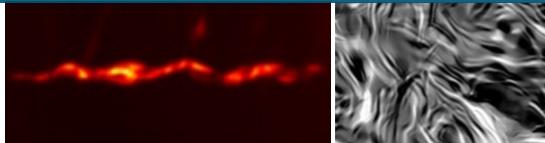
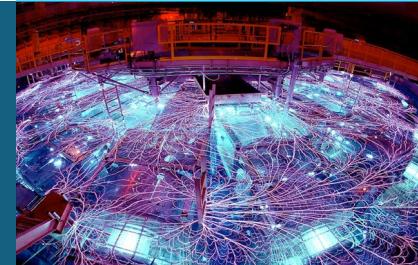


Sandia
National
Laboratories

Developing data-driven approaches to design and discovery for extreme physics on the Z Machine



PRESENTED BY

William Lewis

LANL Seminar 2/2/23

1 Today I'll be representing the work of a large group of talented and dedicated colleagues at the intersection of data science and HEDP.

- **Center 1600 (Pulsed Power Sciences):** L. Stanek, M. A. Schaeuble, J.R. Fein, A.J. Porwitzky, J.L. Brown, O.M. Mannion, E. C. Harding, S. B. Hansen, T. Nagayama, M.B. Adams, J.M. Woolstrum, C. A. Jennings, A. J. Harvey-Thompson, C. Tyler, M. R. Gomez, M. R. Weis, D. E. Ruiz, D. J. Ampleford, M. Geissel, M. Mangan, G.A. Chandler, G. Cooper, K. Blaha, S. Fields, S. A. Slutz, I.C. Smith, T. J. Awe, K. Beckwith, L. Schulenburger, D. B. Sinars, M. Jones, G. A. Rochau, K. J. Peterson, T.R. Mattsson, *P.F. Knapp, **M.E. Glinsky, ***P. F. Schmit

Our team is growing!
Center 1600's first Maxwell fellow, Luke Stanek
Actively recruiting and seeking collaborations

⁵Nuclear Engineering & Radiological Sciences Department, University of Michigan, Ann Arbor, MI

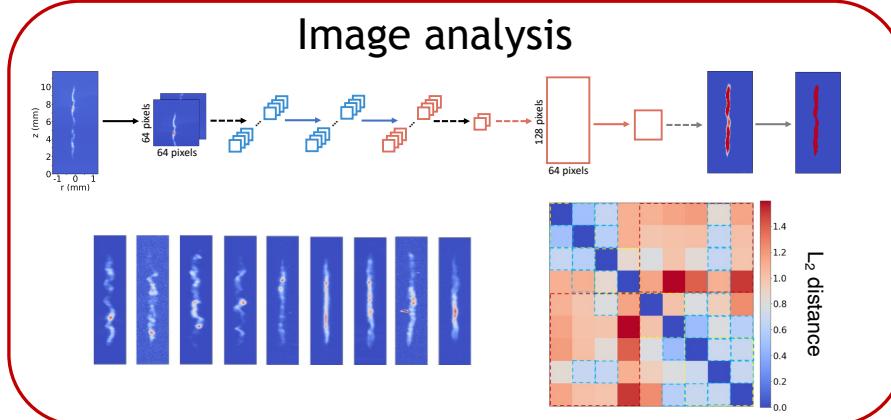
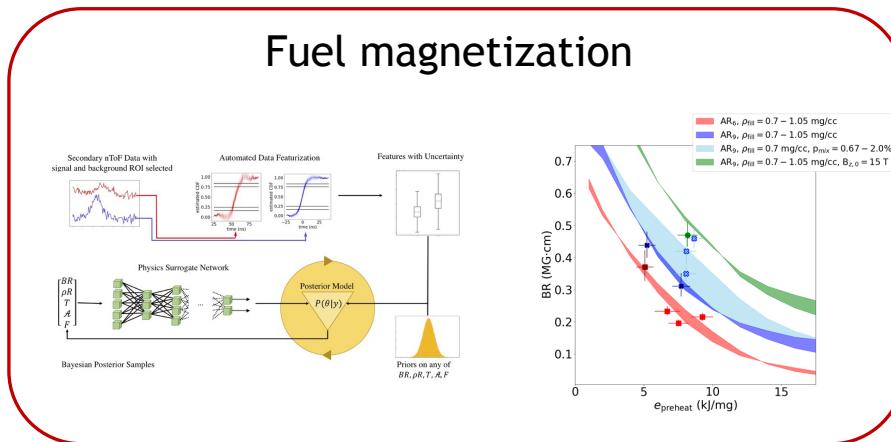
*current location, Los Alamos National Laboratory, Los Alamos NM

**current location, BNZ Energy Inc., Santa Fe NM

***current location, Lawrence Livermore National Laboratory, Livermore CA

Talk overview

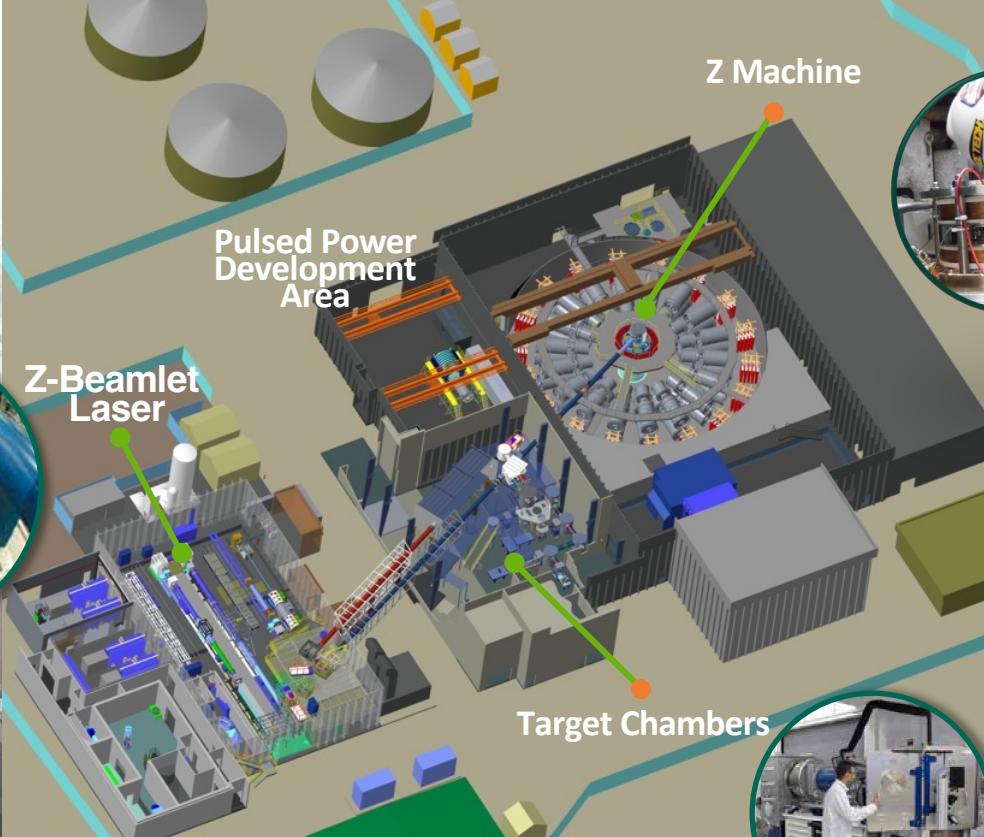
- Introduction
 - Sandia's Z Pulsed Power Facility
 - Magnetized Liner Inertial Fusion
- Exemplars of applied data science for MagLIF
 - stagnation image analysis
 - fuel magnetization parameter analysis
 - future directions and collaboration opportunities!
- Overview of other efforts and concluding remarks



Sandia's Z Pulsed Power Facility

The Earth's largest pulsed power machine

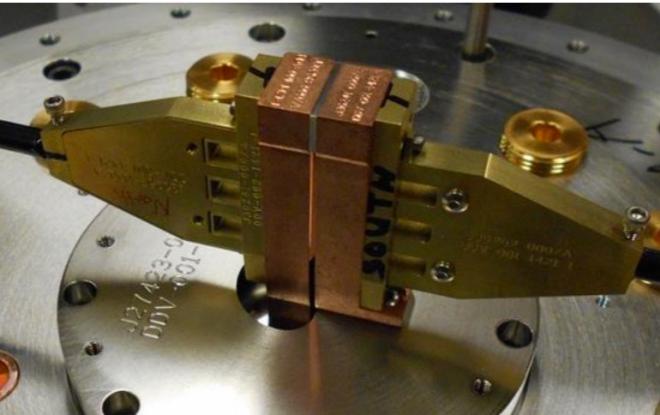
Sandia's Z Pulsed Power Facility



Capabilities

- 20 MA peak current
- 4 kJ, 1 TW laser
- 2 MJ's soft x-ray
- kJ's warm x-rays
- kJ's fusion yield
- Mbar's planar drive

As a world class facility, Z provides a powerful resource for investigating critical national security questions and exciting fundamental science.



Radiation Science

- Weapon survivability
- Laboratory Astrophysics

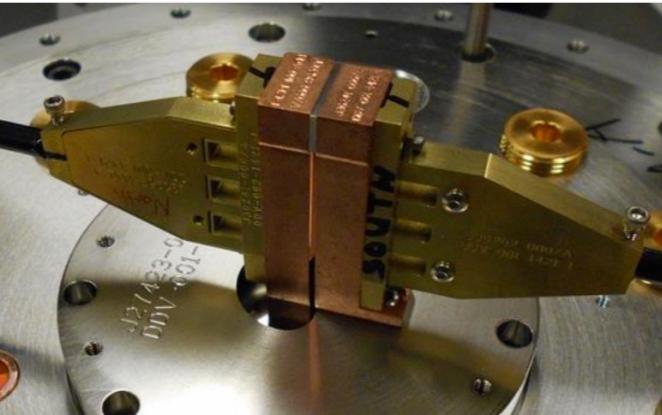
Dynamic Material Properties

- Pu aging and manufacturing
- Planetary science

Inertial Confinement Fusion

- Thermonuclear burn
- Basic fusion research

As a world class facility, Z provides a powerful resource for investigating critical national security questions and exciting fundamental science.



Radiation Science

- Weapon survivability
- Laboratory Astrophysics

Dynamic Material Properties

- Pu aging and manufacturing
- Planetary science

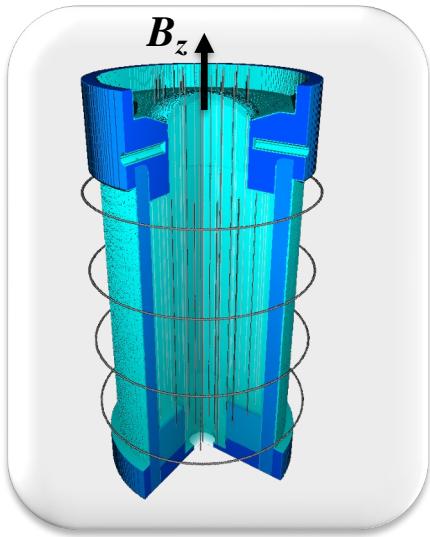
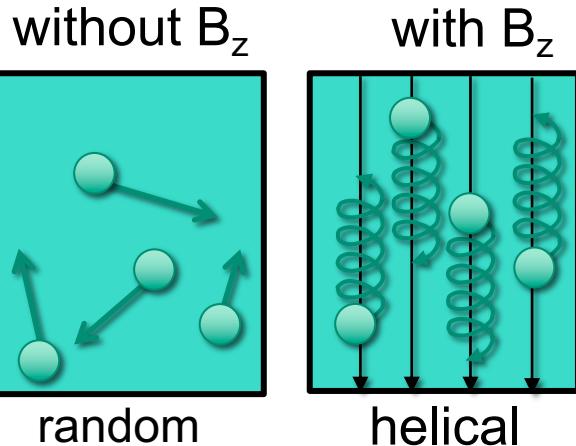
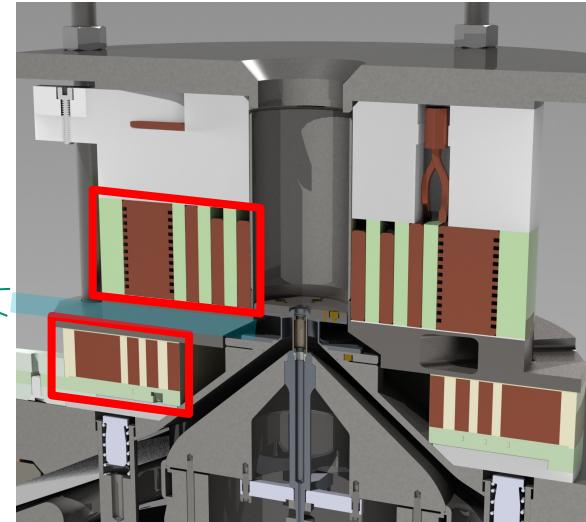
Inertial Confinement Fusion

- Thermonuclear burn
- Basic fusion research

The Magnetized Liner Inertial Fusion (MagLIF) concept relies on three stages to reach fusion relevant conditions.



Helmholtz-like coils are used to premagnetize the MagLIF load

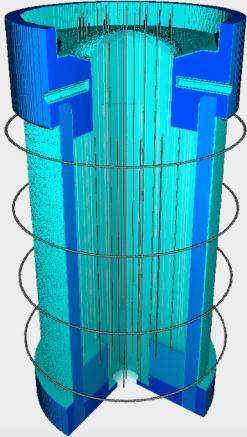
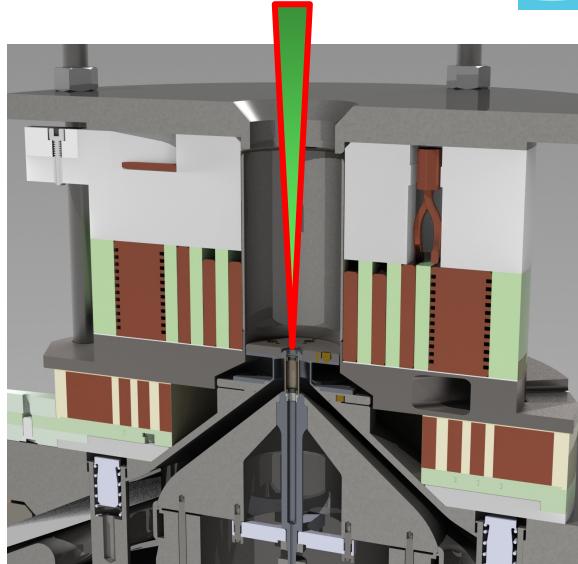


Premagnetize fuel

- embed 7-20 T in \sim ms timescale
- reduce radial thermal conduction
- compress + traps fusion products

D. C. Rovang *et al.*, Rev. Sci. Instrum. **85**, 124701 (2014).

Z Beamlet laser preheats the fuel establishing a higher adiabat

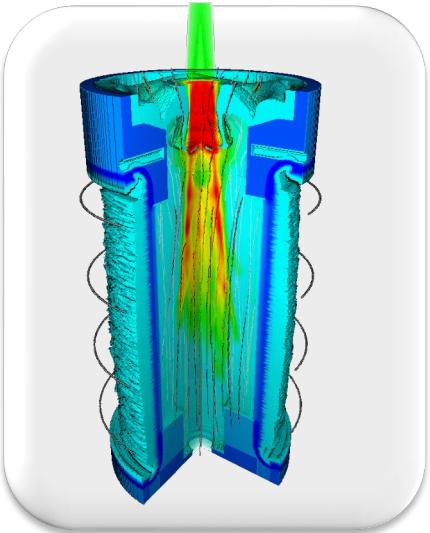
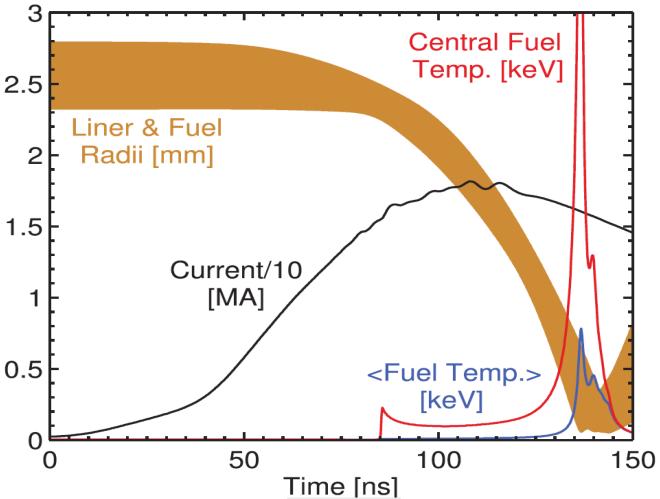
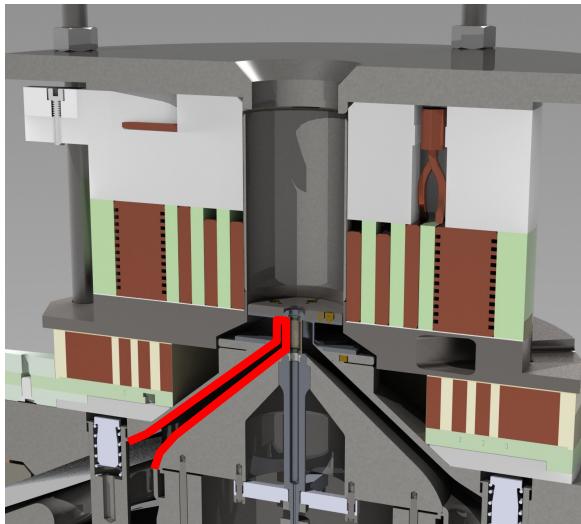


Preheat the fuel

- Z-Beamlet laser delivers ~2-3 kJ to the Z chamber.
- Laser heats fuel through Inverse Bremsstrahlung (~100-200 eV, 1-2 kJ)
- Laser preheat sets the adiabat of the implosion.

