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ABSTRACT

Collecting accurate data during vibration testing requires clean data. One of the first steps in a 
vibration test is the characterization of the noise floor of the measurement chain. This step is 
important so that artifacts of the measurement chain do not pollute the measured data, particularly 
at low signal to noise ratios. During a recent transportation vibration test conducted by Sandia 
National Laboratories, the data acquisition system introduced narrow band spurious signals that 
were large enough to be observable in the ASDs of the accelerations collected during the test. The 
spurious noise tones had to be removed from the ASDs collected during the driving phase of the 
test. A novel approach based on frequency domain median filtering of the ASDs was used to clean 
the measured data. Three methods were developed, and all were able to remove the sine tones. The 
results show that frequency domain median filtering is a viable, straightforward way to remove 
certain types of measurement noise artifacts without biasing the data.  

I. INTRODUCTION

Vibration environments are usually represented as Autospectral Densities (ASDs), which quantify 
the spectral content and intensity of a given time history. The ASDs of a quiescent system 
characterize the noise floor, which when compared to the ASD of the system in a dynamic 
environment, provide a signal-to-noise ratio (SNR) spectrum. This ratio indicates which elements 
of the dynamic system ASDs are relevant with respect to the background noise so that artifacts of 
the measurement chain are not given undue consideration in the processing and analysis of the 
data. The artifacts that may manifest in the noise floor need to then be rectified since they could 
otherwise show up in the dynamic system ASDs, contaminating it and influencing conclusions that 
may be drawn from the data.

Usually, measurement noise is a random phenomenon and therefore can be reduced by averaging. 
The variance of the estimated (i.e., measured) ASD is inversely proportional to the number of 
averages used to compute the ASD [1]. This relationship means that for additive noise, the SNR 
increases with the number of segments because the noise level decreases with the number of 
segments. 

Averaging does not reduce the levels of noise sources that are not random.  For example, 60 Hz 
electrical noise artifacts sometimes pollute data if the measurement instrumentation is not properly 
grounded. The poor ground appears as a 60 Hz tone in the spectral data, often with higher 
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harmonics as well. Ideally this artifact would be removed by proper grounding prior to collecting 
test data.  

Sometimes deterministic noise artifacts of unknown origin appear in the data, and—since they 
were not removed prior to collecting data—their contributions to the ASDs should be removed.  
Deterministic artifacts, such as sine tones from rotating machinery or electrical noise, are often 
removed with time-domain filtering. Usually this removal is done with digital filters such as the 
Vold-Kalman Order Tracking filter [2,3] for tracking sinusoidal signals or with notch filters that 
use sine tone estimation with FIR (Finite Impulse Response) or IIR (Infinite Impulse Response) 
filters [4] to attenuate a signal at a specific frequency.  

Deployment of these time domain methods requires a-priori knowledge of the artifacts to be 
filtered out or a disturbance rejection adaptive control system. If one does not anticipate the 
presence of deterministic artifacts, then the data may be corrupted from pollution by these artifacts. 
If the complete time domain data from a test are available, the deterministic artifacts can be 
removed by filtering during post processing. However, there may be real data that are of interest 
at these frequencies as well, and time domain filtering runs the risk of attenuating real data.  

This paper describes frequency domain methods to eliminate deterministic noise artifacts (i.e., sine 
tones). The methods are applicable when the time history of a given test record is not available 
after a test. For longer duration tests, it is beneficial to have a means of mitigating noise artifacts 
from ASDs directly. The methods described herein use the noise floor of a test to locate artifacts 
in the frequency domain to mitigate their pollution of the test ASDs. This approach depends on 
the assumption that noise artifacts will pollute the ASDs additively, and that they are easily 
identified in a system’s noise floor where they are the only deterministic artifact.

This remainder of this paper is organized into five sections.  First the motivation for the work is 
described in the next section, Section II. The approaches are based on median filtering in the 
frequency domain, so the basics of median filters are presented in Section III. The approaches 
investigated, and their performance are described in Section IV. Section V gives conclusions and 
recommendations.  

