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ABSTRACT

Experiments were conducted on a wave tank model of a
bottom raised oscillating surge wave energy converter (OSWEC)
model in regular waves. The OSWEC model shape was a thin
rectangular flap, which was allowed to pitch in response to
incident waves about a hinge located at the intersection of the
flap and the top of the supporting foundation. Torsion springs
were added to the hinge in order to position the pitch natural
frequency at the center of the wave frequency range of the wave
maker. The flap motion as well as the loads at the base of the
foundation were measured.  The OSWEC was modeled
analytically using elliptic functions in order to obtain closed
form expressions for added mass and radiation damping
coefficients, along with the excitation force and torque. These
formulations were derived and reported in a previous
publication by the authors. While analytical predictions of the
foundation loads agree very well with experiments, large
discrepancies are seen in the pitch response close to resonance.
These differences are analyzed by conducting a sensitivity study,
in which system parameters, including damping and added mass
values, are varied. The likely contributors to the differences
between predictions and experiments are attributed to tank
reflections, standing waves that can occur in long, narrow wave
tanks, as well as the thin plate assumption employed in the
analytical approach.
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1. INTRODUCTION

Oscillating surge wave energy converters (OSWEC)
leverage the elliptical trajectories of the water wave particles
which flatten horizontally as waves transition from deep to
shallow water depths [1-3]. Linear potential theory has been
widely used to model OSWECSs, notably the Oyster device, an
OSWEC-type device that was deployed offshore of Orkney,
Scotland [2,4-6].

Wei et al. conducted a computational fluid dynamics (CFD)
analysis of an OSWEC device and remarked that linear potential
theory models can produce close matches to the experimental
tests and CFD simulations [7-8]. They also investigated vortex
shedding at the edges of the device and viscous drag effects and
found that the radiation and diffraction effects dominate viscous
effects.

While a substantial body of work exists on the use of linear
potential theory to model OSWECs (see [4-5; 9]),Wei et al.
caution against ignoring viscous effects altogether as the non-
linear effects such as overtopping and slamming can result in
errors in motion calculations. Further, Babarit et al. reckoned that
the miscalculation of viscous drag effects could be the foremost
source of errors and can result in overestimating the power yield
estimation by as much as 30% [7,10]. In addition to
discrepancies in power generation, linear potential theory
models may overestimate response near resonance [11-13].

The current study seeks to validate the analytical modeling
of an experimentally tested prototype of a bottom-raised
OSWEC. The experimental tests were conducted under the
Technology Commercialization fund of the U.S. Department of
Energy to support a collaboration between the National
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Renewable Energy Laboratory and University of Massachusetts
Ambherst [14]. The OSWEC device discussed here is mounted on
a raised platform or is ‘bottom-raised’, as opposed to other
designs with the hinge axis directly at the seafloor [3,6,9,15].
The bottom-raised configuration uses a mounting structure that
allows a wider range of deployment sites that may be in deeper
seas while keeping the device close to the water surface.

The analytical approach employed in this study was
previously presented by Nguyen et al. and Davis [16,17].
Theoretical formulas were developed to evaluate the
hydrodynamic coefficients (added mass and radiation damping)
of an OSWEC using flat plate assumptions in elliptical
coordinates, the OSWEC’s response amplitude operators
(RAOs) in pitch motion, as well as the foundational
forces/torques in surge and pitch directions. This work further
examines the performance and limitations of this analytical
approach through parametric study to emulate the
experimentally observed behavior. The parameter tuning process
is carried out by varying the hydrodynamics coefficients for the
radiation field effects (i.e., added mass and radiation damping)
by up to +50%.

The rest of the paper is organized as follows: Section 2
describes the equations of motion of the OSWEC — specifically
its Response Amplitude Operator, and the relevant structural
loads; Section 3 describes the experimental setup, and Section 4
describes the experimental results; Section 5 compares the
analytical simulations against the experimentally measured
system responses, which is followed by the parametric studies
that tune added-mass and radiation damping in Section 6.
Finally, the conclusions are made in Section 7.

Wave Propagation
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FIGURE 1 - Torques on the OSWEC body

2. THEORETICAL MODEL

For completeness, this section briefly described the
governing equations employed in the theoretical modeling tool.
Readers are referred to [17] for details of the formulas along with
their derivations. It is noted that the effect of the power take-off
(PTO) on the system physics is not considered in this study.

The OSWEC is constrained to move only in the pitch
direction. The general one degree of freedom equation of motion
derived from the sum of torques is

Issp = Texs + Traas + Te + Tp + T + Ty (1
where I is the pitch moment of inertia and ¢ is the second time
derivative of the pitch displacement ¢, or the pitch angular
acceleration. T; and Ty are gravity and buoyancy torques,
respectively, which produce counteracting moments about the
hinge O (Fig. 1). Tpys and 445 denote excitation and radiation
torque in the pitch direction of motion. Additional torques,
resulting from the PTO (Tpr¢ ), external springs (T), and viscous
sources (T;), also contribute to moment about the hinge.

