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, | Today I'll be representing the work of a large group of talented and
dedicated colleagues at the intersection of data science and HEDP.

e Center 1600 (Pulsed Power Sciences): L. Stanek, M. A. Schaeuble, J.R. Fein, A.]. Porwitzky , J.L.. Brown, O.M. Mannion, E. C.

Harding, S. B. Hansen, T. Nagayama, M.B. Adams, J].M. Woolstrum, C. A. Jennings, A. J. Harvey-Thompson, C. Tyler, M. R.
Gomez, M. R. Weis, D. E. Ruiz, D. J. Ampleford, M. Geissel, M. Mangan, G.A. Chandler, G. Cooper, K. Blaha , S. Fields, S. A.
Slutz, I.C. Smith, T. J. Awe, K. Beckwith, L. Schulenburger, D. B. Sinars, M. Jones, G. A. Rochau, K. J. Peterson, T.R. Mattsson,
*P.F. Knapp, **M.E. Glinsky, ***P. F. Schmit

Our team is growing!
Center 1600’s first Maxwell fellow, Luke Stanek
Actively recruiting and seeking collaborations

>Nuclear Engineering & Radiological Sciences Department, University of Michigan, Ann Arbor, Ml
*current location, Los Alamos National Laboratory, Los Alamos NM

**current location, BNZ Energy Inc., Santa Fe NM

***current location, Lawrence Livermore National Laboratory, Livermore CA
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Talk overview

 Introduction
°Sandia’s Z Pulsed Power Facility
°Magnetized Liner Inertial Fusion
e Exemplars of applied data science for Magl.IF
°stagnation image analysis
> fuel magnetization parameter analysis
o future directions and collaboration opportunities!

*Overview of other efforts and concluding remarks
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‘Sandia’s Z Pulsed Power Facility

The Earth’s largest pulsed power
machine




‘Sandia’s Z Pulsed Power Facility
. =

&

Pulsed Power
Development
Area

» 20 MA peak current
> 4kd, 1 TW laser
» 2 MJ’s soft x-ray
Target Chambers. <= |, : » kJ’s warm x-rays
i A > kJ’s fusion yield
» Mbar’s planar drive




4

As a world class facility, Z provides a powerful resource for investigating
critical national security questions and exciting fundamental science.

o : Dynamic Material Inertial Confinement

Weapon survivability « Pu aging and manufacturing « Thermonuclear burn
Laboratory Astrophysics  Planetary science * Basic fusion research



« | As a world class facility, Z provides a powerful resource for investigating
critical national security questions and exciting fundamental science.

Dynamic Material

Radiation Science

Properties
*  Weapon survivability «  Pu aging and manufacturing
* Laboratory Astrophysics + Planetary science

€ Inertial Confinement 1)
Fusion

\_

Thermonuclear burn
Basic fusion research
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The Magnetized Liner Inertial Fusion (MagLIF) concept relies on

three stages to reach fusion relevant conditions.

imploded by ~20 MA

Be liner provided by Z

Gaseous
DD fuel
0.7 mg/cc ~100ns
Apply Axial Magnetic Field Preheat Implosion

A. Slutz et. al., Phys. Plasmas 17, 056303 (2010).
R. Gomez et al. Phys. Rev. Lett. 113, 155003 (2014).

6-8 mm

Stagnation



¢ ‘ Helmholtz-like coils are used to premagnetize the MagLIF load

without B, with B,

random helical

Premag netize fuel D. C. Rovang et al., Rev. Sci. Instrum. 85, 124701 (2014).
« embed 7-20 T in ~ms timescale

» reduce radial thermal conduction

» compress + traps fusion products
N




7 | Z Beamlet laser preheats the fuel establishing a higher adiabat

Preheat the fuel

« Z-Beamlet laser delivers
~2-3 kd to the Z chamber.
» Laser heats fuel through
Inverse Bremsstrahlung
(~100-200 eV, 1-2 kJ)
« Laser preheat sets the
. adiabat of the implosion.