II. MOTIVATION

The motivation for this work was a transportation vibration test, called an Over-the Road (OTR) 
test, whose objective was the establishment of transportation environments for the cargo. Toward 
this end, a range of sensors collected acceleration data at a variety of locations as the vehicle 
operated on several different road types over a range of speeds. The overall duration of the test 
was a few hours and data were recorded at a high sample rate. For a general analysis, the data were 
divided into three distinct phases. The first of these is the engine-off quiescent phase. Data from 
this phase were used to determine the noise floor of the test, as the system was assumed to be 
perfectly static. The second phase is the engine-on static phase, when the vehicle was not in motion 
but had been turned on. The final phase is the driving phase, which accounts for all data while the 
vehicle was in motion. The transportation vibration environments, both random vibration and 
shock environments, are derived from data measured during this phase.  



In many of the recorded channels, sine-tone spikes cropped up in the ASDs during the quiescent 
phase as well as in the other phases of the test. Their manifestation in a nominally quiescent 
environment corresponds to no known physical cause, and consequently they are considered to be 
noise artifacts from the measurement chain rather than meaningful data. Figure 1 presents the noise 
floor for two channels, illustrating the contaminating sine-tone spikes.

Figure 1: Channel 1 & 2 Noise Floors

Since these spikes are not representative of the true vibration environment, they should be removed 
from the driving phase data prior to analysis so as to not contaminate the data measured in the 
driving phase. This paper describes methods of sine tone spike removal in the frequency domain 
using median filters. 



III. MEDIAN FILTERS

Median filters remove noise from signals, smoothing the data while preserving edges better than 
many other data-smoothing techniques. These filters work by sliding a window, most often defined 
by an odd number of points, over a set of data and replacing the central value for each window 
with the window’s median value. Median filters are often used effectively in image processing to 
remove “popcorn noise” or hot pixels, at the cost of some reduction in sharpness and clarity. This 
paper employs a Hampel Filter, which builds off the concept of a median filter by adding an 
element of outlier detection. Developed by the statistician Frank Hampel, this filter checks the 
central value of each window against that window’s standard deviation. If the central value is 
greater than the predetermined number of standard deviations, 𝑘𝜎𝑗, then the value is identified as 
an outlier and replaced like a traditional median filtered value.

𝑦𝑗 =
𝑥𝑗 if |𝑥𝑗 ― 𝑚𝑗| ≤ 𝑘𝜎𝑗
𝑚𝑗 if |𝑥𝑗 ― 𝑚𝑗| > 𝑘𝜎𝑗

(1)  

where 𝜎𝑗 is the standard deviation of the data in the window.

Most often k is assigned a value of 3 or 4. The window length should be long enough so that any 
outliers do not bias the standard deviation estimate. This conditional application of a median filter 
allows the filter’s strength to shine by mitigating outliers without unnecessarily smoothing 
legitimate data. Only two parameters need to be determined to employ the Hampel Filter: the 
window length, and the number of standard deviations, k, that a value must exceed to be considered 
an outlier.  

IV. APPROACHES

Noise Floor Removal

This method is the reference method and consists simply of reducing the Driving Phase ASDs by 
the measured noise floor across all frequencies. At frequencies with a high signal-to-noise ratio, 
the reduction will have little overall effect beyond reducing the sine-tone spikes in the Driving 
Phase by those in the noise floor, while frequencies with low signal-to-noise ratio will be under-
represented. In most cases caution should already be exercised in the frequencies with low signal-
to-noise ratio, as contamination from any low-level measurement chain artifacts is more likely to 
corrupt the data in subtle ways, reducing the confidence about the veracity of the environments at 
those frequencies. Figure 2 depicts the SNR for the two representative channels chosen as 
examples in this paper, while Figure 3 shows the Driving Phase ASDs, the noise floors, and the 
results of applying the Noise Floor Removal method.  Note that the SNR drops at the sine tone 
frequencies.  



