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P Introduction: Team 13

Team members:

* Josh Hogancamp—Primary analyst, Sandia National Labs

» John Wilkes—Principal investigator, Sandia National Labs

*  Madhumita Sircar—Project manager, US Nuclear Regulatory Commission
« Christopher Jones—Project consultant, Kansas State University

Primary analysis considerations:

* Mechanical response (stresses, strains, and deformations) to stimuli including
posttensioning and drying

« Did not analyze for cracking
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Geometry & Mesh
« Boundary Conditions, Initial Conditions, and Stimuli
* Materials: Tendons, Rebar, Concrete
« Results: Mechanical stresses & strains
« Results: Effect of creep and humidity
« Results: Mesh convergence
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Geometry: Overview Procing Papleand e Ensirnmens

Containment vessel concrete and posttensioning tendon geometries were provided by
EDF

« Concrete and tendon meshes were created utilizing Cubit

* Rebar geometry and mesh were created utilizing Cubit

* Rebar size and spacing were determined from drawings provided by EDF
* Rebar layers were added to the simulation as surface elements

« Surface elements in ABAQUS have orthotropic properties depending on reinforcement
ratios in each direction
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Geometry

« Explicitly modeled: posttensioning tendons, rebar (using ABAQUS surface elements), and
concrete

0.9
s o.45 e
o, 0.000330
A . -10g




/ *US, NRC
G eom et ry CO NC rete Protectin ngp:’e and the Environment
g 5.1;&?

« Concrete represented with 8-node hexahedral elements

. I\/Iesh convergence study - elements thru wall & dome

Wall & Dome X-SXN

Course 5&3 138,384 ~0.15m
Semi-fine 8 &5 406,707 ~0.09 m
Fine 11 &9 1,463,472 ~0.04 m

« Pedestal not modified for study for
computational efficiency
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44,466 2-noded beam elements
Each element ~ 0.5 m long
Vertical, hoop, and dome tendons all explicitly modeled

Tendon elements were embedded into the concrete
elements allowing for zero slip

Geometry: Tendons
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Geometry: Rebar

g

« 35,172 4-noded surface elements

« 2Xrebar layers added at all
penetrations to account for additional
reinforcement

« Utilized ABAQUS rebar surface-layer
function
- ABAQUS-specific element type
designed for rebar layers

» Orthotropic properties along the
surface elements

* No properties out of plane to the
surface elements

Dome

Pedestal

(floor and e,

wall mats)
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Boundary Conditions: Concrete Pt oo

All nodes on bottom of CV fixed
against gravity with 6 central nodes
fixed against all movement (to prevent
numerical structural rotation)

* Pressurizations applied uniformly to
all nodes on the inner surface of the
cVv

« Each penetration had an equivalent
force node at its center to account for
pressure applied to penetration
covers (i.e. the pressure applied to the
equipment hatch)




P Boundary Conditions: Internal Pressurization

 Internal pressurizations were based on the “actual” load from a previous benchmark test.
The difference between load profiles is negligible.
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« Relative humidity was essential for matching simulation results to past experimental data
« Utilized a moving average to reduce noise
* Inner and outer RH profiles applied to their respective surfaces
Raw EI and EEE vs Averages (both inner and outer)
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/~ Boundary Conditions: Relative Humidity

L= ! ) U. SiNRC
United States Nuelear Regulatery Cammission

Protecting People and the Envivonment




P Initial Conditions and Tendon Tensioning P e e

Gravity was included in the simulation, but no Example tendon stresses
thermal effects due to variation of
ambient/environment temperature s.su1
. . .. (Avg: 75%)
 RH in the concrete was assumed at an initial FATIE DS
60%, and changes were applied based on the Lt
previous slide o835
- Each tendon was tensioned by “pulling” the Rt

tendon at the location where the tendon
extrudes from the concrete (mimicking the
actual tensioning method)

« The tendon pulling algorithm restricted the
tendons to their own geometry and included I
friction effects .J\
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Material Properties: Steel Prcin Bl e s

« Rebar:

« Linear elastic—assumed that no rebar would yield in the simulation
*  Young's modulus = 200 GPa, fy = 500 MPa, v=0.30, p = 7850 kg/m?

+ Tendons:
« Linear elastic—assumed that no tendons would yield in the simulation

«  Young's modulus = 190 GPa, fy = 1620 MPa, v = 0.30, p = 7850 kg/m?

« No steel is expected to yield
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Material Properties: Concrete Prtcing ol e

Concrete was modeled to include elastic, creep, and drying shrinkage effects
 Elastic: Young's modulus = 34.3 GPa, fc =50 MPa, v=0.20, p = 2390 kg/m?
« Drying shrinkage: modeled using Fick’s 2" Law of Diffusion (more in later slide)
« Creep: modeled using Bazant's B3 creep model (more in later slide)
« Notincluded: thermal effects due to variation of ambient/environmental temperatures




P Material Properties: Concrete Drying Shrinkage i

Fick's 2nd Law — =vyV?2C

: ABAQUSthermaI equatlon:? =£Vzu
P
« Use the ABAQUS thermal equation to implement drying shrinkage based on relative

humldlty
u is the RH as a function of space and time;

. du/odt is the rate of change of RH at a point over time;

. V%u are the second spatial derivatives of RH in the x, y, and z directions;
. k is the RH ‘conductivity’

. C, is the ‘specific RH capacity’;

. p is the mass density;

. a is the ‘coefficient of drying shrinkage expansion'.