M. R. Weis, *et al.*, Phys. Plasmas **28**, 012705 (2021).
A. J. Harvey-Thompson, *et al.*, Phys. Plasmas **27**, 113301 (2020).
A. J. Harvey-Thompson, *et al.*, Phys. Plasmas **26**, 032707 (2019).
A. J. Harvey-Thompson, *et al.*, Phys. Plasmas **25**, 112705 (2018).
M. Geissel, *et al.*, Phys. Plasmas **25**, 022706 (2018).
A. J. Harvey-Thompson, *et al.*, Phys. Rev. E **94**, 051201 (2016).
A. J. Harvey-Thompson, *et al.*, Phys. Plasmas **22**, 122708 (2015).

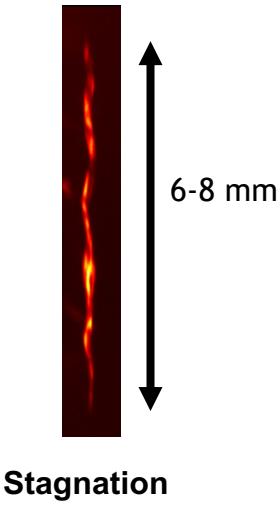
Current from the Z pulsed power generator provides a magnetic pressure driving the liner to implode compressing the fuel



Compress liner and fuel

- Lorentz force accelerated the liner.
- Fuel is then quasi-adiabatically compressed.
- Liner implosion leads to flux compression, amplifying B-field

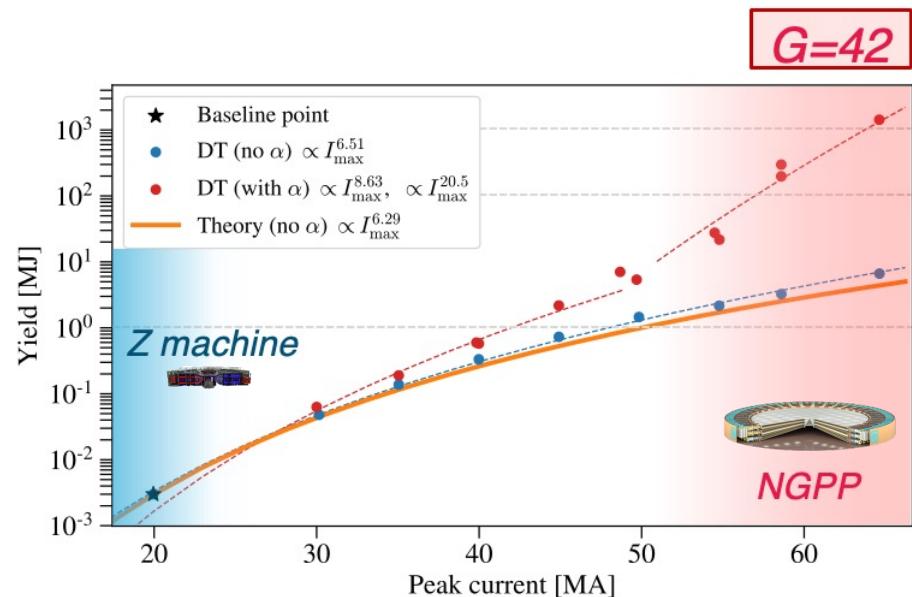
When thermal pressure exceeds magnetic pressure, the liner decelerates resulting in stagnation



Shot ID	z3289
\dot{R}_{max}	70 km/s
R_{burn}	50 μ m
T_{burn}	2.7 keV
p_{burn}	1.9 Gbar
BR	0.2-0.5 MG·cm
τ_{bw}	2 ns
Y (DT equivalent)	2 kJ

MagLIF offers a rich physics platform with paths to high yield at a next generation pulsed power (NGPP) facility.

- Physics:
 - magnetized HED plasmas
 - fusion relevant temperatures and densities
 - thermonuclear neutron generation
- NNSA Stockpile Stewardship Program
 - $Y > 100\text{MJ}$ in controlled fashion in the lab
 - NGPP may help achieve this goal
- May provide route to fusion-energy on the grid*
 - high-yield pulsed-power ICF has relevant gain factor
 - need $G \sim 100$

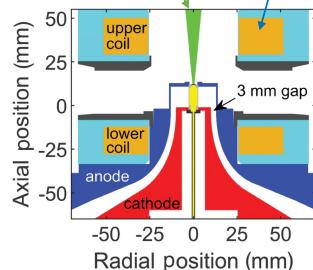


A critical aspect of confidently scaling to NGPP is to ensure we understand and characterize the physics of MagLIF on Z today.

Experimental input conditions

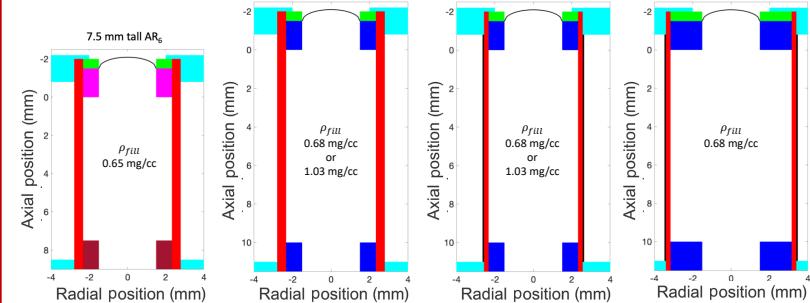
Preheat energy deposited $\sim 0.7 - 1.4$ kJ

Final feed



Laser conditioning

LEH foil thickness



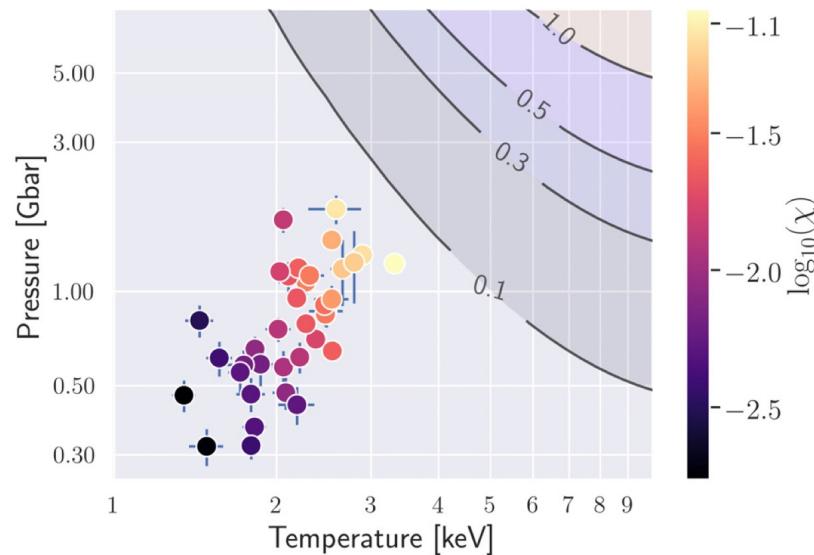
A.J. Harvey-Thompson *et al.* Phys. Plasmas **25**, 112705 (2018).

D.A. Yager-Elorriaga *et al.* Nucl. Fusion **62**, 042015 (2022).

W.E. Lewis *et al.* Phys. Plasmas (Submitted).

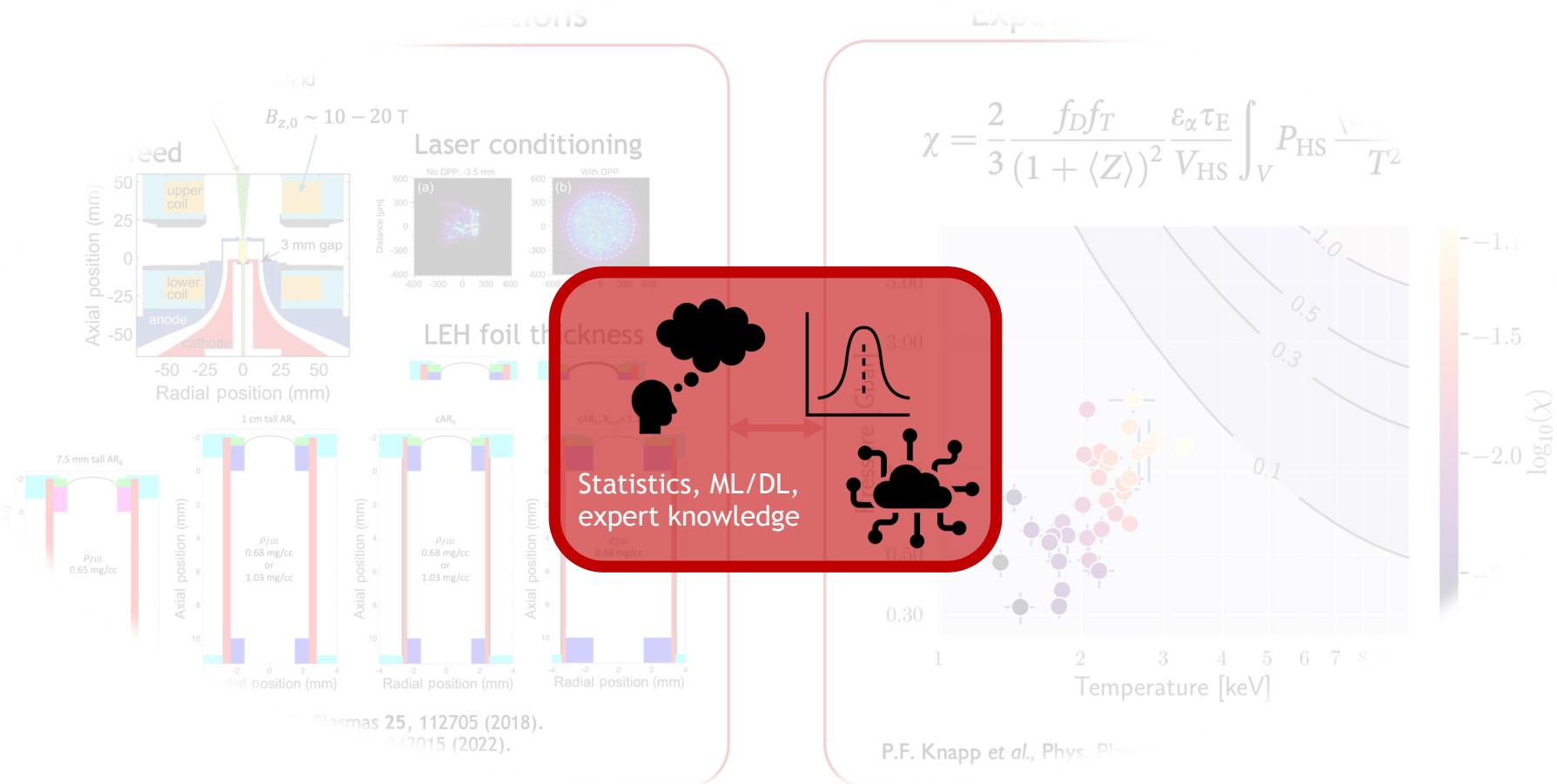
Experimental performance

$$\chi = \frac{2}{3} \frac{f_D f_T}{(1 + \langle Z \rangle)^2} \frac{\varepsilon_\alpha \tau_E}{V_{HS}} \int_V P_{HS} \frac{\langle \sigma v \rangle_{DT}}{T^2} dV$$



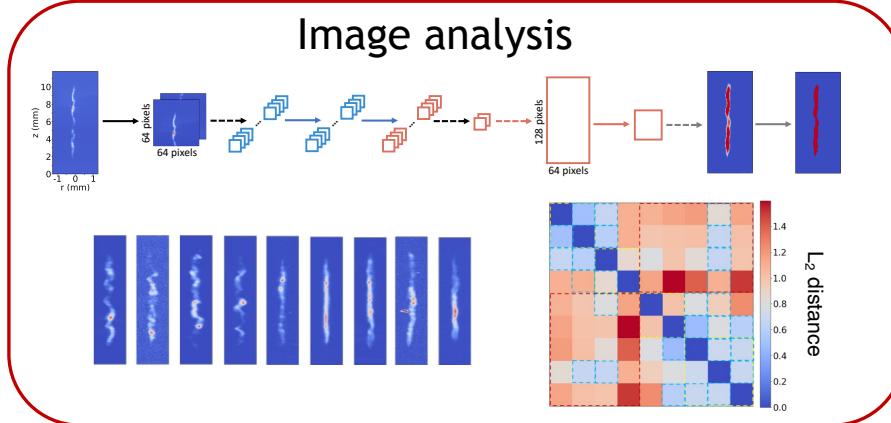
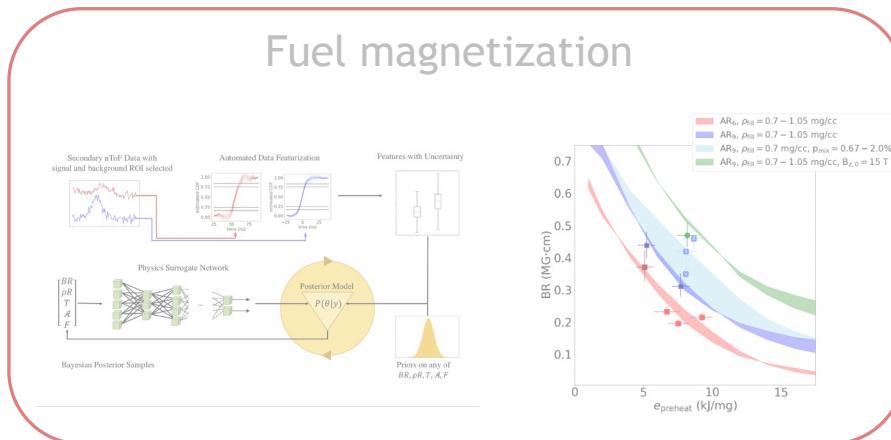
P.F. Knapp *et al.*, Phys. Plasmas **29**, 052711 (2022).

Data-driven methods paired with physics insight, theory, and simulation are playing a key role in this effort.



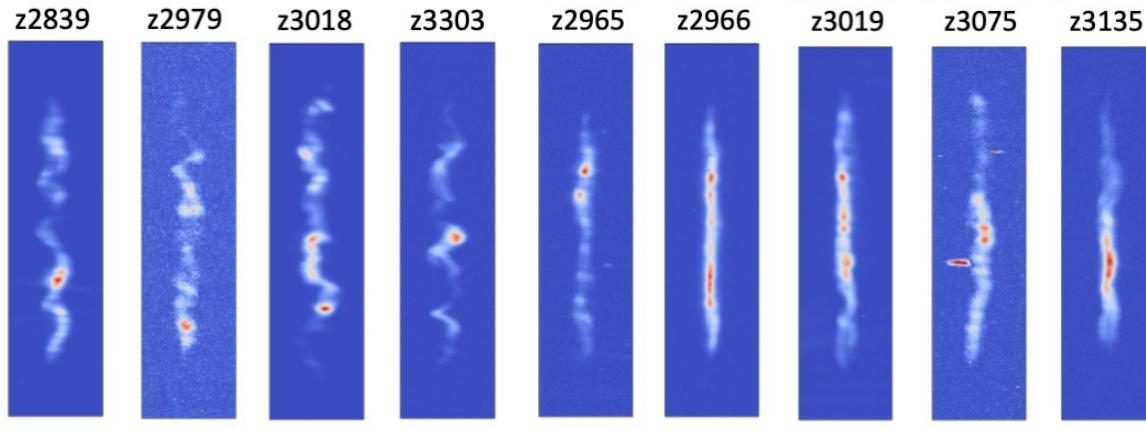
Talk overview

- Introduction
 - Sandia's Z Pulsed Power Facility
 - Magnetized Liner Inertial Fusion
- Exemplars of applied data science for MagLIF
 - stagnation image analysis
 - fuel magnetization parameter analysis
 - future directions and collaboration opportunities!
- Overview of other efforts and concluding remarks



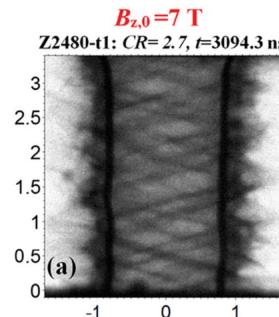
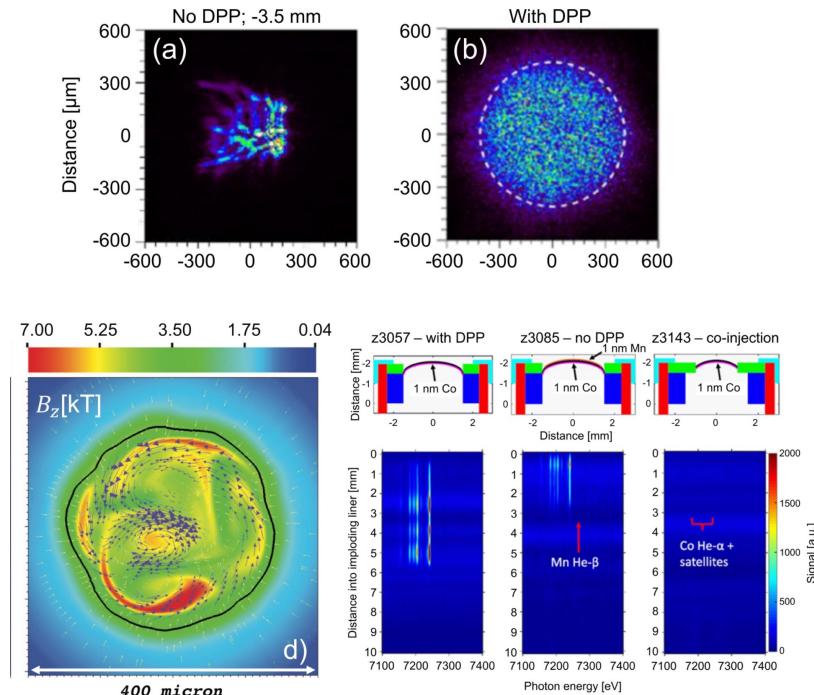
Stagnation morphology is a complex but important piece of the puzzle of understanding performance and reproducibility

- MagLIF stagnation images show significant variance



Stagnation morphology is a complex but important piece of the puzzle of understanding performance and reproducibility

- Wish to understand sources of variance e.g.
 - magneto-Rayleigh Taylor and deceleration instabilities
 - feedthrough
 - seed mechanism(s)
 - relation to mix
 - preheat induced mix
 - preheat induced vorticity



T.J. Awe *et al.* Phys. Rev. Lett. **111**, 235005 (2013).

