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Motivation and background



MF UNCERTAINTY QUANTIFICATION
CONTEXT AND CHALLENGES

Figure: Courtesy of Mike Eldred

High-fidelity state-of-the-art modeling and simulations with HPC

Severe simulations budget constraints

Significant dimensionality driven by model complexity
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MF UNCERTAINTY QUANTIFICATION
NAVIGATING THE COMPLEX RELATIONSHIPS AMONG MODELS

Multi-fidelity: several accuracy levels available

Physical models (Laminar/Turbulent, Reacting/non-reacting, viscous/inviscid...)

Numerical methods (high/low order, Euler/RANS/LES, etc...)

Numerical discretization (fine/coarse mesh...)

Quality of statistics (long/short time history for turbulent flow...)

Relationships amongst models can be difficult to anticipate

Hierarchical relationships usually correspond to modeling choices like, e.g. discretization

However, peer relationships are often observed in the presence of physical approximations
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MF UNCERTAINTY QUANTIFICATION
SAMPLING/SURROGATE-BASED METHODS (+ CHALLENGES)

MF Sampling methods

Derive directly from Monte Carlo

Exploit correlation among model outputs

Are build to obtain an estimator variance reduction

Ex: MLMC (Giles,2015), MFMC (Peherstorfer et al., 2016), ACV (Gorodetsky et al., 2020)

MF Surrogates methods

Provide an approximation of the input-output mapping

Achieve rapid error decrease (as the amount of data increases), provided that the input-output mapping is smooth

Ex: Co-Kriging (Gradiet and Garnier, 2014) and stage-fitting (Liu et al. 2018)

Challenges in MF UQ

1 Existing strategies assume a prescribed relationship among models: a general procedure to encode and exploit a priori
knowledge is not available

2 The presence of noisy or corrupted data are not explicitly addressed

3 Heterogeneous sources with dissimilar uncertainty inputs are not routinely considered

4 In general, uncertainty estimates are not provided
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MFNets



MF BAYESIAN NETWORKS
GENERALITIES – GORODETSKY, et al., IJUQ, 2020

Q: How do we formulate a general approach from which existing strategies (MLMC, MLMF, ACV, co-Kriging etc.) can be
derived as particular instances?

MFNets main features:

The formulation unifies both sampling and surrogate based approaches

Latent variables (LVs) are used to explain observed relationships among data sources

LVs allow to leverage common causes, not just model outputs (effects)

Conceptual steps:

LVs definition: LVs can represent both parameters of a simulation or the coefficients of its data-driven representation

Dependencies definition: Bayesian Networks (BNs) provide a mechanism to encode how the data sources are related

LVs inference: conditional independence among LVs is exploited to reduce the computational cost associated to this step

UQ analysis: LVs are used for the propagation of the input variables (and make predictions)
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MF NETWORKS
MF FUSION OF DATA – LVS INFERENCE

Linear-Gaussian models

Linear expansion for each model w.r.t. features (e.g. a polynomial chaos basis)

Yi =

Pi−1∑
k=0

φik(Xi)θik

Gaussian distribution to encapsulate uncertainty in the LVs

θ = (θ1, θ2, . . . , θM) ∼ N (µ,Σ) µ =


µ1
.
.
.

µM

 and Σ =


Σ11 · · · Σ1M

.

.

.
. . .

.

.

.
ΣM1 · · · ΣMM

 ,
Conditional probability distributions are restricted to linear-Gaussian:

θi|θpa(i) ∼ N
(
Ai|pa(i)θpa(i) + bi|pa(i),ΓΓΓi|pa(i)

)
,

Finally, the conditional distribution for θ given the data y (posterior)

Σ̄ =
(
Σ
−1

+ Φ
T
Σ
−1
n Φ

)−1

µ̄ = Σ̄Φ
T
Σ
−1
n y + Σ̄Σ

−1
µ.
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Basis Adaptation



BASIS ADAPTATION
GENERALITIES – TIPIREDDY AND GHANEM, JCP, 2014

Let’s approximate each model source via a Polynomial Chaos Expansion (PCE)