. Weis, et al., Phys. Plasmas 28, 012705 (2021).
Harvey-Thompson, et al., Phys. Plasmas 27, 113301 (2020).
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. J. Harvey-Thompson, et al., Phys. Plasmas 26, 032707 (2019).
. J. Harvey-Thompson, et al., Phys. Plasmas 25, 112705 (2018).
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eissel, et al., Phys. Plasmas 25, 022706 (2018).
Harvey-Thompson, et al., Phys. Rev. E 94, 051201 (2016).
Harvey-Thompson, et al., Phys. Plasmas 22, 122708 (2015).
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Current from the Z pulsed power generator provides a magnetic
pressure driving the liner to implode compressing the fuel

Central Fuel
Temp. [keV]

Liner & Fuel
Radii [mm]

Current/10
[MA]

<Fuel Temp.>
[keV]

50 100 150
Time [ns]

Compress liner and fuel

Lorentz force accelerated the
liner.

Fuel is then quasi-adiabatically
compressed.

Liner implosion leads to flux
compression, amplifying B-field

R. McBride et al., Phys. Plasmas 23, 012705 (2016).
3D implosion movie courtesy of C. Jennings.




» | When thermal pressure exceeds magnetic pressure, the liner

decelerates resulting in stagnation

Stagnation

S.
M.

6-8 mm

A. Slutz et. al., Phys. Plasmas 17, 056303 (2010).
R. Gomez et al. Phys. Rev. Lett. 113, 155003 (2014).
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MagLIF offers a rich physics platform with paths to high yield at a next |
generation pulsed power (NGPP) facility.

10

B
¢ Physics: ‘
. 3 *  Baseline point I
> magnetized HED plasmas " e DT (@moa) x IS .o
: .. ith a) oc 7563 20.5 4 |
> fusion relevant temperatures and densities 10°d| ¢ DPT(tha)c ["“‘Tf > Tnax
Theory (no a) oc 15 "
° thermonuclear neutron generation g 10! ’ )
=]
* NNSA Stockpile Stewardship Program ;_’ 10° Z machine
> Y>100M]J in controlled fashion in the lab 10! %
. ——
> NGPP may help achieve this goal 107
y help g NGPP
May provide route to fusion-energy on the grid” 10° ;'0 " o 5 £

° high-yield pulsed-power ICF has relevant gain factor Peabcunenc(Mal

- need G~100

*S. Atzeni and J. Meyer-ter Vehn, The Physics of Inertial Fusion, (Oxford University Press Inc., New York, 2009). D.E. Ruiz et. al., (Submitted) Phys. Plasmas. I



11

A critical aspect of confidently scaling to NGPP is to ensure we
understand and characterize the physics of MagLIF on Z today.

Experimental input conditions

Geheat energy deposited ~0.7 — 1.4 kJ

B,o~10-20T
Final feed / Laser conditioning

LEH foil thickness
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Radial position (mm)

1cmtall ARy cARgy

= B0 s B

ARy, Ry 3.15 mm

7.5 mm tall ARg
= 2 =2 =2
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-ARad};I ponsitionz(mm) " Radial position (mm) “Radial position (mm) ‘ARadi‘;l pogitionz(mm)4
A.J. Harvey-Thompson et al. Phys. Plasmas 25, 112705 (2018).
D.A. Yager-Elorriaga et al. Nucl. Fusion 62, 042015 (2022).

kW.E. Lewis et al. Phys. Plasmas (Submitted).
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k P.F. Knapp et al,, Phys. Plasmas 29, 052711 (2022).
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+ | Data-driven methods paired with physics insight, theory, and
simulation are playing a key role in this effort.

Statistics, ML/DL,
expert knowledge




2 | Talk overview

e Exemplars of applied data science for Magl.IF

°stagnation image analysis

Image analysis
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» |Stagnation morphology is a complex but important piece of the
puzzle of understanding performance and reproducibility

*MaglIF stagnation images show significant variance

22839 22979 23018 23303 22965 72966 23019 23075 23135




.+ |Stagnation morphology is a complex but important piece of the
puzzle of understanding performance and reproducibility

*Wish to understand sources of variance e.g.