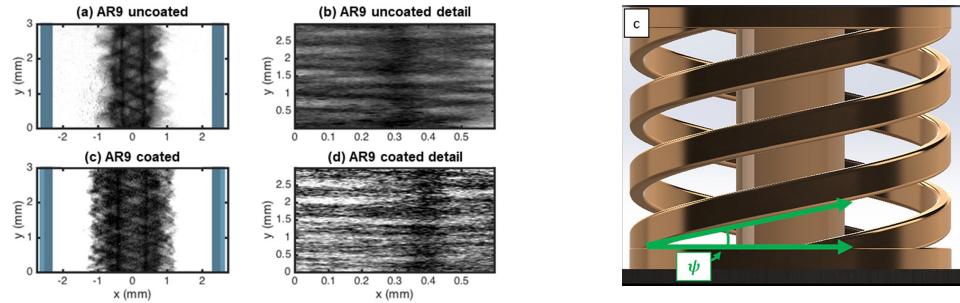
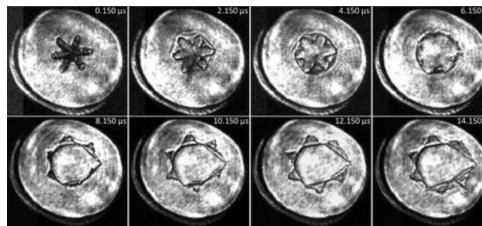
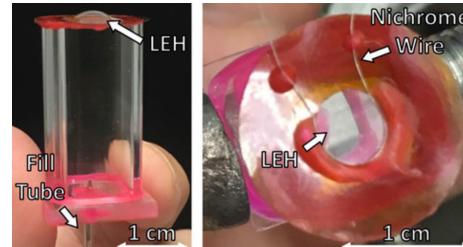
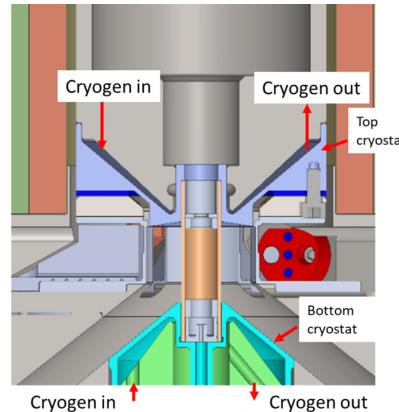
A.J. Harvey-Thompson *et al.* Phys. Plasmas **25**, 112705 (2018).

M.R. Weis *et. al.*, Phys. Plasmas **28**, 012705 (2021).

D.A. Yager-Elorriaga *et al.* Nucl. Fusion **62**, 042015 (2022).

Stagnation morphology is a complex but important piece of the puzzle of understanding performance and reproducibility

- Want to investigate mitigation mechanisms
 - dielectric coatings
 - dynamic screw pinch
 - laser gate
 - cryogenic cooling

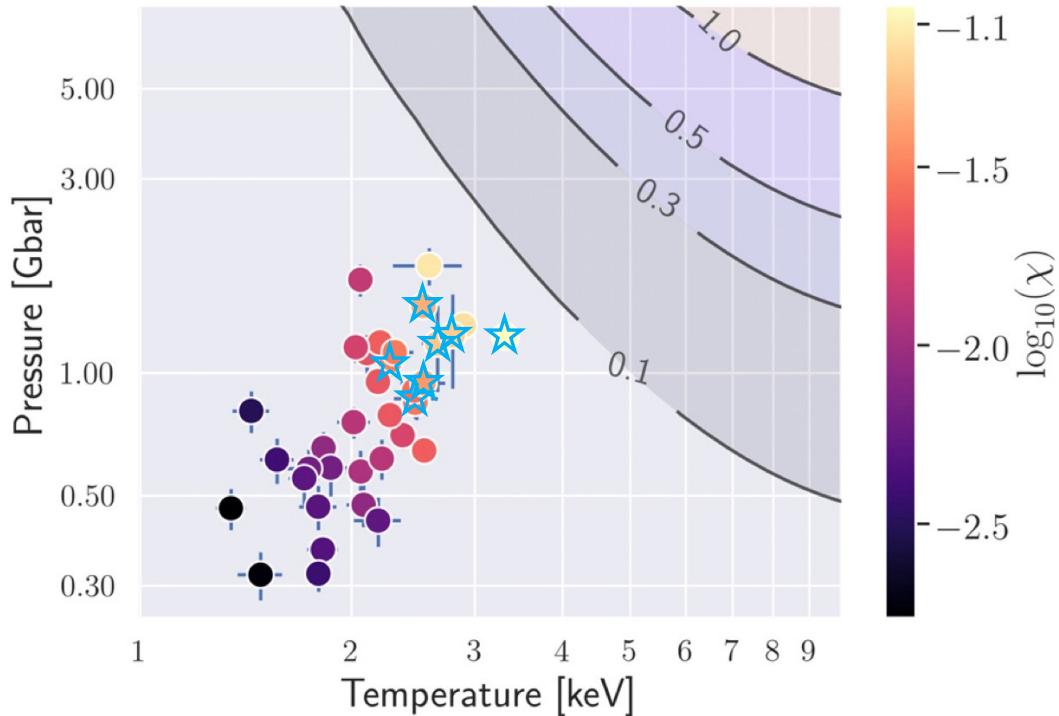


Stagnation morphology is a complex but important piece of the puzzle of understanding performance and reproducibility

- Can we characterize relation to variance in performance?

- 7 of top 10 performers coated
- 1 of bottom 10 performers coated

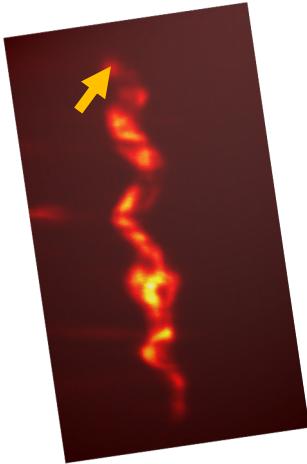
- Improved morphology partially responsible?



Several challenges make addressing these questions difficult.

Challenge

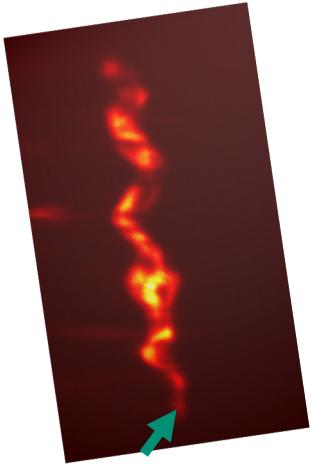
- Bespoke tools
 - Time consuming
 - possible variation from user to user



Several challenges make addressing these questions difficult.

Challenge

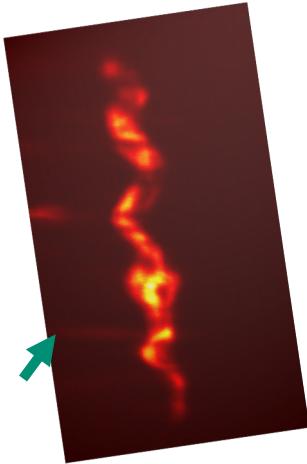
- Bespoke tools
 - Time consuming
 - possible variation from user to user



Several challenges make addressing these questions difficult.

Challenge

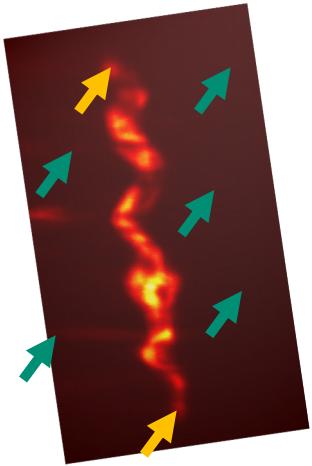
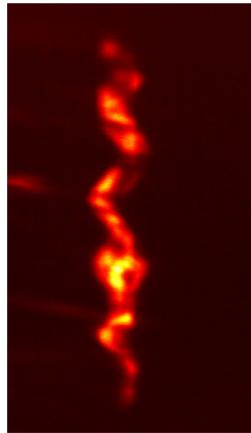
- Bespoke tools
 - Time consuming
 - possible variation from user to user



Several challenges make addressing these questions difficult.

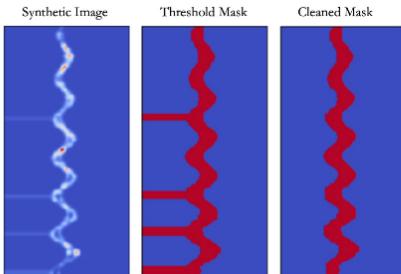
Challenge

- Bespoke tools
 - Time consuming
 - possible variation from user to user

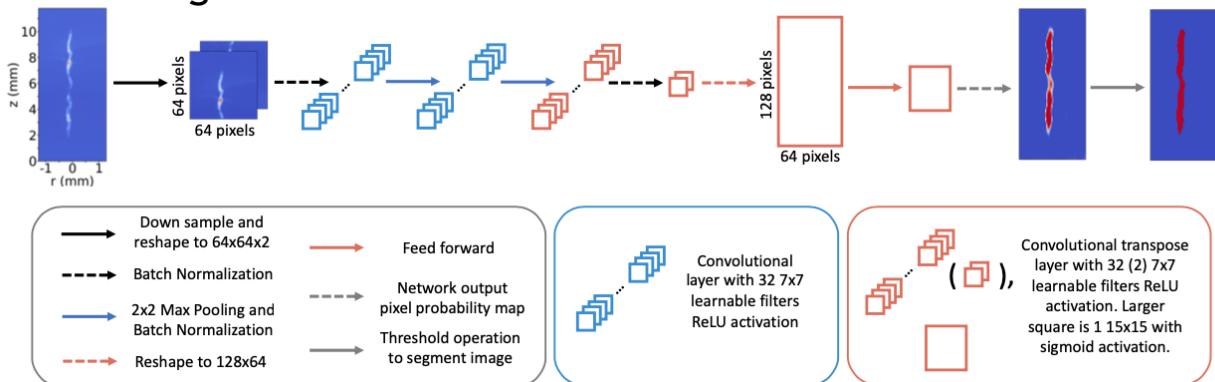


Machine learning provides a route towards automating preprocessing steps improving reproducibility and data throughput.

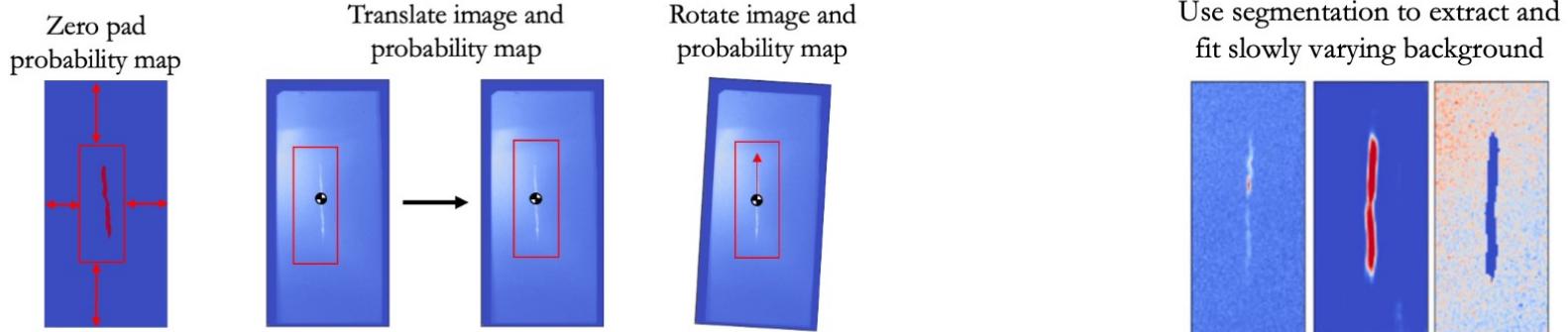
Synthetic training data



Segmentation convolutional neural network



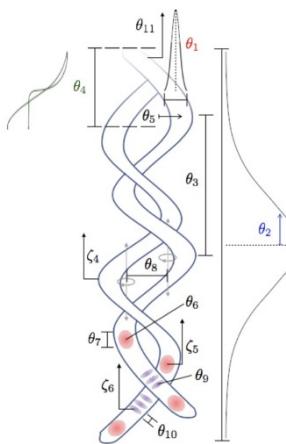
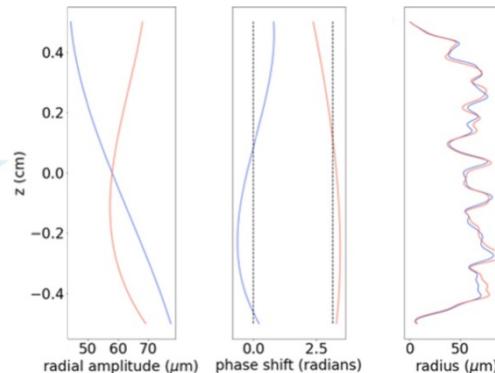
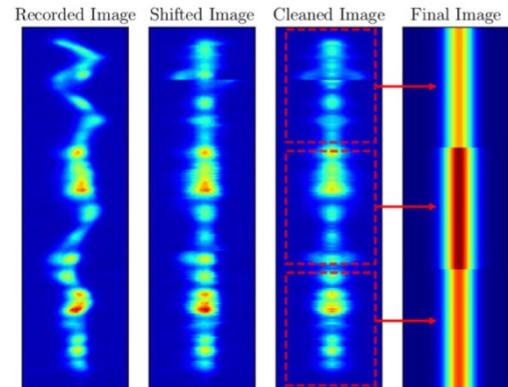
Registration and background subtraction pipeline



Several challenges make addressing these questions difficult.

Challenge

- Need statistics on image noise, background, and structure
 - E.g. for Bayesian inference or ML synthetic training data



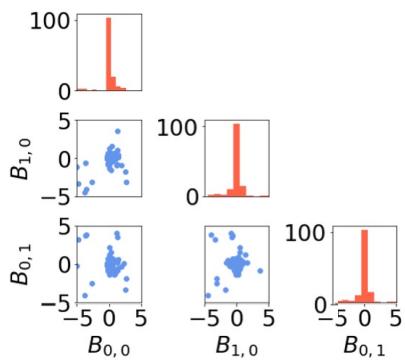
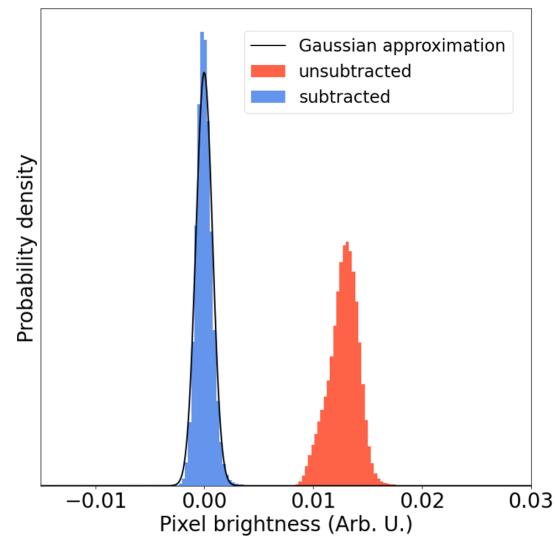
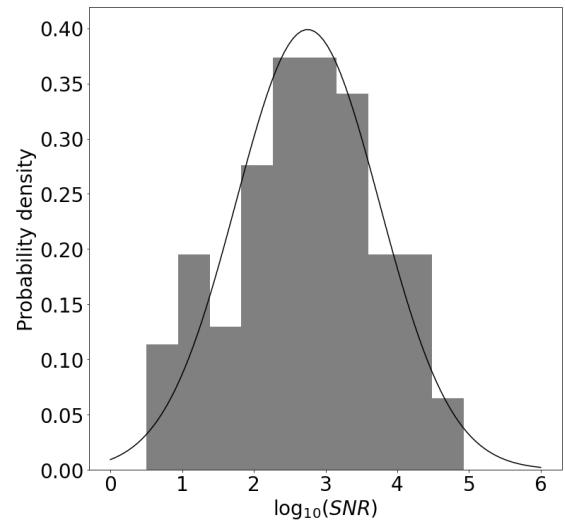
M.E. Glinsky et al., Phys. Plasmas **27**, 112703 (2020).

