroller with optional capacitors. Necessary resistors were then added to the thru hole pins
along the edge of the board. The resistors were not hard wired to the board because of
programming issues reviewed in a later section.

2.3.2.5. SM470R1B1M-HT Circuit
The SM470R1B1M-HT is desirable for geothermal logging tools because it is the smallest >220˚C
microcontroller on the market. SM470R1B1M-HT’s circuit was designed around its datasheet, which
was originally released in September 2009, and the TI TMS470R1B512 evaluation board.
TMS470R1B512 is a sister chip with the same MCU architecture and additional features. The
evaluation board used an old programming connector protocol but can also be programmed via
JTAG. A schematic of the HT board is shown in Figure 5. It has multiple resistors to set the
microcontroller, two JTAG options, jumper pins to change settings, and several filtering capacitors.

18

Figure 2. HT83C51 circuit for breakout board.

19

Figure 3. RC10001 microcontroller evaluation circuit.

20

Figure 4. SM320F2812-HT microcontroller evaluation circuit.

21

Figure 5. SM470R1B1M-HT microcontroller evaluation circuit.

22

Figure 6. Custom evaluation board for the RC2110836. The NUC100VD3AN is used to interface
with the memory chip.

23

Figure 7. Breakout board for the RC2110836 SRAM memory IC.

2.3.2.6. SM320F28335-HT Data Link Circuit
Throughout this effort, the TMS320F2812-HT and SM470R1B1M-HT could not be programmed,
and only the RC10001 remained in consideration; however, its lack of a floating-point function and
minimal memory made it less than ideal. After discussions with other researchers, the
SM320F28335-HT, released around December 2010, was added to the study. The SM320F28335-
HT supports MATLAB, which simplifies the programming process, making it the best choice for
developing a data link. Programming knowledge and software using SM320F28335-HT may be
expanded onto the RC10001 in the future.

The SM320F28335-HT circuit was designed around the datasheet and the TMS320F28335 (sister
microcontroller) evaluation board. Considering this chip was used for the data link project, it was
more difficult to enable communications across a single conductor wireline compared to the other
MCUs. The circuit contains a DAC, amplifier, line driver, crystal oscillator, voltage regulation, and a
JTAG port.

24

Figure 8. SM320F28335-HT microcontroller and data link circuit.

25

Figure 9 shows the circuits for the DAC, amplifier, and line driver. The DAC is an array of HT
resistors. It operates by setting an output voltage based on one of the 12 pins from the MCU,
making it a 12-bit DAC. Its output voltage ranged from 0–3.3V, considering the input/output (I/O)
pins operate at 3.3V. To improve the integrity of the transmitted message, the signal did not exceed
1 V. To boost the voltage signal of the DAC, a cascode amplifier was utilized. A cascode typology
was used over the common-emitter typology because it does not suffer from the Miller feedback
capacitance. With the cascode amplifier, which has a high output impedance, low output impedance
is required to drive the low impedance single conductor wireline. This is accomplished using a line
driver, a common-drain amplifier typology that can supply the current required. Honeywell’s HT N-
channel metal-oxide-semiconductor field-effect transistors (NMOSFET) were used to build the
amplifier and line driver. Both the line driver and amplifier utilize a NMOSFET on the gate of the
input transistor to auto bias the pins as the temperature changes. Ideally, this maintains constant gain
profiles as the temperature increases.

Figure 9. Circuit segment for SM320F28335-HT data link, (Top) resistor-based DAC, (Bottom Left)
cascode amplifier, (Bottom Right) common drain-amplifier line driver.

Figure 10 shows the S-parameters for the combined performance of the amplifier and line driver. S-
parameters represent gain, reflection, and isolation. In this situation, S21 represents gain, S11 is the
input port reflection, S22 is the output port reflection, and S12 is the isolation from the output port
to the input port. As shown in Figure 10, the gain profile is about 10 dB from 30 kHz to 180 kHz.
Also, the reflection is about -1dB with the 50-ohm impedance ports of the vector network analyzer.
Typically, a good reflection is -20 dB, and acceptable reflection is around -10 dB. The performance

26

of the amplifier will need to be improved to minimize reflected energy. In the future, the cascode
amplifier will be replaced with an operational-amplifier (opamp) available from Honeywell. Utilizing
an opamp will have a higher gain, improve performance at higher temperatures, and lower port
reflection profile.

Figure 10. S-parameters for the cascode amplifier and line driver.

Figure 11 shows the insertion loss profile for the 1524 m (5000 ft) single conductor wireline used in
this experiment. As seen in the graph, the insertion loss is about 7 dB at 13 kHz and lower. The
profile rolls off at 13 kHz. Utilizing the additional gain from the amplifier, the data link was pushed
to operate up to 100 kHz where the wireline has an insertion loss of 27 dB. Increasing the
bandwidth of the data link output can increase the data rate of the system.

Figure 11. Insertion loss profile of the 1524 m (5000 ft) single conductor wireline.

27

The data link used the components listed in Table 4. It was designed to operate up to 210˚C, the
operating temperature of the microcontroller, but is limited by the crystal oscillator. Due to budget
and time constraints, it was decided to use the listed crystal. To push the operating temperature
further, the crystal can be replaced with an external clock signal.

Table 4. List of Components used on the Data Link
Component Company Part Number Temperature (C)
MCU Texas Instruments SM320F28335-HT 210
NMOSFET Honeywell HTNFET 225 (300 1-year)
Crystal Frequency Management 1931794 200
Resistor Vishay Dale ALSR011K000JE12 250 (works at 300)
Crystal Capacitor Vishay Vitramon VJ0402D220JXXAJHT 200
Capacitor Presidio Components HT1712X7R104J3P1R 250

2.3.3. Printed Circuit Board Design
After completing the schematics, a layout used to fabricate the PCB was created for each board, an
example of which is pictured in Figure 12. The boards were designed using CAD software such as
Altium. In order to mitigate failure at elevated temperatures, the copper traces were placed in the
inner layers of the board to prevent them from lifting off. The board was also designed to be bolted
to a metal plate to mitigate potential warping at elevated temperatures, hence the 12 screw holes
surrounding the IC.

Figure 12. PCB layout for the SM470R1B1M-HT.

With the material and layout defined, the board was fabricated by an external company, Advanced
Circuits. Each PCB was relatively simple, containing a total of four metal layers. An important detail
selected for the fabrication of the board was to have gold plating on the exposed metal traces. Bare

28

copper will oxidize and tinned pads can degrade the high temperature solder. It was later discovered
that solder consumes gold plating at elevated temperatures. The board for the data link was designed
during the evaluation of the other microcontrollers. We decided to fabricate the data link board with
bare copper plating, accepting that any exposed copper will oxidize over time. Tinned pads is
typically standard solder applied to the copper pads from the manufacturer. Standard solder is 60%
tin and 40% lead and has a melting point of 190˚C, hereafter referred to as low temperature solder.
HT solder used in this research is 97.5% lead, 1.5% silver, and 1% Sn, which has a melting point of
slightly above 300˚C. Thus, fusing low temperature solder and HT solder can degrade the
temperature performance.

2.3.4. PCB Oven Testing
After receiving the fabricated boards from Advanced Circuits, the boards were evaluated in the oven
at elevated temperatures to observe degradation. Several degradation points were observed. The
most obvious change is that the board transitioned from a green color at room temperature to a
black color at temperatures above 200˚C and later to a white color after sitting at 300˚C for an
extended period of time. The boards were coated with a thin non-conductive layer (solder mask) to
prevent solder wicking across the metal traces during packaging. Most of the color change results
from the solder mask. Figure 13 provides an example of degradation observed at 300˚C, showing
the solder mask fractured and delaminated from the Rogers 4003 material. In addition, the Rogers
4003 material was no longer planar; it could not lay flat on the table. Our research found that in
multilayer boards, the two Rogers 4003 layers delaminated from each other, creating bubbles
between the two layers. This probably resulted from moisture evaporating and causing pressure
between the layers, which can be mitigated by baking-out the board at 100˚C for 24 hours.

Figure 13. Degradation of PCB at 300˚C. Solder mask changed from a green to a white color and
delaminated from the Roger4003 material. The board planarization also degraded and was no
longer flat.

The bubbling is prominent in Figure 14, which depicts a cross-section of the PCB. The bubble in
the center of the board formed while exposed to elevated temperatures. This can cause significant
strain on the solder joints of the IC and PCB, which can lead to the IC debonding.

29

Figure 14. Rogers 4003 four metal layer board with a bubble formed in the middle of the board
after exposure to temperatures above 200˚C. The bubble developed between the two Rogers 4003
layers, the lamination layer.

Figure 15 depicts a PCB with low temperature and HT solder applied to the metal pads. The low
temperature solder changed from a silver gloss color to a matte gray color, which indicates the
solder is degrading. Degraded solder will typically have higher electrical resistance and/or fracture.
The high temperature solder remained a silver color after testing at elevated temperatures, but a
black substance appeared surrounding the solder. Notably, the flux was removed from the boards
before testing. It was necessary to place the board on a hot plate while using a solder iron to get a
relatively decent joint, making it difficult to apply HT solder to the traces. Solder was added to the
corner of the large gold metal pad in the middle. As shown in Figure 15, the solder consumed part
of the large pad’s gold plating.

Figure 15. Degradation of PCB at 300˚C. Standard solder and HT solder has been applied to some
of the gold-plated traces. Standard solder changed from a silver color to black. The HT solder
slightly changed to a textured silver. The solder also consumed the gold plating.

PCB layers delaminating at the center (bubble)

Edge of PCB

30

2.3.5. Packaging and Programming Microcontroller

2.3.5.1. HT83C51
HT83C51 was the simplest microcontroller to package considering the large spacing between pins,
thru hole pins, and small pin count. As shown in Figure 16, the chip was directly soldered to the
Rogers 4003 board. HT wires were soldered to the breakout pins on the edge of the board.
Packaging details for the HT83C51 are as follows: four metal layered Rogers 4003 PCB with routed
metal traces in the inner layers of the board; gold plated pads with 39 mil trace width and clearance;
HT solder to attach HT wires; and the thru hole microcontroller. Filter capacitors were not
populated (which was not required).

Figure 16. HT83C51 soldered to Rogers 4003 breakout board with HT wires.

The evaluation board for the HT83C51 microcontroller is shown in Figure 17. The evaluation board
was custom made by SNL over a decade ago. It contains memory, power regulation, and custom
firmware to program the HT83C51. Honeywell did not supply hardware to program the HT83. To
use the microcontroller, SNL developed technology to program the device. One method developed
to program the HT83C51 involved using a field programable gate array (FPGA). SNL developed
firmware for the FPGA to enable communications between the computer and the HT83C51.

31

Figure 17. Custom SNL evaluation board for the HT83C51. Utilizes an FPGA with custom code to
program the microcontroller. Evaluation board also includes memory and power regulation.

After developing the FPGA and firmware, SNL enabled the programmer technology to operate at
the same temperature as the HT83C51 by converting the firmware code into a transistor format. An
effort was then put together to fabricate the IC utilizing Honeywell’s SOI HT IC fabrication
technology. This enabled the ability to program the HT83C51 while the entire board is exposed to
elevated temperatures deep within a borehole. Figure 18 shows the fabricated programmer for the
HT83C51 chip.

Figure 18. Custom SNL HT application specific integrated circuit (ASIC) programmer for the
HT83C51. Utilized for programming the microcontroller while operating at elevated temperatures.

The breakout board is essentially an extension cord from the evaluation board to the IC. The
evaluation board remains at room temperature, while the IC is exposed to high temperatures. The
issue that occurred with this approach is that the microcontroller could not be programmed

32

properly. The long wires either caused noise or a timing inaccuracy even though all the wires were
made to be the same length. To bypass this issue, the breakout board was connected directly to the
evaluation board as shown in Figure 19. Once the chip was programmed, the breakout board was
removed, and the software continued to operate as expected. This was not ideal for evaluating the
IC, but due to budge limitations, it was enough to compare to the other microcontrollers. The
software used was simple, the MCU constantly transmitted a digital string of characters, “Hello
World!” If the message stopped, either the MCU became corrupted and required reprogramming or
the MCU was no longer functioning. The code used to evaluate the microcontroller is listed in
Appendix A.1.

Figure 19. HT83C51 in the process of programming with the development board.