> magneto-Rayleigh Taylor and deceleration instabilities

- feedthrough No DPP: -3.5 mm With DPP
600 600
- seed mechanism(s) Boo=7T E 300 300
72480-t1: CR= 2.7, t=3094.3 ns ;‘
. . E g @ 0
- relation to mix 2
8 -300 -300

-600

° preheat induced mix -600 ‘
-600 -300 0 300 600 -600 -300 0 300 600

° preheat induced vorticity

7.00 5.25 3.50 1.75 0.04 23057 — with DPP 23085 -no DPP 23143 — co-injection
1 ,1 nm Mn — . B

'
| B e 2 T~ag
D ] 4 B
g . 1nm Co 1nm Co
A y 0 0
2 0 2 2 0 2 2 0 2
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Distance [mm]
ERENY

Distance [mm]

1

Co He-a +
satellites

Signal [a.u.]
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T.J. Awe et al. Phys. Rev. Lett. 111, 235005 (2013).

A.J. Harvey-Thompson et al. Phys. Plasmas 25, 112705 (2018).
M.R. Weis et. al., Phys. Plasmas 28, 012705 (2021).

D.A. Yager-Elorriaga et al. Nucl. Fusion 62, 042015 (2022).

Distance into imploding liner [mm]

1 10
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Photon energy [eV]

400 micron



s |Stagnation morphology is a complex but important piece of the
puzzle of understanding performance and reproducibility

*Want to investigate mitigation mechanisms
o dielectric coatings
° dynamic screw pinch
o laser gate

° cryogenic cooling

P.F. Schmit et al. Phys. Rev. Lett. 117, 205001 (2016).

A.J. Harvey-Thompson et al. Phys. Plasmas 25, 112705 (2018).
G.A. Shipley et al. Phys. Plasmas 26, 102702 (2019).

S.M Miller et al. Rev. Sci. Instrum. 91, 063507 (2020).

B.R. Galloway et al. Phys. Plasmas 28, 112703 (2021).

A.J. Harvey-Thompson et al. Rev. Sci. Instrum. (Submitted).
D.J. Ampleford, D.A. Yager-Elorriaga et al. (In Preparation).

(a) AR9 uncoated

(b) AR9 uncoated detail

Top
cryostat

Bottom

cryostat



« |Stagnation morphology is a complex but important piece of the
puzzle of understanding performance and reproducibility

*Can we characterize relation to variance in performance?

°7 of top 10 performers coated
°1 of bottom 10 performers coated

e Improved morphology partially responsible?

P.F. Knapp et al,, Phys. Plasmas 29, 052711 (2022).
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7 |Several challenges make addressing these questions difficult.

Challenge

* Bespoke tools
° Time consuming

o possible variation from user to user
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7 |Several challenges make addressing these questions difficult.

Challenge

* Bespoke tools
> Time consuming

> possible variation from user to user




Machine learning provides a route towards automating preprocessing
steps improving reproducibility and data throughput.

Synthetic training data Segmentation convolutional neural network

Synthetic Image Threshold Mask Cleaned Mask

. : 7 D T "
- & & &F
64 pixels v
R 64 pixels
r
Down sample and
> reshape to 64x64x2 —_— Feed forward ﬁ] Convolutional transpose
Convolutional layer with 32 (2) 7x7
====» Batch Normalization ﬁ ; ml V!
Network output layer with 32 7x7 ( )' learnable filters ReLU
2 . m—— . learnable filters tivation. L
x2 Max Pooling and pixel probability map activation. Larger

Batch Normalization RelU activation square is 1 15x15 with
E] sigmoid activation.

64 pixels

1

1

1

¥
128 pixels

Threshold operation
— )
===~ Reshape to 128x64 to segment image

Registration and background subtraction pipeline

Zero pad Translate image and Rotate image and Use segmentation to extract and
probability map probability map probability map fit slowly varying background

W.E. Lewis et al, J. Plasmas Phys. 88, 895880501 (2022).



1 ‘Several challenges make addressing these questions difficult.

Challenge

* Need statistics on image noise, background, and structure

> E.g. for Bayesian inference or ML synthetic training data

>
zZ(cm)

M.E. Glinsky et al., Phys. Plasmas 27, 112703 (2020).
P.F. Knapp et al,, Phys. Plasmas 29, 052711 (2022).
W.E. Lewis et al, ]. Plasmas Phys. 88, 895880501 (2022).
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z ‘Several challenges make addressing these questions difficult.