P.F. Knapp et al., Phys. Plasmas **29**, 052711 (2022).

W.E. Lewis et al., J. Plasmas Phys. **88**, 895880501 (2022).

Machine learning aided pipelines enable “large-scale” analysis and statistical characterization

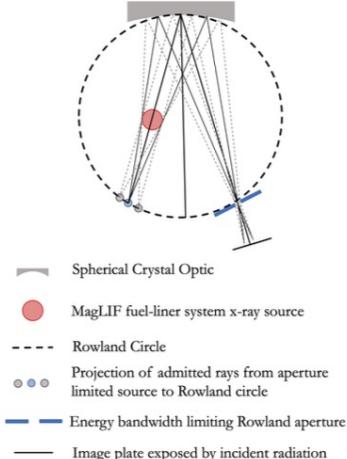
Statistical characterization of slowly varying background, noise, and signal levels



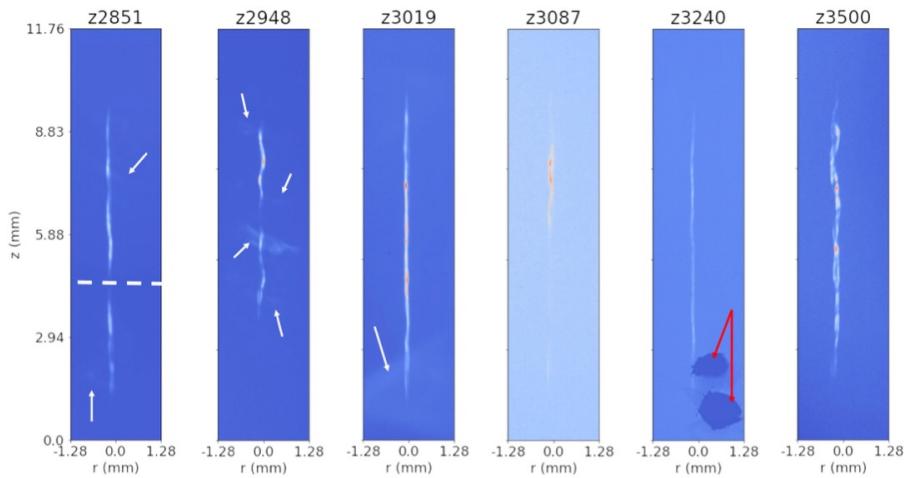
Several challenges make addressing these questions difficult.

Challenge

- Unspecified experiment dependent SNR
- Multiple distinct spherical crystal imaging modalities
 - Continuum vs spectral lines
 - Resolution
 - Views
- Typically no spatial fiducial
 - Registration



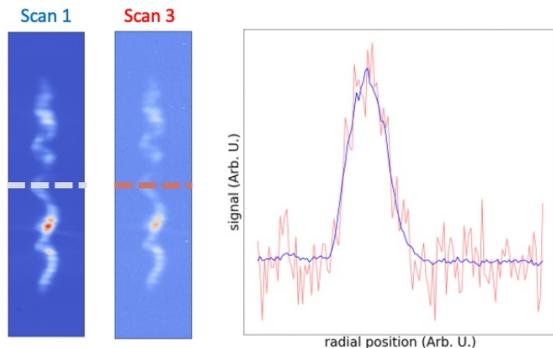
Imager	Configuration	Resolution [μm^2]
Argon Imager(Ar-Imager)	single	15 \times 85
Continuum X-ray Imager (CXI)	single	59 \times 83
High Resolution Continuum X-ray (CXI)	single	15 \times 16
Dual Continuum X-ray (DCXI)	dual	Ch1 54 \times 120 Ch2 46 \times 84
Iron K- α_1 (IKA1)	dual	Ch1 79 \times 82 Ch2 64 \times 66
Iron Helium- β (IHEB)	dual	Ch1 63 \times 66 Ch2 50 \times 53
Cobalt He- ω (CHEWI)	dual/orthogonal	Ch1 61 \times 66 Ch2 73 \times 72



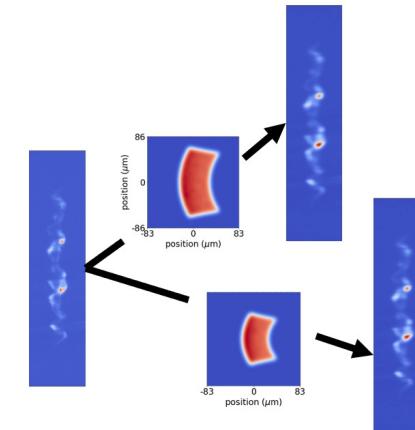
We can turn this to our advantage using ideas of data augmentation common in training machine learning algorithms

“Model-free” data augmentation help understand sensitivities and engineer metrics

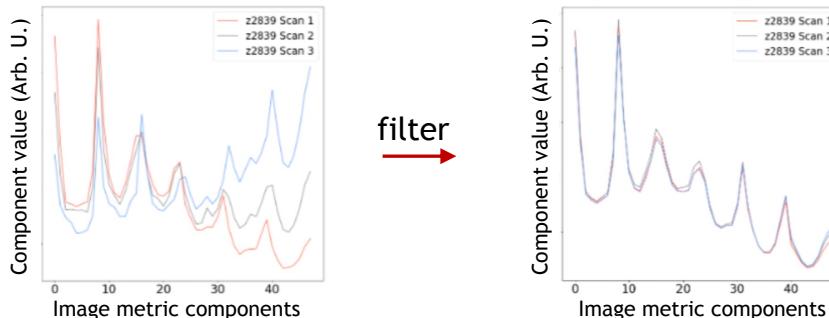
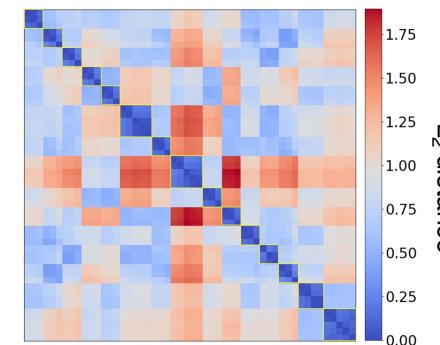
Sensitivity to texture/SNR via multiple scans



Sensitivity to resolution via PSFs and high-resolution imager data



Noise filtering can remove unwanted sensitivity to SNR



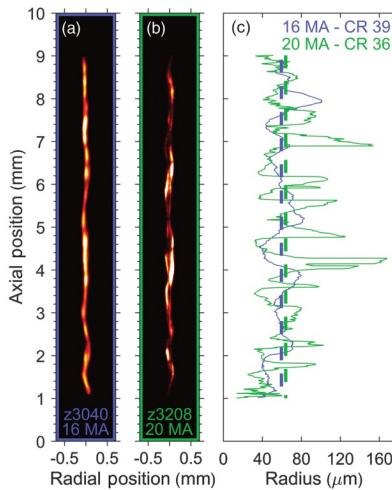
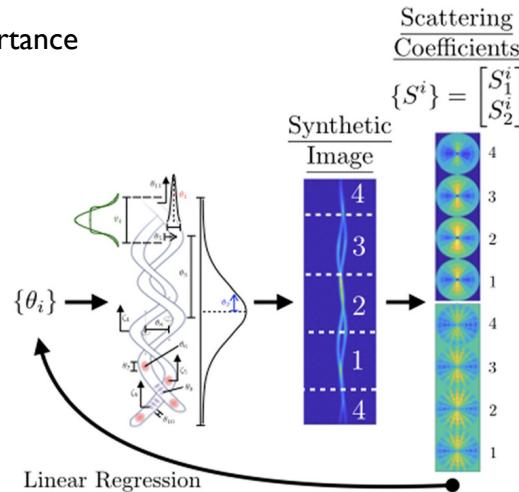
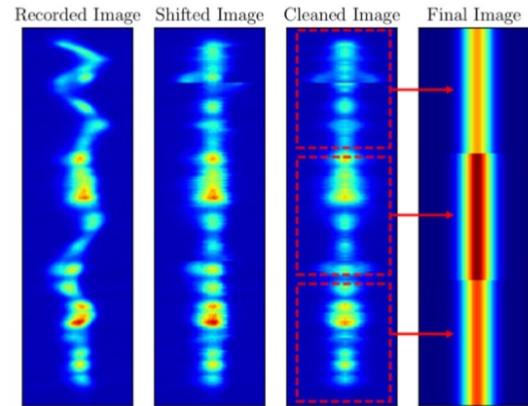
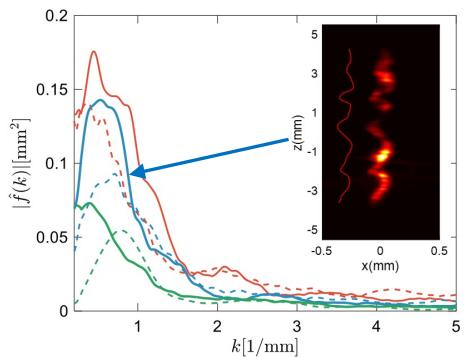
Note: Diagonal compares image to itself

■ = similar
■ = different

Characterizing stagnation morphology is a complex but important part of comparing experiments understanding performance

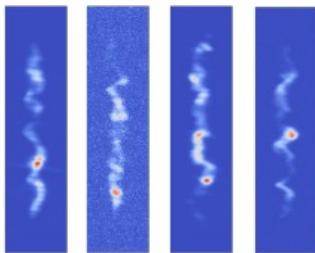
Challenge

- Image metrics may vary between practitioners and studies
 - Uncertain how sensitive metrics are to previous factors
 - Need statistical studies to understand importance

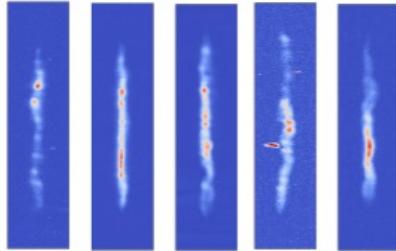
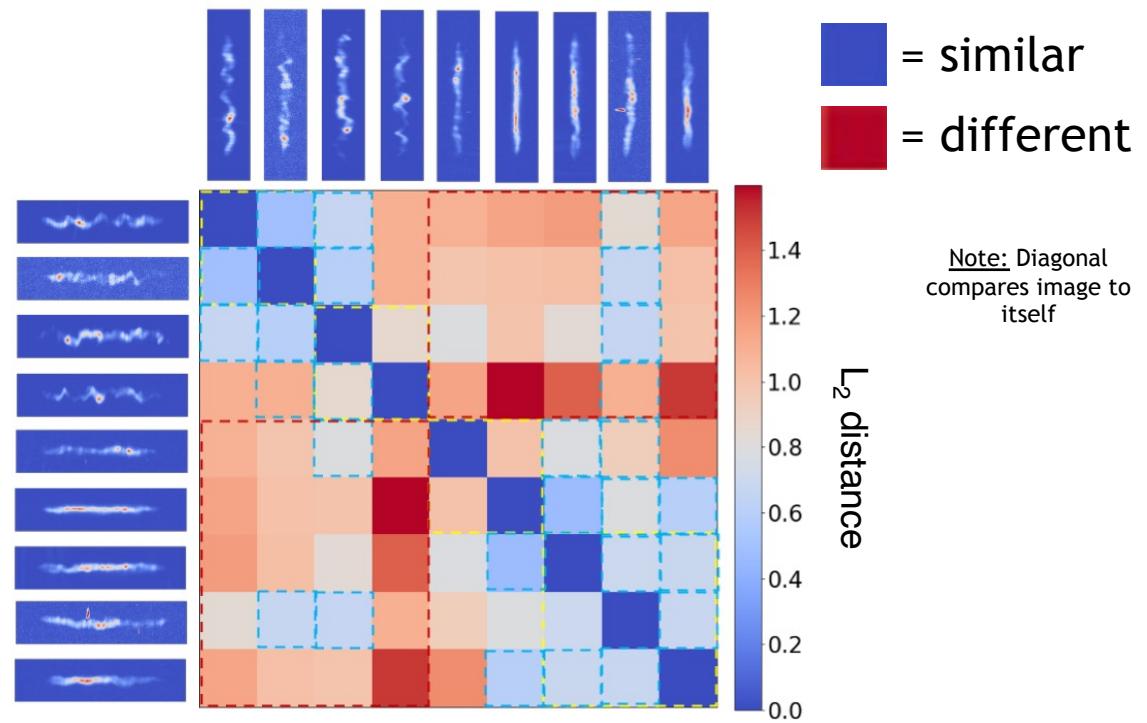


Data-driven methods are enabling metric exploration that is building to more detailed understanding of important features.

Randomly selected uncoated targets

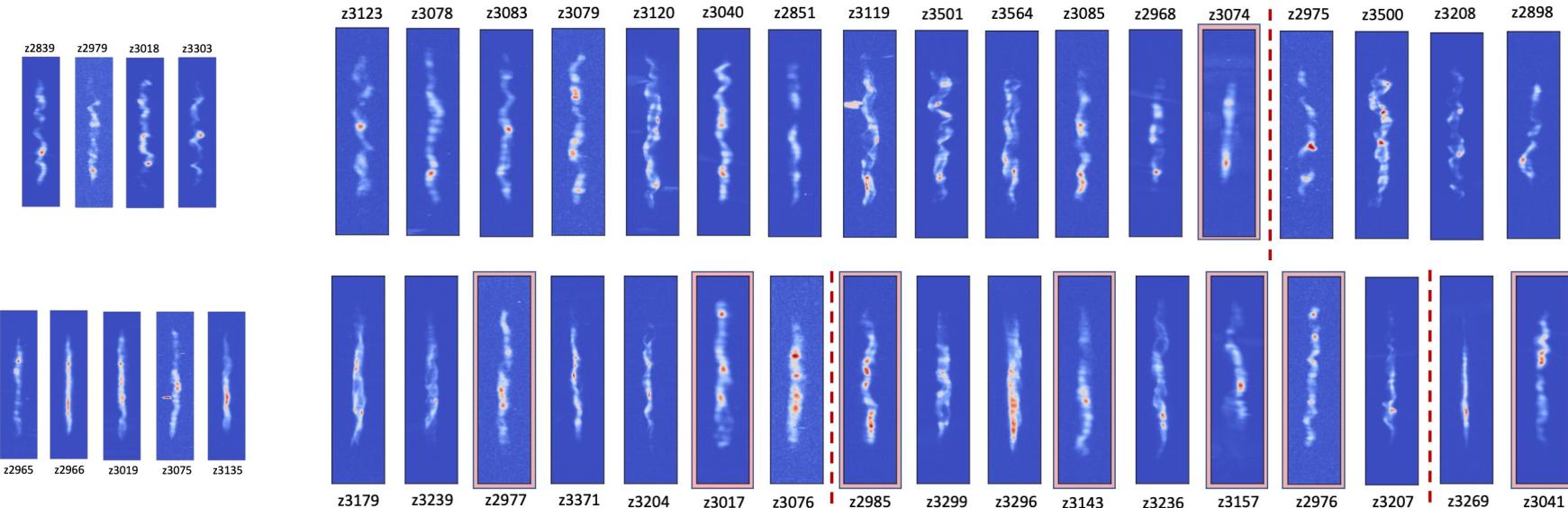


Randomly selected coated targets



Data-driven methods are enabling metric exploration that is building to more detailed understanding of important features.

