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MULTIFIDELITY BAYESIAN NETWORKS WITH EMBEDDED BASIS ADAPTATION
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Motivation and background




MF UNCERTAINTY QUANTIFICATION
CONTEXT AND CHALLENGES

Stewardship (NNSAASC) Energy (ASCR, EERE, NE)  Climate (SciDAC, CSSEF, ACME)

Safety in abnormal environments Wind turbines, nuclear reactors M, ISSM, CSDMS

WastePD: 10 CHWM: push fwd

Addtnl. Office of Science: posterior
SciDAC. EFRC
Comp. Matls: waste forms /
hazardous matls (WastePD, CHWM)

MHD: Tokamak disruption (TDS)

Statistical Inference for TDS
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Figure: Courtesy of Mike Eldred

High-fidelity state-of-the-art modeling and simulations with HPC

@_ Severe simulations budget constraints

@_ Significant dimensionality driven by model complexity
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MF UNCERTAINTY QUANTIFICATION

NAVIGATING THE COMPLEX RELATIONSHIPS AMONG MODELS

Multi-fidelity: several accuracy levels available

@_ Physical models (Laminar/Turbulent, Reacting/non-reacting, viscous/inviscid...)

Numerical methods (high/low order, Euler/RANS/LES, etc...)

o
@_ Numerical discretization (fine/coarse mesh...)
o

Quality of statistics (long/short time history for turbulent flow...)

Potential Flow

Potential
Flow
Regions

\

vortex sheet

cavity acoustic

Hybrid RANS/LES
Relationships amongst models can be difficult to anticipate
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@_ Hierarchical relationships usually correspond to modeling choices like, e.g. discretization

@_ However, peer relationships are often observed in the presence of physical approximations
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MF UNCERTAINTY QUANTIFICATION
SAMPLING/SURROGATE-BASED METHODS (+ CHALLENGES)

MF Sampling methods
@_ Derive directly from Monte Carlo
@_ Exploit correlation among model outputs
@_ Are build to obtain an estimator variance reduction
@ Ex: MLMC (Giles,2015), MEMC (Peherstorfer et al., 2016), ACV (Gorodetsky et al., 2020)

MF Surrogates methods
@_ Provide an approximation of the input-output mapping
@_ Achieve rapid error decrease (as the amount of data increases), provided that the input-output mapping is smooth

@_ Ex: Co-Kriging (Gradiet and Garnier, 2014) and stage-fitting (Liu et al. 2018)

Challenges in MF UQ

1 Existing strategies assume a prescribed relationship among models: a general procedure to encode and exploit a priori
knowledge is not available

2 The presence of noisy or corrupted data are not explicitly addressed
Heterogeneous sources with dissimilar uncertainty inputs are not routinely considered

In general, uncertainty estimates are not provided
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MF BAYESIAN NETWORKS
GENERALITIES - GORODETSKY, et al., IJUQ, 2020

Q: How do we formulate a general approach from which existing strategies (MLMC, MLMF, ACV, co-Kriging etc.) can be
derived as particular instances?

MFNets main features:

The formulation unifies both sampling and surrogate based approaches
Latent variables (LVs) are used to explain observed relationships among data sources

LVs allow to leverage common causes, not just model outputs (effects)

Conceptual steps:

LVs definition: LVs can represent both parameters of a simulation or the coefficients of its data-driven representation
Dependencies definition: Bayesian Networks (BNs) provide a mechanism to encode how the data sources are related
LVs inference: conditional independence among LVs is exploited to reduce the computational cost associated to this step

UQ analysis: LVs are used for the propagation of the input variables (and make predictions)
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MF NETWORKS
MF FUSION OF DATA - LVS INFERENCE

Linear-Gaussian models

@_ Linear expansion for each model w.r.t. features (e.g. a polynomial chaos basis)
i —1
Yi= > éu(X)0n
k=0

@_ Gaussian distribution to encapsulate uncertainty in the LVs

M1 o o X

0= (01,02,....00) ~N @, =) p=|: and X = | S

oot Si o S

@_ Conditional probability distributions are restricted to linear-Gaussian:
0i10paciy ~ N (Ailpaci)Opati) + Bifpatiy> Titpat)) »
@_ Finally, the conditional distribution for 6 given the data y (posterior)
2= (=4 le) !

p=so"sly =2
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BASIS ADAPTATION
GENERALITIES - TIPIREDDY AND GHANEM, JCP, 2014

Let's approximate each model source via a Polynomial Chaos Expansion (PCE)
Pi—1

Yi(X) = D Outha(X)
k=0

Basis Adaptation (BA) is a dimension reduction strategy based on the following steps

1 Seek rotated/adapted variables 0

ni = ni(Xi) = RiX; . (1)
2 Reduce the dimension, the first r; important dimensions are adequate to represent Y;
R, X; iy
;= = . 2
i |:Riﬁeri iy &)
3 The original model is approximated with the important dimensions
Pr
R; '\ R;
Y, (mi,) = Z 0.7 bin (M) (3)
k=1
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BASIS ADAPTATION
WHY/HOW DO WE EMBED BA IN MFNETS?