Figure 2: Signal-to-Noise Ratios



Figure 3: Noise Floor Removal Results

For the frequencies with the highest Signal-to-Noise Ratio, the Noise Floor Removal method does 
a reasonable job of mitigating the sine-tone spikes. However, these are also the frequencies where 
it is hard to determine the extent of the contamination by eye. Low SNR frequencies still maintain 
a distinctive spike, while also notably reducing the magnitude of the signal at surrounding 
frequencies. Even at mid-level SNR frequencies, a residual spike is left, protruding from an 
obviously reduced curve. This method diminishes the SNR of the Driving Phase ASD by 1.0 across 
all frequencies-as a general rule it seems to mitigate the sine-tone spike artifacts adequately when 
the SNR is above 10 but struggles to be effective when the Driving Phase ASD has a lower 
magnitude.

Filtered Noise Floor

This method approaches the problem similarly to the Noise Floor Removal method, but rather than 
applying a blanket reduction of the Driving Phase ASD with the noise floor, only the frequencies 



with the sine-tone spikes are affected. The reduction of only the sine tone spikes is achieved 
through the use of a Hampel Filter, which is applied to the noise floor (NF) in order to obtain a 
Filtered Noise Floor (NFDS). All subsequent methods likewise depend on the derivation of this 
Filtered Noise Floor. The Hampel Filter applied used a window of 33 points, replacing values 
beyond four standard deviations of that window with its median value. Figure 4 illustrates the 
Filtered Noise Floors against their progenitors. 

Figure 4: Filtered Noise Floors

The Driving Phase ASD is then reduced by the difference between the original Noise Floor and 
the Filtered Noise Floor, as per Eq. (2):

𝐴𝑆𝐷𝐷𝑆 = 𝐴𝑆𝐷 ― (𝑁𝐹 ― 𝑁𝐹𝐷𝑆) (2)  
where 𝐴𝑆𝐷𝐷𝑆 is the Driving Phase ASD after the sine-tone spikes have been mitigated, ASD is the 
original Driving Phase ASD, and NF and NFDS are the original and Filtered Noise Floors, 
respectively. This approach removes just the sine tones, avoids the pitfall of the Noise Floor 



Removal method in altering frequencies that are untouched by the noise artifacts, and reduces their 
manifestation by the extent to which they diverge from the original Noise Floor. Figure 5 presents 
the results of applying this method.

Figure 5: Filtered Noise Floor Method Results

Due to the Hampel Filter’s identification of the noise artifacts, the Driving Phase ASD experienced 
significantly less alteration than with the Filtered Noise Floor method. While the spikes were 
greatly reduced, there are still residual peaks at frequencies with noise artifacts. These appear most 
severe at frequencies with low SNR, in which log-scale ASDs are traditionally viewed to draw out 
the differences at low magnitudes.

Difference of Roots

The Difference of Roots method shares a similar approach to the Filtered Noise Floor method but 
does not assume a linear relationship between the divergence of the spikes in the noise floor and 



that in the ASD. Instead, this method considers the fact that the parameters involved are powers 
of a quantity (G2/Hz), and Eq. (2) is updated to:

𝐴𝑆𝐷𝐷𝑆 = 𝐴𝑆𝐷
1
2 ― 𝑁𝐹

1
2 ― 𝑁𝐹

1
2
𝐷𝑆

2

(3)  

The results of applying this method are depicted in Figure 6.

Figure 6: Difference of Roots Method Results

Contrasting the Noise Floor Removal and the Filtered Noise Floor methods, the Difference of 
Roots approach performs best at low-magnitude frequencies, leaving only very small residual 
peaks. However, this method appears to over-compensate at frequencies with high SNR, dragging 
the ASD lower than the surrounding frequencies would seem to indicate is appropriate. While this 
deviation can appear small, especially given the fact that it occurs in log-scale where the apparent 
differences are diminished, it still results in an under-conservative representation of the 



environment at that frequency, and some tests may be better served by leaving a large conservative 
discrepancy as opposed to creating a small, under-conservative error.  