Challenge

*» Unspecified experiment dependent SNR
¢ Multiple distinct spherical crystal imaging modalities
> Continuum vs spectral lines

> Resolution

> Views
* Typically no spatial fiducial

° Registration

E
E 588
p»—=  Spherical Crystal Optic o
‘ MaglLIF fuel-liner system x-ray source
- === Rowland Circle 2.94
e Projection of admitted rays from aperture

limited source to Rowland circle

=== === Energy bandwidth limiting Rowland aperture

E.C. Harding et. al., (Submitted).
W.E. Lewis et dl, ]. Plasmas Phys. 88, 895880501 (2022).

Image plate exposed by incident radiation

Imager Configuration Resolution [pm?]
Argon Imager(Ar-Imager) single 15 x 85
Continuum X-ray Imager (CXI) single 59 x 83
High Resolution Continuum X-ray (CXI) single 15 x 16
Dual Continuum X-ray (DCXI) dual Chl 54 x 120 Ch2 46 x 84
Iron K-aq (IKA1) dual Chl 79 x 82 Ch2 64 x 66
Iron Helium-3 (IHEB) dual Chl 63 x 66 Ch2 50 x 53
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We can turn this to our advantage using ideas of data augmentation
common in training machine learning algorithms

“Model-free” data augmentation help understand sensitivities and engineer metrics

Sensitivity to texture/SNR via multiple scans Sensitivity to resolution via PSFs and high-resolution imager data

Scan 1 Scan 3

signal (Arb. U.)
e
e

radial position (Arb. U.)

0 83
position (um)
83 3

0
position (um)

Noise filtering can remove unwanted sensitivity to SNR

g z:;z ::: ; ; | izam s::: 2
. 22839 Scan 3 . 22839 Scan 3
o o 175 )
< < Note: Diagonal
g filt g 150 compares image to
E ilter E teelf i
> — > 125 1tse
- - A N
c c
5 < 1.00 &
é‘ é_ g'- . .
0.75 —_
5 5 S = similar
0 10 20 30 40 0 10 20 30 40 0.50 @
Image metric components Image metric components . . t
= differen

0.00 I

Invited paper ICDDPS-4 W.E. Lewis et al,, (In Preparation).



» | Characterizing stagnation morphology is a complex but important
part of comparing experiments understanding performance

Challenge

¢ Image metrics may vary between practitioners and studies

> Uncertain how sensitive metrics are to previous factors

> Need statistical studies to understand importance

o]

~
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M.R. Gomez et al., Phys. Rev. Lett. 125, 155002 (2020).
M.E. Glinsky et al., Phys. Plasmas 27, 112703 (2020).

P.F. Knapp et al., Phys. Plasmas 29, 052711 (2022).

D.J. Ampleford, D.A. Yager-Elorriaga et al. (In Preparation).
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Data-driven methods are enabling metric exploration that is building to
more detailed understanding of important features. m

Randomly selected uncoated targets

B = similar

B - different

@

“B:R0i0¢
‘“ 2 Bl B
2 K1 B

Note: Diagonal
compares image to
itself

3
§

Randomly selected coated targets

»
-

Invited paper at ICDDPS-4 W.E. Lewis et al,, (In Preparation). I
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Data-driven methods are enabling metric exploration that is building to
more detailed understanding of important features. m

Large-scale studies can aid in investigating non-obvious structure in our data
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Invited paper at ICDDPS-4 W.E. Lewis et al,, (In Preparation). I



26 ‘Future directions and potential for collaboration

*ldentification of features determining similarity

> E.g. axial brightness variation frequency, helical excursion, mean and variance of strand radius/CR, etc.

- May try to answer by studying correlations across full image database

0.2

Extend to larger database and
study correlations

| (k)| [mmm?]

[
»

0.015 : \ I
%
0.01 - 1
K= o °
~e
&
=
‘io.oos + B L Y
L]
. [ J [ ]
L]
° [ ] [
0
4 5 6 7 8 9

Aspect Ratio

D.J. Ampleford, D.A. Yager-Elorriaga et al. (In Preparation).