2.3.5.2. RC10001
The RC10001 was initially soldered to the Rogers 4003 PCB with low temperature solder. Low
temperature solder was chosen because it only needed to operate for one month and would not be
exposed to vibration. This chip was evaluated at 300˚C, thus the solder would be in a liquid state.
Ultimately, the chip was soldered with HT solder to mitigate packaging failures observed in Section
2.4.3. The board consists of a four metal layered Rogers 4003 PCB with routed metal traces in the
inner layers of the board as well as gold plated pad with 6 mil clearance for the IC pads and 9 mil
routed trace clearance. To program the device, we used Keil software and a Keil Ulink2
programmer. Steps to program the device are listed in Appendix A.2. the code used for the
RC10001 was even simpler than the HT83C51 software. Building off the RC10001 example code,
the microcontroller pulsed an I/O pin continuously. Evaluation code used for the oven testing is
listed in Appendix A.3. Only four wires were soldered to the board as shown in Figure 20: two for
power, one for an external clock, and the last for the I/O pin, which was to be observed during
testing.

33

Figure 20. RC10001 soldered on Rogers 4003 PCB with HT wires.

2.3.5.3. SM320F2812-HT
Board details for the TMS320F2812-HT are as follows: four metal layers with a majority of
connection traces in the inner layers; gold plated pads, 7 mils trace width and clearance; and Rogers
4003 material. A picture of the packaged IC with the PCB is shown in Figure 21. The board has
connections for the HT wires and the microcontroller. Resistors were soldered to the breakout pins
on the edge of the board to properly set the microcontroller. TMS320F2812-HT was soldered with
low temperature solder to the Rogers 4003 PCB. The microcontroller is a surface mount device, but
it has a rail around the pins. The rail can be removed, but the team decided to leave the rail attached
and flipped the chip in reverse. The rail was left for the packaging aspect because of the additional
bonding strength from the solder. In additional, the rail’s mounting hole points can be used to
attach screws that strengthen the mechanical structure between the IC and PCB.

Unfortunately, after the effort of packaging the device, no attempt allowed the user to program the
microcontroller. Many approaches were attempted to program the device. Firstly, Code composer
10 with the XDS200 programmer was used but with no success. This was followed by replacing the
XDS200 with the XDS100v2, XDS510, or XDS510 plus, but the IC was not detected. All the solder
connections were triple checked by two electronics engineers as well as ensuring proper settings and
JTAG connections. Later, the Spectrum Digital eZdsp TMS320F2812-HT evaluation board was
purchased. This evaluation board contained the sister chip of the SM320F2812-HT IC. It also
contained the TMS320F2812-HT microcontroller, which is the low temperature version of the IC.
The same programming approach was used again, this time on the evaluation board. When that
failed, Code Composer 3 was used in an attempt to detect the device. Again, the software could not
recognize either the package device or the evaluation board. The effort attempted two final
approaches: an older version of the Windows OS was used and the parallel port on the evaluation
board was used with an old computer to try and detect the device. With all attempts failing to
program the device, the SM320F2812-HT was abandoned under this effort and was not evaluated at
elevated temperatures.

34

Figure 21. SM320F2812-HT 172-pin soldered on Rogers 4003 PCB.

2.3.5.4. SM470R1B1M-HT
Board details for the SM470R1B1M-HT are as follows: four metal layers with a majority of the
connection traces in the inner layers; gold plated pads, 7 mil trace width and clearance; and Rogers
4003 material. The package is pictured in Figure 22. The board has connections for the HT wires,
the surface mounted microcontroller, eight HT resistors, and the JTAG header. SM470R1B1M-HT
was soldered with low temperature solder to the Rogers 4003 PCB.

To program the device, ULINK Pro and Keil software was used. TI Code Composer could not be
used because the IC is no longer supported by the software. The IC was released when Code
Composer 3 originally came out, like the TMS320F2812-HT. Keil was used to program the device
because it had a library for the TMS470R1B1M (TMS470) IC, the low temperature version of the
IC. Initially, it was challenging to properly configure the external resistors to the IC. As such, the
TMS470R1B512 (similar low temperature IC) evaluation board was initially used to confirm
detection of the chip with the Keil software. After confirming detection of the TMS470 and
properly configuring the SM470R1B1M-HT, the Keil software successfully detected the
SM470R1B1M-HT. In an attempt to program the device, the team ran into an issue. Even though
the TMS470 was like the SM470, there were differences that hampered the ability to easily program
the SM470R1B1M-HT. The TMS470 has features such as additional I/O blocks. Even when trying
to program the SM470R1B1M-HT with the TMS470 library, the registry to configure the I/O port
would not work, even though the Keil software would note the chip was programmed properly. To
program the IC, a library would need to be handwritten to define all the registries of the IC,
something the project budget could not support. Later it was discovered that another software, IAR
Systems, had the library set to program the SM470R1B1M-HT specifically. Unfortunately,
considering the cost, the budget could not support the software’s purchase. Near the end of the
effort, an external company successfully programmed the device, indicating the IC could potentially
be used in HT applications; however, considering SNL could not program the device at the time, it
was not evaluated under this effort.

35

Figure 22. SM470R1B1M-HT soldered on Rogers 4003 PCB.

2.3.5.5. SM320F28335-HT
Unlike other microcontrollers, the SM320F28335-HT was also used for evaluating a data link for
communications across 1524m (5000 ft) of single conductor wireline as discussed in Section 2.3.2.
Population of the PCB is shown in Figure 23. The microcontroller is the large gray IC with a gold
square pad in the middle. Considering it would only be evaluated 210˚C, this circuit was built on a
Rogers 4003 PCB and bonded using low temperature solder. Board details for the SM320F28335 are
as follows: four metal layers with majority of the connection traces in the inner layers; bare copper
pads; and 10 mils trace width and clearance.

Figure 23. SM320F28335-HT soldered on Rogers 4003 PCB. PCB designed for data link
application. Incorporates HT resistor DAC, HT amplifier, and HT line driver. Design also includes
power regulation, but components were not utilized.

Along with a more complex PCB, the SM320F28335-HT used a more complicated software
compared to the other devices. Like the other devices, the code continuously output a set of data;
however, complexity arose when the digital message was converted to an analog signal using keying
techniques. As noted earlier, the data link is designed to send messages at high-speed across a single
conductor wireline. There are several manipulations that can occur to a sinusoidal signal to represent
a digital bit. These can include turning on and off the sine wave, changing the frequency, amplitude,
or phase. Keying techniques are shown in Figure 24. By combining these techniques, data rates can

36

be increased significantly. As reviewed earlier, a previous effort utilized OFDM+QAM which is the
manipulation of frequency, amplitude, and phase with the high resolution and wide frequency
bandwidth of the wireline. The goal was to duplicate the effort but replace the National Instruments
DAQ with an HT MCU, but ultimately the code was simplified and used OFDM+ binary phase
shift keying (BPSK). OFDM+BPSK is manipulation of the frequency and only two-phase shifts. As
such, this has a much lower data rate compared to previous efforts. This slower technique was used
because it would be challenging to convert the original MATLAB code into C code for the
microcontroller. The effort determined it would be better to start simple and rewrite the MATLAB
code using the built-in MATLAB BPSK libraries.

Figure 24. Illustration of the basic keying technique for transmitting data.

Johnny Silva from SNL made the basic OFDM+BPSK MATLAB code as a proof of concept on the
computer and demonstrated the capability to convert it to C code using the built-in MATLAB tools.
This was then transferred to Francis Tiong from MathWorks to optimize the code and get it to
operate on physical hardware. A procedure was written describing how to use the XDS200
programmer, MATLAB, and TI Code Composer 10 to program and alter settings for the
SM320F28335 data link, which can be found in Appendix A.5. Partial code for the data link can be
found in Appendix A.6.

For the experiment, the code transmitted the message “Live long and prosper, from the
Communications Toolbox Team at MathWorks!” The microcontroller would then repeat the
message continuously. To do this, the message was transposed into the OFDM+BPSK format. This
was outputted from the microcontroller to its 12 I/O pins. Those 12-bits were then converted to an
analog signal with the resistor DAC, which was amplified and propagated through the 1524 m (5000
ft) single conductor wireline. The signal was then captured by Pico Technology’s PicoScope
oscilloscope. The data was saved in a MATLAB format with the PicoScope software, after which
the signal was converted back to the original message using a MATLAB script. Along with that, the
MATLAB script plotted a constellation diagram, which represents a digital modulation scheme.
Shown in Figure 25 is a sample constellation diagram. There are four blue dots (symbols) on the
diagram representing a quadrature phase shift keying (QPSK) constellation, to which each symbol
represents 2 bits. The larger the constellation, the larger number of bits that can transmit per
symbol.

37

Figure 25. Sample constellation diagram for a 4-QAM.

A constellation diagram is important because it can show interference that may have occurred when
the signal was first generated to the receiver. There are many ways a signal can degrade, including
random EM signals in the air, motion to the cables, power supply noise, thermal noise, and even
radiation from the sun.

Figure 26 shows the received signal’s constellation diagram and the messages received. On the left is
the constellation diagram for the messages received by the oscilloscope. Considering the technique
used is BPSK, there are only two symbols in the diagram. Each symbol represents a single bit. The
symbols are not a single point on the diagram, instead the points are spread around the expected
point on the diagram. This is due to noise the data link and wireline experienced. The points are in
the general region within the acceptable threshold defined by the MATLAB script. The signal was
then converted to the messages shown in the image to the right. When there is noise on the signal, it
can degrade the message, hence the reason for the incorrect characters seen in some of the
messages. There are multiple ways to improve the signal integrity, which will be explored in future
efforts.

Figure 26. Received data on the oscilloscope, transmitted from the data link. (Left) Image of
constellation plot of the BPSK signal and (Right) messages that were received.

38

2.3.5.6. RC2110836
Board details for the RC2110836 are as follows: four metal layers with a majority of the connection
traces in the inner layers; gold plated pads, 12 mils trace width and clearance; and Rogers 3003
material. A picture of the package IC with the PCB is shown in Figure 27. The board has
connections for HT wires, the surface mounted microcontroller, and filtering capacitors. The IC was
soldered with low temperature solder to the Rogers 3003 PCB.

The NUC100VD3AN microcontroller was used to set each register to a 1 or 0 bit on the
RC2110836 SRAM. The MCU would then read each register and transmit the data to the computer.
The computer then displayed and saved the data as a hex value, representing the bits of the registers.
After all the registers were set and data saved, the microcontroller then flipped the bit and repeated
the process. The flipping of the bits repeated continuously. If any register failed to flip, the hex value
would change, indicating to the user that a register had failed. MATLAB software on the computer
was used to interact with the microcontroller. The code is shown Appendix A.4.

Figure 27. RC2110836 low temperature soldered to Rogers 3003 PCB with HT wires. Pictures of
the packaged device were not taken before the oven evaluation. Originally the board was a green
color.

2.4. Evaluating Packaged Microcontrollers and Memory
The four ICs were evaluated considering factors from the previous section. This includes the
HT83C51, RC10001, RC2110836, and the SM320F28335.

2.4.1. Evaluating HT83C51
The HT83C51 board was evaluated in an oven reaching 300˚C. Altogether, we evaluated two
packaged HT83C51s. The first package operated at 200˚C for 67 hours with no issues. After the
oven temperature was increased to 300˚C, the IC operated for 6 hours before failure. The oven was
deactivated and left to cool after which the chip was power cycled and reprogrammed. The device
operated again, outputting the “Hello World!” message, but as the temperature of the oven was
slightly increased, the IC failed again. The evaluation determined that the IC can only operate at
room temperature. A second IC was packaged, and the temperature was increased slowly to collect

39

more data. This time, the PCB was baked-out at 100˚C for over 24 hours to remove any moisture
from the board. Testing started at 200–215˚C for 125 hours with no observable errors. Next, the
temperature was increased to 225–235˚C for 206 hours, 250˚C for 118 hours, and 255–265˚C for 50
hours with no observable issues. Finally, the temperature was increased to about 275˚C, after which
the IC failed at 12.8 hours. In the datasheet for the IC, it is designed to operate at 225˚C and is
capable of one year of operation at 300˚C. As the results show, one of the evaluated ICs operated at
300˚C for only 6 hours. Further testing is required to understand why the ICs failed prematurely.
One unlikely possibility is the age of the IC. The ICs evaluated were fabricated over 10 years ago, so
there might be a chance the transistors of the IC degraded by sitting on the shelf. During testing, we
monitored the current and observed the IC drew about 38 mA at room temperature and 30 mA at
300˚C. Typically, current increases with elevated temperatures, but with the HT83C51, the current
decreased. After the packaged device was exposed to temperatures of 300˚C, several degradations
were observed on the board. The green solder mask changed to a white color as shown in Figure 28.
One can also see fractures lines occurring above the routed traces between the IC and breakout pins.
It is unclear why the traces encouraged that effect considering they are within the inner layers. The
HT solder has blackened as previously shown in Section 2.3.4. Finally, the text on the top of the IC
(gold region) faded away.