Large-scale studies can aid in investigating non-obvious structure in our data

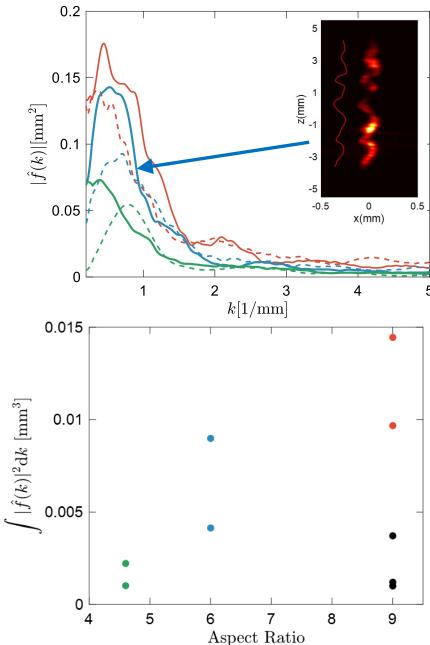


random	<i>u</i>	<i>c</i>
\tilde{u}	0.74 ± 0.06	0.74 ± 0.11
\tilde{c}	0.26 ± 0.06	0.26 ± 0.11

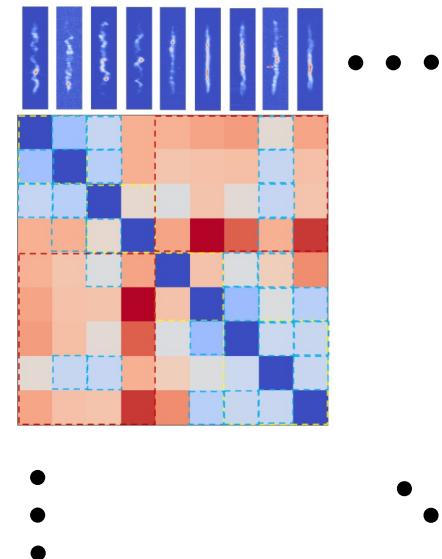
MST	<i>u</i>	<i>c</i>
\tilde{u}	0.84	0.47
\tilde{c}	0.16	0.53

Future directions and potential for collaboration

- Identification of features determining similarity
 - E.g. axial brightness variation frequency, helical excursion, mean and variance of strand radius/CR, etc.
 - May try to answer by studying correlations across full image database

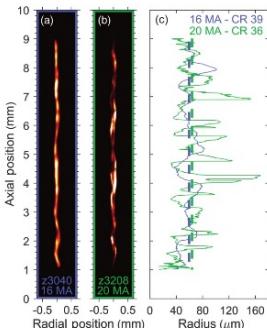
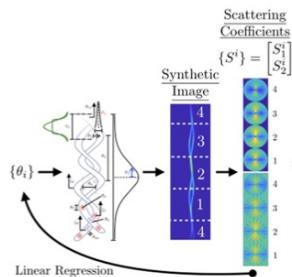


Extend to larger database and study correlations

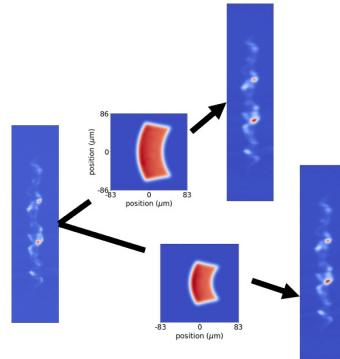
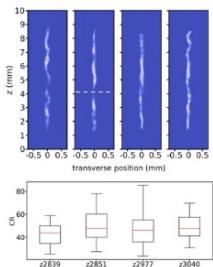
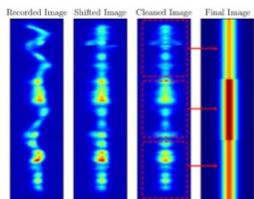
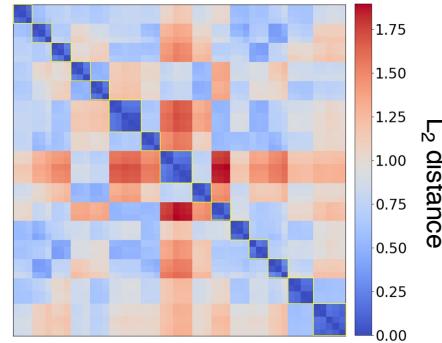


Future directions and potential for collaboration

- Extension of sensitivity study to alternate metrics



Apply model free data-augmentations and understand sensitivities



Note: Diagonal compares image to itself

= similar
 = different

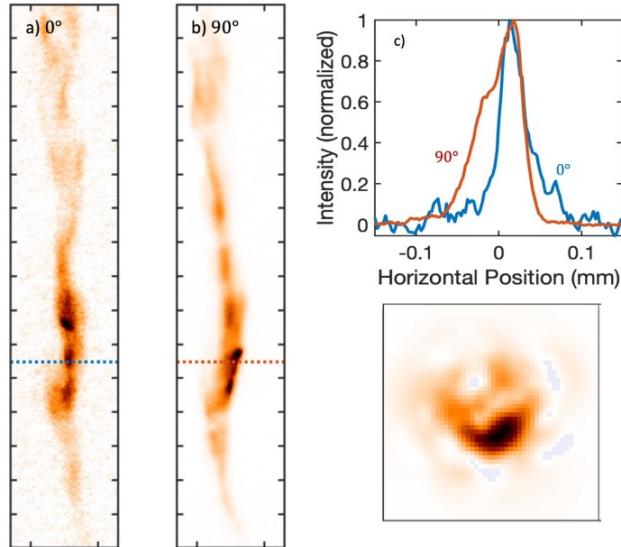
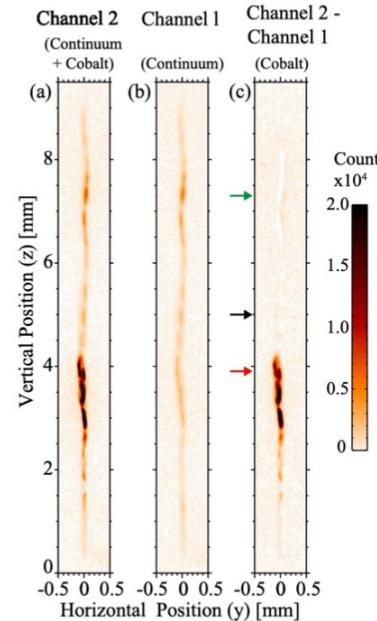
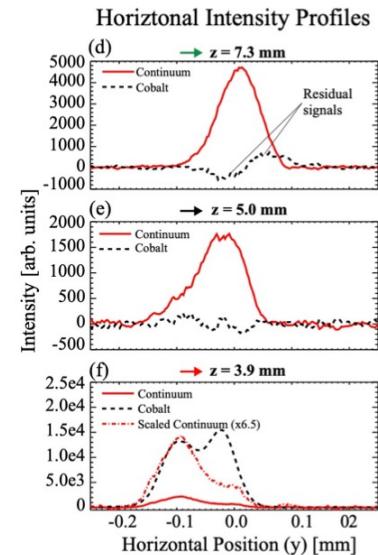
M.R. Gomez *et al.*, Phys. Rev. Lett. **125**, 155002 (2020).
 M.E. Glinsky *et al.*, Phys. Plasmas **27**, 112703 (2020).
 W.E. Lewis *et al.*, Phys. Plasmas **28**, 092701 (2021).
 P.F. Knapp *et al.*, Phys. Plasmas **29**, 052711 (2022).
 D.J. Ampleford, D.A. Yager-Elorriaga *et al.* (In Preparation).

Future directions and potential for collaboration

- Multiple view angles

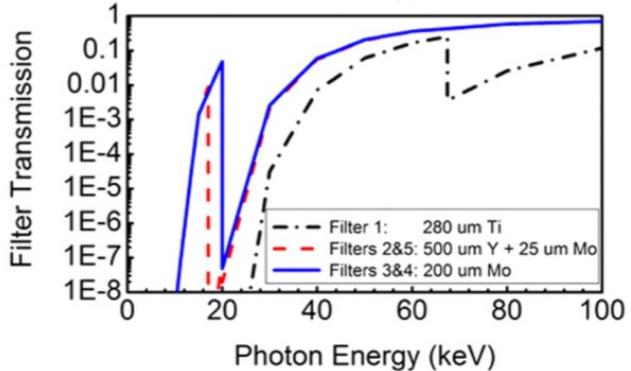
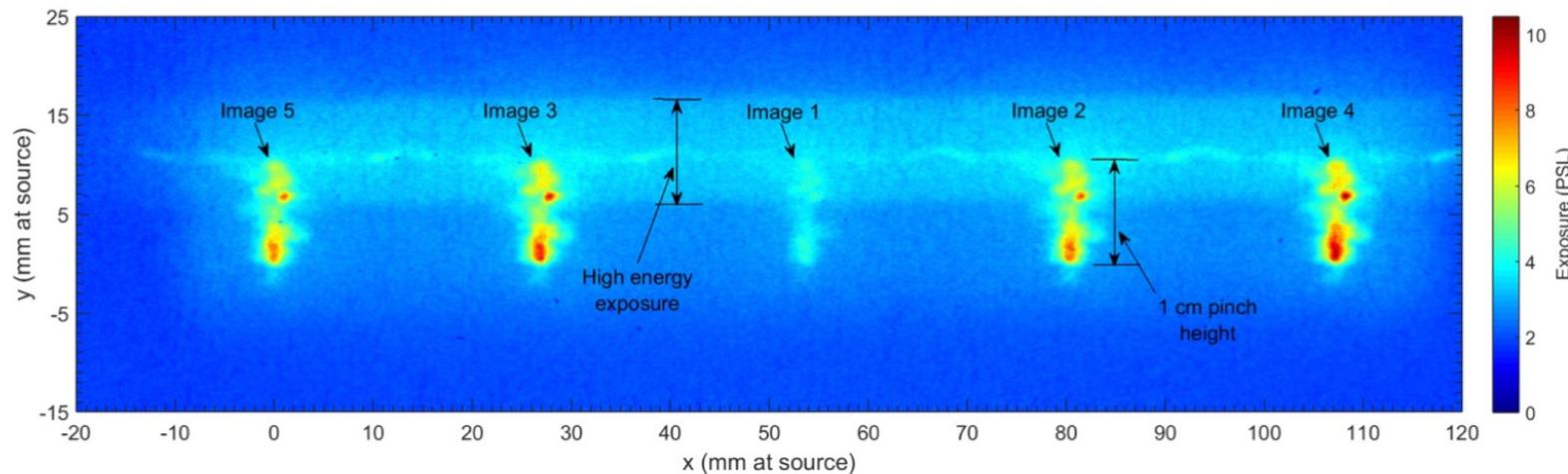
- Do differences in image metric between multiple views contain valuable “integrated” information?
- E.g. value even if tomographic inversion ill-posed

- Quantifying mix morphology, liner opacity impact



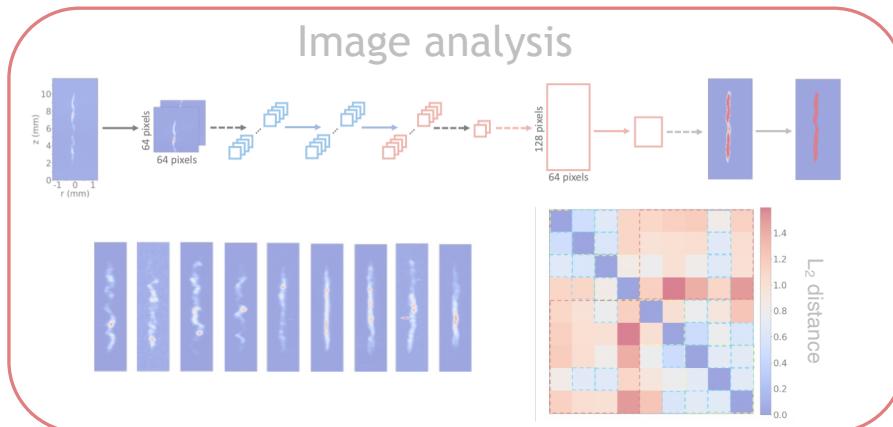
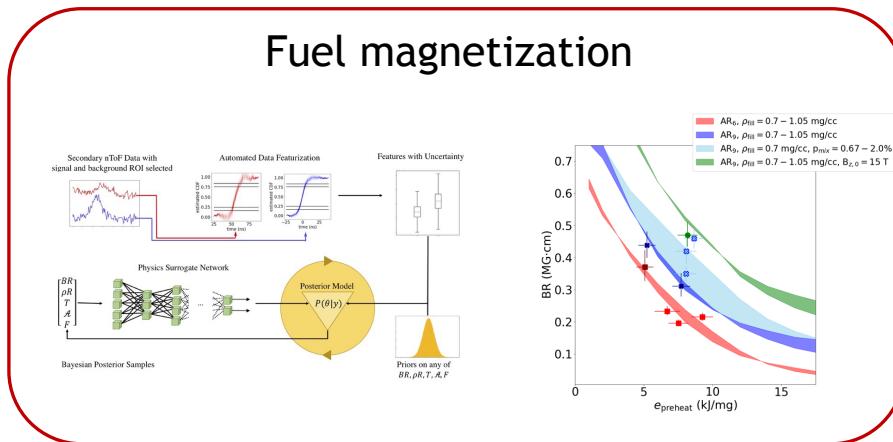
Future directions and potential for collaboration

- Extension to other imaging diagnostics/platforms
 - e.g. pinhole camera, radiography, etc.
 - wire arrays, gas puffs, etc.



Talk overview

- Introduction
 - Sandia's Z Pulsed Power Facility
 - Magnetized Liner Inertial Fusion
- Exemplars of applied data science for MagLIF
 - stagnation image analysis
 - fuel magnetization parameter analysis
 - future directions and collaboration opportunities!
- Overview of other efforts and concluding remarks



The magnetic field-fuel radius product (BR), determines charged fusion product confinement and electron thermal conduction losses.

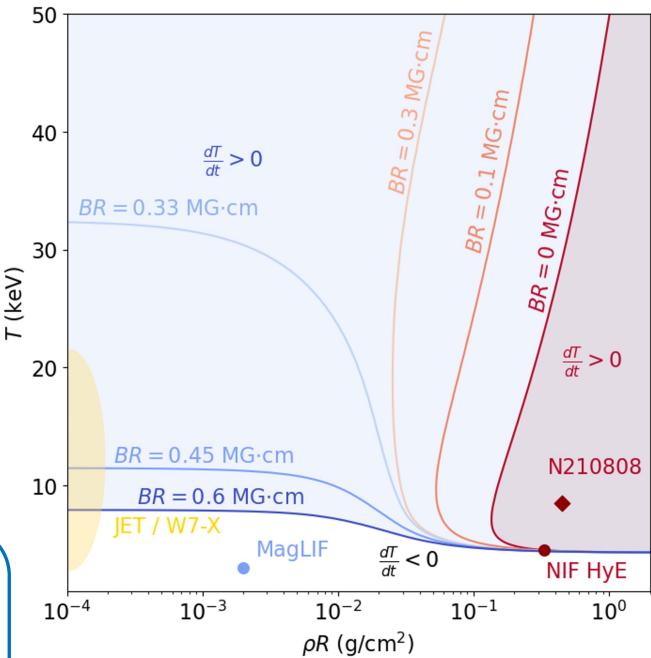
Effective BR for $B_z(r)$ profile:

$$\overline{BR} = \frac{\Phi_R}{\pi R} = \frac{2}{R} \int_0^R r B_z(r) dr$$

\overline{BR} determines trapping of fast charged particles:

trapping condition for particles born at $r=0$

$$\overline{BR} \geq \sqrt{\frac{8mE_{\perp}}{q^2}}$$

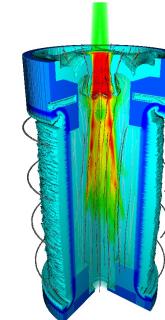


W.E. Lewis *et. al.*, PoP (Submitted)

A variety of plasma transport effects will modify the flux compression process. Measuring BR could provide insights into these effects.

- Ideal flux compression $\sim 1000 \times$ B-field amplification
 - trapping of fusion products and reduction of electron heat conduction
- Physical mechanisms leading to flux loss
 - Resistive diffusion
 - Nernst advection

$$v_{Nernst} = \frac{\beta_\Lambda \nabla_\perp T_e}{eB}$$



Resistive diffusion

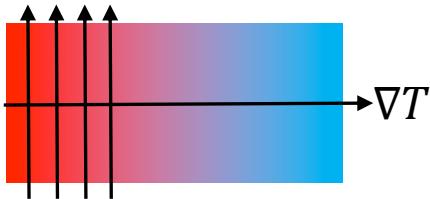
- Current disrupted by collisions
 - Allows magnetic field diffusion

$$\tau_D \sim \mu_0 \sigma L^2$$

$$\sigma \propto \tau_{coll}$$

Nernst effect

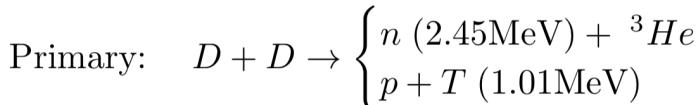
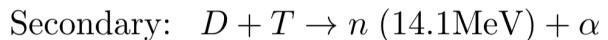
- B-field locked into warm electrons
- Thermal transport perpendicular to B transports flux



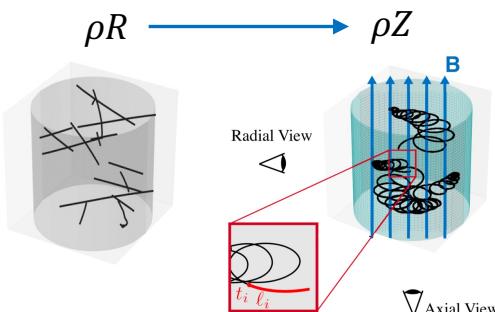
- Increased preheat $\propto \nabla_\perp T_e$ increases Nernst
- Increased B_z decreases Nernst
- What about geometry?
- Fill density?
- Impact of mix throughout implosion
- Measurements needed to study effects
 - can't do proton deflectometry/radiography
 - O(50 MG) fields driving Z-pinch!

Radially and axially viewed secondary DT neutron spectra and yield ratio $\bar{Y} = Y_{DT}/Y_{DD}$ are sensitive to fuel magnetization.