27 ‘Future directions and potential for collaboration

*Extension of sensitivity study to alternate metrics

(© 16MA-CR39
20 MA - CR 36

Axial position (mm)

0 . A
05 05 -05 05 0 40 80 120 160
Radial position (mm) Radius (zm)

M.R. Gomez et al., Phys. Rev. Lett. 125, 155002 (2020).
M.E. Glinsky et al., Phys. Plasmas 27, 112703 (2020).
W.E. Lewis et al., Phys. Plasmas 28, 092701 (2021).
P.F. Knapp et al., Phys. Plasmas 29, 052711 (2022).

D.J. Ampleford, D.A. Yager-Elorriaga et al. (In Preparation).

Apply model free data-
augmentations and understand

sensitivities
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# | Future directions and potential for collaboration

*Multiple view angles
> Do differences in image metric between multiple views contain valuable “integrated” information?
- E.g. value even if tomographic inversion ill-posed
*Quantifying mix morphology, liner opacity impact

Channel 2 Channell Channel 2 -
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L S04t " 2000 |
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2 —_ | ! — 1000 £
L L ] & 2.0 )
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I 0.1 0 0.1 5 = ] i
: . e = o 1500 F-- - Cobalt
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E.C. Harding et al. (Submitted to RSI).
J.R. Fein et al, (In Preparation).



29 ‘Future directions and potential for collaboration

1
| =
*Extension to other imaging diagnostics/platforms 2 0061 §
(2] .
° e.g. pinhole camera, radiography, etc. E 1E-3{
° wire arrays, gas puffs, etc. g T1E4)
~ 1E-5§
= o e e s
= 1E-8[ 1g || = Filters 384: 200 um Mo
"0 20 40 60 80 100
Photon Energy (keV)

y (mm at source)
Exposure (PSL)

-20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120
x (mm at source)

L.A. McPherson et al. Rev. Sci. Instrum. 87, 063502 (2016).



u | Talk overview

/ Image analysis

e [ntroduction n_..* &P rﬁ?--,.,D
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°Sandia’s Z Pulsed Power Facility

Fuel magnetization

128 pixels

o Magnetized Liner Inertial Fusion

aoue)sIp 2

e Exemplars of applied data science for Magl.IF

°sta agn nation 1ma<rc anah siS

2N

°fuel magnetization parameter analysis

o future directions and collaboration opportunities! = e pmmor - o

‘Secondary nToF Data with Automated Data Featurization Features with Uncertainty 0.7 = AR, pry=0.7 - 1.05 mg/cc, B, o=15T

e Overview of other efforts and concluding remarks

BR (MG-cm)
o o
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BRORT,AF
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31

The magnetic field-fuel radius product (BR), determines charged fusion

product confinement and electron thermal conduction losses.

-

Effective BR for B,(r) profile:

BR R R/ rB.(r)dr

- /

50

40

o

BR determines trapping of fast charged particles:

53771157J_
q2

trapping condition for particles born at r=0 B R -

aT-0
dt E
S
O
s
30 1 ()
,; I
g §
~
dar
20 x>0
= N210808
101 BR=0.6 MG-cm .
MagLIF ar _ o
*®<0 NIF HyE
10 10-3 102 10-1 100
PR (g/cm?)
W.E. Lewis et. al., PoP (Submitted)




» | A variety of plasma transport effects will modify the flux compression
process. Measuring BR could provide insights into these effects.

*ldeal flux compression ~1000x B-field amplification

> trapping of fusion products and reduction of electron heat conduction

*Physical mechanisms leading to flux loss

o Resistive diffusion

o Nernst advection

Resistive diffusion

« Current disrupted by collisions
> Allows magnetic field diffusion

-

Tp ~Uo0 L? ‘_N_‘

o X Teoll

/Nernst effect

» B-field locked into warm electrons

e Thermal transport perpendicular to
B transports flux

-

\

BAVLT

UNernst = cB

¢ Increased preheat o< V, T, increases Nernst
e Increased B, decreases Nernst
* What about geometry?
« Fill density?
* Impact of mix throughout implosion
» Measurements needed to study effects
> can’t do proton deflectometry/radiography
- O(50 MQG) fields driving Z-pinch!



» | Radially and axially viewed secondary DT neutron spectra and
yield ratio Y = Y, /Ypp are sensitive to fuel magnetization.