Why is embedding BA into MFNets a good idea?
1 It is possible to show that the correlation of two models is higher if important variables are used;

2 The number of PCE coefficients, of each model, can be highly reduced

ri + i) di + pi)!
G
i Di: i DPi:

How do we embed BA into MFNets?
1 Generate pilot samples for all models (m; samples per model)
2 Construct rotation matrix (for each model) and generate n; = R; X;
3 Assign priors (mean and covariances)
4 Evaluate posterior mean and variances for the high-fidelity model
T

Var(Yy) = diag <‘I>M(XM)2MM‘I’M(XM)T)
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Numerical Results




NUMERICAL RESULTS
SUMMARY OF THE TEST CASES
Numerical examples

1 Analytical test problem (verification)

2 Finite element model of nuclear spent fuel

(a) (b)

Two graphs

Figure: Graph structure with three nodes with (a) a peer and (b) a hierarchical structure. The HF model is Y3 and is described by variable 63,
while the two low-fidelity models are Y, and Y7, with variables 05 and 01, respectively.

Accuracy/Precision metrics
@_ Mean-Squared Bias (MSB): average of the squared bias for the test points
@_ Mean-VARiance (MVAR): average variance (of the posterior) over the test points
@_ Mean-Mean Squared Error (MMSE): average MSE over the test points, MMSE = MSB+MVAR

NOTE: No hyper-parameter tuning is used for MFNets, few choices for the parameters values are explored l
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GRAPH MODELING AND ASSUMPTIONS

PEER AND HIERARCHICAL GRAPHS (AND COEFFICIENTS’ CORRELATION)

Peer graph

03 = A3101 + A3z202 +v3
Covfy,v3] = 0 Va and Cov{fy, 03] = 0

o A3 = azil, A3z = assl, 311 = s11l, Bap = saal,
233 = 8331, and Evg = 233 — a31211 — a32222

@_ Prior covariance matrix

sl 0 azisil
3 = 0 3221 CL323221
asisiil  aseseel  sssl

Hierarchical graph

PCE coefficients

Oy = A9101 + v
03 = Aza0s +v3,

Cov{f,, v2] = 0 and Cov{f,,v3] = 0 Va

A21 = agll, A32 = a32], 2”2 = 222 — a§1211, and

2
Ypy = Mgz — agpSe
Prior covariance matrix

3111
3= aglsnl
asiasssit

@_ Five scalars for parametrizations
(811 = 8,822 = s,833 = 8,a31,a32), withs = 1

Common assumptions @ Two cases

@_ Uncorrelated coefficients ag; = agg = 0
@_ Correlated coefficient ag; = ags ~ p
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A three-model analytical example
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ANALYTICAL TEST PROBLEM
DEFINITIONS

Definitions
fi(x) =exp (x1 + 0.05x2) + exp 0.8x3 + exp (0.8x4 + 0.05x5 + 0.05x6) ,
fo(x) =log (0.75x1 + 0.05x2 + 1) + log (x5 + 0.05x5 + 1) + log (0.5x4 + 0.05x¢ + 1),
f3(x) =exp (0.1x; + 1.2x9) + exp 0.05x3 + exp (0.05x4 + x5 + x6)
—+ lOg(0.0le + 0.8x9 + 1) =+ 10g(0‘75x5 + x6 + 1) s

Training Dataset: m; = mg = 100 and m3 = 20
Testing Dataset: 200 points

Basis Adaptation
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Figure: Normalized first-order PCE coefficients in the original space.
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ANALYTICAL TEST PROBLEM
CASE 1: PEER GRAPH AND UNCORRELATED COEFFICIENTS (a3; = ass = 0) — THIRD ORDER POLYNOMIAL

Posterior vs reference in the original space Posterior vs reference in the reduced space
(MSB is 33.179, MMSE is 100.145) (MSB is 0.942, MMSE is 1.596)
*  Reference *  Reference
40 Post *  Post (adapt)
15
20 1
8 * g ., ® 2a® o ®
IR 2 VL £ N NN S0y g NN PO NN 2N
g 0
—20
—40 ’
—60 0
0 50 100 150 200 0 50 100 150 200
Test data index Test data index
(a) Posterior (Without BA) (b) Posterior (With BA)