- Pure Deuterium fuel
 - ~ 1.01 MeV tritons produced by DD fusion

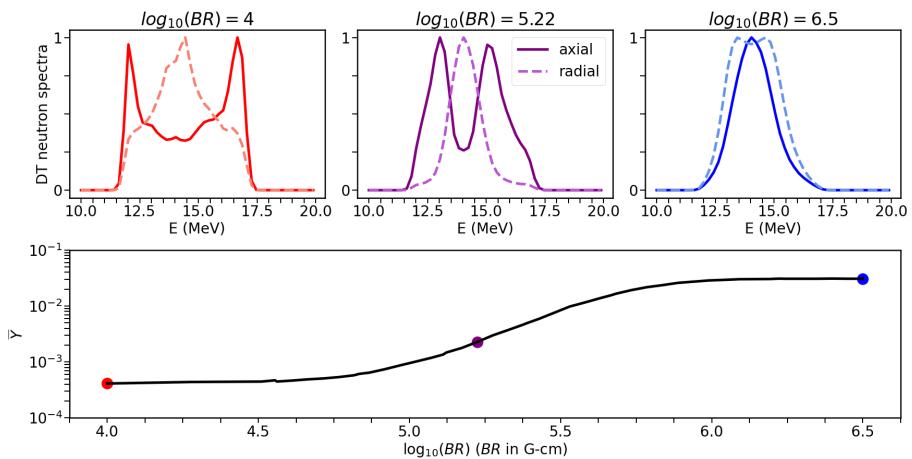


$$\mathcal{P}_{DT} \propto \langle \rho_D \ell \rangle \sigma_{DT} \xrightarrow{\text{Magnetized}} \ell \propto f(BR)$$



P.F. Schmit et al., PRL (2014)
P.F. Knapp et al., PoP (2015)

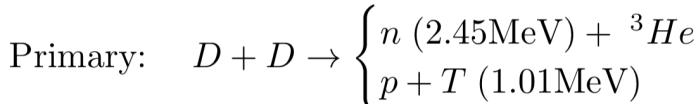
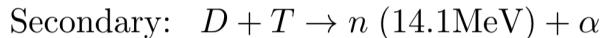
Increase in P_{DT} increases \bar{Y}



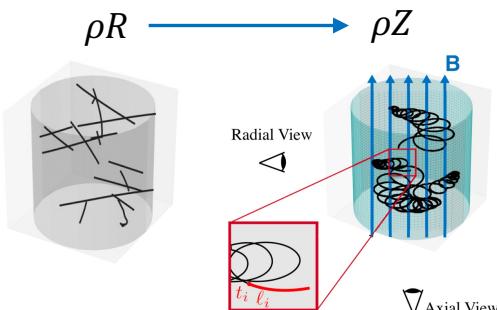
- Surrogacy of tritons for α 's
 - similar Larmor radius
 - 3.5 MeV α stopping length $\sim 0.5 \times 1.01$ MeV tritons

Radially and axially viewed secondary DT neutron spectra and yield ratio $\bar{Y} = Y_{DT}/Y_{DD}$ are sensitive to fuel magnetization.

- Pure Deuterium fuel
 - ~ 1.01 MeV tritons produced by DD fusion

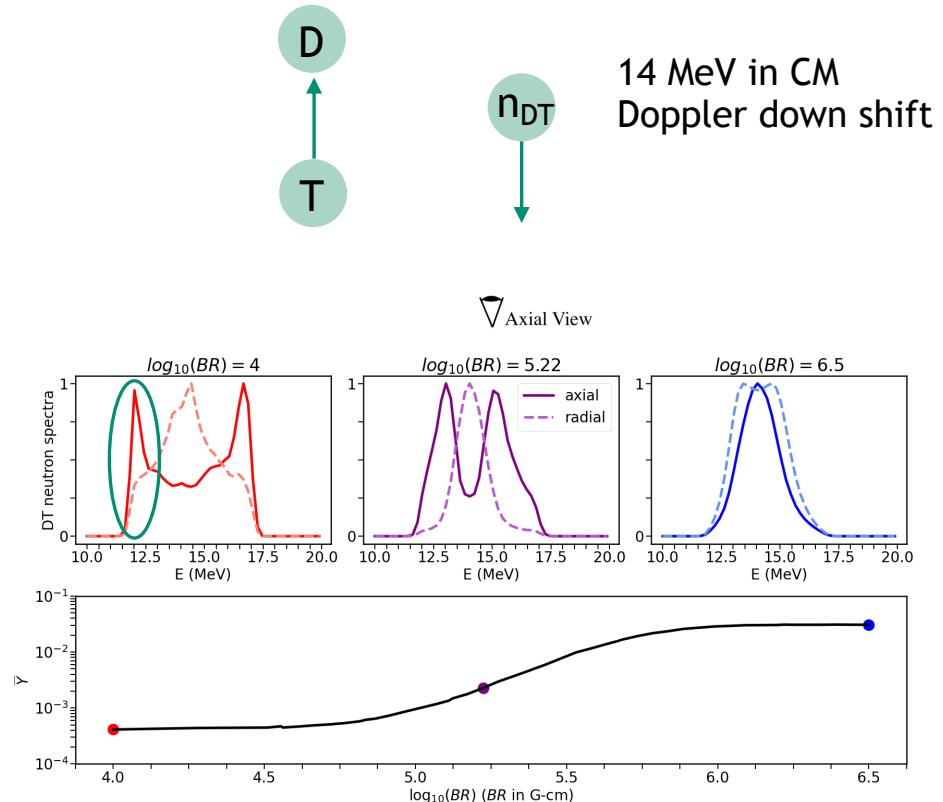


$$\mathcal{P}_{DT} \propto \langle \rho_D \ell \rangle \sigma_{DT} \xrightarrow{\text{Magnetized}} \ell \propto f(BR)$$



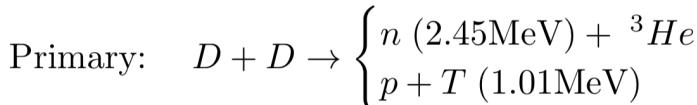
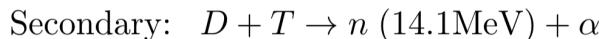
P.F. Schmit et al., PRL (2014)
P.F. Knapp et al., PoP (2015)

- Surrogacy of tritons for α 's
 - similar Larmor radius
 - 3.5 MeV α stopping length $\sim 0.5 \times 1.01$ MeV tritons

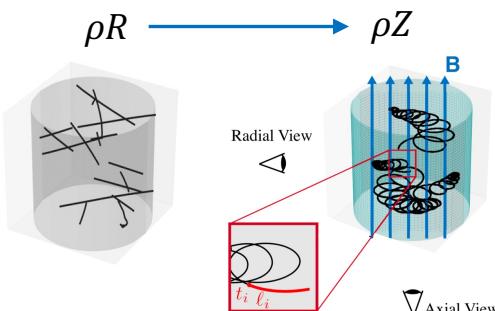


Radially and axially viewed secondary DT neutron spectra and yield ratio $\bar{Y} = Y_{DT}/Y_{DD}$ are sensitive to fuel magnetization.

- Pure Deuterium fuel
 - ~ 1.01 MeV tritons produced by DD fusion

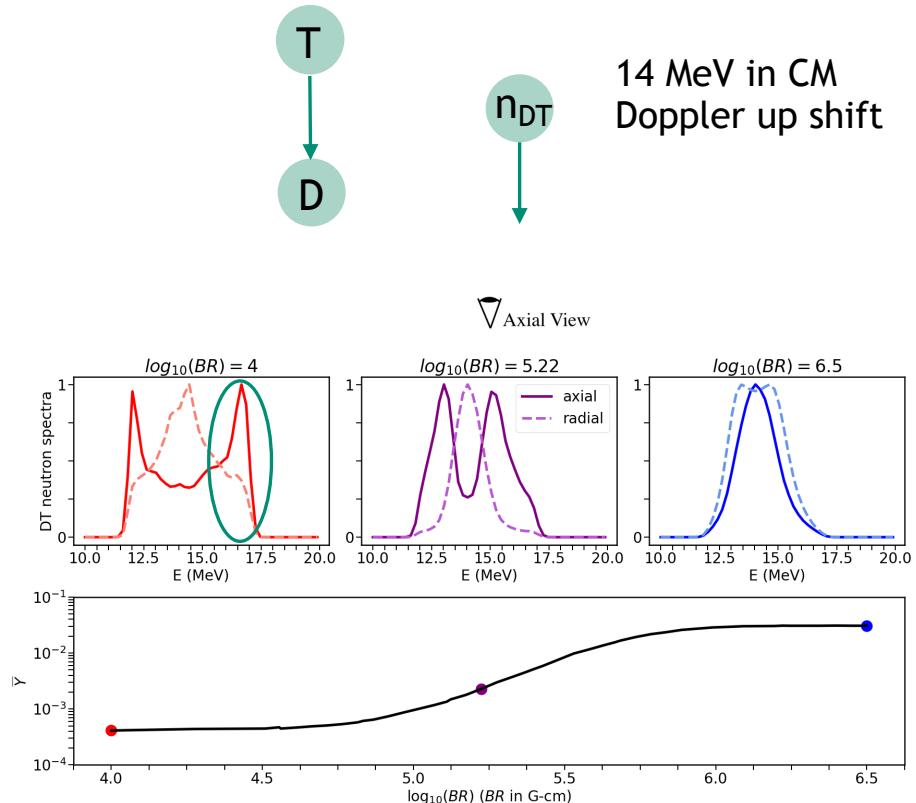


$$\mathcal{P}_{DT} \propto \langle \rho_D \ell \rangle \sigma_{DT} \xrightarrow{\text{Magnetized}} \ell \propto f(BR)$$



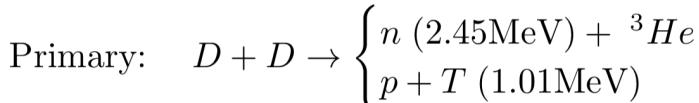
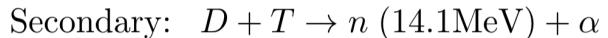
P.F. Schmit et al., PRL (2014)
P.F. Knapp et al., PoP (2015)

- Surrogacy of tritons for α 's
 - similar Larmor radius
 - 3.5 MeV α stopping length $\sim 0.5 \times 1.01$ MeV tritons

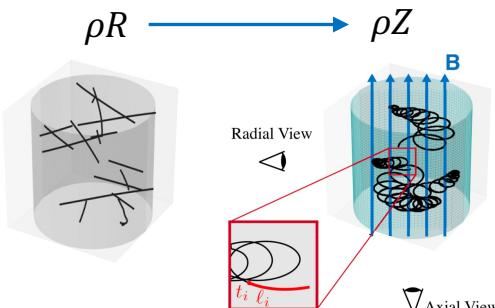


Radially and axially viewed secondary DT neutron spectra and yield ratio $\bar{Y} = Y_{DT}/Y_{DD}$ are sensitive to fuel magnetization.

- Pure Deuterium fuel
 - ~ 1.01 MeV tritons produced by DD fusion



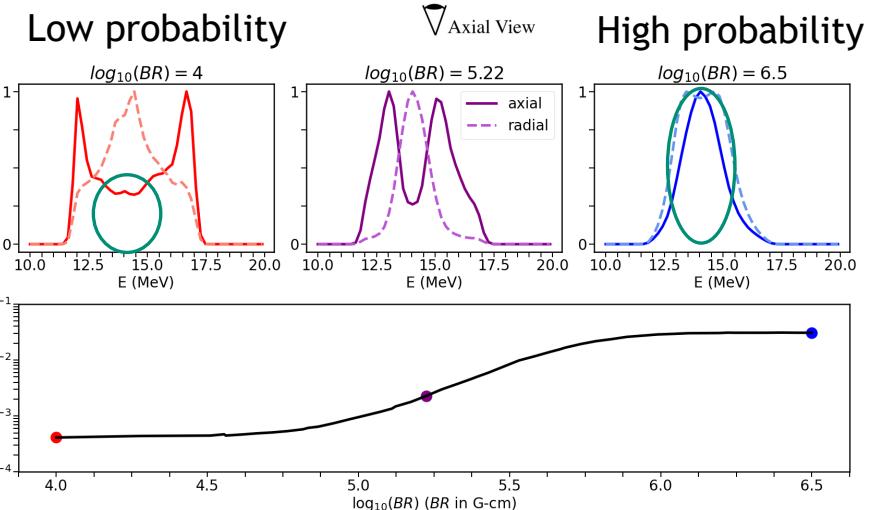
$$\mathcal{P}_{DT} \propto \langle \rho_D \ell \rangle \sigma_{DT} \xrightarrow{\text{Magnetized}} \ell \propto f(BR)$$



P.F. Schmit et al., PRL (2014)
P.F. Knapp et al., PoP (2015)

- Surrogacy of tritons for α 's
 - similar Larmor radius
 - 3.5 MeV α stopping length $\sim 0.5 \times 1.01$ MeV tritons

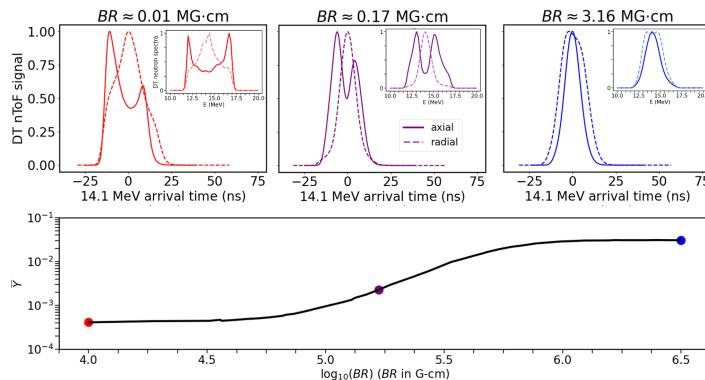
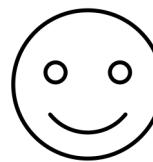
14 MeV in CM
No Doppler shift
 $B_z \sim$ probability



Characterizing stagnation morphology is a complex but important part of comparing experiments understanding performance

Challenge

- Computational cost of forward physics model
 - $O(10-100)$ CPU hours evaluation on a high-performance cluster

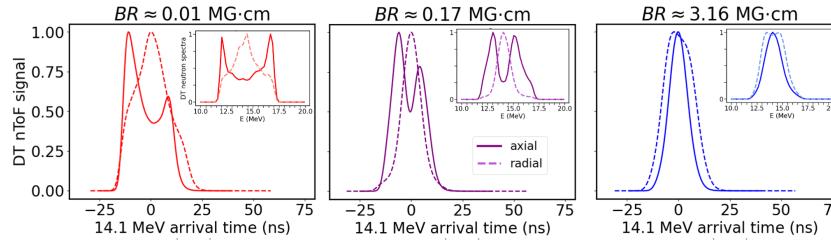
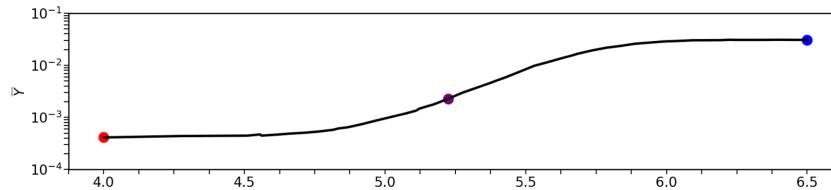
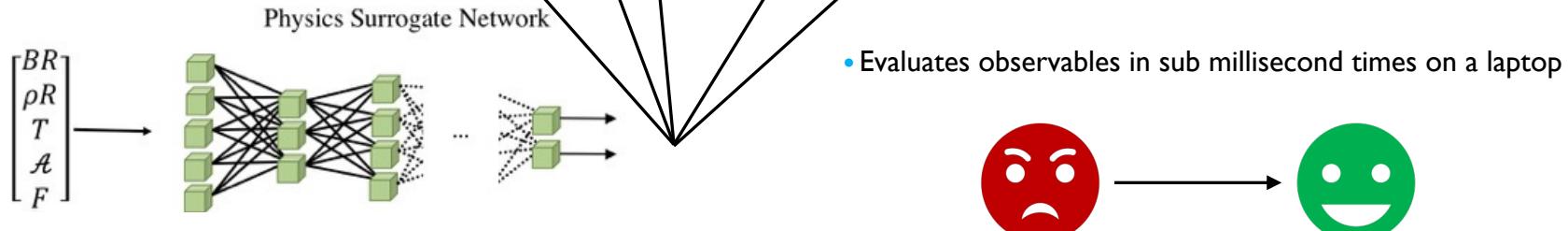


Characterizing stagnation morphology is a complex but important part of comparing experiments understanding performance

Challenge

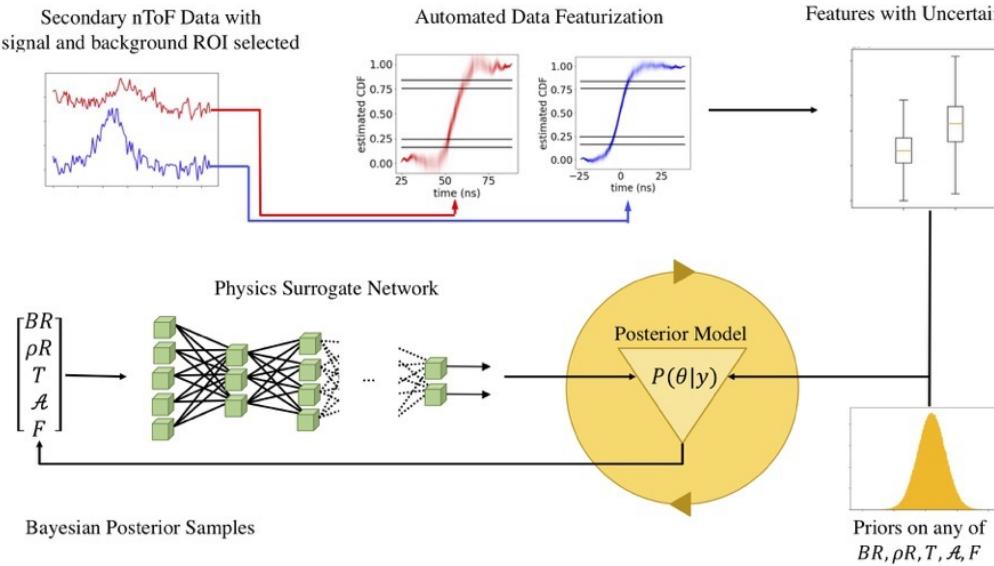
- Computational cost of forward physics model
 - $O(10-100)$ CPU hours evaluation on a high-performance cluster
 - 10k-100k + evaluations per experiment for inference and uncertainty quantification

Machine learning offers a route to avoiding repeat calculations by interpolating/surrogating results from representative simulations.