Figure 28. HT83C51 on the breakout board after 300˚C evaluation. The board transitioned from a
green solder mask to a white color, forming various fractures.

2.4.2. Evaluating RC2110836
During the test, a cylindrical metal weight was placed on top of the memory IC to mitigate
delamination from the PCB. A second hollow metal cube was placed on top of the PCB to help
mitigate deformation of the PCB near the IC. At room temperature, 200˚C, and 300˚C, the current
draw of the chip was 2.5 mA, 3.5 mA, and 21 mA, respectively. During evaluation of the IC at
300˚C, the packaging failed after the IC debonded from the PCB as a result of strain from the
deformation of the board and the degradation of the low temperature solder. Considering the
challenges associated with HT solder, the same chip was resoldered with low temperature solder.
Following the repair, the board continued the evaluation. The packaged device operated at 300˚C for

40

a total of 528 hours with no additional failures. To push the IC further, the temperature was
increased to 305˚C, where the device operated for another 816 hours before failing. The packaged
microcontroller, with and without the weight after the evaluation in the oven, is pictured in Figure
29. The board started as a green color, changing to a white color after hundreds of hours at 300˚C.
The surface of the board contained many fractures and visibly warped around the edges.

Figure 29. RC2110836 and packaging after evaluation at 300˚C for over a month. Pictured on the
right is the microcontroller with a weight on top to mitigate IC deformation.

2.4.3. Evaluating RC10001
One of the most challenging HT ICs evaluated under this effort was RC10001 due to it being a
surface mount device (SMD) as well as various issues associated with the PCB’s exposure to high
temperatures. With the packaging techniques we had available, a total of three packages were
assembled to obtain the best results in the allotted time. Following the success of testing the SRAM
IC, the first RC10001 was soldered with low temperature solder due to the difficulty of working with
HT solder on a tight pin pitch on the IC. The set was exposed to temperatures above 200˚C for 42.5
hours without failure until the temperature reached 276˚C. The chip failed after de-bonding from
the board. As described in Section 2.3.4, the board bubbled and the solder degraded. As shown in
Figure 30, the solder degraded and consumed the gold plating after being exposed to elevated
temperatures for an extended period. Two pins in the image were soldered while the other pins were
not. The gold plating on the pins was completed stripped off at elevated temperatures. Along with
these challenges, there was a coefficient of thermal expansion (CTE) mismatch between the IC and
PCB. CTE mismatch occurs when there is a delta in physical expansion between two materials as
the temperature increases. As the CTE mismatch increases it causes strain on the solder joint, and
the IC physically removed itself from the board.

41

Figure 30. RC10001 connection pins. The center two pins are soldered, while the remaining gold-
plated pins were left unsoldered. At elevated temperatures, the solder consumed the gold plating
off the two pins.

Due to budget constraints, the same board design was utilized (ten duplicate PCBs were fabricated),
and low temperature solder was used again. This time, a large metal weight was placed on top of the
microcontroller as shown in Figure 31. Ideally, the weight would mitigate deformation of the PCB.
With a new IC and PCB, the board was placed in the oven at 100˚C for four hours to remove any
moisture. The temperatures were then increased to 256˚C, where it failed after 2.4 hours. After
failing, the board was left in the oven. Power to the board was left on and the temperature was
increased to 300˚C, where records show the package’s power lines shorted. The IC was exposed to
those temperatures for 19 hours before being removed. After it was removed from the oven, the
packaged device was evaluated under the microscope. The chip did not delaminate from the PCB,
but it appeared the solder slightly expanded between the pins, potentially causing digital and power
line shorts, resulting in the initial failure at 256˚C. The power line shorted as the board was sitting at
300˚C. The expanded solder was cleaned with a micro chisel. After cleaning the solder, the short
remained. Thus, the IC was removed from the board to investigate further. Even after removing the
chip and cleaning all the solder, the short could not be found, indicating that it most likely occurred
within the inner layers.

42

Figure 31. RC10001 microcontroller with a metal weight on top to mitigate deformation under
elevated temperature evaluation.

To mitigate the issues observed in the second package, the third package used HT solder. It is
challenging to use HT solder on the RC10001 when processing by hand, so to simplify the process,
only the necessary pins were soldered. The board had to be placed on a hot plate to use the HT
solder. To focus heat on the chip, a small block slightly larger than the IC was placed below the
board and aligned with the chip as shown in Figure 32. The hot plate temperature was increased to
210˚C and a special soldering iron that flows inert gas (nitrogen) over the iron and solder was used
to apply HT solder without oxidizing the metal.

Figure 32. (Left) RC10001 package set on a hot plate with a pedestal underneath to focus the heat
on the IC pins. (Right) RC10001 soldered to the PCB with HT solder only on the necessary pins.

The third package recycled the RC10001 from the second package but used a new PCB. The set was
placed in the oven at 100–110˚C for 41 hours to ensure there was no moisture in the board. Again,
the metal weight was placed on top of the IC. Temperatures were increased slowly to obtain as

43

much data as possible. The temperature was increased to 200˚C and the package sat for 117 hours
with no issues. Next, the temperature increased to 220–234˚C and the package operated for 157
hours until failure. Unfortunately, the power lines shorted again before reaching 300˚C. Notably, the
recycled microcontroller was exposed to 300˚C in an off state for 19 hours; however, this does not
indicate the chip would function at 300˚C. Considering the results obtained from the SRAM chip,
which uses the same transistor technology, the IC should function at 300˚C. During the three
experiments, the current draw increased approximately 3–4 mA at elevated temperatures.

Figure 33. RC10001 and packaging exposed to a max of 234˚C for 157 hours.

2.4.4. Evaluating SM320F28335-HT
As noted previously, the software for the SM320F28335-HT was the most complex among the
devices evaluated under in this study. That said, the packaging was the easiest to deal with largely
because the microcontroller can only operate up to 210˚C and is a thru hole device. These factors
made the packaging significantly more reliable compared to operating an SMD device at 300˚C. The
evaluated data link is shown in Figure 34.

The setup used to evaluate the data link include the following: three external power supplies used to
power the data link, including 1.9 V, 3.3 V and 12 V sources; a PicoScope oscilloscope used to
receive the ODFM+BPSK signal from the data link output; and a 1524 m (5000 ft) single conductor
wireline placed between the output of the data link and the input of the oscilloscope. The wireline
was placed outside the oven because of its size. An on-board crystal oscillator was initially used to
clock the microcontroller and PicoScope oscilloscope software was used to save the data. Finally,
MATLAB was used in post-processing to display the messages and create a constellation plot.

44

Figure 34. The data link after operating at 210˚C for 288 hours.

For the first elevated temperature test, the microcontroller current draw was 221 mA, 200 mA, and
75 mA for 1.9 V, 3.3 V, and 12 V, respectively. As a precaution, the board was heated to 100˚C for
24 hours to bake-out moisture. Following this, the temperature was increased but stopped at 110˚C
when the transmitted messages became corrupted. After debugging the clock and software, we
determined the error occurred because the microcontroller operated at 150 MHz. The code written
for the microcontroller was built off the library for a device that operates at lower temperatures.
According to the data sheet, the IC can operate at 150 MHz but only below 125˚C. It needs to use a
derated clock of 100 MHz when operating at above 200˚C. The IC has a built-in clock multiplier
which takes the external low clock signal and multiplies it to a higher frequency. A 30 MHz HT
crystal was purchased for the board to match the low temperature sister board frequency. With that,
the multiplier was adjusted in the code to get close to a 100 MHz internal clock; however, an exact
100 MHz could not be achieved due to the multiplier’s limited settings. After this adjustment, the
operating temperature of the board did not improve much. Thus, the crystal was removed and an
external clock from a DAQ was used in its place to produce a 20 MHz signal that enabled an exact
100 MHz internal clock. With this correction, the data link could send messages up to 170˚C. We
observed current draw of 176 mA, 185 mA, and 80 mA, for 1.9 V, 3.3 V, and 12 V, respectively,
after updating the code and using the external clock. The next issue occurred because of the cascode
amplifier and line driver. As the temperature increased the amplifier and line driver attenuated the
signal prematurely. The amplifier circuit will need to be redesigned to compensate for the elevated
temperature. In the next data link design, Honeywell’s opamp will be used instead, considering it is
most likely designed to compensate for elevated temperatures. To continue the study of the
microcontroller, the amplifier, line driver, and 1524 m (5000 ft) wireline were bypassed, and the
signal was received directly from the output of the DAC. With the bypass, the messages were
received to 210˚C. The chip was then tested at 210˚C for 288 hours with no issues.

Figure 35 shows the constellation diagram for the data link. The left image is the constellation from
the output of the wireline at 170˚C and the right image is the constellation from the output of DAC
at 210˚C. In the left image, the points are further spread relative to room temperature operation
because of thermal noise. As the temperature increased, noise was generated on all conductive
elements. Unfortunately, the noise cannot be prevented, but various techniques can be used to
confirm messages from the data link are received correctly. Results from this effort can be used to

45

significantly improve the performance of the data link including data rates, operating temperature,
and noise performance.

Figure 35. Constellation plot for the full data link and 1524 m (5000 ft) wireline (Left) and plot for
the data link when bypassing the amplifier, line driver, and 1524 m (5000 ft) wireline (Right).

46

3. CONCLUSION
We evaluated five microcontrollers, one memory IC, and a data link designed to operate at or above
210˚C under this effort sponsored by Department of Energy Geothermal Technology Office. Figure
5 shows the five microcontrollers we evaluated, and we recommend the three highlighted ones for
use in geothermal applications. These recommendations are based on the ability to program the
device and/or good performance results. SM320F2812-HT and SM470R1B1M-HT could not be
programmed and were not evaluated under this effort. However, considering an external company’s
success programming the SM470R1B1M-HT and its small form factor, we decided to recommend
the device for geothermal applications. SM320F28335-HT is highly recommended as it is easily
programmable with Code Composer or MATLAB. Considering the device is a thru hole device, it
makes packaging highly reliable. Despite its temperature capabilities, the HT83C51 was not
recommended because of its limited capabilities and programming difficulties for new users.
RC10001 is highly recommended for geothermal applications assuming the device remains available.
As of 2022, RelChip is being acquired by another company, leaving the future of the RC10001
uncertain. However, if the IC continues to be manufactured, it is the only device rated to operate at
300˚C temperatures, making it unique compared to other options.

Table 5. Recommendations for MCUs Evaluated Under this Effort.
Device Comments Recommendations

SM320F2812-HT Outdated microcontroller. Was not able to detect
device with TI software, thus could not program device.

Not Recommended

SM470R1B1M-HT Outdated microcontroller. Successfully detected the
device with KEIL software but could not be
programmed. IAR Systems software maybe able to
interface with it.

External company
claimed to successfully
program device

SM320F28335-HT Successfully programmed with both TI Code
Composer and MATLAB.

Recommended for use

HT83C51 Outdated microcontroller with minimal features.
Successfully programmed with custom programmer.

Not recommended

RC10001 Successfully programmed with Keil. Issues with device
delaminated from PCB. Owner is currently in the
process of selling the company, device maybe
discontinued.

Recommended if
component is still
available

SNL designed and evaluated a data link with the SM320F28335-HT microcontroller. It operated
fully through a 1524 m (5000 ft) single conductor wireline up to 170˚C. The full data link did not
operate up to 210˚C due to limitations with the amplifier stage. After removing the amplifier and
line driver stages from the data link and directly connecting the oscilloscope to the output of the
DAC, the data link transmitted messages up to 210˚C. Using the OFDM+BPSK communication
technique, it yielded 30 kbps data rates at elevated temperatures. For future testing, the PCB was
designed to accommodate voltage regulation and access pins for the analog-to-digital converter
(ADC), allowing for power transfer through the line and the ability to receive data.