*Pure Deuterium fuel
> ~|.01 MeV tritons produced by DD fusion

n (2.45MeV) + 3He
p+T (1.01MeV)

Secondary: D+ T — n (14.1MeV) + «

Primary: D+ D — {

7)1)’1‘ o < op /) opr Magnetized . 0o f (BR)

PR

P.F. Schmit et al., PRL (2014) ﬁ%(
P.F. Knapp et. al., PoP (2015) 7%\_

DT neutron spectra

£ VAxial View >~

*Surrogacy of tritons for a's
osimilar Larmor radius
3.5 MeV «a stopping length ~ 0.5x1.01 MeV tritons

0] ==
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» | Radially and axially viewed secondary DT neutron spectra and
yield ratio Y = Y, /Ypp are sensitive to fuel magnetization.
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.+ | Characterizing stagnation morphology is a complex but important
part of comparing experiments understanding performance

Challenge
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.+ | Characterizing stagnation morphology is a complex but important

part of comparing experiments understanding performance

Challenge

» Computational cost of forward physics model

> O(10-100) CPU hours evaluation on a high-performance

cluster

> 10k-100k + evaluations per experiment for inference and

uncertainty quantification
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s | Machine learning offers a route to avoiding repeat calculations by
interpolating/surrogating results from representative simulations.
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Physics Surrogate Network

« Evaluates observables in sub millisecond times on a laptop

W.E. Lewis et al, J. Plasmas Phys. 88, 895880501 (2022).



s | Machine learning enables rigorously defined UQ through coupling into a
Bayesian inference framework.

» First systematic study of magnetic confinement properties of any neutron producing magneto-inertial fusion platform

> Enabled by deep-learning and Bayesian inference
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We can use our deep-learning based inference tool discover the larger
story behind the physics of magnetic confinement in MagLIF

Preheat energy deposited ~0.7 — 1.4 kJ
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* | D resistive radMHD code Kraken* for comparison
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W.E. Lewis et al, Phys. Plasmas (Submitted).



s |Indeed, there are physics arguments that can explain the variance in the
data and capture the results for all but two experimental cases.

* Nernst advection leads to significant decay of (BR) s with epreneat == ARg, prin = 0.7 — 1.05 mg/cc
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W.E. Lewis et al, Phys. Plasmas (Submitted).



Pairing data driven methods with physics insight, we find that Nernst advection

and mix are indeed integral to performance scaling in MagLIF.

*Nernst advection enhanced flux loss limits the gains by increasing preheat alone

°Pritl» Bz, Imax €tc. must be improved while mitigating mix to enable performance (x) gains

0.12

0.10

0.08

>=<0.06

0.04

0.02

0.08.

T e fmi.x T
——— Prind fmix T
--------------- Hypothesized 3D efffects

.\\\l
A M/
B'L-“\

0.2 0.3 0.4
BR (MG:cm)

0.5

0.6

P (Gbar)

2.00

L.75

1.50

0.50

0.25

00§,

-~
-~
~—

1.5

2.0 2.5
T (keV)

W.E. Lewis et al, Phys. Plasmas (Submitted).

3.0

3



“ ‘Future directions and potential for collaboration

*Relaxed model assumptions

Magnetic field topology alters secondary neutron spectra
>nToF shape features 8 Pology Y P

2 ns Gaussian burn history ]
O Te - Ti %0"” Radial emission
> uniform mix assumption z |
> |D power law profile model with i;’m_
"B, xp £ ‘ L e
- Axially uniform B-field e
>Unknown impact of 3D effects
1
. P
P | . EO'G' 2 emission
1 f = 0 Sof
\ :‘ 2 o N
400 micron

C.A. Jennings B. Appelbe et al., HEDP 22, 27 (2017).

M.R. Weis et. al., Phys. Plasmas 28, 012705 (2021).




« | Future directions and potential for collaboration

*Scaling to Next Generation Pulsed Power
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/ Image analysis
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» | Data-driven methods have found successful application across a range
of problems in HEDP at Z and continues to grow!
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» | Data-driven methods have found successful application across a range
of problems in HEDP at Z and continues to grow!
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Data-driven methods have found successful application across a range
of problems in HEDP at Z and continues to grow!

e Simulations:

> May be prohibitively costly for all but the smallest of scoping studies or uncertainty quantification
Surrogate modeling efforts
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Data-driven methods have found successful application across a range |
of problems in HEDP at Z and continues to grow!