Figure: CASE 1 - Analytical example with peer graph and uncorrelated coefficients
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ANALYTICAL TEST PROBLEM
CASE 2: PEER GRAPH AND CORRELATED COEFFICIENTS (a3; = a3y = 0.7) - THIRD ORDER POLYNOMIAL

Posterior vs reference in the original space with correlation Posterior vs reference in the reduced space with correlation
(MSB is 7.662, MMSE is 9.006) (MSB is 0.515, MMSE is 0.553)

*  Reference

*  Post (adapt) with corr

)
SN}
=5 s
®  Reference
-10 Post with correlation 0
0 50 100 150 200 0 50 100 150 200
Test data index Test data index i
(a) Posterior (Without BA) (b) Posterior (With BA)

Figure: CASE 2 - Analytical example with peer graph and correlated coefficients
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ANALYTICAL TEST PROBLEM
IMPACT OF THE NUMBER OF SAMPLES

Convergence curve (LF samples are 5 times HF samples)

10° —e— MFNets (az; = 0)
o =0+ MFNets ((l31 = 07)
—e— MFNets-+BA (a3 = 0)

10! “+o-  MFNets+BA (az = 0.7)
L
[%2]
=
= 100

107!

20 40 60 80 100
Number of HF MC samples

Figure: MMSE for different surrogate constructions with MFNets with and without BA — Analytical test problem.
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FEM model for nuclear fuel assembly
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FEM EXEMPLAR
MODELS’ DEFINITION

<\\\\\ -

‘ et

- -~

(a) Detailed fuel assembly (HF) (b) First simplified fuel assembly (LF2) (c) Second simplified fuel assembly (LF1).

Models’ description
@ FEM of a spent nuclear fuel assembly with 92 fuel rods, 2 water rods, and 8 spacers
@_ Squared channel structure (welded to the upper handle and lower tie plate)
@ HF model's DoFs N = 1,912, 506
@ LF2: 10 x 10 fuel rods, one upper-tie plate, and one low-tie plate — N = 368, 892 DOFs
@ LF1: coarse version of LF2 — N = 64,392 DOFs

Training dataset: m; = mg = 1000, mg = 150
Testing dataset: 100 points
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FEM EXEMPLAR
PROBLEM DEFINITION

Uncertainties (d = 8)

@_ Connections of different structural levels: rod-to-grid and grid-channel — beta distributions

Qol - Frequency Response Function (Nominal response in the figure)

Acceleration (dB)

0 200 400 600 800
Frequency (Hz)

(a) FRF (detailed model - HF)

Basis Adaptation
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FEM EXEMPLAR
CASE 1: PEER GRAPH AND UNCORRELATED COEFFICIENTS (a3; = agy = 0) - THIRD ORDER POLYNOMIAL ‘

Posterior vs reference in the original space Posterior vs reference in the reduced space
(MSB is 29.494, MMSE is 45.974) (MSB is 0.031, MMSE is 0.047)
*  Reference —17.0 *  Reference
30 Post *  Post (adapt)
-17.5
20 | .
10
S o
—10
-20 { f
—30 —19.5
0 20 40 60 80 100 0 20 40 60 80 100
Test data index Test data index
(a) Posterior (Without BA) (b) Posterior (With BA)

Figure: CASE 1 - FEM exemplar with peer graph and uncorrelated coefficients
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FEM EXEMPLAR
CASE 1: PEER GRAPH AND CORRELATED COEFFICIENTS (a3; = ag2 = 0.5) — THIRD ORDER POLYNOMIAL

Posterior vs reference in the original space with correlation Posterior vs reference in the reduced space with correlation
(MSB is 2.939, MMSE s 11.531) (MSB is 0.031, MMSE is 0.047)
10 ®  Reference —17.0 *  Reference
Post with correlation *  Post (adapt) with corr
—17.5
0 i 1
—18.01.
5 —10 o
< G185
-20 -19.0 | !
=30 —195
0 20 40 60 80 100 0 20 40 60 80 100
Test data index Test data index
(a) Posterior (Without BA) (b) Posterior (With BA)

Figure: CASE 1 - FEM exemplar with peer graph and correlated coefficients
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CLOSING REMARKS
WORK-IN-PROGRESS

Summary
@_ We explored the embedding of the BA dimension reduction strategy into MFnets
@_ Several numerical examples were considered

@_ Results are encouraging and motivate additional tests, e.g., MFNets+BA seems to be insensitive w.r.t. the graph

Next steps
@_ The next step is to include hyper-parameter tuning in both strategies

@_ Extend the numerical examples to larger ensemble of models
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