In the case of regular, monochromatic waves, the incident
wave elevation is described by linear wave theory as

n(x,t) = Riael@t-k0} (2)
where a is the wave amplitude, or half the wave height H, i is
the imaginary unit, w is the angular frequency, and k is the
wavenumber.

The torques on the right-hand side of Equation (1) can now
be expressed as functions of frequency as [18, 19]

Texs(w) = R{aXs(w)e''} 3)
Traas(w) = m{_szss(‘U)(Beiwt + inss(w)(ﬁeiwt} (4)
where X; is the frequency-dependent complex pitch excitation
torque, comprising of an ordinary amplitude |X5| and phase £X;.
The radiation torque, on the other hand, is represented as the
linear sum of the added mass and radiation damping
contributions, which are in phase with the OSWEC angular
acceleration and velocity, respectively. Here Ass is the
frequency-dependent pitch added moment of inertia and Bss is
the pitch radiation damping coefficient. The torque contributions
due to gravity and buoyancy are combined to obtain a net
hydrostatic torque as [19]
Tps(@) = Cs59(t) = R{CssPe™"} (5)
with
Css = pVrp, —my (6)
Here the mass and volume of the OSWEC are denoted by m and
V, and the lever arms for buoyancy and gravitational forces by
Ty, 1y tespectively. The coefficients are grouped into a
hydrostatic restoring coefficient, denoted Css, and the sine term
is linearized under the assumption that, for small pitch
displacements, sin(¢(t)) = ¢(t).

The remaining two torque contributions, which account for
externally attached springs and viscous damping sources, are
described as

Ts(w) = ER‘[Cext(i)elwt} )

Ti(w) = R{iwB, pe't} (8)
where C,,, is the net restoring coefficient of any externally
attached springs and B, is the net damping coefficient,
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comprising of any viscous sources which can be approximated
as linearly proportional to the pitch angular velocity. The latter
will be approximated here through system identification and will
be discussed in subsequent sections.

The expressions in Equations (3)-(8) are substituted into the
general equation of motion Equation (1), and rearranged to
obtain the frequency domain equation of motion as

(]3[—(1)2(155 + Ass(w)) + iw(Bss + Bpro + By)
+ (Cs5 + Cpro + Cext)] = aX5(w) €))
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FIGURE 2 — (Top) Forces at the hinge O. (Bottom) Foundation
force and torque balance.

2.1 Response Amplitude Operator

The RAO represents the transfer function between the
OSWEC (pitch) motion and the incident wave amplitude. For
waves in the linear regime, it provides a prediction of the
OSWEC pitch response for any wave period and amplitude
combination. It is derived simply from the rearrangement of the
frequency domain equation of motion (Equation (9)) as

<}3 X5 (w)
RAO =— = 10
a [—w?A*+iwB* + C*] (10)
with
A" = (155 + Ass(w)) 11
B* = Bss(w) + Bpro + B, (12)
C* = Css + Cpro + Coxt (13)

The RAO is commonly non-dimensionalized by the wave
number of the incident wave

L_ ¢
RAO = (14)

where an asterisk has been used to distinguish the non-
dimensional quantity from its dimensional counterpart. The
RAO will be integral to characterizing and understanding the
OSWEC dynamics in subsequent sections.

2.2 Hinge Reaction Forces
Neglecting centrifugal forces, the surge and heave reaction
forces, F,, and F,, at the hinge (point O in Fig. 2) of a fore-aft
symmetrical OSWEC can be described in the frequency domain
following [20] as
Fri(0) = (~0?A;5 + i0Bi5)$ — aX, (15)
Fr3(w) = =(pV —m) —aX; (16)
where A5 and B;s are the surge-pitch added mass and surge-
pitch radiation damping coefficients, respectively. X; and X;
denote the complex surge and heave excitation forces,
respectively. The surge reaction force is composed entirely of
dynamic terms that result from the motion of the OSWEC itself,
and the incident wave load. The heave reaction force, on the
other hand, is composed of a static contribution from the net
hydrostatic forces and a time-varying wave load component.
Due to the flat plate assumption, the heave reaction force,
however, is not calculated in the analytical study.

2.3 Hydrodynamic coefficients

Analytical calculations of RAO and hinge reaction
forces/torques require evaluations of added mass and damping
coefficients including Ass, A5, Bss, and Bys. As mentioned
previously, closed-form expressions for these parameters have
been proposed in the authors’ previous work [16] by solving
Laplace’s equation of an oscillating flat plate in an elliptical
coordinate system (Helmholtz equation). The general solutions
to the Helmholtz equation are then obtained employing the
angular Mathieu and Hankel-Mathieu equations. For
completeness, the derived formulas of these terms are
summarized in Equations (17)-(22)
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Here, Ho™ and No are called the odd Hankel-Mathieu of the
first kind and radial Mathieu functions of the second kind with
order m, respectively. Hog is the derivative of Ho with respect
to . B, refers to the first coefficient associated with se
functions, which is called the odd Mathieu functions. Definitions
of other parameters are described in Table 1.