47

3.1. Future Efforts
A major problem in this research was packaging failures, which severely limited testing on the
RC10001 microcontroller. The team observed deformation of the PCB, degradation of the solder,
CTE mismatch, delamination of the ICs, and shorting of internal traces. To improve future
reliability of the packaged device, the Rogers PCB will be replaced with a ceramic PCB, and we will
use either gold/tin solder bonding or wire bonding as well as an HT conformal coating. These will
hopefully resolve the various issues observed during testing. Ceramic can survive much higher
temperatures than 300˚C. Gold/tin solder would be ideal for the gold pins on the IC as the solder
joint would not degrade. An alternative method would be wire bonding, which fuses gold wire to the
pins and to the PCB pads. The wire is capable of operating at temperatures above 300˚C and would
allow mechanical movement between the IC and PCB (CTE mismatch) at elevated temperatures.
Finally, the conformal coating, a layer of cured liquid epoxy covering the IC and PCB, could
improve the strength between the IC and PCB as well as prevent oxidation to the metals. This
packaging improvement technique could significantly improve the reliability of the logging tool
electronics, which will be exposed to high temperatures, mechanical shock, and vibration.

Future improvements to the data link can be conducted to improve data rates, operating
temperatures, signal-to-noise ratio (SNR), error rates, and receiving data. Operating temperatures
can be accomplished by replacing the SM320F28335-HT with the RC10001. Data can be received
using an ADC, which would enable signals to be received from the surface. Data rates can
significantly be increased by increasing the constellation point, which can be done by incorporating
QAM instead of BPSK. To use QAM, the signal integrity will need to be improved. Signal integrity
can be improved by channel coding, error correction code, constant signal propagation profile,
increasing amplifier gain, and using a pulse width modulation (PWM) DAC. Channel coding would
include coding steps that work together to mitigate the effects of channel distortions. These steps
may include interleaving the data followed by applying error correction code. Error correction code,
such as the Bose-Chaudhuri-Hocquenghem technique, can be incorporated to improve the SNR of
the system. The profile of wireline drops above 13 kHz which can be compensated for by an
amplifier. With a constant propagation profile, the amplitude modulation can be constant to the
maximum desired operating bandwidth. Increasing the gain performance of the amplifier could
further push the signal above the noise floor, mitigating noise degradation to the signal. Finally, the
resistor array DAC could be replaced with a PWM DAC. This method would result in less resistor
inaccuracies. The current resistors did not divide the rail voltage accurately and evenly, which
injected some noise into the signal.

These improvements to the data link would allow for reliable real-time data collection up to 300˚C.
This technology can be used in various applications such as subsurface array system capturing tracer
data or acoustics.

48

REFERENCES

[1] Burroughs, C. “Hot Research at Sandia may Make Producing Electricity from Geothermal
Energy More Cost Competitive.” Sandia National Laboratories News, Albuquerque, NM
(1998).

[2] Demeus, L., Delatte, P., Dessard, V., Adriaensen, S., Viviani, A., Renaux, C., and Flandre, D.
“The Art of High Temperature FD-SOI CMOS.” IEEE (1999).

[3] Henfling, J., and Norman, R. “Dewarless Logging Tool – 1st Generation.” SAND2000-1680,
Sandia National Laboratories, Albuquerque, NM (2000).

[4] Normann, R., and Henfling, J. “Elimination of Heat-Shielding for Geothermal Tools
Operating up to 300 Degrees Celsius.” Proceedings World Geothermal Congress, Kyushu –
Tohoku, Japan (2000).

[5] Henfling, J., Normann, R. “High Temperature Downhole Reservoir Monitoring System.”
Proceedings Twenty-Ninth Workshop on Geothermal Reservoir Engineering, Stanford
University, California (2004).

[6] Rogers, J., Ohme, B., and Normann, R. “New Paradigm in Electronics Needed to Take the
Heat of Deep Gas Drilling.” The American Oil & Gas Reporter (2005)

[7] Swenson, G., and Ohme, B. “HTMOS™: Affordable High Temperature Product Line.”
Aerospace Honeywell.

[8] Reed, L. “A 250˚C ASIC Technology” HiTEN (2013)
[9] Normann, R., and Glowka, D. “Designing Logging Tools for Future High Entropy

Geothermal Power.” GRC Transactions, Vol. 38 (2014).
[10] Zheng, W. et al. “A frequency domain scheme for high speed telemetry down hole wire line

communication.” Int. Conf. Instrum. Meas. Comput. Commun. Control 1413–1417 (2015).
[11] Tran, T., Sun, W., Zeng, J. & Wiecek, B. “High-bitrate downhole telemetry system.” 2015

IEEE Int. Symp. Power Line Commun. Its Appl. ISPLC 2015 280–284 (2015).
[12] Liyanage, M. et al. “Evolution of Wireline Telemetry and its Impact on Formation

Evaluation.” 22nd Form. Eval. Symp. Japan 22, (2016).
[13] Cheng, L., Jinfeng, C., Shangchun, F. & Jun, Y. “Analyzing the validity of a DFT-based

improved acoustic OFDM transmission along rotating simulated drillstring.” Mech. Syst.
Signal Process. 81, 447–460 (2016).

[14] Middlestead, R. W. “Digital Communications with Emphasis on Data Modems.” (Wiley,
2017).

[15] Cieslewski, G., and Cashion, A. “High Temperature Quadrature Amplitude Modulation of
Orthogonal Frequency Division Multiplexing.” Volume 2017, Hiten (2017).

[16] Soares, M., Durham, W., and Behbahani, A. “A 0.15um SOI High Temperature ARM
Microcontroller for Local Control Nodes: Status of the Next Step.” AIAA Propulsion and
Energy Forum, Cincinnati, Ohio (2018).

[17] Wright, A., Cashion, A., and Tiong, F. “Evaluation of High Temperature Microcontrollers and
Memory Chips for Geothermal Applications.” GRC2022 Conference, Reno, Nevada (2022).

[18] Wright, A., and Cashion, A. “High Temperature High Speed Data Transfer (Data Link).”
GRC2022 Conference, Reno, Nevada (2022).

49

APPENDIX A. MAIN APPENDIX TITLE

A.1. HT83C51 Hello World Code
#include <8052.h>
#include <stdint.h>
#include <stdio.h>

#define TOGGLE_IO_0 (__xdata uint8_t*) 0x0100
#define TOGGLE_IO_5 (__xdata uint8_t*) 0x0200
#define MEMORY_MUX_CLEAR (__xdata uint8_t*) 0x0300
#define DATA_MUX_CLEAR (__xdata uint8_t*) 0x2400
#define DATA_MUX_SELECT (__xdata uint8_t*) 0x2300
#define ADC_123_CONVERT (__xdata uint8_t*) 0x2500
#define ADC_123_BYTE_SELECT (__xdata uint8_t*) 0x2600
#define ADC_123_MUX_SELECT (__xdata uint8_t*) 0x2700
#define ADC_123_MUX_CLEAR (__xdata uint8_t*) 0x2800
#define DATA_BUS_SELECT (__xdata uint8_t*) 0x2900
#define ADC_1_CS (__xdata uint8_t*) 0x2A00
#define ADC_2_CS (__xdata uint8_t*) 0x2B00
#define ADC_3_CS (__xdata uint8_t*) 0x2C00
#define TOGGLE_IO_1 (__xdata uint8_t*) 0x3000
#define SPINNER_BYTE_SELECT (__xdata uint8_t*) 0x3200
#define SPINNER_CLEAR_START (__xdata uint8_t*) 0x3300
#define ASIC_RESET (__xdata uint8_t*) 0x3C00

#define SAMPLE_NUM 40

#define CLK_5MHZ

#ifdef CLK_5MHZ
#define COUNT_20US 0xFFF6

#else
#define COUNT_20US 0xFFEC

#endif

uint8_t toggleasic(__xdata uint8_t* address);
void toggleasicx(__xdata uint8_t* address, uint8_t num);
void setup();
void putchar(char c);
char getchar();
void delay(uint16_t count);
void printf_pico(__code char* str);
void printf_hex(uint8_t num);
uint8_t nibble2ascii(uint8_t num);

50

uint16_t adc_read(uint8_t channel);
void spinner_read();
void send_packetASCII(uint32_t frame_count);
void send_packet(uint32_t frame_count);

//Global Variables
volatile __bit TI_safe = 0;
volatile __xdata uint8_t spinner_data[3];
volatile __xdata uint8_t spinner_isr_data[3];
volatile __xdata uint32_t adc_filt_data[7];
volatile __xdata uint16_t adc_data_1[7];
volatile __xdata uint16_t adc_data_2[7];
volatile __xdata uint32_t cc_filt_data;
volatile __xdata uint16_t cc_data_1[SAMPLE_NUM];
volatile __xdata uint16_t cc_data_2[SAMPLE_NUM];
uint8_t sec_counter = 6;
volatile __bit osef = 0;
volatile __bit data_ready = 0;
volatile uint8_t sample_count = 0;
volatile __bit buffer_flag = 0;

void main()
{

uint32_t frame_count = 0;
//Code
EA = 0;
setup();

printf_pico("Welcome to the Monitor Program\r\n");
TR2 = 1;
while(1)
{

if(data_ready)
{

//P1_2 = 1;
//data_ready = 0;
//send_packetASCII(frame_count);
//frame_count++;
//P1_2 = 0;

printf_pico("Hello World\r\n");
}

}
}

//It seems that the HT83C51 likes to hang when pooling on the TI flag directly
//This ISR bypasses this problem

51

void serial_isr(void) __interrupt(4)
{

if(TI==1)
{

TI_safe = 1;
TI = 0;

}
if(RI==1) //Return to the bootloader (fails to reprogram correctly after that?)
{

RI = 0;
/*if(SBUF == 0x03)
{

__asm
LJMP 0x0000
__endasm;

}*/
}

}

//Putchar is not allowed in the ISR, it will hang!
void timer2_isr(void) __interrupt(5)
{

volatile __xdata uint16_t* cc_data;
volatile __xdata uint16_t* adc_data;

TF2 = 0; //Reset the timer flag
P1_3 = 1; //Debug

//Select correct buffer do put data into
if(!buffer_flag)
{

cc_data = cc_data_1;
adc_data = adc_data_1;

}
else
{

cc_data = cc_data_2;
adc_data = adc_data_2;

}

//Sample the data and store
cc_data[sample_count] = adc_read(9); //colar Counter
adc_filt_data[0] += adc_read(10);//Other Sensors
adc_filt_data[1] += adc_read(11);
adc_filt_data[2] += adc_read(12);
adc_filt_data[3] += adc_read(13);
adc_filt_data[4] += adc_read(14);
adc_filt_data[5] += adc_read(15);

52

adc_filt_data[6] += adc_read(16);
sample_count++;

//Sample spinner every 6s; base on the one second signal from ASIC
if(P1_5 != osef)
{

osef = !osef;
sec_counter--;

}

if(sec_counter <= 0)
{

sec_counter = 6;
spinner_read();

}

//if SAMPLE_NUM reached average the slow sensors and set data ready flag
//Copy the spinner_isr_data into spinner data for the output purposes
if(sample_count>=SAMPLE_NUM)
{

uint8_t i = 0;
for(i = 0; i<7; i++)
{

adc_data[i] = adc_filt_data[i]/SAMPLE_NUM;
adc_filt_data[i] = 0;

}

spinner_data[0] = spinner_isr_data[0];
spinner_data[1] = spinner_isr_data[1];
spinner_data[2] = spinner_isr_data[2];

sample_count = 0;
data_ready = 1;
buffer_flag = !buffer_flag;

}

P1_3 = 0;
}

//The counter counts up so the value set must be 0XFFFF-numbercycles to count
void delay(uint16_t count) //Using timer 0
{

TL0 = (uint8_t) count;
TH0 = (uint8_t) (count >> 8);
TR0 = 1;
while(!TF0);
TR0 = 0;