Yi(Xi) =

Pi−1∑
k=0

θikψik(Xi)

Basis Adaptation (BA) is a dimension reduction strategy based on the following steps

1 Seek rotated/adapted variables η
ηi = ηi(Xi) = RiXi . (1)

2 Reduce the dimension, the first ri important dimensions are adequate to represent Yi

ηi =

[
Rir Xi

Ri¬r Xi

]
=

[
ηir
ηi¬r

]
. (2)

3 The original model is approximated with the important dimensions

Y
Rir
i (ηir ) =

Pr
i∑

k=1

θ
Rir
ik ψik(ηir ) , (3)
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BASIS ADAPTATION
WHY/HOW DO WE EMBED BA IN MFNETS?

Why is embedding BA into MFNets a good idea?

1 It is possible to show that the correlation of two models is higher if important variables are used;

2 The number of PCE coefficients, of each model, can be highly reduced

Pr
i =

(ri + pi)!

ri! pi!
<<

(di + pi)!

di! pi!

How do we embed BA into MFNets?

1 Generate pilot samples for all models (mi samples per model)

2 Construct rotation matrix (for each model) and generate ηi = Rir Xi

3 Assign priors (mean and covariances)

4 Evaluate posterior mean and variances for the high-fidelity model

µȲM
= ΦM(X̄M)µ̄M

Var(ȲM) = diag
(
ΦM(X̄M)Σ̄MMΦM(X̄M)

T
)
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Numerical Results



NUMERICAL RESULTS
SUMMARY OF THE TEST CASES

Numerical examples

1 Analytical test problem (verification)

2 Finite element model of nuclear spent fuel

Two graphs

(a) (b)

Figure: Graph structure with three nodes with (a) a peer and (b) a hierarchical structure. The HF model is Y3 and is described by variable θ3,
while the two low-fidelity models are Y2 and Y1, with variables θ2 and θ1, respectively.

Accuracy/Precision metrics

Mean-Squared Bias (MSB): average of the squared bias for the test points

Mean-VARiance (MVAR): average variance (of the posterior) over the test points

Mean-Mean Squared Error (MMSE): average MSE over the test points, MMSE = MSB+MVAR

NOTE: No hyper-parameter tuning is used for MFNets, few choices for the parameters values are explored
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GRAPH MODELING AND ASSUMPTIONS
PEER AND HIERARCHICAL GRAPHS (AND COEFFICIENTS’ CORRELATION)

Peer graph

θ3 = A31θ1 + A32θ2 + v3

Cov[θα, v3] = 0 ∀α and Cov[θ1, θ2] = 0

A31 = a31I, A32 = a32I, Σ11 = s11I, Σ22 = s22I,
Σ33 = s33I, and Σv3 = Σ33 − a2

31Σ11 − a2
32Σ22

Prior covariance matrix

Σ =

 s11I 0 a31s11I
0 s22I a32s22I

a31s11I a32s22I s33I



Hierarchical graph

PCE coefficients

θ2 = A21θ1 + v2

θ3 = A32θ2 + v3 ,

Cov[θα, v2] = 0 and Cov[θα, v3] = 0 ∀α

A21 = a21I, A32 = a32I, Σv2 = Σ22 − a2
21Σ11, and

Σv3 = Σ33 − a2
32Σ22

Prior covariance matrix

Σ =

 s11I a21s11I a21a32s11I
a21s11I s22I a32s22I

a21a32s11I a32s22I s33I



Common assumptions

Five scalars for parametrizations
(s11 = s, s22 = s, s33 = s, a31, a32), with s = 1

Two cases

Uncorrelated coefficients a31 = a32 = 0
Correlated coefficient a31 = a32 ≈ ρ
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A three-model analytical example
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ANALYTICAL TEST PROBLEM
DEFINITIONS