2.4 Foundation Shear Force and Bending Moment

Treating the foundation as its own hydrodynamic body that
is rigidly fixed to the sea bottom, the force balances and torques
about point F at the base of the foundation are

YE = Fexl,f +Ffr1 + Frq (23)
ZFz:Fex3,f+Ff‘r3+Fr3+FG+FB (24)
ZTF = Texsr + Mfrs + rfFrl (25)

where Foyq r and Fe,s  are the foundation surge excitation and
heave excitation forces, respectively (distinguished from those
of the OSWEC body through the use of the f'subscript); Teys 5 is
the foundation pitch excitation torque; Ffpq, Fp3, and Mg,g are
the foundation reaction forces/torques in the surge, heave, and
pitch directions, respectively; 13 = FO represents the distance
from the base of the foundation F to the hinge point O; and Fj
and Fy are the gravitational and buoyancy forces on the
foundation, separate from those of the OSWEC body force
balance. Contrary to the OSWEC body, the foundation does not
experience any radiation hydrodynamic loads, as it does not
undergo any rigid body motion. F,; and F,3 are the equal but
opposite hinge reaction forces introduced in the OSWEC force
balance (Equations (15) and (16)). These forces and torques are
summarized in Fig. 2.

3. EXPERIMENTAL STUDY

An experimental campaign was conducted at the Ocean
Resources and Renewable Energy (ORRE) laboratory at
University of Massachusetts Amherst. This section discusses the
prototype sizing and construction, sensor instrumentation, and

experimental setup of the OSWEC system. The test matrix and
data post-processing procedures are also described.

3.1 Model Design

The experimental OSWEC was designed at the tank scale to
make best use of the available space in the ORRE wave tank test
section. The cross section of the tank’s test section is
approximately 1.2 m wide with a nominal water depth of 1 m.
The following objectives were targeted throughout the sizing
process:

e The top of the OSWEC should be flush with the mean

water line at its mean position.

o  Effects from the tank walls on the hydrodynamics of the
OSWEC should be minimized; sufficient clearance
should be left on either side of the model to enable flow
to pass relatively freely.

e The OSWEC should be stable in the unperturbed
configuration. This requires the hydrostatic restoring
coefficient, Css, to be greater than zero.

e The net balance of the weight and buoyancy forces, F;
and Fg, should be minimized such that the vertical force
on the hinge is near zero when the paddle is submerged
to its design depth.

The final dimensions and properties of the scale OSWEC
used in the experiments are summarized in Tables 1 and 2.
Readers are referred to [17] for details on the selection of the
dimensions, inertial properties, and hydrostatic properties of the
prototype.

Table 1 - Primary dimensions of the experimental OSWEC

Symbol Dimension Value Unit
h Water depth 1.000 m
H, Height 0.500 m
w Width 0400 m
p Thickness 0.076 m
Ty Hinge to center of gravity 0.17 m
Trp Hinge to center of buoyancy 0284 m
Tgp  Hinge to ballast center of gravity 0.082 m
zZp Hinge depth (from MWL") 0.534 m
Yo Wall clearance (once side) 0.400 m
H, Gap between the OSWEC andtop  0.089 m
of the foundation
Hy Foundation height 0411 m
D¢ Foundation diameter 0.133 m
zf Foundation depth, measured from  0.569 m
MWL to top

*MWL: mean water line
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3.2 Scaled Model Fabrication

A scale OSWEC model was built to the dimensions shown
in Table 1. The top, base, and sides of the model body were cut
from 12.5 mm (1/2 in.) acrylic bar stock. 6.25 mm (1/4 in.)
acrylic sheet was used for the fore and aft faces. The entire
assembly was connected to a 12.5 mm (1/2 in.) stainless steel
shaft rigidly fixed to the aluminum support frame. Upper and
lower ballast ports were included to provide flexibility in the
center of gravity and moment of inertia. The tilt sensor, used to
track the motion of the body, was fixed to the top of the body
through a stainless steel bracket, sized to elevate the sensor
above the maximum expected water elevation and oriented to
have a minimal effect on the hydrodynamics. A six-axis load cell
was installed at the base of the assembly to record the shear and
bending moments at the base of the foundation during
experimentation.

Table 2 - Properties of the experimental OSWEC

Symbol Property Value Unit
mo Body mass 6.40 kg
mg Ballast mass 7.92 kg
M Total mass 14.32 kg

|4 Displaced volume 0.0155 m?3
I5s Moment of inertia 0.855  kg-m?
about hinge *
T 3G5 Moment of inertia 0414 k g—m2
about center of
gravity
Css Hydrostatic restoring 18.54  kg-m? s72
coefficient *
Cext External torsion 0,56 kg-m?s~?
spring restoring
coefficient
T, L e 4.22, s
Natural period 176
Wn Natural frequency ** 1.49, rad/s
3.57
|Fgl Net hydrostatic 11.57 N
— |Fgl vertical force

* Indicating the calculation point has been omitted from
the symbol to remain consistent

with the derivations throughout the text. Unless otherwise
noted, the properties used in the figures and equations are
calculated about the hinge, point O.