53

TF0 = 0;
}

uint16_t adc_read(uint8_t channel)
{

uint16_t value = 0;
P1_1 = 1;
toggleasic(ADC_123_MUX_CLEAR);//Clear analog mux
toggleasicx(ADC_123_MUX_SELECT, channel-1); //Select output of analog mux
toggleasic(ADC_123_CONVERT); //The original assembly code converts twice?
delay(COUNT_20US);
toggleasic(ADC_123_CONVERT); //Convert
delay(COUNT_20US);//Wait 20us
//Data out of the ADC. 1st byte bits 11-7, 2nd byte bits 3-0 (they are located in the uper

nibble of the byte)
value = toggleasic(ADC_1_CS) << 4;
toggleasic(ADC_123_BYTE_SELECT);
value |= toggleasic(ADC_1_CS) >> 4;
toggleasic(ADC_123_BYTE_SELECT);
P1_1 = 0;
return value;

}

//Read the spinner values. Assumes the data is ready. Can be read every 6s. Returns 2*spin
rate/s.
void spinner_read()
{

toggleasic(DATA_MUX_CLEAR);
toggleasicx(DATA_MUX_SELECT, 11);
//Read 1st byte
spinner_isr_data[0] = toggleasic(DATA_BUS_SELECT);
toggleasic(SPINNER_BYTE_SELECT);
//Read 2nd byte
spinner_isr_data[1] = toggleasic(DATA_BUS_SELECT);
toggleasic(SPINNER_BYTE_SELECT);
//Read 3rd byte
spinner_isr_data[2] = toggleasic(DATA_BUS_SELECT);
toggleasic(SPINNER_BYTE_SELECT);
//Reset Spin Count
toggleasic(SPINNER_CLEAR_START);

}

void send_packet(uint32_t frame_count)
{

__xdata uint16_t* cc_data;
__xdata uint16_t* adc_data;

54

uint8_t i;

if(buffer_flag)
{

cc_data = cc_data_1;
adc_data = adc_data_1;

}
else
{

cc_data = cc_data_2;
adc_data = adc_data_2;

}
//Send Header 4bytes
putchar(0xAA);
putchar(0x55);
putchar(0xAA);
putchar(0x55);

//Send frame_count 4 bytes
putchar(frame_count >> 24);
putchar(frame_count >> 16);
putchar(frame_count >> 8);
putchar(frame_count);

//Send spiner data 3 bytes
putchar(spinner_data[0]);
putchar(spinner_data[1]);
putchar(spinner_data[2]);

//Send ADC data 7*2 = 14 bytes
for(i=0; i<7; i++)
{

putchar(adc_data[i]>>8);
putchar(adc_data[i]);

}
//Send Colar Counter readings 2*SAMPLE_NUM
for(i=0; i<SAMPLE_NUM; i++)
{

putchar(cc_data[i]>>8);
putchar(cc_data[i]);

}
//Send data_ready flag to make sure we are not overflowing 1byte

putchar(data_ready);

//total bytes sent = 154

}

55

void send_packetASCII(uint32_t frame_count)
{

__xdata uint16_t* cc_data;
__xdata uint16_t* adc_data;
uint8_t i,j;

if(buffer_flag)
{

cc_data = cc_data_1;
adc_data = adc_data_1;

}
else
{

cc_data = cc_data_2;
adc_data = adc_data_2;

}
//Send Header 1bytes
putchar('+');

//Send frame_count 6 bytes
printf_hex(frame_count >> 16);
printf_hex(frame_count >> 8);
printf_hex(frame_count);

//Send spiner data 6 bytes
printf_hex(spinner_data[0]);
printf_hex(spinner_data[1]);
printf_hex(spinner_data[2]);

//This loop is setup for SAMPLE_NUM = 40!!
//Send ADC data 7*(5+1)*4 = 168 bytes
for(i=0; i<7; i++)
{

for(j=0; j<5; j++)
{

printf_hex(cc_data[5*i+j]>>8);
printf_hex(cc_data[5*i+j]);

}
printf_hex(adc_data[i]>>8);
printf_hex(adc_data[i]);

}
//send last CC data set 4*5 = 20 bytes
for(j=0; j<5; j++)
{

printf_hex(cc_data[5*i+j]>>8);
printf_hex(cc_data[5*i+j]);

}

56

//Send data_ready flag to make sure we are not overflowing 3byte
printf_hex(data_ready);
putchar('\r');
putchar('\n');

//total bytes sent = 204
}

//if this it changed whole code will stop working!
uint8_t toggleasic(__xdata uint8_t* address)
{

uint8_t temp = 0;
P1_7 = 1;
temp = *address;
P1_7 = 0;
return temp;

}

void toggleasicx(__xdata uint8_t* address, uint8_t num)
{

while(num>0)
{

toggleasic(address);
num--;

}
}

void setup()
{

IE = 0; //Disable all interrupts

P1_7 = 0;
P1_5 = 1; //Set for input
P1_6 = 1; //Set for input

toggleasic(ASIC_RESET);
toggleasic(DATA_MUX_CLEAR);
toggleasic(MEMORY_MUX_CLEAR);
toggleasic(TOGGLE_IO_1); //Power to the Reed switches in SC
toggleasic(SPINNER_CLEAR_START);
//Serial Port Setup and Timer 0,1

PCON |= 0x80; //Set SMOD bit in PCON for 5.5296 Mhz clock

TH1 = 0xF4; //Set baud rate to 2400
TL1 = 0x00;

57

TMOD = 0x21;

TCON = 0x40;
SCON = 0x52;
TR1 = 1; //Enable the timer1 for serial port

RI = 0;
TI = 0;

//Setup interrupts
IP = 0; //Reset interrupt priorities
ES = 1; //Enable serial interrupt
TI_safe = 1; //Enable local ready to send flag
PS = 1; //Elevate priroirity of serial interrupt for testing

//Timer 2 determines sampling frequency.

ET2 = 1; //Enable timer2 interrupt

TH2 = 0xC3; //for the 5.5296 Mhz clock and ASCII aoutput 30.006hz sampling freq
TL2 = 0xFF; //MATLAB: dec2hex(0xFFFF-round((5.5296e6/12)/30))
RCAP2H = 0xC3;
RCAP2L = 0xFF;

EA = 1; //Enable interrups
}

void putchar(char c) //This function is required for the printf_tiny() to work
{

while(TI_safe==0); //Wait for the TI flag to be set
TI_safe = 0; //Clear the TI flag
SBUF = c;
return;

}
char getchar() //This function is required for the printf_tiny() to work
{

char temp;
while(RI==0); //wait for the RI flag to be set
temp = SBUF;
RI = 0;
return temp;

}
void sleep(uint8_t count)
{

uint8_t i;
for(i=0; i<count; i++);

}

58

void printf_pico(__code char* str)
{

uint8_t i;
for(i=0; str[i]!=0; i++)
{

putchar(str[i]);
}

}

void printf_hex(uint8_t num)
{

putchar(nibble2ascii((num >> 4) & 0x0F));
putchar(nibble2ascii(num & 0x0F));

}

uint8_t nibble2ascii(uint8_t num)
{

if(num < 10)
{

return num + 48;
}
else if (num <= 16)
{

return num + 55;
}
else
{

return 'X';
}

}

A.2. RC10001 Pin Connection and Keil Software Setup
To program the Relchip on its own board, away from the development board:

• Apply clock to XTAL1 pin. XTAL2 is float. The clock is supposed to be CMOS input but
we found a sine wave to be more stable to avoid ringing effects over long cables. The sine
wave goes from minimum 0V to maximum 5V. Make sure the waveform generator is in
“High Z” mode and not in 50 Ohm. We did 3.6 MHz.

• The two boot select pins (45 and 46) need to be held high at 5V in order to set the chip to
be programmed from the SWD interface. You can just pull them high and leave them that
way if you plan to just use SWD. The development board pulls them high using 100 kΩ
resistors. We just soldered a wire to hold them high.

• SCANEN (Pin 134) and TRM (Pin 138) should be pulled low with 1MΩ resistors.

• HARDRST (Pin 10) is pulled high with a 100 kΩ resistor.

59

• WAKEUP (Pin 14) is pulled low with a 100 kΩ resistor.

• SOFT Reset is pulled high.

• The programmer used is the ARM KEIL ULINK2 device. The wires required are VDD,
GND, SWCLK, and SWDIO. The development kit uses the ULINK-ME device but it is
not practical for developing your own board because the ULINK-ME device is a 3.3V
devices and the RC10001 is a 5V device. The development board has a bidirectional level
shifter circuit to convert 3.3 V to 5 V and vice-versa. The UNLINK2 can be used without
any level shift.

• GPIO_0 blinks using the BLINKY project.

• There is no flash on this chip so you must turn off the flash programming options in the
target options menus in uvision (Keil software). The chip actually gets programmed by
starting the debugger. Debug > Start/Stop Debug Session. Then click Run code. Once you
run the code in the debugger, you can unplug the ULINK2 and the code will keep running
on the chip.

• We used Keil uvision5 (MDK-Arm) to program the chip using the 3rd party uvision
software pack for the Relchip part provided by RelChip.

• https://www.keil.com/download/product/

• Require Keil MDK v4 Legacy Support Software Pack, it contains the RC10001 within the
library. The chip is a Cortex-M device.

• https://www2.keil.com/mdk5/legacy/

Target Options Settings:

60

61

62

Target Options Settings:

63

64

65

66

67

68

69

A.3. RC10001 GPIO Pulse Code
RC10001 example blink code was available in the Keil library set (MDK v4 Legacy Support).

Main C code: “RC10001 Blink.c”

/***

 **
 ** File: blinky.c
 ** Author: RelChip, Inc.
 ** Date: August 10, 2015
 **
 ** Copyright(c) 2015 RelChip, Inc. All Rights Reserved except
 ** as granted below.
 **
 ** Description:
 ** A demonstration program to display a sequence of LED
 ** lights on the development board. The program is stored
 ** stored internally and boot loaded with the Keil serial debug
 ** port.
 ** The LEDs sequence in a counter fashion. Pressing the
 ** GPIO3_0 switch will slow down the LED sequence, while
 ** pressing the GPIO2_11 switch will increase the LED

70

 ** sequence speed.
 **
 ** THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES,
 ** WHETHER EXPRESS, IMPLIED OR STATUTORY,
 ** INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES
 ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 ** PURPOSE APPLY TO THIS SOFTWARE. RELCHIP SHALL
 ** NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL,
 ** INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY
 ** REASON WHATSOEVER.
 **
 ** LICENSE IS GRANTED TO USE THIS CODE FREELY AT
 ** YOUR OWN RISK.
 **

 */

#include "RC10001.h" /* RC10001 definitions */

uint32_t LoopCount; /* Delay Count */

/***

 **
 ** Interrupt Routines
 **
 */
/***

 **
 ** GPIO3 Interrupt
 **
 ** Description:
 ** Speeds LED Frequency Up
 ** Input: None
 ** Return: None
 **
 */
void GPIO2_IRQHandler(void)
{
 RC_GPIO2->ICR = 0xfff; /* Clear Interrupts */
 LoopCount = LoopCount >> 1; /* Count Divide by 2 */
}
/***

 **
 ** GPIO3 Interrupt

71

 **
 ** Description:
 ** Slows LED Frequency Down
 ** Input: None
 ** Return: None
 **
 */
void GPIO3_IRQHandler(void)
{
 RC_GPIO3->ICR = 0xfff; /* Clear Interrupts */
 LoopCount = LoopCount << 1; /* Count Times 2 */
}

/***

 **
 ** Main
 **
 */
int main (void) {

 uint32_t i;
uint16_t count = 0;

 LoopCount = 0;
 RC_GPIO2->ICR = 0xfff; /* Clear Interrupts */
 RC_GPIO3->ICR = 0xfff; /* Clear Interrupts */
 /* */
 /* Infinite Loop */
 while(1) {
 /* Wait with Dummy */

count++;
if(count >= 1000)
{

count = 0;
/* Watch out that this does not get optimized out */
for (i = 0; i < LoopCount; i++) { i=i; }
RC_GPIO0->MASKED_ACCESS [0xff] =

RC_GPIO0->MASKED_ACCESS[0xff] + 1;
}

 }
}

Peripheral C code: “system_RC10001.c”