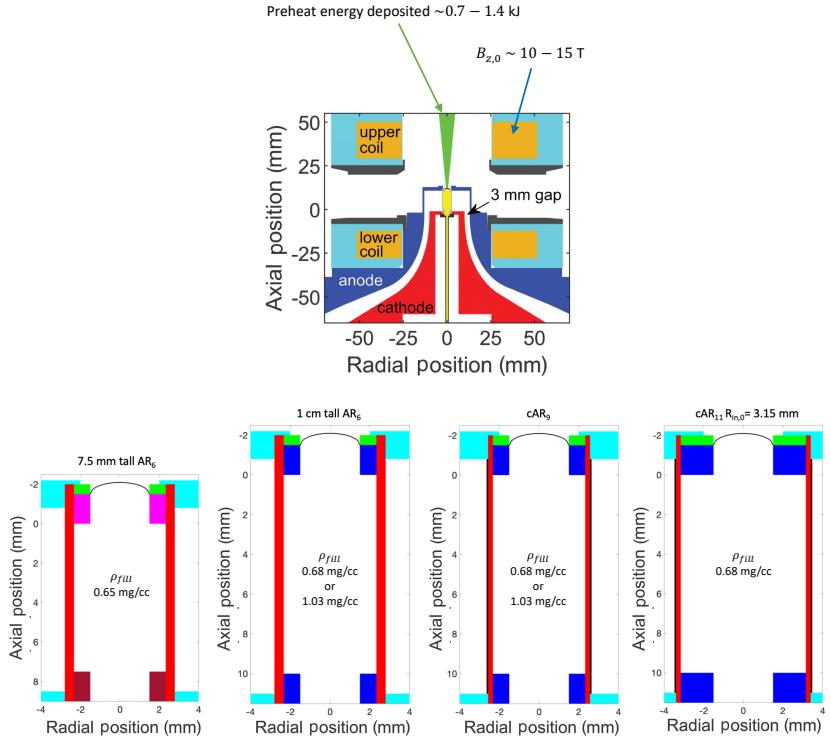
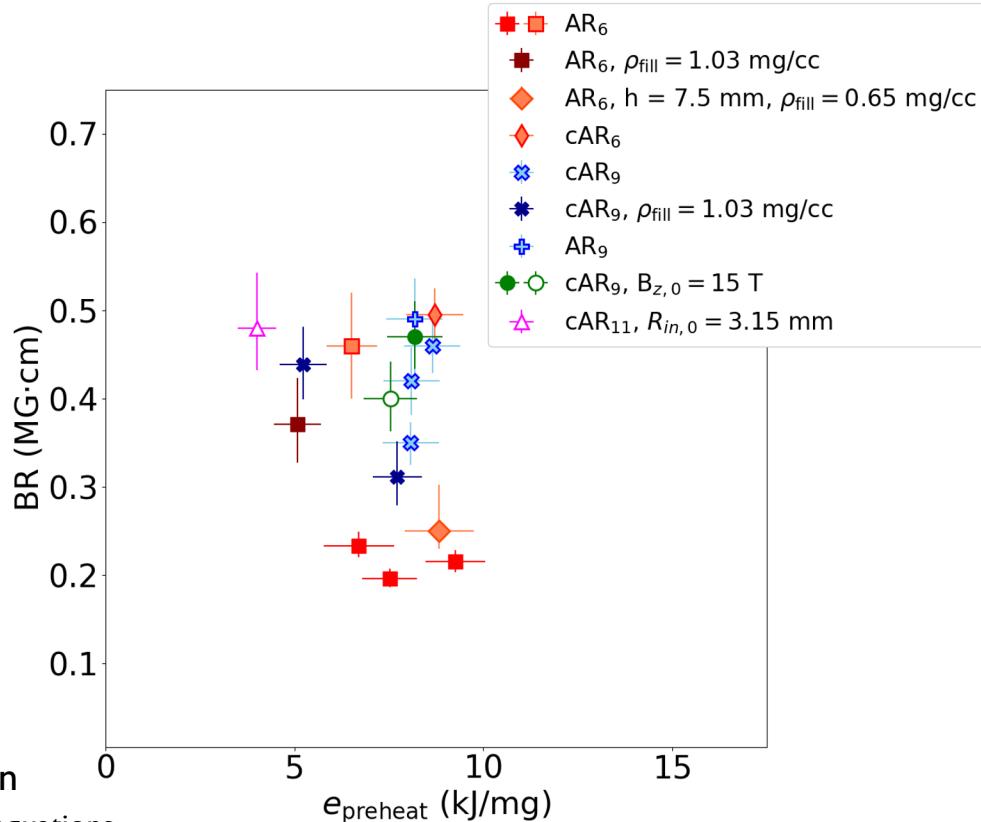


Machine learning enables rigorously defined UQ through coupling into a Bayesian inference framework.

- First systematic study of magnetic confinement properties of any neutron producing magneto-inertial fusion platform
 - Enabled by deep-learning and Bayesian inference



We can use our deep-learning based inference tool discover the larger story behind the physics of magnetic confinement in MagLIF



- ID resistive radMHD code Kraken* for comparison
 - C.A. Jennings implementation of GORGON system of MHD equations

Indeed, there are physics arguments that can explain the variance in the data and capture the results for all but two experimental cases.

- **Nernst** advection leads to significant decay of $(BR)_f$ with $e_{preheat}$

$$e_{preheat} = \frac{E_{preheat}}{m_{fuel}} \quad \langle T_{preheat} \rangle \propto e_{preheat}$$

$$v_{Nernst} = \frac{\beta_A \nabla_{\perp} T_e}{eB}$$

- **Higher aspect ratio**

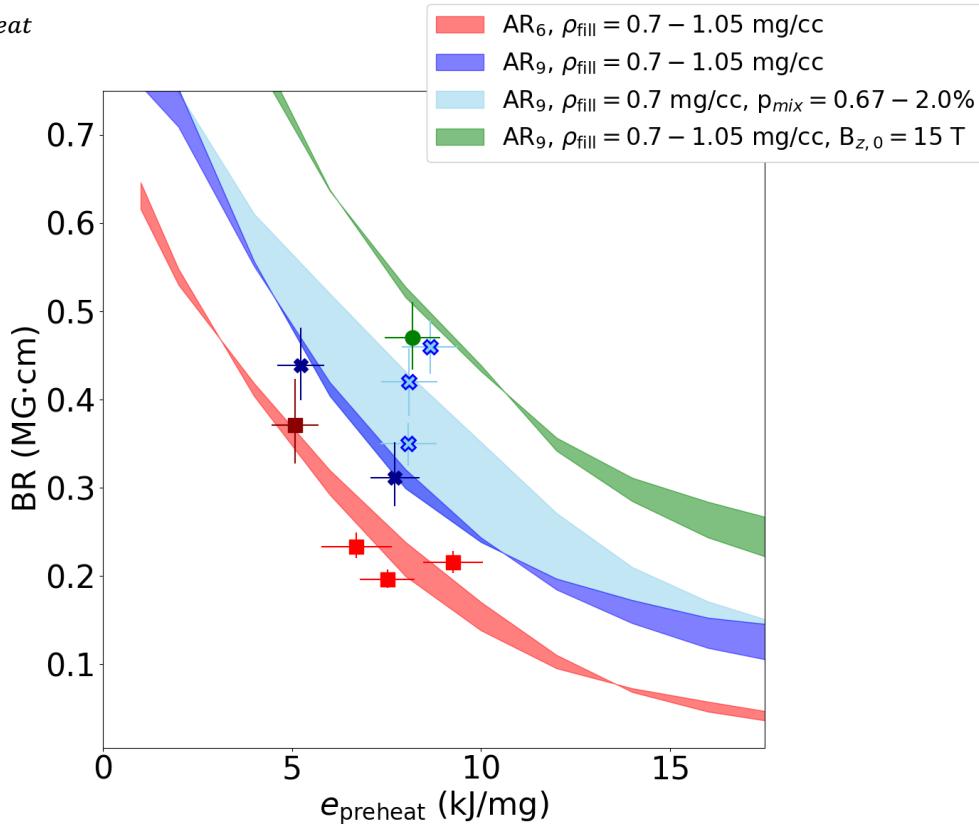
- reduces mass increasing v_{imp} and convergence

$$CR = \frac{R_{in,0}}{R_{in,f}}$$

$$(BR)_f = CR \frac{\phi_f}{\phi_0} (BR)_0$$

- **Mix** enhanced radiative losses reduces $\nabla_{\perp} T$
 - Reduces Nernst advection enhances $(BR)_f$
 - Reduces performance

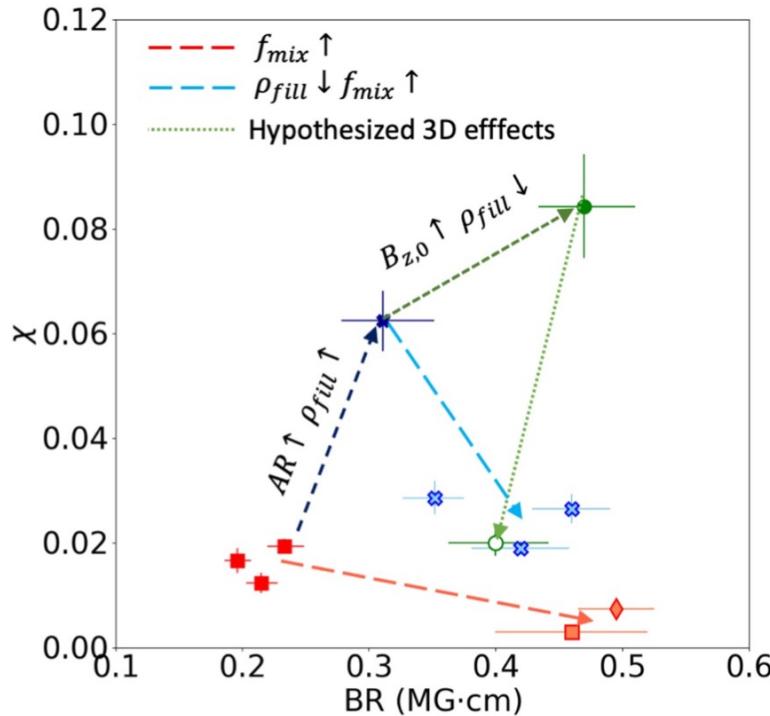
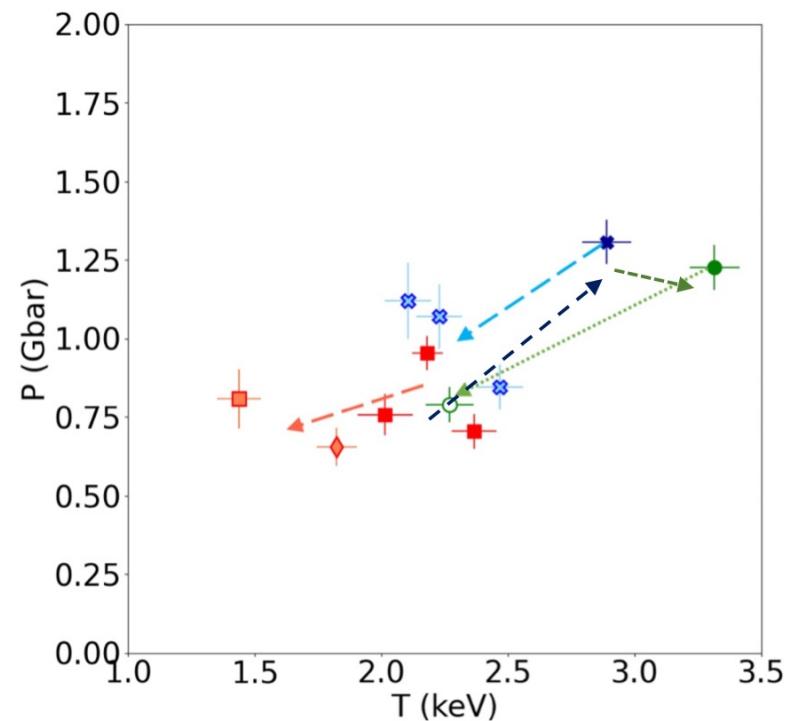
- **Increased B_z** results increases initial $(BR)_0$
 - Enhances $(BR)_f$ and improves thermal insulation



Pairing data driven methods with physics insight, we find that Nernst advection and mix are indeed integral to performance scaling in MagLIF.

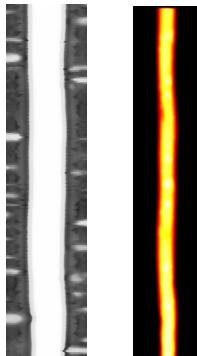
- Nernst advection enhanced flux loss limits the gains by increasing preheat alone

- ρ_{fill} , B_z , I_{max} etc. must be improved while mitigating mix to enable performance (χ) gains

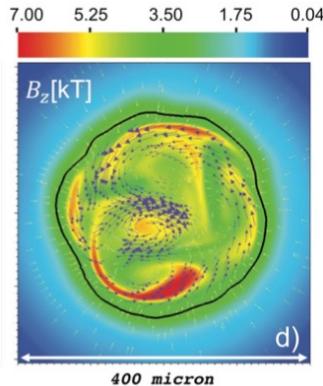


Future directions and potential for collaboration

- Relaxed model assumptions
 - nToF shape features
 - 2 ns Gaussian burn history
 - $T_e = T_i$
 - uniform mix assumption
 - 1D power law profile model with
 - $B_z \propto \rho$
 - Axially uniform B-field
 - Unknown impact of 3D effects

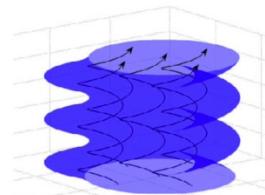
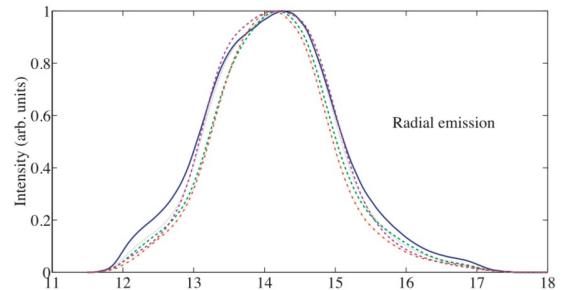
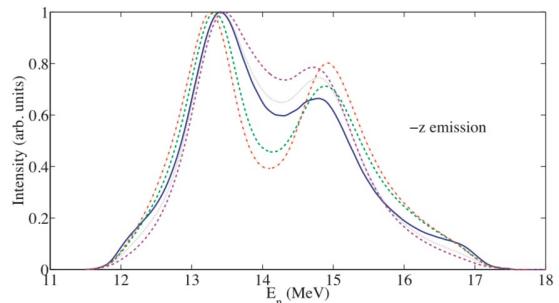


C.A. Jennings



M.R. Weis *et al.*, Phys. Plasmas **28**, 012705 (2021).

