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Statistical lifetime prediction for brittle materials

Brittle materials fail stochastically and interact with water for delayed failure or
reduction in strength. How to combine these?

Probabilistic failure at short times Single crack propagation at long times
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How do we predict probabilistic failure at long times? Solve the t; equation for or and

assume that Weibull stress g, evolves in the same way while shape p stays constant?
Sometimes this is done, but can we do better?
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Solve the tr equation for g;. This is the initial strength of a specimen that failed at time ¢,
and stress oy.
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s | Proposed method for probabilistic Llifetime prediction @!

Since a Weibull distribution fit to strength data collected at beginning of life
characterizes the un-aged flaw population we can substitute o; into the Weibull

distribution as oy. L TN
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If we neglect the “1” in the numerator we can get effective aged Weibull properties, note I
that p is not constant during aging |
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» I'Validation experiment: static strength time to failure

The proposed method seems reasonable, but we don’t know if flaws actually age in this way.

As a validation, small screw loaded four point bending load frames were designed and fabricated. The specimen is
fully articulated with roller contacts.

Load is applied with dead load weights to compress the springs. A calibrated force cell is used to verify the load.
Then the top nut is tightened and dead weight is removed.

An electronic switch connected to a timing circuit detects bend bar failure.

Bend bar
goes here




s | Validation experiment: static strength time to failure

30 static load frames were aged in
controlled atmosphere at constant \ % .. 4 /
95% relative humidity and room |

temperature

Failure times were measured at
various load levels

ASTM size B bend bars were used in
all cases

3 X4 mm cross section
« 20 mm inner span

« 40 mm outer span

* 45 mm total length
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s | Static strength time to failure results for barium titanate @!
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7 | Barium titanate preliminary characterization

Probability

Inert Weibull data collected with 4-point-bend tests at 2% RH at various stress rates, no

visible tend in failure stress versus stress rate.

SCG parameters fit to indented stress rate strength tests at 95% RH
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¢ | Probabilistic prediction of measured data

Measured BaTiOs5 parameters
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Can we use our proposed P to calibrate parameters from static failure data?

Note lim Pr = lim Pr =1, so Pr is a cumulative failure function in both t and o
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Calculate marginal probability over logt as

I
o | Fitting parameters to measured time-to-failure @!

Time-to-failure should be conditional on surviving initial load application
Run-out specimens and those failing on load-up should also be included
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0o | Fitting parameters to measured time-to-failure

Failure stress (MPa)
=
w
o

Prior parameters were g, = 186 MPa, p = 4.654, A = 0.00183 m/s, n = 90.7

MLE fit parameters are o, = 192 MPa, p = 4.89, A = 107>°2 m/s, n = 20.9

Cumulative failure probability, Py
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1 | Fitting parameters including inert strength data

Failure stress (MPa)

Prior parameters were g, = 186 MPa, p = 4.654, A = 0.00183 m/s, n = 90.7

MLE fit parameters are o, = 188 MPa, p = 4.90, A = 107>%8 m/s, n = 21.8

Cumulative failure probability, Py
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2 | Time-to-failure with glass specimens

Try tests instead with a material which shows more SCG behavior: Schott S8061 glass

We have thus far been unable to measure any SCG in un-notched specimens held at
approximately 50% of inert Weibull strength

What could be happening here?
Maybe threshold effects are important?
We will consider threshold through viscoelastic crack tip stress relaxation |

Recent results (doi.org/10.1016/j.nocx.2022.100134) show threshold can be calculated
through viscoelastic relaxation, for long lifetimes it should be considered here too



https://doi.org/10.1016/j.nocx.2022.100134

n
Take time derivative of K; = Yo+/a and combine with, v =a =4 (II:—’) , add viscoelastic

Ic

relaxation of K; with time constant g8

I
s | Threshold effects in SCG time-to-failure @!
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16 | Probabilistic SCG with threshold effects

Same procedure as before (but somewhat messier):

Assume Of IS measured at tf

Kr.\?
We use the initial conditions «(0) = (Y;) % w(0) = 77

Integrate from {«(0), k(0)} to {a(zf), 1}

Express as function t, = f(0y, 07, A, n, )
Invert to get function o; = g5, 0r, 4,1, ) |

p
Substitute into beginning-of-life Weibull distribution, Pr = 1 — exp ’— (g(ﬁtf’af'A'"'B) ]
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If k < K¢ then 74 = o0 and o; = oy |



17 1 Time-to-failure predictions for S8061 glass

Parameters for S8061 glass, o, = 252 MPa, p = 10.3, A = 0.325 m/s, n = 24

Assume k., =~ 0.5 for 1 mm crack, estimate g ~ 107° 1/s
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For simplicity, here we assume Y(a) =
CONSTANT, this can be relaxed and in some
cases can significantly affect threshold
prediction

We can also allow for time-evolving stress
state

Given assumptions stated here, minimal flaw
population aging occurs after t = 1/(108)

Even with a threshold stress intensity, there is
no threshold for applied load




Questions?

Scott Grutzik
sjgrutz@sandia.gov



19 | Threshold calculation

Threshold is dependent on crack size, larger
threshold for larger cracks

1/n
Kih = (2a)1/n — KI,th = (7) KIc - K; > Kin

Can an initially super-threshold crack
become sub-threshold as it grows?

—4 K) < Kin
Yes, but this regime is small and we can |
neglect it —
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