/***

 *

72

 * @file system_RC10001.h
 *
 * @brief CMSIS Cortex-M0 Device Peripheral Access Layer Source File for
 * the RelChip RC10001 Device
 *
 * @version V0.20
 * @date 02 November 2014
 *
 * @note Copyright (C) 2011-2014 RelChip, Inc. All Rights Reserved.
 *
 * @par
 * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS,
IMPLIED,
 * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS
SOFTWARE.
 * RELCHIP SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL,
INCIDENTAL,
 * OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
 *

 **/
#define __SYSTEM_RC10001_C

#include <stdint.h>
#include "RC10001.h"

#define CLOCK_SETUP 1
#define SYSAHBCLKDIV_Val 1 // Reset: 0x001

/*--
 Check the Register Settings
 --/
#define CHECK_RANGE(val, min, max) ((val < min) || (val > max))
#define CHECK_RSVD(val, mask) (val & mask)

#if (CHECK_RANGE((SYSAHBCLKDIV_Val), 0, 255))
 #error "SYSAHBCLKDIV: Value out of range!"
#endif

/*--
 DEFINES
 --/

/*--
 Define Clocks
 --/
#define __XTAL (3686400UL) /* Oscillator Frequency */

73

#define __SYS_OSC_CLK (__XTAL) /* Main Oscillator Frequency */
#define __SYSTEM_CLOCK(__SYS_OSC_CLK)

/*--
 Clock Variable Definitions
 --/
uint32_t SystemCoreClock = __SYSTEM_CLOCK; /*!< System Clock Frequency */

/**
 *
 * Initialize the System
 *
 * @param none
 * @return none
 *
 * @brief Initialize the Microcontroller System. Substitute for this
 * code to configure the system before entering "main"
 * Initialize the System.
 */
void SystemInit (void) {
 RC_GPIO0->DIR = 0xFF; /* LED Output */
 RC_GPIO0->DATA = 0x00; /* LED ON */

 /* GPIO2 Interrupt */
 RC_GPIO2->IS = 0; /* Set Low Going Edge */
 RC_GPIO2->IEV = 0;
 RC_GPIO2->IE = 0x800; /* Enable 2_11 */

 /* GPIO3 Interrupt */
 RC_GPIO3->IS = 0; /* Set Low Going Edge */
 RC_GPIO3->IEV = 0;
 RC_GPIO3->IE = 0x1; /* Enable 3_0 */

 /* NVIC Enable */
 NVIC_EnableIRQ(GPIO2_IRQn);
 NVIC_EnableIRQ(GPIO3_IRQn);
}

A.4. RC2110836 Register Alternating Code
Code used to evaluate the RC2110836 was written in MATLAB and interfaced via the
NUC100VD3AN microcontroller.

RAM_Data_Analysis.m
% This script is for reading comma delimited files from the RC2110836 HT
% RAM device

74

clear all;
close all;

%Read in the Original data file which the new data will be compared to
Filename1 = 'C:\Users\atcashi\Documents\Component Testing\Relchip Ram
Tests\Ram_Oven_Data\RAM_Chip 1\250C_8-29-14_458PM_9-2-14_857AM_29mA.txt';

Original_data = dlmread(Filename1);

% % %Cut off the initial Errors
 Crop_Data = Original_data;
% % while (Crop_Data(1,1) ~= 170 || Crop_Data(1,2) ~= 170 || Crop_Data(1,3) ~= 170 ||
Crop_Data(1,4) ~= 170) && (Crop_Data(1,1) ~= 85 || Crop_Data(1,2) ~= 85 || Crop_Data(1,3)
~= 85 || Crop_Data(1,4) ~= 85)
% % Crop_Data(1,:) = [];
% % end

%Extract Error Array
error_rows = find(Crop_Data(:,1) == 0 & Crop_Data(:,2) == 0 & Crop_Data(:,3) == 0 &
Crop_Data(:,4) == 0);

ErrorCount = length(error_rows)/2;

ind = 1;
for i = 1:length(error_rows)

 if sum(Crop_Data(error_rows(i)+1 ,1:4)) == 1020 && sum(Crop_Data(error_rows(i)+4 ,1:4))
== 0 && sum(Crop_Data(error_rows(i)+5 ,1:4)) == 1020
 Errors(ind,1) = error_rows(i); %Errors will be formatted as
[Row,Address1,Address2,Address3,Address4,received1,received2,received3,received4,timestamp]
 Errors(ind,2) = Crop_Data(error_rows(i) + 2, 1); %Address1
 Errors(ind,3) = Crop_Data(error_rows(i) + 2, 2); %Address2
 Errors(ind,4) = Crop_Data(error_rows(i) + 2, 3); %Address3
 Errors(ind,5) = Crop_Data(error_rows(i) + 2, 4); %Address4
 Errors(ind,6) = Crop_Data(error_rows(i) + 3, 1); %Received1
 Errors(ind,7) = Crop_Data(error_rows(i) + 3, 2); %Received1
 Errors(ind,8) = Crop_Data(error_rows(i) + 3, 3); %Received1
 Errors(ind,9) = Crop_Data(error_rows(i) + 3, 4); %Received1
 Errors(ind,10) = Crop_Data(error_rows(i), 5); %Timestamp
 ind = ind + 1;
 end

end

Error_Timestamps_Str = datestr(Errors(:,10));

%Calculate bit error rate
for i = 1:length(Errors)

75

 fir = dec2bin(Errors(i,6));

 for g = 1:length(fir)
 end
 sec = dec2bin(Errors(i,6));
 thi = dec2bin(Errors(i,6));
 fou = dec2bin(Errors(i,6));

end

Log_SerialData.m
clear all;
close all;

if instrfind ~= 0
fclose(instrfind);
delete(instrfind);
end

LogFileName = 'TestLogging.txt';
%fopen('DataLog.txt');

Baud = 4420;
Bits = 8;

SerPort = serial('COM5', 'BaudRate', Baud, 'DataBits', Bits);

fopen(SerPort);

byteA = 0;
while byteA ~= 47
 byteA = fread(SerPort, 1);
end

byteB = 0;
while byteB ~= 110
 byteB = fread(SerPort, 1);
end

true = 1;
row = 1;
while true == 1
%Read in a line of data
 byte1 = fread(SerPort, 1);
 byte2 = fread(SerPort,1);
 byte3 = fread(SerPort, 1);
 byte4 = fread(SerPort,1);
 byte5 = fread(SerPort, 1);

76

 byte6 = fread(SerPort,1);

 if byte5 ~= 47 || byte6 ~= 110
 disp('Data is staggered');
 break;
 end

 DataLine = [byte1, byte2, byte3, byte4];
 dlmwrite(LogFileName, DataLine,'-append');

end

A.5. OFDM Tx_mbd: Procedure to modify the C code and sample the data for
the SM320F28335-HT data link

Release version: 10
Date: 25th Feb./ 2022
Author: Francis Tiong, ftiong@mathworks.com

Contents
Introduction
Prerequisite – Installing Texas Instruments C2000 support package
Instructions to run the code in MATLAB
Instructions to simulate the Tx code in Simulink
Instructions to generate/run code for the target board in Simulink
Brief description of the files included
Instructions to download and run the code using Code Composer Studio instead of using Simulink
Instructions to modify the C code in Code Composer Studio
Setting the GPIOs efficiently
Moving data calculations outside the interrupt service
Instructions to sample data from Picoscope and to recover the message

Introduction
This document describes how to run the code in OFDMTx_mbd and how it can be used to
generate embedded code for a target processor. The project is intended to send OFDM signals
through a hardware board with TI Delfino F2833x. The chip was selected since it can operate in
high temperature. Further, the modified C section would describe how to modify the C code using
the Code Composer. The section sampling the data through Picoscope would describe the
procedure to sample the data.
Prerequisite – Installing Texas Instruments C2000 support package
1, In MATLAB, on the top row select the “HOME” tab.

77

2, On the top bar look for the tri-color cubes with the word “Add-Ons” and click on the down
arrow to see the drop down manual.

3, At the drop down manual select “Get Hardware Support Packages”
4, In the Add-On Explorer search box type “TI”.
5, Select “Embedded Coder Support Package for Texas Instruments C2000 Processors”.

Instructions to run the code in MATLAB
Note that in MATLAB one can simulate the transmitter, the propagation channel and the receiver.
This is a good way to check if the transmitter code is working correctly.
1, unzip the code “OFDMTx_mbd_9_3_02082022.zip” into a folder. From now on we will assume
the unzipped files are in a folder called “OFDMTx_mbd_9_3_02082022”.

78

2, In MATLAB, change the directory of the current workspace to be in the folder
“OFDMTx_mbd_9_3_02082022”.
>>cd G:\Downloads\Sandia\OFDMTx_mbd_9_3_02082022
3, In MATLAB, run the script “OFDMSynchronizationExample.m”
>> OFDMSynchronizationExample
4, If one would like to run the whole system again including the constructors then it is necessary to
clear the persistent variables defined first before running.
>>clear classes
>> OFDMSynchronizationExample
Instructions to simulate the Tx code in Simulink
Note that in Simulink one can simulate the transmitter. The transmitted signal can be observed in
the scope that is connected to the OFDM Tx block.
1, In MATLAB, change the directory of the current workspace to be in the folder
“OFDMTx_mbd_9_3_02082022”.
>>cd G:\Downloads\Sandia\OFDMTx_mbd_9_3_02082022
2, click on the file “OFDMTx.slx” from the folder window or enter “OFDMTx”
>>OFDMTx
3, On the top left corner of the Simulink window select the tab “SIMULATION”. At the top row
around the middle click on the green “Run” button.

Instructions to generate/run code for the target board in Simulink
Like simulating the signal one can select the build function under the hardware tab to generate the
target embedded code. A code generation report will pop out upon completion.
1, In MATLAB, change the directory of the current workspace to be in the folder
“OFDMTx_mbd_9_3_02082022”.
>>cd G:\Downloads\Sandia\OFDMTx_mbd_9_3_02082022

79

2, click on the file “OFDMTx.slx” from the folder window or enter “OFDMTx”
>>OFDMTx
3, On the top row of the Simulink window select the tab “HARDWARE”. At the top right end
click on the drop down arrow to see the Manuel under “Build”.
4, click on the “Build” button to generate the target code. If it is desired to build, download and run
the code on the board then one can click on “Build Deploy & Start” instead.
5, While the coding is being compiled one can click on the words “View diagnostics” at the very
bottom of the screen to see verbose display of the compilation process.

Brief description of the files included
It seems this OFDM project was originated from an OFDM example from MathWorks --
https://www.mathworks.com/help/comm/ug/ofdm-synchronization.html. The files provided in
the zip file “OFDMTx_mbd_9_3_02082022” have been heavily optimized. There are comments
that resides with the code that will explain what the variables and operations are intending to
achieve. A stack diagram illustrating the relationship between files is shown below:

OFDMSynchronizationExample.m myConstants.m

initOFDM_mbd.m getOFDMPreambleAndPilot.m

rotup.m

generateOFDMSignal.m myOFDMTransmitter.m genDataLinIndx.m

OFDMModulatorRe.m ofdmModulateRe_single.m

applyOFDMChannel.m

rotDown.m

receiveOFDMSignal.m OFDMReceiver.m

calculateOFDMBER.m

80

From the diagram, the caller files are on the left and the callee is on the right. For example, the file
initOFDM_mbd.m will call two files – getOFDMPreambleAndPilot and rotup. The file
initOFDM_mbd is called by OFDMSucrhoizationExample.