** Two experimental configurations were used: the
OSWEC with no external attachments and the OSWEC
with external torsion springs.

To capture the hydrodynamics due to the presence of a
monopile foundation beneath the OSWEC, arigid, 0.133 m (5.25

in.) diameter acrylic tube was integrated into the support
structure (Fig. 3). The tube was secured to the center beam
through a stainless steel threaded rod to isolate the tube from
contacting the lower part of the frame. Once lifted down into the
tank, the acrylic tube was allowed to flood with water. It is noted
here that the experimental OSWEC includes a cylindrical tube,
as the foundational support, whereas the boundary conditions of
the analytical model are representative of a wall-like foundation
with a width equivalent to that of the OSWEC itself.

L=

FIGURE 3 — OSWEC scaled model. (Left) OSWEC fabricated
mode. (Right) Foundational tube assembly with the six-axis load
cell installed at the base.

3.3 Wave Tank Configuration

The OSWEC model and its support frame were centered in
the test section of the ORRE wave flume, a distance 193.5 in.
(491 m) from the start of the tank. Four wave probes
(abbreviated WP1-WP4 in subsequent figures and discussion)
were set up along the length of the tank: WP1, a sonic probe, was
placed ahead of the model at a distance of 134 in. (3.4 m); WP2,
another sonic probe, was placed overhead the model location at
193.5 in.; WP3, a capacitive staff, was placed behind the model
at 274.5 in. (6.97 m); and WP4, a capacitive staff, was placed
just ahead of the beach at 332.5 in. (8.45 m). WP1, WP3, and
WP4 were centered laterally in the tank throughout the duration
of the experiments. WP2 was also centered in the tank during the
design wave calibration but was offset laterally to be centered in
the 0.413 m gap between one side of the model and the tank wall
during model runs. A schematic of the wave tank configuration
is presented in Fig. 4.

3.4 Test Matrix

Two model configurations were used in the experiments: 1)
the OSWEC with no external springs; and 2) the OSWEC with
external torsional springs, added to observe the dynamics of the
OSWEPC at its natural frequency. These two configurations will
be labeled and stylized as no external springs and external
springs in subsequent figures and discussion. Both
configurations employed the 0.133m (5.25 in.) diameter acrylic
tube designed to mimic a monopile foundation.

Free decay experiments were performed for each
configuration to observe the natural frequency and for later
tuning of the analytical models. Initial pitch displacements of
approximately 5 to 25 degrees were observed. All the design
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FIGURE 4 — Wave tank configuration; Breakout sections have been included to reveal the location of the wavemaker and beach; units: in. [m.]

waves used in the experiments were regular, first order waves
(monochromatic waves). The wave periods spanned the wave
maker capabilities, ranging from 0.8 s to 2.8 s. A target steepness
of H/L=0.0035 was set, resulting in amplitudes from 1.5 mm to
14.3 mm. Each design wave and model experiment run lasted for
60 s: the wavemaker began operation at 0 s with a 3 s ramp time
and ended operation at 40 s. 20 s of additional time was allotted
before the sensor readings stopped. The design waves were
calibrated at the location of the model (193.5 in from the start of
the tank). The wave amplitudes were calculated as the mean
amplitude of three runs, where the individual amplitudes were
determined from the Fourier transform of a 30 s wave elevation
time history recorded by WP2.

On average, the standard deviation of the three runs was
0.60 % of the mean value. The highest standard deviation to
mean ratio was 3%, observed for the smallest wave condition
with an amplitude of 1.25 mm. A target number of 1-2 runs was
set for each model run wave condition (repeated for both model
configurations), except for the 1.3 s and 2.0 s conditions, which
were repeated five times to better quantify the repeatability of
the experiments. It is noted that these two periods were chosen
at random to test the repeatability. They carry no special
characteristics compared to other periods. The periods,
wavemaker actuator amplitudes, calibrated wave amplitude
mean and standard deviations, and target number of runs for each
condition are summarized in Table 3.

3.5 Post-processing

Following data collection, signals from the wave probes, tilt
sensor, and load cell were trimmed into 30 s records, leaving out
the first 10 s of each run to remove transient motions from the
model and wavemaker. For each signal, a Fast Fourier Transform
(FFT) was used to roughly identify the peak frequency, and a
fourth-order Butterworth low-pass filter, with the cutoff
frequency set to a value five times this peak frequency, was
applied. If higher harmonics (e.g., due to wave reflection) with
an amplitude at least 25% of the peak were present in the FFT,
the cutoff frequency was instead set to 5 times higher than this
value. Following filtering, each signal was further trimmed to

obtain an integer number of cycles and a final FFT was
performed to identify the amplitude and frequency from the
largest peak. This process was repeated for each experimental
run. If multiple runs of the same experimental configuration and
wave condition were available, the period and amplitude were
recorded as the mean of the combined results. If more than two
runs were present, a standard deviation was calculated. This
methodology applies to all frequency-domain experimental
values reported in the following results and discussion.