LS Model

The Least Squares (LS) Model method forgoes any assumptions about how the sine-tone spikes in 
the noise floor relate to those in the Driving Phase ASD, and instead takes a collection of sine-tone 
spike properties to create a LS model. Four parameters were taken from each of the sample 
frequencies that contain a sine-tone peak. These parameters are the magnitude of the spike in the 
noise floor (NF Pk), the expected magnitude at that frequency given the magnitude of the curve at 
surrounding frequencies (NF Ex), the magnitude of the spike in the Driving Phase (DP Pk), and 
the expected magnitude of the ASD at that frequency given the surrounding magnitudes. From 
these parameters, the difference of each curve’s peak to its expected value was computed (NF Dif 
and DP Dif, respectively). These parameters are illustrated in Figure 7. 

Figure 7: Collected Parameters



DP Dif was found to be linearly related to NF Dif on a loglog scale, so a linear regression model 
was created for the logs of these parameters to quantify that relationship. The scatter-plot of these 
logs for the samples taken is shown in Figure 8.

Figure 8: Log-scale Scatterplot of Approximate Spike Deviations

The Least Squares Linear Regression Model for this data takes the form

log(𝐷𝑃 𝐷𝑖𝑓) = 𝐴 ∗ log(𝑁𝐹 𝐷𝑖𝑓) + 𝐵 (4)  
This expression is then transformed to be more readily applicable in linear space:

𝑌 = 𝑋𝐴 ∗ 𝑒𝐵

Where X represents the NF Dif axis, Y is the DP Dif Axis, and A and B are the respective slope 
and intercept for the least squares regression model using the logs of NF Dif and DP Dif. Since Y 
represents the difference between the sine-tone peak and the expected value at that frequency, it is 



subtracted from the Driving Phase ASDs. The results of applying this method are shown in Figure 
9.

Figure 9: Least Squares Model Method Results

This method effectively brings down the artificial peaks, adjusting them to be believably within 
the range of expected values of each frequency given the curve behavior at adjacent frequencies. 
Both the sine-tone peaks at higher and lower SNR frequencies appear to be reasonably well 
mitigated, although a residual “jag” pattern can be left where each peak had been. This jag is most 
apparent at frequencies with low-magnitude spectral content, but still much more closely 
approximates the expected values than the other methods. However, this method is more reliant 
on preprocessing, requiring the collection of a representative sampling of the artifact parameters 
to derive A and B. Figure 10 presents all of the methods together, while Figure 11 zooms in on the 
labeled windows.



Figure 10: All Methods



Figure 11: Spike-Remediation Comparison Windows from Spikes Identified in Figure 10

V. CONCLUSIONS

This paper presents frequency domain methods based on a Hampel Filter to determine the location 
and extent of artificial sine tones in the noise floor ASD and from there mitigate these sine tones 
in the ASDs of measurement phase data. Four approaches to removing the sine-tone artifacts in 
the Driving Phase of an OTR test are presented. The Noise Floor Removal method serves as the 
reference and is constituted simply by subtracting the measured noise floor from the Driving Phase 
ASDs across all frequencies. This method reduced the SNR by 1.0 and did little to diminish the 
relative sine-tone magnitudes. The Filtered Noise Floor method identifies and quantifies the noise 
artifacts in the noise floor with a Hampel Filter thereby only affecting the frequencies with the 
sine-tones. However, this method does leave some residual peaks. The Difference of Roots method 
works similarly to the Filtered Noise Floor but assumes the ASDs are combined as products of the 
square roots of the ASDs. This approach mitigates the sine-tones reasonably well at frequencies 



with low-magnitude spectral content but overcompensates at frequencies with higher magnitude 
spectral content, resulting in potential underestimation of ASDs where there is legitimate content. 
Finally, the Least Squares Model method creates a linear regression model of the sine-tone spikes 
in the Driving Phase ASDs based on those in the noise floor. This method performed well across 
a wide range of spectral magnitudes, although a small “jag” pattern tends to remain. Of the 
approaches illustrated in this paper, the Least Squares Model performed the best. While more 
reliable, this method is also dependent on more preprocessing to collect samples for generating the 
model. 

These examples demonstrate the utility of applying a Hampel Filter in the frequency domain to 
identify sine-tone noise artifacts and mitigate their effects on measured ASD for that system.  The 
results show that other Hampel Filter based methods could be developed for specific applications.  
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