OFDMSynchronizationExample.m --- This is the main calling script for MATLAB. Inside this file
one can also find documented description of the overall system. It will prepare a message to be
sent, generate an OFDM signal, simulate the signal going through a propagation channel,
demodulate the received signal, recovered the message sent and then calculate the error rate. Note
that comparing to the original code the signal now being sent into applyOFDMChannel has now
gone through a Hilbert transform first in order to obtain the complex equivalent values before
applying the channel distortion.
myConstants.m – This is a constant class structure that contains important constants that are used
throughout the simuation.
initOFDM_mbd.m – This script initiates a message to be sent out, creates an array for the preamble
sequence and an array for the pilot symbols. These fixed data are to be generated during
construction time to reduce code space and execution time. This file is also used in the Simulink
model.
getOFDMPreambleAndPilot.m – this function generates the preamble sequence and the pilot
symbols needed. In code generation the generated data would be used, and this code would not be
ported into program code.
rotup.m – this code would double the sampling frequency and a complex rotation of the input. This
code would not be generated as program code.
generateOFDMSignal.m – This is the entry point of the transmitter. This code is used in both he
Matlab simulation as well as in the Simulink. All this function does is to create an instance of the
class myOFDMTransmitter.
myOFDMTransmitter.m – This code has been highly optimized to reduce memory and cycles usage.
The minimal buffering memory needed would be to have the code generates one IFFT data frame
per call. Thus, every time this code is called it will generate one IFFT data frame (or 160 samples).
In the stepImpl function there is a state machine that depends on the frameIdx value, a different
data would be used to generate the OFDM signal. Each message would be transmitted with the
preamble sequence first followed by a message content. The preamble would take 4 IFFT data
frames to transmit and the message will take 11 IFFT data frames. The preamble is precalculated as
stored in an array while the message would be converted as BPSK complex payload bits and then
pass into OFDMModulatorRe.
genDataLinIndx.m – This is a function that generates an index table. The table would indicate
which FFT bin would be used to transmit message data. This function currently resides in the
constructor and thus it would not be code generated. The table would be stored and used instead.
This code can be moved to be used during run-time if there is a need to reduce the memory usage.
OFDMModulatorRe.m – This function does the loading of the message bits as well as the pilot
symbols onto the FFT bins. After loading the complex array would be send to
ofdmModulateRe_single.
ofdmModulateRe_single.m – this function does the IFFT, up-rotation and the appending of cyclic
prefix to generate the OFDM signal. Note that the up-rotation is done through doubling of the
IFFT bins. A real (non-complex) signal at the output of the IFFT is ensured when the complex
frequency domain signal is complex conjugate.
applyOFDMChannel.m – There is a slight modification to the original code. Here the frequency
offset has been scaled according to an input value – freqOffPPM. The input freqOffPPM is the

81

parts-per-million offset which serves as the PPM offset between the transmitter and the receiver
oscillators. Note that the input to this function is expected to be complex valued.
rotDown.m -- this code would do complex rotation down and then down sample by half. This code
is being used only the receiver.
receiveOFDMSignal.m – this function creates an instance of the class OFDMReceiver.
OFDMReceiver.m – This is the main code for the receiver. It calls the function “locatePreamble”,
“frameEqualization”, “comm.OFDMDemodulator” and then “comm.BPSKDemodulator”. Some
optimization has been done to simplify the code structure. In addition, the function
coarseFreqCorrection has been disabled. It was found that the function is simply not needed in this
application. Even with high clock rate difference the pilot tone tracking method to be applied in the
frameEqualization function is enough to mitigate the effect. In the frameEqualization function the
interpolation of the phase error based on the pilot tones onto the data bins are to be done through
the interpolation function and not the resample function as in the original code. More descriptions
of the receiver can be found inside OFDMSynchronizationExample.m.
calculateOFDMBER.m – This function calculates the bit error rate and the frame error rate.

In addition to the files listed above there are a few more included in the zip file.
OFDMTx.slx – This is the model to be used in Simulink. It calls the function genOneFrame to get
a data frame of size 160 samples and then sends it out through the GPIOs of the board one sample
at a time. Notice that inside the “send to GPIO” Matlab function block the input value have been
scaled to (input*0.4+0.5). This is a crude way to get by the sign bit issue. The proper scaling would
depend on the driver that follows the congregated GPIOs.
genOneFrame.m – This function does nothing but calling generateOFDMSignal.
pltConstel.m – This function plots the constellation points before and after the frame equalization.
Set a breakpoint inside OFDMReciever after calling of frameEqualization. When the breakpoint is
reached, run pltConstel at the command prompt in Matlab workspace.
modified_demodulator.zip – This zip file contain files that have been partially optimized on the
receiver side. These files includes: frameEqualization, mydemodulate, mygetDataLinearIndex,
myOFDMDemodulator. The files are at a state where they are usable but not yet fully debugged.

Instructions to download and run the code using Code Composer Studio instead of using Simulink
1. Install Code composer Studio -- I am using version 10.2.0.00009.
2. Inside code composer, select File -> Open Projects from File System
3. At “Import source” select “Directory”. And set it to the project directory generated by
Simulink “CCS_Project”. This folder is inside “OFDMTx_mbd_9_3/OFDMTx_ert_rtw”.
4. Click “Finish”, At this point the project is loaded and one can see the list of C files in the
“Project Explorer” of the code composer studio, it is the window at the left margin.

82

5. Assuming that at this point the board is connected to the PC.
6. Right click on the Project name “OFDMTx” and select “Properties”. One can do so also by
typing “Alt-Enter”.

83

7. The “Properties for OFDMTx” window pop out. At the second selection on the left margin
select “General”. This is the general settings page.
8. At the general settings page, under the “project” tab, observe the “Variant:” row is set to
“Custom C2000 Device”. Change it to “TM320F28335”. Please see the picture below.

84

9. At the “Connection:” row, set it to “Texas Instruments XDS100v1 USB Debug Probe”.
You may also click “Verify” to see the confirmation message.
10. Select “Apply and Close”, and you are now back to the workspace view. However, an extra
file has now been added and need to be removed.
11. In the “Project Explorer” window, delete the file “28335_RAM_lnk.cmd” by right click and
select delete.

85

12. Click on “Project” -> “Build All”.

86

13. Build the project by clicking “Project”-> “Build Project”.

14. Click on “Run”-> “Load” -> “Select Program to Load”.

87

15. Select the OFDMTx.out file. After clicking “OK”, it will download and run on the board.

Instructions to modify the C code in Code Composer Studio
In version 10 (OFDMTx.slx) there are minor changes on the model code in Simulink. First, the
GPIO outputs have been grouped together and be sent out in two blocks. Please see the picture
below. Second, inside the block “OFDM Tx” calling of the data calculations “genOneFrame” has
been placed at the end of the function. One can proceed to generate the C code for the TI chip
using this model.

88

There are two changes that are needed to be modified in the generated C code. The first change
would reduce the erroneous spikes lines generated due to the asynchronous setting of the GPIOs.
The second change would allow the code to be run at a much higher speed by moving the
calculation of the data outside the interrupt service.
Setting the GPIOs efficiently
In OFDMTx.c, comment out setting of each GPIO bit and replace it with setting all the bits
together in one line. The resulting code is shown below:
uint32_T tmp; // extend this word to 32 bits

/* SignalConversion generated from: '<Root>/Digital Output1' incorporates:
 * MATLAB Function: '<Root>/Send to GPIO'
 * SignalConversion generated from: '<Root>/Digital Output'
 */
 GpioDataRegs.GPADAT.all = tmp; // this will set all the GPIOs together

// All the below codes are commented out
#if 0
 OFDMTx_B.TmpSignalConversionAtDigitalOut[0] = ((tmp & 1U) != 0U);
 OFDMTx_B.TmpSignalConversionAtDigitalOut[1] = ((tmp & 2U) != 0U);
 OFDMTx_B.TmpSignalConversionAtDigitalOut[2] = ((tmp & 4U) != 0U);
 OFDMTx_B.TmpSignalConversionAtDigitalOut[3] = ((tmp & 8U) != 0U);
 OFDMTx_B.TmpSignalConversionAtDigitalOut[4] = ((tmp & 16U) != 0U);
 OFDMTx_B.TmpSignalConversionAtDigitalOut[5] = ((tmp & 32U) != 0U);
 OFDMTx_B.TmpSignalConversionAtDigitalOut[6] = ((tmp & 64U) != 0U);
 OFDMTx_B.TmpSignalConversionAtDigitalOut[7] = ((tmp & 128U) != 0U);

 /* S-Function (c280xgpio_do): '<Root>/Digital Output' */
 {
 if (OFDMTx_B.TmpSignalConversionAtDigitalOut[0])
 GpioDataRegs.GPASET.bit.GPIO0 = 1;
 else
 GpioDataRegs.GPACLEAR.bit.GPIO0 = 1;
 if (OFDMTx_B.TmpSignalConversionAtDigitalOut[1])

89

 GpioDataRegs.GPASET.bit.GPIO1 = 1;
 else
 GpioDataRegs.GPACLEAR.bit.GPIO1 = 1;
 if (OFDMTx_B.TmpSignalConversionAtDigitalOut[2])
 GpioDataRegs.GPASET.bit.GPIO2 = 1;
 else
 GpioDataRegs.GPACLEAR.bit.GPIO2 = 1;
 if (OFDMTx_B.TmpSignalConversionAtDigitalOut[3])
 GpioDataRegs.GPASET.bit.GPIO3 = 1;
 else
 GpioDataRegs.GPACLEAR.bit.GPIO3 = 1;
 if (OFDMTx_B.TmpSignalConversionAtDigitalOut[4])
 GpioDataRegs.GPASET.bit.GPIO4 = 1;
 else
 GpioDataRegs.GPACLEAR.bit.GPIO4 = 1;
 if (OFDMTx_B.TmpSignalConversionAtDigitalOut[5])
 GpioDataRegs.GPASET.bit.GPIO5 = 1;
 else
 GpioDataRegs.GPACLEAR.bit.GPIO5 = 1;
 if (OFDMTx_B.TmpSignalConversionAtDigitalOut[6])
 GpioDataRegs.GPASET.bit.GPIO6 = 1;
 else
 GpioDataRegs.GPACLEAR.bit.GPIO6 = 1;
 if (OFDMTx_B.TmpSignalConversionAtDigitalOut[7])
 GpioDataRegs.GPASET.bit.GPIO7 = 1;
 else
 GpioDataRegs.GPACLEAR.bit.GPIO7 = 1;
 }

 /* SignalConversion generated from: '<Root>/Digital Output1' incorporates:
 * MATLAB Function: '<Root>/Send to GPIO'
 */
 OFDMTx_B.TmpSignalConversionAtDigitalOut[0] = ((tmp & 256U) != 0U);
 OFDMTx_B.TmpSignalConversionAtDigitalOut[1] = ((tmp & 512U) != 0U);
 OFDMTx_B.TmpSignalConversionAtDigitalOut[2] = ((tmp & 1024U) != 0U);
 OFDMTx_B.TmpSignalConversionAtDigitalOut[3] = ((tmp & 2048U) != 0U);

 /* S-Function (c280xgpio_do): '<Root>/Digital Output1' */
 {
 if (OFDMTx_B.TmpSignalConversionAtDigitalOut[0])
 GpioDataRegs.GPASET.bit.GPIO8 = 1;
 else
 GpioDataRegs.GPACLEAR.bit.GPIO8 = 1;
 if (OFDMTx_B.TmpSignalConversionAtDigitalOut[1])
 GpioDataRegs.GPASET.bit.GPIO9 = 1;
 else
 GpioDataRegs.GPACLEAR.bit.GPIO9 = 1;
 if (OFDMTx_B.TmpSignalConversionAtDigitalOut[2])
 GpioDataRegs.GPASET.bit.GPIO10 = 1;
 else
 GpioDataRegs.GPACLEAR.bit.GPIO10 = 1;
 if (OFDMTx_B.TmpSignalConversionAtDigitalOut[3])
 GpioDataRegs.GPASET.bit.GPIO11 = 1;
 else
 GpioDataRegs.GPACLEAR.bit.GPIO11 = 1;

90

 }
#endif

A.5.1. Moving data calculations outside the interrupt service
There are two main parts to this change. This first part is to extract part of the function
OFDMTx_step inside OFDMTx.c into a new function OFDMTx_output. The second part is to
modify the main loop in ert_main.c to run OFDMTx_step and running OFDMTx_output inside
rt_OneStep.