Definitions
f1(x) = exp (x1 + 0.05x2) + exp 0.8x3 + exp (0.8x4 + 0.05x5 + 0.05x6) ,

f2(x) = log (0.75x1 + 0.05x2 + 1) + log (x3 + 0.05x5 + 1) + log (0.5x4 + 0.05x6 + 1) ,

f3(x) = exp (0.1x1 + 1.2x2) + exp 0.05x3 + exp (0.05x4 + x5 + x6)

+ log(0.05x1 + 0.8x2 + 1) + log(0.75x5 + x6 + 1) ,

Training Dataset: m1 = m2 = 100 and m3 = 20
Testing Dataset: 200 points

Basis Adaptation
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(a) Low-fidelity (f1)
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(b) Low-fidelity (f2)
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(c) High-fidelity (f3)

Figure: Normalized first-order PCE coefficients in the original space.
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ANALYTICAL TEST PROBLEM
CASE 1: PEER GRAPH AND UNCORRELATED COEFFICIENTS (a31 = a32 = 0) – THIRD ORDER POLYNOMIAL
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(a) Posterior (Without BA)
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Figure: CASE 1 - Analytical example with peer graph and uncorrelated coefficients

Basis Adaptation + MFNets 12/19



ANALYTICAL TEST PROBLEM
CASE 2: PEER GRAPH AND CORRELATED COEFFICIENTS (a31 = a32 = 0.7) – THIRD ORDER POLYNOMIAL
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(a) Posterior (Without BA)
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Figure: CASE 2 - Analytical example with peer graph and correlated coefficients
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ANALYTICAL TEST PROBLEM
IMPACT OF THE NUMBER OF SAMPLES
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Number of HF MC samples
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Convergence curve (LF samples are 5 times HF samples)

MFNets (a31 = 0)

MFNets (a31 = 0.7)

MFNets+BA (a31 = 0)

MFNets+BA (a31 = 0.7)

Figure: MMSE for different surrogate constructions with MFNets with and without BA – Analytical test problem.
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FEM model for nuclear fuel assembly
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FEM EXEMPLAR
MODELS’ DEFINITION

(a) Detailed fuel assembly (HF) (b) First simplified fuel assembly (LF2) (c) Second simplified fuel assembly (LF1).

Models’ description

FEM of a spent nuclear fuel assembly with 92 fuel rods, 2 water rods, and 8 spacers

Squared channel structure (welded to the upper handle and lower tie plate)

HF model’s DoFs N = 1, 912, 506

LF2: 10× 10 fuel rods, one upper-tie plate, and one low-tie plate → N = 368, 892 DOFs

LF1: coarse version of LF2 → N = 64, 392 DOFs

Training dataset: m1 = m2 = 1000, m3 = 150
Testing dataset: 100 points
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FEM EXEMPLAR
PROBLEM DEFINITION

Uncertainties (d = 8)

Connections of different structural levels: rod-to-grid and grid-channel → beta distributions

QoI – Frequency Response Function (Nominal response in the figure)
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(a) FRF (detailed model - HF)
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(b) FRF (first LF model - LF2)
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(c) FRF (second LF model - LF1)
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(a) LF1
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(b) LF2
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FEM EXEMPLAR
CASE 1: PEER GRAPH AND UNCORRELATED COEFFICIENTS (a31 = a32 = 0) – THIRD ORDER POLYNOMIAL
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(a) Posterior (Without BA)
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Figure: CASE 1 - FEM exemplar with peer graph and uncorrelated coefficients
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FEM EXEMPLAR
CASE 1: PEER GRAPH AND CORRELATED COEFFICIENTS (a31 = a32 = 0.5) – THIRD ORDER POLYNOMIAL
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Figure: CASE 1 - FEM exemplar with peer graph and correlated coefficients
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Closing remarks



CLOSING REMARKS
WORK-IN-PROGRESS

Summary

We explored the embedding of the BA dimension reduction strategy into MFnets

Several numerical examples were considered

Results are encouraging and motivate additional tests, e.g., MFNets+BA seems to be insensitive w.r.t. the graph

Next steps

The next step is to include hyper-parameter tuning in both strategies

Extend the numerical examples to larger ensemble of models
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