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g km/s = shock wave in sample
* In situ XRD probes phase transformations

%’ X-ray beam

TPX window

Four X-ray detectors imaging at
~153 ns time spacing

« Impactor (e.g., LiF or Lexan) hits sample at

/7 Dynamic Compression with In Situ X-ray Diffraction (XRD)

* Recently developed capability at the Dynamic
Compression Sector (DCS) facility at Argonne
National Laboratory

« Understand behavior of compression-driven phase
transformations, their pathways, and kinetics

« Prior dynamic compression XRD work has largely
focused on monatomic solids with limited work on
single crystal binary materials

¥

Examine the impact of dynamic compression on
phase stability in compositionally complex and “meta-
stable” oxides
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" Sample Fabrication, Purity, and Microstructure
Solid state reaction using precursor oxides and/or carbonates

ZrW,0g (Lag2Ceg2Pr25Mg5Y02),05 (Cug2C0g ;M8 5Nig 22N 5)O
“tungstate” “bixbyite” “rock salt”
« 1160 °C (4 h)sinter and air- « 1600°C (12 h)sinter and furnace-| « 1100 °C (12 h) sinter (no calcine)
quenched to room temperature quench and air-quench (below 1000 °C)
* 95% cubic Zrw,0q4 + Single phase bixbyite « Single phase rock salt
« 89% dense « 83% dense * 92% dense
« Some micro-cracking « ~150 ym thick wafer for DCS e ~250 pym thick wafer for DCS
« ~50 um thick wafer for DCS
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Back-scatter electron microscopy




P/ ZrW,0; Dynamic Compression -Photon doppler velocimetry (PDV)
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Pressure Induced Amorphization (PIA) at 3.1 GPa

X-ray diffraction Integrated XRD images
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Amorphization after impact
20 [°, L =0.34497 A]
3.1 GPa PIA consistent with quasi-static values of 1.5 - 3.5 GPa'

lperottoni, Science, 280 (1998) 886 ‘
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7~ No Obvious Phase Change at Lower, 1.8 GPa Peak Stress

1.0 GPa quasi-static stress

Orthorhombic (y) at >0.2 GPa from quasi-
static data' - not clearly observed here

lperottoni, Science, 280 (1998) 886 ‘
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Lattice Parameter [A]
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1.0 GPa quasi-static stress

—— 0.8% compressive strain

Less than 1.1% compressive strain
expected in quasi-static condition

ZrW,0QOg¢ Lattice Parameter Compression
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Normalized Intensity [a.u.]
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~45 GPa
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Phase Transformations in (La,,Ce, ,Pr,,5Sm;,Y,5),0;
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— Monoclinic (or trigonal) + cubic

-

«— |Initially cubic

* Multiple shock induced phase
transformations!

* |n contrast to quasi-static
amorphization at ~16-30 GPa
for (Lag,Ceq,Pro>5mg5Y02)0,?

?Cheng, Comm. Chem., 2 (2019) 114

Low PDV resolution = peak stress estimates based on CeO, and UO, Hugoniots’

"Marsh, LASL Shock Hugoniot Data (1980)
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Temperature ("C)

Phase Transformations in Rare Earth M,0,
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Adachi, Chem. Rev., 98 (1998) 1479

Cubic = monoclinic = trigonal phase
transformation reported for increasing
temperature

Similar phase formation observed for
present shock measurements

Shock in ~100 ns, limited atomic diffusion
for phase transformations




~21 GPa peak stress
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~300 ns needed for monoclinic to form

(Lag,Ceq,Pro,5mg,Y0,2),03

Kinetic Delay in Phase Transformation

~43 GPa peak stress
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 Start of trigonal formation immediately

« ~300 ns until approximate transformation complete

Both phase transformations require 100s ns to form under dynamic compression
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/7 Dynamic Compression of (Cu,,Co,,Mg,,Ni,,Zn,,)0
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# ~24 GPa peak stress ~96 GPa peak stress
No change in phase Highly compressed (5 - 9%) rock salt phase?
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Single phase in quasi-static (meas. up to 48.2 GPay> | possible shocked vs. unshocked microstructure features?

Low PDV resolution = peak stress estimates based on MgO Hugoniot'
Marsh, LASL Shock Hugoniot Data (1980); 2?Chen, J. Phys. Chem. C 123 (2019) 17735; *Yue, Scripta Mater. 219 (2022) 114879
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/" Summary
74
/ « /Zr'W,0q - tungstate
« Amorphization at 3.0 GPa peak stress, consistent with quasi-static literature results
« Lattice parameter compression less than expected at 1.0 GPa
* (LagoCep,Pro,5mg ;Yo )05 - bixbyite
« Cubic = monoclinic = trigonal phase transformations induced by shock
« (Contrary to amorphization observed in literature
» Kinetically delayed phase transformations during shock
* (Cugy,Cop,Mgy5Nig-ZNng5)O —rock salt
« (Consistent “low” pressure phase stability with literature (~24 GPa)
» Possible highly compressed rock salt phase at high pressure (~96 GPa)
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