Table 3 — Test matrix

T Actuator  Amegn”  Aseq
Target No. Runs (#
() Amp(mm) (mm) (mm) ® ®

0.8 1.25 1.5 0.05 1-2
1.0 3.75 3.0 0.02 1-2
1.3 16.75 4.5 0.02 5

1.6 15.00 6.5 0.06 1-2
1.7 16.50 6.1 0.01 1-2
1.8 18.75 7.9 0.11 1-2
1.9 20 6.0 0.01 1-2
1.95 23 4.9 0.01 1-2
2.0 26 5.2 0.01 5

2.05 29 7.5 0.02 1-2
2.1 325 10.3 0.02 1-2
2.2 35 10.6 0.01 1-2
24 40 10.1 0.02 1-2
2.6 42 13.1 0.06 1-2
2.8 80 14.3 0.11 1-2

* Calculated from FFT of 3 independent runs

4. EXPERIMENTAL RESULTS

4.1 System ldentification

Experimental free-decay responses were used to perform
system identification on both OSWEC configurations. This
process ensured the accurate representation of the physical
OSWEC by the analytical models. The system parameters of
interest include estimates of the linear viscous damping, and the
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natural period (or natural frequency). As part of the study, the
quadratic damping term was also calculated and presented here
for reference.

To approximate the viscous (or linear) damping, a standard
logarithmic decrement method was performed on each free
decay run. The logarithmic decrement, which represents the rate
at which the damped free response amplitude decays, is obtained
from two successive peaks of the response as [21]

6= —ln

n ¢k+n
where ¢ and ¢, are peaks occurring n cycles apart beginning
at the k™ oscillation cycle. This expression is related to the

damping ratio, {, by

(26)

1
(= T (27)
)
1+ (%)
The equation above can also be rearranged to get
¢ 1. 11 ¢

1= 2 2r 2tn n Drin (28)
Meanwhile, to better characterize the damping in the
system, a theoretical approach to approximating both a viscous
(linear) and quadratic damping coefficient from a hydrodynamic
free-decay response was also adopted from [23]. A quadratic
damping term is first introduced into the equation of motion as
Td,quad = CD¢|¢| (29)
where Cp is the quadratic damping coefficient, including the
projected area and water density. If the decayed oscillation is
assumed to be approximately sinusoidal over one-half cycle, the
quadratic velocity term can be linearized using a Fourier series
expansion:

bld| ~ o—wadidp (30)
The linearized damping force term can be written as [24]
855 + B, +Bprg 4 Cp " 31)
~ 2(Iss + Ass)w, 31 (Iss + Ass)
In Equation (31), on the right-hand side, the first term represents
the linear damping part while the second term quantifies the
quadratic damping component. The current study does not
consider PTO, hence, Bpro = 0. Employing Equations (26) and
(27) from logarithmic decrement approach, { can be calculated
for both no spring and external springs cases (Tables 4 and 5).
From the results, { is calculated to be in the range of 0.1, which
indicates {? « 1, and Equation (28) can be simplified as

(32)

Equating Equations (28) and (29) and if peaks from oscillation
cycles spaced two periods apart are considered, we get

¢’k L7 Bss + B, +i Cp . (33)
21 2 ¢k+1 2(Iss + Ass)wy, 3w (Iss + Ass)
The expression in Equation (33) is fit with the quantity on the
left-hand side as the dependent variable and ¢, as the
independent variable. The resulting intercept represents the
linear damping part, and the slope, m, is directly related to the
quadratic drag coefficient. The results in this part together with

Iss (from experiment), Ass, and Bss (calculated from the
analytical model employed in the current study), B, and Cp, can
be estimated.

Results from the free-decay experiments, which are
conducted with different initial displacements, are presented in
Table 4 (no external springs) and Table 5 (external springs). The
natural period estimates were obtained from the difference of
adjacent peaks, ¢, and ¢, averaged over all the positive and
negative peaks separated by 1 period (n = 1). Bulk linear and
quadratic damping coefficients were obtained from collating the
dependent and independent variables of Equation (33) for every
run of each configuration. The fits are presented in Fig. 5.