¢ Simulations/Experiment:

° Missing, uncertain, or “aliased” contributions from known and unknown physics

Sensitivity analysis, uncertainty quantification, and causal statistics
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« | Data-driven methods have found successful application across a range
of problems in HEDP at Z and continues to grow!

* Experiments:

° Sparsity constraints (e.g. few view angles)

° Potentially ill-conditioned diagnostic inversion

Working with sparse data and ill-posed diagnostic inversion
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+» | Data-driven methods have found successful application across a range

of problems in HEDP at Z and continues to grow!

* Experiments:

° Low repetition rates

» Costly to execute  Quantifiable performance, optimization of diagnostics and experiment design

P. Knapp et al.
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P.F. Knapp ¢ 4l. J. Plasma Phys. (2023).
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« | Data-driven methods have found successful application across a range
of problems in HEDP at Z and continues to grow!

* Experiments:
° Low repetition rates
° Measurements are performed in harsh environments resulting in known and unknown artifacts
° Sparsity constraints (e.g. few view angles)
° Multi-modal and often highly spatio-temporally integrated data (e.g. x-ray imaging, neutron time of flight, etc.)

° Defining accessible and relevant observables

Rigorous uncertainty quantification and Bayesian inference

/ P. Knapp et al. M. Mangan et al.
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\ P.F. Knapp ¢ a/. Phys. Plasmas (2022).




‘ Closing remarks
I

* Research at the intersection of applied machine-learning and physics

° is accelerating the cycle of experiment design and physics discovery. B

> tools and technology that enable the physicist to do what they do best . \ E Z / 0w 2 ‘
¢ Looking to explore applications of data science to ey ‘ 0 \ :

> Next generation pulsed power (e.g. current delivery scaling) b i g:i \ \ [

> 3D effects 20:3 \*\\" AN

NN
> Experiment design Zj - \
> Etc.

10
€preneat (kJ/mg)

* We are interested in collaborations across many areas in HEDP. Please reach out!

Vision for the future* Needs
Experiment -
Code Exploration
[ 3N BN BN BN )

i
& |
o imi . . ‘ m
Experiment
-

Experiment
Configuration,

*courtesy P.F. Knapp
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We wish to “featurize” the nToF data collected experimentally to |
reduce dimensionality while retaining relevant information. ;

*Width and asymmetry features with uncertainty
cpercentiles of nToF signals
-integration smooths noise
-error from Bayesian fitting
*nToF avoids e.g.
cunavailable timing fiducial

°ill-posed instrument response deconvolution

Cumulative Area

Axial nToF Signal (Arb. U.)

© © o o ¢
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1 1 1 1
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o
1

1 — cor
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W.E. Lewis et al, Phys. Plasmas 28, 092701 (2021).



The physics model is used to generate training data for a neural
network surrogate, which drastically improves evaluation times.

»~65k simulation samples
©95%-4%-1% train-validation-test split
»neural network with skip connections
cabout 5.5k fit parameters
»Validation data used to estimate error

° propagate uncertainty of surrogate

| 32 Node Hidden Layer ReLU activation

—

| 32 Node Hidden Layer RelU activation |

e x
Q X
!
I Output Layer Linear activation |
predicted vs actual values for output features
2.54 2.54 2.54 2.54 2.54
0.04 0.04 0.04 0.04 0.04
6t Eat _ Aat at 10910(Yop)
_2‘5- T T T _25 T T T T _25 T T T T T _2'5. T T T T T _2'5. T T T T
=25 0.0 25 =2.5 0.0 2.5 =25 0.0 25 -2.5 0.0 25 -2.5 0.0 2.5
2.54 2.54 2.54 2.54
0.04 0.04 0.04 0.04
Ot Ert ] Agt 10g10(Y)
_ZAS- T T T _25 T T T _25 T T T T T _2‘5- T T T T T 1 T T T
-2.5 0.0 2.5 =25 0.0 25 =25 0.0 25 =25 0.0 25 =25 0.0 25

W.E. Lewis et al, Phys. Plasmas 28, 092701 (2021).



