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Fiber optic distributed sensing is a recent technology with an established  Sea ice extent has been detected as a function of broadband  cComparison with in situ wave buoys deployed during open water  Flexural-gravity (FG) waves are dispersive and dependent on ice thickness and water
capability for observing a wide range of geophysical signals. Buried or  spectral band power (Fig. 3) and machine learning-based  period (Fig. 5) are used to determine spatially-varying and frequency-  column depth. Wind-driven FG waves occur only when wind speed is greater than FG
otherwise environmentally-coupled fiber optic cables, including those used for classification of acoustic signals from water-ice collisions (Fig. 4). dependent transfer coefficients. wave speed. An empirical dispersion curve can be constructed by sampling FG wave
telecommunications, may be interrogated with a distributed acoustic sensor o . . spectral energy at a range of wind speeds. This dispersion curve can be inverted to
(DAS) or a distributed temperature sensor (DTS) for continuous and high ? o ‘ W= | I Ao ATElITIER) ENENES o eluscneilons Suzgsst Db &0 GEie o provide an estimate of snow and sea ice thicknesses.

frequency monitoring of seismoacoustic or thermal signals at meter-scale frequency waves with high spatial resolution during both open water
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measured by a wave buoy at 16 km along-fiber distance, estimated by DAS, and hindcast by
the ERA5 model. DAS is able to capture most of the variability in observed wave heights
over the observation period. The DAS was powered off Aug 17 23:00 to Aug 18 20:00 UTC.
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