Table 4 — Free decay results, no external springs

¢D wn Tn c

(deg) (rad/s) (s) )

-10.4 1.58 3.97 0.096
-11.6 1.55 4.05 0.093
-16.3 1.51 4.16 0.088
-15.3 1.52 4.14 0.096
-10.4 1.57 4.01 0.097

Table 5 — Free decay results, external springs

¢D wn Tn c
(deg) (rad/s) (s) (O]
-24.4 3.62 1.74 0.106
-21.4 3.67 1.71 0.110
-17.3 3.54 1.77 0.095
-16.1 3.58 1.76 0.088
-29.8 3.54 1.77 0.110
-25.2 3.58 1.76 0.112

-6.8 391 1.61 0.082
-16.0 3.72 1.69 0.099
-11.8 3.67 1.71 0.090

For both the no-external and external springs cases, average
values of { are taken. Employing Equation (33) in combination
with the hydrodynamic coefficients evaluated at the natural
frequency, the viscous and quadratic damping coefficients were
calculated from the intercept and the slope of the fit lines as
B, = 0.316,0.850 (no springs, springs); and Cp, =
4.788,5.221 (no springs, springs).

4.2 Pitch Response and Response Amplitude

Operator

The pitch response signals recorded by the tilt sensor were
post-processed to obtain the frequency-dependent pitch
amplitude, |¢|. When normalized by the incident wave amplitude
to produce an estimate of the response amplitude operator, the
response can provide valuable insight into the dynamics of an
OSWEC design. Typically, a sharp peak in the RAO will be
present at the natural frequency. The amplitude of this peak is
determined by the magnitude of the damping. This region
generally corresponds to a frequency range where the highest
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loads are observed, and in the case of power extraction, the
frequency at which the available power is maximized [22].
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FIGURE 5 - Quadratic damping fits. Top: no spring. Bottom:
with external springs. Here, ¢xis the peak of the k" oscillation
cycle, ¢r-11s the peak occurring one cycle behind, and ¢x-+1is the
peak occurring one cycle ahead (n = 2). Intercept (Intcpt),
slope, and R? value for bulk results are displayed.

4.3 Pitch Response Sample Results

A typical pitch response time history and the accompanying
post-processing figures are shown in Fig. 6 for T = 1.9 s. Note
the smaller, but not insignificant, FFT peak at 1.25 Hz; this is
likely a 2nd harmonic of the wave attributed to reflections from
the beach at the far end of the wave tank.

The formation of an additional irregularity can also be seen
below this frequency; starting around 0.2 Hz, additional
frequency content is present up to the signal frequency of 0.53
Hz. These irregularities are better observed in Fig. 7, which
shows sample results of T = 1.3s. Labeled are the frequencies
and corresponding amplitudes of the signal frequency, its second
harmonic, and the new peak, which occurs around 0.266 Hz. One
possible cause of this could be the excitation of the tank’s

seiching natural period. For a rectangular basin, the seiching
natural period is approximated by [25]
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(c) Comparison of original and filtered signals
FIGURE 6 - Sample pitch response signal (no external springs,
T=109s5s).

2L,
T seiche = —— (11)

Joh
where L, is the length of the tank (basin). Given the ORRE tank
length of 11.53 m, it has a seiching natural period of 7.36 5 (0.136
Hz). The irregularity at 0.266 Hz could roughly correspond to
the second seiching mode. Further, given that the tank is
subdivided by the OSWEC, two other “basins” could be formed
fore and aft of the model. These correspond to lengths 0of 4.91 m
and 6.62 m and frequencies of 0.318 Hz and 0.237 Hz,
respectively. Further analysis will be needed to verify the exact
cause of this peak. The effect of these irregularities is evident in
the corresponding time history, Fig. 7. Plotting the wave
responses across all wave periods for both no spring and with
spring cases reveal similar second-order harmonics except for at
a period of T = 2.0 s. A sample time history and FFT of the
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configuration with external springs is provided in Fig. 8 for this
period, which shows almost no higher harmonics.
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FIGURE 7 - Sample pitch response with significant tank
physics influence (no external springs, 7= 1.3 s). (Top) Sliced
time history, original and filtered. (Bottom) FFT signal.
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FIGURE 8 - Sample pitch response signal (external springs, 7'
=2.0s). (Top) Sliced time history, original and filtered. (Bottom)
FFT signal.

5. COMPARISON AND DISCUSSION

5.1 Pitch Response Amplitude Operator (RAO)

The response amplitude operator results are presented in
Fig. 9. As anticipated, the response of the configuration with
external springs near its natural period exceeds that of the
OSWEC without springs. Normalized by amplitude, the non-
dimensionalized RAO reveals the sharp peak characteristic of
resonance at a period of around 2 s, higher than the anticipated
natural period of 1.76 s. A similar yet smaller spike is also
observed in the RAO of the configuration with no external
springs at the same period of 2 s. The physical significance of
this period is currently unknown. It might be due to the tank’s
seiching natural period and the second harmonics responses as
discussed in the previous section. Further investigation is needed
to understand the exact cause of response amplifying at this
period. The pitch amplitude and RAO of the configuration with
no external springs continues to climb toward the end of the
observed period range.