 1, Create a new function OFDMTx_output. The content of this function is extracted from
OFDMTx_step.
void OFDMTx_output(void)
{
 real_T rtb_y;
 real_T v;
 uint32_T tmp;

 /* MATLAB Function: '<Root>/OFDM Tx' incorporates:
 * Constant: '<Root>/Message'
 */
 if (OFDMTx_DW.timeCount == 1.0) {
 OFDMTx_DW.genFlag = true;
 OFDMTx_DW.outTogFlag = !OFDMTx_DW.outTogFlag;
 OFDMTx_DW.frameCount++;
 if (OFDMTx_DW.frameCount > 15.0) {
 OFDMTx_DW.frameCount = 1.0;
 }
 }

 OFDMTx_DW.timeCount++;
 if (OFDMTx_DW.timeCount > 160.0) {
 OFDMTx_DW.timeCount = 1.0;
 }

 if (OFDMTx_DW.outTogFlag) {
 rtb_y = OFDMTx_DW.outputBuf1[(int16_T)OFDMTx_DW.timeCount - 1];
 } else {
 rtb_y = OFDMTx_DW.outputBuf2[(int16_T)OFDMTx_DW.timeCount - 1];
 }

 /* MATLAB Function: '<Root>/Send to GPIO' */
 rtb_y = (rtb_y * 0.2 + 0.2) * 4096.0;
 v = fabs(rtb_y);
 if (v < 4.503599627370496E+15) {
 if (v >= 0.5) {
 rtb_y = floor(rtb_y + 0.5);
 } else {
 rtb_y *= 0.0;
 }
 }

 if (rtb_y < 4096.0) {
 if (rtb_y >= 0.0) {

91

 tmp = (uint16_T)rtb_y;
 } else {
 tmp = 0U;
 }
 } else {
 tmp = 4095U;
 }

 /* SignalConversion generated from: '<Root>/Digital Output1' incorporates:
 * MATLAB Function: '<Root>/Send to GPIO'
 * SignalConversion generated from: '<Root>/Digital Output'
 */
 GpioDataRegs.GPADAT.all = tmp;

}
void OFDMTx_step(void)
{

 if (OFDMTx_DW.genFlag) {
 if (!OFDMTx_DW.outTogFlag) {
 if (!OFDMTx_DW.OFDMTX_not_empty) {
 OFDMTx_DW.OFDMTX.isInitialized = 0L;
 memcpy(&OFDMTx_DW.OFDMTX.pPreamble[0], &OFDMTx_P.params.pPreamble[0],
 640U * sizeof(real_T));
 memcpy(&OFDMTx_DW.OFDMTX.pPilots[0], &OFDMTx_P.params.pPilots[0], 44U *
 sizeof(real_T));
 OFDMTx_DW.OFDMTX.matlabCodegenIsDeleted = false;
 OFDMTx_DW.OFDMTX_not_empty = true;
 }

 OFDMTx_SystemCore_step(&OFDMTx_DW.OFDMTX, OFDMTx_P.messageBinary,
 OFDMTx_DW.outputBuf1);
 } else {
 if (!OFDMTx_DW.OFDMTX_not_empty) {
 OFDMTx_DW.OFDMTX.isInitialized = 0L;
 memcpy(&OFDMTx_DW.OFDMTX.pPreamble[0], &OFDMTx_P.params.pPreamble[0],
 640U * sizeof(real_T));
 memcpy(&OFDMTx_DW.OFDMTX.pPilots[0], &OFDMTx_P.params.pPilots[0], 44U *
 sizeof(real_T));
 OFDMTx_DW.OFDMTX.matlabCodegenIsDeleted = false;
 OFDMTx_DW.OFDMTX_not_empty = true;
 }

 OFDMTx_SystemCore_step(&OFDMTx_DW.OFDMTX, OFDMTx_P.messageBinary,
 OFDMTx_DW.outputBuf2);
 }

 OFDMTx_DW.genFlag = false;
 }

}
2, Add the new function OFDMTx_output into the header file OFDMTx.h.
extern void OFDMTx_step(void);
extern void OFDMTx_output(void);

92

3, Inside ert_main.c, calling OFDMTx_output inside rt_OneStep and calling OFDMTx_step inside
the main function under the while(runModel).
void rt_OneStep(void)
{
 /* Check for overrun. Protect OverrunFlag against preemption */
 if (OverrunFlag++) {
 IsrOverrun = 1;
 OverrunFlag--;
 return;
 }

// enableTimer0Interrupt();
 OFDMTx_output();

 /* Get model outputs here */
// disableTimer0Interrupt();
 OverrunFlag--;
}

Int main(void)
{

 while (runModel) {

 OFDMTx_step();

 stopRequested = !(rtmGetErrorStatus(OFDMTx_M) == (NULL));
 }
}

Instructions to sample data from Picoscope and to recover the message
1, Set the sampling frequency to a value which the scope can support. The sampling frequency can
be set inside the Simulink model or in the generated C code. Inside the “Message” block of the
model, one can set the proper sampling frequency. The “Sample time” field of the block should be
set to 1/sampling Frequency.

93

The sample time can also be changed inside the file ert_main.c, the first line in the main function,
float modelBaseRate = 0.0001;

2, On the PicoScope 6 application, adjust the time per division and frame size until the target sample
rate is achieved. The sample rate is displayed on the right margin under “properties”.

3, To save the captured samples into a file, click on “File” -> “Save As”. At the window that
popped out select the “Save as type” as “MATLAB 4 files (*.mat)”.

94

4, Modify prepData.m to have the variable “label” set to the folder of the latest “mat” file saved.
Run prepData.m followed by “justDoReceive.m”. The received constellation and the demodulated
message would be displayed.

A.6. Data Link Software

A.6.1. Main C code
/*
 * File: ert_main.c
 *
 * Code generated for Simulink model 'OFDMTx'.
 *
 * Model version : 2.109
 * Simulink Coder version : 9.6 (R2021b) 14-May-2021
 * C/C++ source code generated on : Tue Feb 22 10:15:15 2022
 *
 * Target selection: ert.tlc
 * Embedded hardware selection: Texas Instruments->C2000
 * Code generation objectives: Unspecified
 * Validation result: Not run
 */

#include "OFDMTx.h"
#include "rtwtypes.h"

volatile int IsrOverrun = 0;
static boolean_T OverrunFlag = 0;
void rt_OneStep(void)
{
 /* Check for overrun. Protect OverrunFlag against preemption */

95

 if (OverrunFlag++) {
 IsrOverrun = 1;
 OverrunFlag--;
 return;
 }

// enableTimer0Interrupt();
 OFDMTx_output();

 /* Get model outputs here */
// disableTimer0Interrupt();
 OverrunFlag--;
}

volatile boolean_T stopRequested;
volatile boolean_T runModel;
int main(void)
{
 float modelBaseRate = 0.00001;
 float systemClock = 100;

 /* Initialize variables */
 stopRequested = false;
 runModel = false;
 c2000_flash_init();
 init_board();

#ifdef MW_EXEC_PROFILER_ON

 config_profilerTimer();

#endif

 ;
 rtmSetErrorStatus(OFDMTx_M, 0);
 OFDMTx_initialize();
 globalInterruptDisable();
 configureTimer0(modelBaseRate, systemClock);
 runModel =
 rtmGetErrorStatus(OFDMTx_M) == (NULL);
 enableTimer0Interrupt();
 globalInterruptEnable();
 while (runModel) {

 OFDMTx_step();

 stopRequested = !(
 rtmGetErrorStatus(OFDMTx_M) == (NULL));
 }

 /* Terminate model */
 OFDMTx_terminate();
 globalInterruptDisable();
 return 0;
}

96

/*
 * File trailer for generated code.
 *
 * [EOF]
 */

A.6.2. SM320F28335-HT Clock Register Settings
// TI File Revision: /main/8
// Checkin Date: October 23, 2007 11:29:25
//###
//
// FILE: DSP2833x_Examples.h
//
// TITLE: DSP2833x Device Definitions.
//
//###
// $TI Release: DSP2833x Header Files V1.10 $
// $Release Date: February 15, 2008 $
//###

#ifndef DSP2833x_EXAMPLES_H
#define DSP2833x_EXAMPLES_H

#ifdef __cplusplus
extern "C" {
#endif

/*---
 Specify the PLL control register (PLLCR) and divide select (DIVSEL) value.
---*/
//#define DSP28_DIVSEL 0 // Enable /4 for SYSCLKOUT
//#define DSP28_DIVSEL 1 // Enable /4 for SYSCKOUT
#define DSP28_DIVSEL 2 // Enable /2 for SYSCLKOUT
//#define DSP28_DIVSEL 3 // Enable /1 for SYSCLKOUT

#define DSP28_PLLCR 10
//#define DSP28_PLLCR 9
//#define DSP28_PLLCR 8
//#define DSP28_PLLCR 7
//#define DSP28_PLLCR 6
//#define DSP28_PLLCR 5
//#define DSP28_PLLCR 4
//#define DSP28_PLLCR 3
//#define DSP28_PLLCR 2
//#define DSP28_PLLCR 1
//#define DSP28_PLLCR 0 // PLL is bypassed in this mode
//--

/*---

97

 Specify the clock rate of the CPU (SYSCLKOUT) in nS.

 Take into account the input clock frequency and the PLL multiplier
 selected in step 1.

 Use one of the values provided, or define your own.
 The trailing L is required tells the compiler to treat
 the number as a 64-bit value.

 Only one statement should be uncommented.

 Example 1:150 MHz devices:
 CLKIN is a 30MHz crystal.

 In step 1 the user specified PLLCR = 0xA for a
 150Mhz CPU clock (SYSCLKOUT = 150MHz).

 In this case, the CPU_RATE will be 6.667L
 Uncomment the line: #define CPU_RATE 6.667L

 Example 2: 100 MHz devices:
 CLKIN is a 20MHz crystal.

 In step 1 the user specified PLLCR = 0xA for a
 100Mhz CPU clock (SYSCLKOUT = 100MHz).

 In this case, the CPU_RATE will be 10.000L
 Uncomment the line: #define CPU_RATE 10.000L
---*/
//#define CPU_RATE 6.667L // for a 150MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 7.143L // for a 140MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 8.333L // for a 120MHz CPU clock speed (SYSCLKOUT)
#define CPU_RATE 10.000L // for a 100MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 13.330L // for a 75MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 20.000L // for a 50MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 33.333L // for a 30MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 41.667L // for a 24MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 50.000L // for a 20MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 66.667L // for a 15MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 100.000L // for a 10MHz CPU clock speed (SYSCLKOUT)

//--

/*---
 Target device (in DSP2833x_Device.h) determines CPU frequency
 (for examples) - either 150 MHz (for 28335 and 28334) or 100 MHz
 (for 28332). User does not have to change anything here.
---*/
#if DSP28_28332 // DSP28_28332 device only
 #define CPU_FRQ_100MHZ 1 // 100 Mhz CPU Freq (20 MHz input freq)
 #define CPU_FRQ_150MHZ 0
#else
 #define CPU_FRQ_100MHZ 1 // DSP28_28335||DSP28_28334
 #define CPU_FRQ_150MHZ 0 // 150 MHz CPU Freq (30 MHz input freq) by DEFAULT
#endif

98

//---
// Include Example Header Files:
//

#include "DSP2833x_GlobalPrototypes.h" // Prototypes for global functions
within the
 // .c files.

#include "DSP2833x_EPwm_defines.h" // Macros used for PWM examples.
#include "DSP2833x_Dma_defines.h" // Macros used for DMA examples.
#include "DSP2833x_I2c_defines.h" // Macros used for I2C examples.

#define PARTNO_28335 0xFA
#define PARTNO_28334 0xF9
#define PARTNO_28332 0xF8

// Include files not used with DSP/BIOS
#ifndef DSP28_BIOS
#include "DSP2833x_DefaultISR.h"
#endif

// DO NOT MODIFY THIS LINE.
#define DELAY_US(A) DSP28x_usDelay(((((long double) A * 1000.0L) / (long
double)CPU_RATE) - 9.0L) / 5.0L)

#ifdef __cplusplus
}
#endif /* extern "C" */

#endif // end of DSP2833x_EXAMPLES_H definition

//===
// End of file.
//===

99

DISTRIBUTION

Email—Internal
Name Org. Sandia Email Address

Avery Cashion 05965 atcashi@sandia.gov

Giorgia Bettin 08916 gbettin@sandia.gov

Andrew Wright 08916 aawrigh@sandia.gov

Douglas Blankenship 08910 dablank@sandia.gov

Technical Library 1911 sanddocs@sandia.gov

Email—External
Name Company Email Address Company Name

Francis Tiong ftiong@mathworks.com MathWorks

Zachary Frone zachary.frone@ee.doe.gov DOE

Lauren Boyd lauren.boyd@ee.doe.gov DOE

Hardcopy—Internal
Number of

Copies
Name Org. Mailstop

5 Andrew A. Wright 08916 MS 1033

Hardcopy—External
Number of

Copies
Name Company Name and

Company Mailing Address
1 Zachary Frone DOE GTO

1 Lauren Boyd DOE GTO

100

This page left blank

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc. for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