Bayes theorem allows us to incorporate multiple sources of data
and rigorously define statistical data models for UQ.

Bayes theorem

Posterior distribution for Prior information
parameters (x) given data (y) on parameters

p(xly) = p(y[x)p(x)/p(y)

Likelihood functio/ \

describing distribution of Parameter independent
data around model normalization (unimportant)

e Provides a distribution of model parameters most consistent with data
*We incorporate sources of uncertainty from:

>use of NN surrogate

> featurizing nToF

°DD and DT yield measurements



‘A bit of maths... I

Bayes theorem and manipulations: Our data models:
Posterior distribution for Prior information Physics model value normally distributed about
parameters (x) given data (y) on parameters NN prediction with OOS estimate of covariance
4
. ¢ p(z[x) ~ N(fnn (%), ANN)
p(xly) = p(ylx)p(x)/p(y) |
Likelihood functio/ \ Assumed independence of different measured quantities |
describing distribution of Parameter independent p(y|x,z) = p(y|z)
data around model normalization (unimportant)

= p(yutoF |znt()F )p(yy |ZY )p(yV‘Z?)

z to track uncertainty — p(x|y) =
from surrogate

Introduce latent variable
/ p(x,zly)dz Observations normally distributed about “latent model”

p(yy |zy) ~ N(zysAy)

p(yyley) ~ N (23, Ay)
_Bayes theorem for data _ p(x,z]y) x p(y|x,z)p(z|x)p(x)
including surrogate model p(ynToF |ZIIT0F) ~ N(ZnToFa AnToF)




The analysis performed well when benchmarked against synthetic
datasets and the only available previously analyzed experiment.

Surrogate model quantitatively captures
teatures of physics model

*We have demonstrated that BR inference on
noisy synthetic data is robust to S/N ratios
comparable to experiment

*Results are consistent with the only available
previously analyzed experiment.
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W.E. Lewis et al., Phys. Plasmas (2021).



The analysis performed well when benchmarked against synthetic

datasets and the only available previously analyzed experiment.
Axial nToF Radial nToF

é
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W.E. Lewis et al., Phys. Plasmas (2021).
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W.E. Lewis et a

The analysis performed well when benchmarked against synthetic
datasets and the only available previously analyzed experiment.

Results are consistent with previous analysis of z2591
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When posterior parameter samples are run through the full
physics model, good agreement with observations is obtained.
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The agreement obtained with observations indicates that our results are consistent with what
would be obtained were it feasible to conduct a Bayesian analysis using the full physics model.

W.E. Lewis et al., accepted Phys. Plasmas (2021).
B



Observations of BR generally consistent with scaling expected
from magnetic Reynolds and Nernst dimensionless parameters

Rm considers thermal conduction losses in Bohm-like

regime and combined effects of internal flow in

BR(t) = CR(t) ¥(t) (BR)o isobaric cores and Nernst advection
. Ne is the ratio of characteristic Nernst velocity and
B = 10,01 [BR(T cm)] - [R(km/s)] characteristic implosion velocity
[T'(keV)]
Ne = 200 [T (keV)] /BXT (me) flux losses will decrease (i.e., ¥ will become larger) when:
[B R(T Cm)] ’ [R(km/ S)] (i) the magnetization of the plasma is greater as mea-
0 sured by the BR product or the electron Hall pa-
3.053 + 1.5z rameter .,
uTl - e
A — Te 3.7703 + 1 4.79336 + :L.g ' (ii) the implosions are fgster resulting in re':latively
weaker Nernst velocity wne and less time for
3/2 magnetic-flux to escape,
. = 6.40 - (10)—3 [T(keV)] ) [BZ (T)] (iii) the fuel temperature is lower, e.g. as a result of
e — ¥ InA - [ p(g / cm3)] : lower epreheat OF enhanced radiative losses from mix

less reducing transport of magnetic field due to ther-
mal gradients.

D.E. Ruiz et. al., (Submitted) Phys. Plasmas. W.E. Lewis et al., Phys. Plasmas (Submitted).



Anomalously large BR appears consistent with enhanced mix to
mix inference has large error bars.
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W.E. Lewis et al., Phys. Plasmas (Submitted).