Comparisons are also made with the results from the
analytical model (Fig. 9). Except for the region near the 2.0 s
period, overall, the theoretical solutions are shown to capture
similar trends as the experimental data. In the no spring case, the
RAOs are predicted to continue increasing toward the resonance
region. In the external spring configuration, its values peak near
the expected resonance period (T = 1.75s) and the motion
amplitudes are estimated to decrease toward both ends of the
frequency range. Some differences are noticed, including the
smaller response outputs compared to experimental
measurements across most frequencies from the analytical
solutions. Since the analytical model is based on the linearity
assumption, some differences due to neglecting nonlinearity are
expected. Another reason for the variations could be due to the
flat plate assumptions in calculating the added mass and
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FIGURE 9 - Simulated response amplitude operator: (Top) no
external springs and (Bottom) external springs.
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radiation damping (Equations (17)-(22)). Their influence on the
RAOs will be discussed in the next section. It is also noted here
that the analytical solution correctly predicts the resonance at
around 1.75 s, as measured in the free-decay tests.

5.2 Foundation Loads

The normalized amplitudes of the surge forces and the pitch
reaction moment at the base of the foundation are plotted as a
function of frequency in Figs 10 and 11. When normalized by
wave amplitude, a bell-like curve, like that of a pitch response
RAO, is observed. The peak loads in both cases (springs and
without springs) occur at a 2-second period, as seen in the
response. A drastic increase in loading is observed from the
OSWEC configuration without springs to the configuration with
springs. Near resonance, the surge force and pitch moment at the
base of the external spring model are 20-30 times greater. Both
force and moment drop drastically from 2.1 s to 2.4 s before
rising again due to the increasing wave amplitude. For the no-
spring configuration, after the first peak, the surge reaction force
and pitch reaction moment increase slowly, tending toward the
resonance frequency at around 4s. It is not shown here, but
similar to the pitch response outcomes, higher harmonics are
also recorded in the FFT loading results at twice the signal
frequency.
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FIGURE 10 - Simulated foundation base reaction forces
and moments, no external springs. The components are non-

dimensionalized as |Ff,,| = |Ff1|/(pgh*a), |Mfys| =
|Mf,s|/(pgh?aw).

The analytical model is also employed to evaluate the
foundation surge forces and pitch moments. The results are
presented together with experimental data in Figs 10 and 11.
Except for the near resonance (1.75s to 2.0s) region, in which the

tank’s physics might lead to differences in the results as
discussed above, the theoretical solutions correlate relatively
well with the measurements. Some differences are observed,
including the small overestimate of analytical data in the no-
spring case after the first peak and the underestimate of
analytical predictions in the external spring set up. Similar to the
RAO results, the reason for the variations could be due to the
linearity and flat plate assumptions employed to estimate the
hydrodynamic coefficients theoretically. A parametric study is
carried out in the next section to investigate the sensitivity of
these coefficients on the results.
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FIGURE 11 - Simulated foundation base reaction forces
and moments, external springs. The components are non-
dimensionalized as |Ff,, | = |Ffq|/(pgh?a), |M,s| =
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6. PARAMETRIC STUDIES

This section examines the sensitivity of hydrodynamic
coefficients on the RAOs and the foundation reaction surge
forces. Pitch moments are not considered due to their similarity
with the surge forces. From Equations (10) to (15), besides the
geometric properties, it can be seen that Ags, Ays, Bss, and Bys
are factors that could impact the key results listed above. The
system natural period, however, depends on the values of Ags.
As discussed previously, the analytical predictions of resonance
are in good agreement with the results from decay test; the pitch
added mass values therefore will not be varied. The
parameterizations are carried out for the remaining components
individually to assess their influences. Both cases without spring
and with external springs are considered.
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6.1 Response Amplitude Operator

From Equation (10), only the pitch radiation damping term
Bss can influence the outputs of the RAOs, whereas A, and By s
have no impact. For this study, the RAOs are estimated with Bgs
values varying from (Bss, 1/2 Bss, 1/4 Bss, and 0). The results
are displayed in Fig. 12.

It is observed that in the no spring scenario, Bss has little to
no influence on the RAO values. All the lines are shown to lie
almost directly on top of each other. For the external spring
setup, variations in Bg; lead to small changes in the RAO values
near resonance. As Bgs decreases, the response amplitudes
increase accordingly. Neglecting the differences in resonance
period, the peak of the analytical outputs for the case of small
Bss (Bss — 0) show better agreement with the experimental
data. The spread of the theoretical data, however, is observed to
be smaller than those obtained from measurements. The impact
of Bss is limited to the region around the resonance frequency.
Outside this area, changes in Bss do not translate to variations in
RAO values, and hence, the spread of the analytical curves
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FIGURE 12 - Parameterizations of pitch radiation damping
Bss and its influences on the RAOs. Top: no spring.
Bottom: external springs. Experimental fit lines are
second-order polynomial and 2-point moving average,
respectively.

remain compact.

6.2 Hinge Reaction Surge Forces

Equation (15) shows that the reaction surge force depends
directly on B, and A, values and indirectly on Bsg through the
response amplitudes. As discussed above, a decrease in Bgs leads
to small increase in the RAO peak near resonance. Outside this
region, Bss has no impact on the results. For this reason, the

parameterization in the following sections only examine the
influences of B;5 and A5 on the outputs.