+ Using the thermal equation for drying shrinkage meant that we could not also use the
thermal equation for thermal effects
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P Material Properties: Concrete Drying Shrinkage

* A cylinder of concrete was cast, cured for 28
days and then exposed to a dry environment of
50% RH for 762 days by EDF for the VeRCoRs
experiment
« Density: 2390 kg/m?3
* Young's modulus: 34.26 GPa
« Poisson’s ratio: 0.20
* RH'‘Expansion coefficient: 0.0014 m3/ARH

* RH ‘Conductivity’ (from literature): 1.0 x 101
RH/(m-s-ARH)

« Specific RH capacity”: 0.0004 RH/(kg-ARH)
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Material Properties: Concrete Creep P g e o
Creep and Shrinkage

« Both surfaces of the concrete were exposewﬁ/»
£ o001

to low RH, so used EDF's drying creep data 7 vool e

o 20 * Drying Cre
- Bazant B3 creep model utilizes 00004 Prine e
experimental data to correct for model noe |
inaccuracies (modeling concrete creep Co w0

without experimental data is extremely
difficult)
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P Material Properties: Concrete Creep Pt e e

Use Bazant B3 model with experimental data to predict creep to 80 years

Implement into ABAQUS using ABAQUS creep model via a prony series (series of
exponential terms to match 80 year curve)
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Simulation Timeline (dates in Month/Day/Year format)

Total Time
e e (days)

10 seconds

Step Title

8/17/2015

11/2/2015
11/4/2015
11/6/2015
1/25/2016
1/28/2016
3/14/2017
3/16/2017
3/21/2017
3/23/2017
4/2/2018
4/4/2018
3/1/2019
3/3/2019
3/1/2021

11/2/2015

11/4/2015
11/6/2015
1/25/2016
1/28/2016
3/14/2017
3/16/2017
3/21/2017
3/23/2017
4/2/2018
4/4/2018
3/1/2019
3/3/2019
3/1/2021
3/3/2021

77.0

2.2
24
80.0
24
411.2
24
4.6
24
374.6
24
330.1
24
728.6
2.4
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Ramp gravity and post-tensioning loads

Post-tensioning complete, await first
pressurization

Strains reference date 11/2/2015
Pressurization ‘Pre-op’
Dormant period
Pressurization ‘VC1’
Dormant period
Pressurization VD1’
Dormant period
Pressurization VD1 bis’
Dormant period
Pressurization VD2’
Dormancy period
Pressurization VD3’
Dormancy period

Pressurization ‘VD5’
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/" Results: Simulation Strains (fine mesh) g s

/ VeRCoRs Simulation Strains (fine mesh)
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Results: Simulation Stresses (fine mesh)

VeRCoRs Calculated Stresses (fine mesh)
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Results: Pressurization Strains Comparison el e

The strains for H1ET during a pressurization event indicate that the simulation mechanical
response to a pressurization was the same magnitude as the VeRCoRs Benchmark 2018
experimental data

- This indicates that the elastic mechanical response of the simulation was accurate
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P Results: Simulation Strains H5 & H6

Narrow spikes are
pressurization
events

VeRCoRs Simulation Strains (fine mesh)

The ‘hills"in the
data are exposure
periods to higher
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Results: Compare Simulation Types of Strains Pl e B

Example results showing 00
linear, creep, and drying
shrinkage strains

« Both drying shrinkage and ’
creep play important roles in
shaping the data
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Results: Drying Shrinkage Response to RH Changes el b

* Risesin RH in the CV consistent with rises in CV simulation strains

. 400
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The drying shrinkage response was extremely mesh sensitive
« Only investigated spatial sensitivity thus far (time sensitivity not studied yet)

« Spatial resolution effects are similar in magnitude to including phenomena such as creep
and shrinkage for the quantity of interest (strain)
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- Data showed that a finer mesh converged the simulation results towards the experimental
data

- Smaller time steps may also affect the results (future work)

VeRCoRs Sensor HSEV Mesh Strain Comparison
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Conclusions i Pl v e s

Both creep and drying shrinkage concrete material properties in the simulation were
essential in fitting the simulation results to the experimental data

«  ABAQUS's thermal equation (Fick's 2"d Law) is an acceptable equation for incorporating
drying shrinkage properties into concrete, but experimental data is required to fit the
coefficients

« Bazant's B3 creep model used experimental creep data to predict the creep response to 80
years

« The drying shrinkage material property was highly sensitive to mesh refinement

« Mesh refinement study indicated a convergence of simulation results towards
experimental data