6.2.1 Surge-Pitch Radiation Damping Bys

In this section, surge-pitch radiation damping values, B;s,
are decreased gradually in a similar manner to Bgg (with
multiplication factor from 1, 1/2, 1/4, to 0) to examine the
sensitivity of this parameter on the outputs. The results are
shown in Fig. 13.

Both configurations - no springs, and external springs —
show that variations of B;; are only reflected in the high
frequency region (T = 0.8sto 1.3s). Outside this area, the
differences between the outputs are negligible. While B, s values
have little impact on the forcing in the external spring set up, the
forces are observed to be highly sensitive to B,5’s variations in
the high frequency region for the no spring case. As B;s gets
larger, the surge forces in this region rises significantly.
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FIGURE 13 - Parameterizations of surge-pitch radiation
damping B;; and its influences on the hinge reaction
forces. Top: no spring. Bottom: external springs.

6.2.2 Surge-Pitch Added Mass Ay5

This section focuses on the sensitivity of the surge-pitch
added mass on the forcing outputs. 4,5 values are varied with
the multiplication factors ranging from 0.8 to 1.4 (no springs)
and 0.6 to 1.4 (external springs). The results are presented in Fig.
14.

In the no-spring configuration, the experimental data are
observed to correlate very well with the (1.2 x A;5) and (0.8 *
Aj;s) curves before and after the peak at 2.0 s, respectively. It is
noted that the added mass is frequency-dependent. The variables
in this section, however, are parameterized using constant
multipliers across all wave periods. It is reasonable that the
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experimental data correlate to different curves in different
frequency regions.

For the external spring set up, the forces are seen to increase
monotonically as A;s values get larger. Aside from the near
resonance (1.75 s to 2.0 s) region as previously discussed, the
measured data are seen to correlate relatively well with the (1.4 *
A;5) curve. Inside the near resonance region, without
consideration for the shift in the resonance frequency due to the
tank’s physics, the forcing magnitudes could be seen to match
closely with the (0.6 * A;5) line.

Further studies will be needed to validate the agreement
between the analytical solutions and the experimental data
employing different parameterization curves. The results in this
section, however, show that while the flat plate assumptions
could reasonably predict the OSWEC systems’ responses and
foundation forces within a very short time frame, incorporating
the effects of plate thickness on the hydrodynamic coefficients
can be important to improve the performance of the theoretical
model.
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7. CONCLUSION

The paper seeks to investigate the performances and
limitations of the analytical model of a bottom-raised OSWEC
through experimental and parametric studies. The theoretical
model was previously proposed to evaluate 1) the hydrodynamic
coefficients of an OSWEC employing the flat plate assumption
in elliptical coordinates, and 2) the corresponding RAOs, and
foundational loadings/torques. An experimental campaign was
carried out at the ORRE laboratory at University of

Massachusetts Amherst to collect the experimental data. Two
configurations of the model setup were employed: the OSWEC
on its foundation with no additional attachments, and the
OSWEC with additional torsional springs attached, to lower the
natural period to within the range of periods producible by the
tank’s wave maker. Experimental runs were performed to
identify the system dynamics and observe its response to regular
first order waves. The OSWEC pitch angular displacement and
reaction loads in surge, and pitch, measured at the base of the
foundation, were reported in the frequency domain.

The analytical model was shown to capture the natural
period of the two configurations well, but the pitch responses of
both models appear to fall short of those observed in the
experiments. The pitch response magnitudes of both models
were about 50%-70% of the observations. The disparity persisted
when the simulations were run without additional damping. A
possible explanation for this discrepancy could be derived from
tank physics; due to the tank’s finite length, not modeled by the
analytical methods, both wave reflection and seiching events can
disrupt and modify the incident waves from the wavemaker. The
differences between the two approaches could also be due to
neglecting the thickness effects (flat plate assumption was
employed in the analytical model) on the hydrodynamic
coefficients. It is noted that while there are some differences in
amplitudes, the analytical predictive curves follow similar trends
to what were observed in the experimental data.

A parametric study was also conducted to examine the
sensitivity of the hydrodynamic coefficients on the OSWEC’s
performances. For pitch RAOs, the impact of radiation damping
B is observed to be small and limited to the region around
resonance frequency. For surge foundational loads, while surge-
pitch radiation damping B; 5 is shown to be one of the dominating
factors in the low period (high frequency) region, surge-pitch
added mass A, is noticed to highly impact the results across the
studied frequency range. A 20% decrease in this parameter is
shown to reduce the peak loads up to 20%. This indicates that
while the analytical model with the flat plate assumption could
significantly reduce computational cost and reasonably predict
the OSWEC’s performance, incorporating the effects of plate
thickness on the hydrodynamic coefficients can be an important
factor in improving the model’s accuracy.
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