Magnetic field topology alters secondary neutron spectra

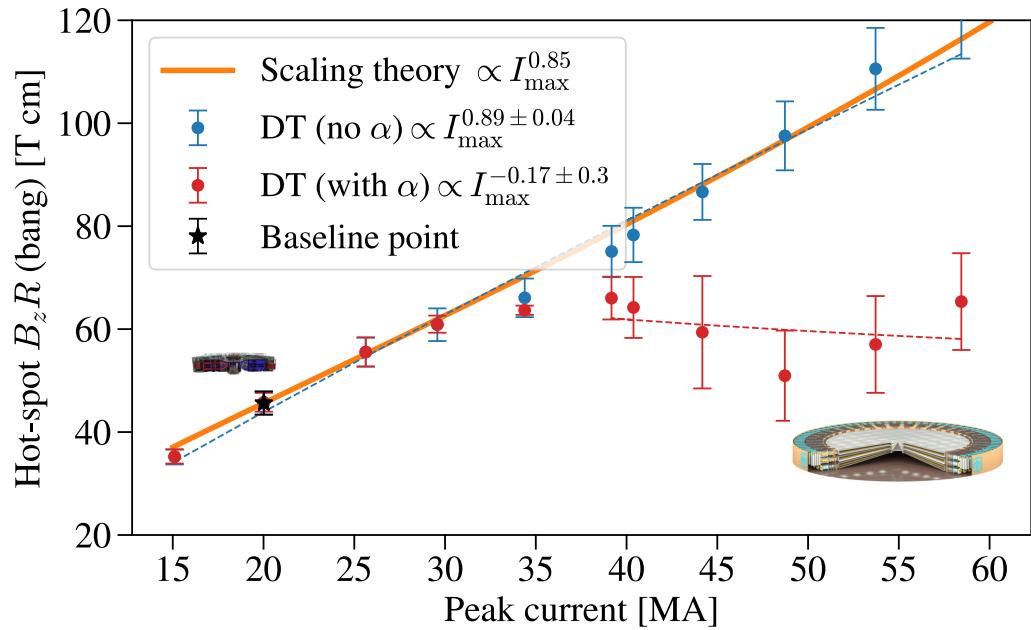


B. Appelbe *et al.*, HEDP **22**, 27 (2017).

Future directions and potential for collaboration

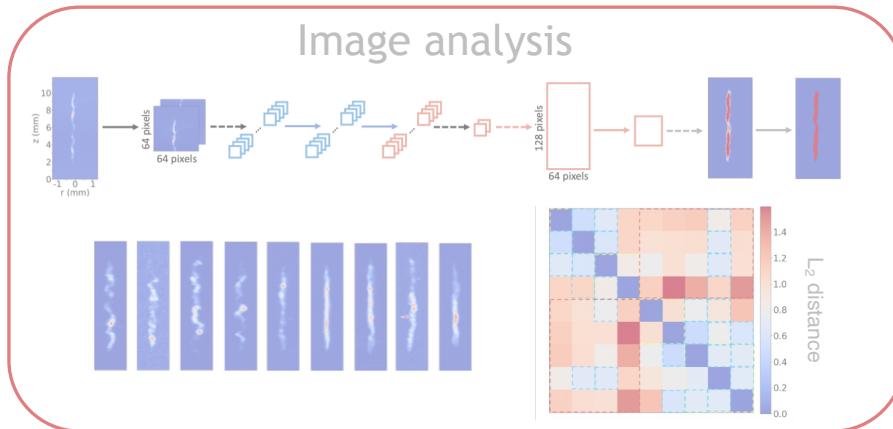
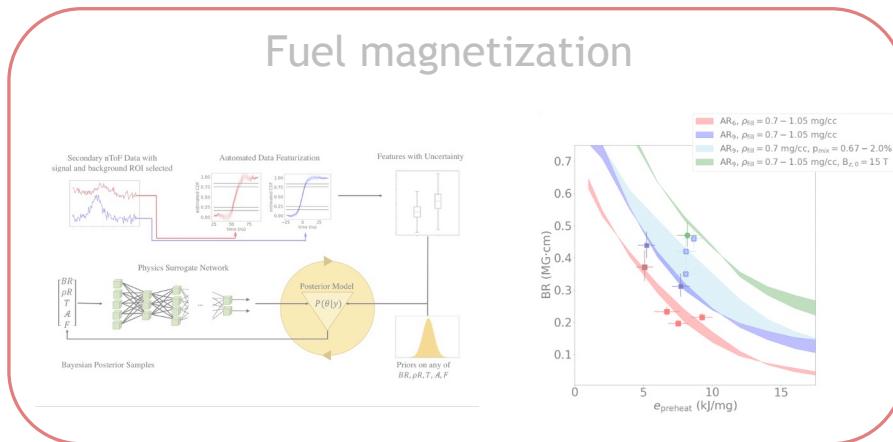
- Scaling to Next Generation Pulsed Power

Magnetization of α 's improves when scaling up in current. Simulation with α heating show a “plateau” due to reduced CR_{in} near stagnation.



Talk overview

- Introduction
 - Sandia's Z Pulsed Power Facility
 - Magnetized Liner Inertial Fusion
- Exemplars of applied data science for MagLIF
 - stagnation image analysis
 - fuel magnetization parameter analysis
 - future directions and collaboration opportunities!
- Overview of other efforts and concluding remarks



Data-driven methods have found successful application across a range of problems in HEDP at Z and continues to grow!

Publications at the intersection of HEDP on Z and data science:

J. Plasma Phys. (2022), vol. 0, © The Author(s), 2022.
Published by Cambridge University Press
doi:10.1017/S002237782200126X

Optimizing the configuration of plasma radiation detectors in the presence of uncertain instrument response and inadequate physics

P.F. Knapp^{1,†}, W.E. Lewis², V.R. Joseph², C.A. Jennings¹ and M.E. Glinsky^{1,‡}

¹Sandia National Laboratories, Albuquerque, NM 87185, USA

²Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

(Received 31 May 2022; revised 29 November 2022; accepted 30 November 2022)

J. Plasma Phys. (2022), vol. 88, 89580501 © The Author(s), 2022.
Published by Cambridge University Press
doi:10.1017/S0022377822009000

Statistical characterization of experimental magnetized liner inertial fusion stagnation images using deep-learning-based fuel-background segmentation

William E. Lewis^{3,1,†}, Patrick F. Knapp¹, Eric C. Harding¹ and Kristian Beckwith^{1,‡}

¹Sandia National Laboratories, Albuquerque, NM 87185, USA

(Received 5 May 2022; revised 18 August 2022; accepted 19 August 2022)

Physics of Plasmas

Estimation of stagnation performance metrics in magnetized liner inertial fusion experiments using Bayesian data assimilation

Cite as: *Phys. Plasmas* 29, 093711 (2022). <https://doi.org/10.1063/5.0067749>
Submitted: 01 February 2022 • Accepted: 01 May 2022 • Published Online: 18 May 2022

© P. F. Knapp, M. E. Glinsky, M. A. Scheidele, et al.

COLLECTIONS

Paper published as part of the special topic on *Papers from the 63rd Annual Meeting of the APS Division of Plasma Physics*

Physics of Plasmas

Deep-learning-enabled Bayesian inference of fuel magnetization in magnetized liner inertial fusion

Cite as: *Phys. Plasmas* 28, 092701 (2021). <https://doi.org/10.1063/5.0056749>
Submitted: 13 May 2021 • Accepted: 03 August 2021 • Published Online: 01 September 2021

© William E. Lewis, Patrick F. Knapp, Stephen A. Slutz, et al.

COLLECTIONS

© This paper was selected as an Editor's Pick

Journal of the Royal Statistical Society
Applied Statistics Series C

Appl. Statist. (2018)
67, Part 4, pp. 1023–1045

Quantification of MagLIF morphology using the Mallat scattering transformation

Cite as: *Phys. Plasmas* 27, 112703 (2020). <https://doi.org/10.1063/5.0007789>
Submitted: 14 April 2020 • Accepted: 08 October 2020 • Published Online: 03 November 2020

© Michael E. Glinsky, Thomas W. Moore, William E. Lewis, et al.

COLLECTIONS

© This paper was selected as Featured

J. L. Brown and L. B. Hund

Sandia National Laboratories, Albuquerque, USA

(Received February 2017; Final revision January 2018)

Journal of Applied Physics

Simultaneous inference of the compressibility and inelastic response of tantalum under extreme loading

Cite as: *J. Appl. Phys.* 130, 055901 (2021). <https://doi.org/10.1063/5.0054437>
Submitted: 10 May 2021 • Accepted: 22 July 2021 • Published Online: 05 August 2021

© J. S. Schill, R. A. Austin, K. L. Schmid, et al.

PHYSICAL REVIEW LETTERS 125, 155002 (2020)

Performance Scaling in Magnetized Liner Inertial Fusion Experiments

M. R. Gomez^{1,†}, S. A. Slutz², C. A. Jennings³, D. J. Ampleford¹, M. R. Weis^{1,‡}, C. E. Myers¹, D. A. Yager-Florriag¹, K. D. Hahn², S. R. Hansen², E. C. Harding¹, J. A. Harvey-Thompson¹, D. C. Lampis¹, M. Mangano¹, P. F. Knapp¹, T. J. Ave¹, G. A. Chandler¹, G. W. Cooper^{1,§}, J. R. Fein¹, M. Geissel^{1,‡}, M. Glinsky¹, W. E. Lewis¹, C. L. Ruiz¹, D. E. Ruiz¹, M. E. Savage¹, P. F. Schmit¹, I. C. Smith¹, D. B. Styron¹, J. L. Porter¹, B. Jones¹, T. R. McDaniel¹, K. P. Peterson¹, G. R. Roehl¹, and D. B. Sinars^{1,§}

¹Lawrence Livermore National Laboratory, Livermore, California 94550, USA

²University of New Mexico, Albuquerque, New Mexico 87131, USA

(Received 17 January 2020; revised 31 July 2020; accepted 27 August 2020; published 9 October 2020)

Physics of Plasmas

In Preparation:

A framework for experimental-data-driven assessment of Magnetized Liner Inertial Fusion stagnation image metrics

William E. Lewis,¹ Eric C. Harding,¹ Jeffrey R. Fein,¹ Patrick F. Knapp,¹ Kristian Beckwith,¹ and David J. Ampleford¹
Sandia National Laboratories, Albuquerque, New Mexico 87185 USA

Tomographic reconstruction of MagLIF stagnation columns from orthogonal projections using learned basis functions

Jeffrey R. Fein,¹ and et al.¹
Sandia National Laboratories, Albuquerque, New Mexico 87185 USA

Data-driven methods have found successful application across a range of problems in HEDP at Z and continues to grow!

Publications at the intersection of HEDP on Z and data science:

J Plasma Phys. (2022), vol. 88, 8958001 © The Author(s), 2022.
Published by Cambridge University Press
doi:10.1017/S002237782200126X

Optimizing the configuration of plasma radiation detectors in the presence of uncertain instrument response and inadequate physics

P.F. Knapp^{1,†}, W.E. Lewis^{2,†}, V.R. Joseph², C.A. Jennings¹ and M.E. Glinsky^{1,‡}

¹Sandia National Laboratories, Albuquerque, NM 87185, USA

²Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

(Received 31 May 2022; revised 29 November 2022; accepted 30 November 2022)

J Plasma Phys. (2022), vol. 88, 8958001 © The Author(s), 2022.
Published by Cambridge University Press
doi:10.1017/S0022377822000400

Statistical characterization of experimental magnetized liner inertial fusion stagnation images using deep-learning-based fuel-background segmentation

William E. Lewis^{3,1,†}, Patrick F. Knapp¹, Eric C. Harding¹ and Kristian Beckwith^{1,‡}

¹Sandia National Laboratories, Albuquerque, NM 87185, USA

(Received 5 May 2022; revised 18 August 2022; accepted 19 August 2022)

Simultaneous inference of the compressibility and inelastic response of tantalum under extreme loading

Cite as: *J. Appl. Phys.* 130, 059901 (2021). <https://doi.org/10.1063/5.005437>
Submitted: 10 May 2021 • Accepted: 22 July 2021 • Published Online: 05 August 2021

© 2021 J. Schill, R. A. Austin, K. L. Schmid, et al.

PHYSICAL REVIEW LETTERS 125, 155002 (2020)

Performance Scaling in Magnetized Liner Inertial Fusion Experiments

M. R. Gomez^{1,3}, S. A. Slutz², C. A. Jennings³, D. J. Ampleford¹, M. R. Weis^{1,4}, C. E. Myers¹, D. A. Yager-Florriag¹, K. D. Hahn², S. R. Hansen², C. E. Harding¹, J. A. Harvey-Thompson¹, D. C. Lampis¹, M. Mangano¹, P. F. Knapp¹, T. J. Ave¹, G. A. Chandler¹, G. W. Cooper¹, J. R. Fein¹, M. Geissel^{1,5}, M. Glinsky¹, W. E. Lewis¹, C. L. Ruiz¹, D. E. Ruiz¹, M. E. Savage¹, P. F. Schmit¹, I. C. Smith¹, D. B. Styron¹, J. L. Porter¹, B. Jones¹, T. R. McDaniel¹, K. P. Pecetta¹, G. A. Rechard¹, and D. B. Sinars^{1,6}

¹Lawrence Livermore National Laboratory, Livermore, California 94550, USA

²University of New Mexico, Albuquerque, New Mexico 87131, USA

(Received 17 January 2020; revised 31 July 2020; accepted 27 August 2020; published 9 October 2020)

Submitted:

Data-driven assessment of magnetic charged particle confinement parameter scaling in Magnetized Liner Inertial Fusion experiments on Z

William E. Lewis,¹ Owen M. Mannion,¹ D. E. Ruiz,¹ Christopher A. Jennings,¹ Patrick F. Knapp,¹ Matthew R. Gomez,¹ Adam J. Harvey-Thompson,¹ Matthew R. Weis,¹ Stephen A. Slutz,¹ David J. Ampleford,¹ and Kristian Beckwith¹

Sandia National Laboratories, Albuquerque, New Mexico 87185 USA

Estimation of stagnation performance metrics in magnetized liner inertial fusion experiments using Bayesian data assimilation

Cite as: *Phys. Plasmas* 29, 093701 (2022). <https://doi.org/10.1063/5.0087709>
Submitted: 01 February 2022 • Accepted: 01 May 2022 • Published Online: 18 May 2022

© William E. Lewis, Patrick F. Knapp, Stephen A. Slutz, et al.

COLLECTIONS

Paper published as part of the special topic on *Papers from the 63rd Annual Meeting of the APS Division of Plasma Physics*

Deep-learning-enabled Bayesian inference of fuel magnetization in magnetized liner inertial fusion

Cite as: *Phys. Plasmas* 28, 092701 (2021). <https://doi.org/10.1063/5.0056749>
Submitted: 13 May 2021 • Accepted: 03 August 2021 • Published Online: 01 September 2021

© William E. Lewis, Patrick F. Knapp, Stephen A. Slutz, et al.

COLLECTIONS

© This paper was selected as an Editor's Pick

Quantification of MagLIF morphology using the Mallat scattering transformation

Cite as: *Phys. Plasmas* 27, 112703 (2020). <https://doi.org/10.1063/5.0007989>
Submitted: 14 April 2020 • Accepted: 08 October 2020 • Published Online: 03 November 2020

© Michael E. Cinsky, Thomas W. Moore, William E. Lewis, et al.

COLLECTIONS

© This paper was selected as Featured

Appl. Statist. (2018)
67, Part 4, pp. 1023–1045

Quantification of MagLIF morphology using the Mallat scattering transformation

Estimated material properties under extreme conditions by using Bayesian model calibration with functional outputs

J. L. Brown and L. B. Hund
Sandia National Laboratories, Albuquerque, USA

(Received February 2017; Final revision January 2018)

In Preparation:

A framework for experimental-data-driven assessment of Magnetized Liner Inertial Fusion stagnation image metrics

William E. Lewis,¹ Eric C. Harding,¹ Jeffrey R. Fein,¹ Patrick F. Knapp,¹ Kristian Beckwith,¹ and David J. Ampleford¹

Sandia National Laboratories, Albuquerque, New Mexico 87185 USA

Tomographic reconstruction of MagLIF stagnation columns from orthogonal projections using learned basis functions

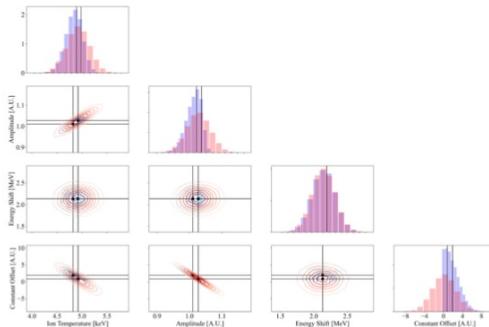
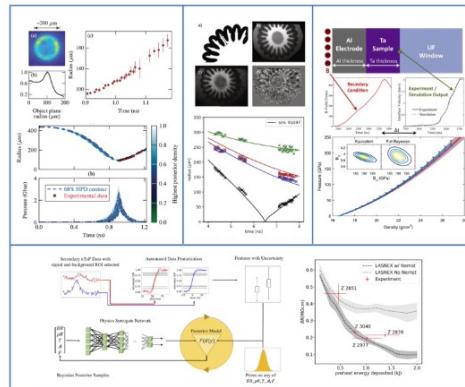
Jeffrey R. Fein¹ and et al.¹
Sandia National Laboratories, Albuquerque, New Mexico 87185 USA

Advanced Data Analysis in Inertial Confinement Fusion and High Energy Density Physics

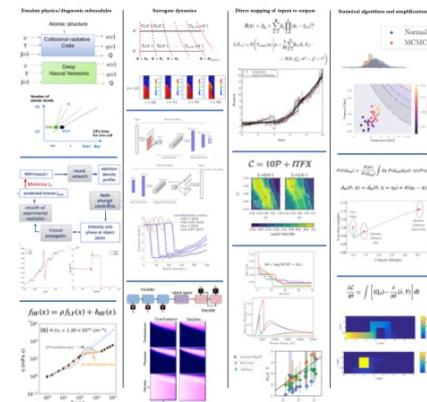
P. F. Knapp¹ and W. E. Lewis¹

Sandia National Laboratories, Albuquerque, New Mexico 87185, USA

Tutorial on Bayesian inference with code



Applied ML methods



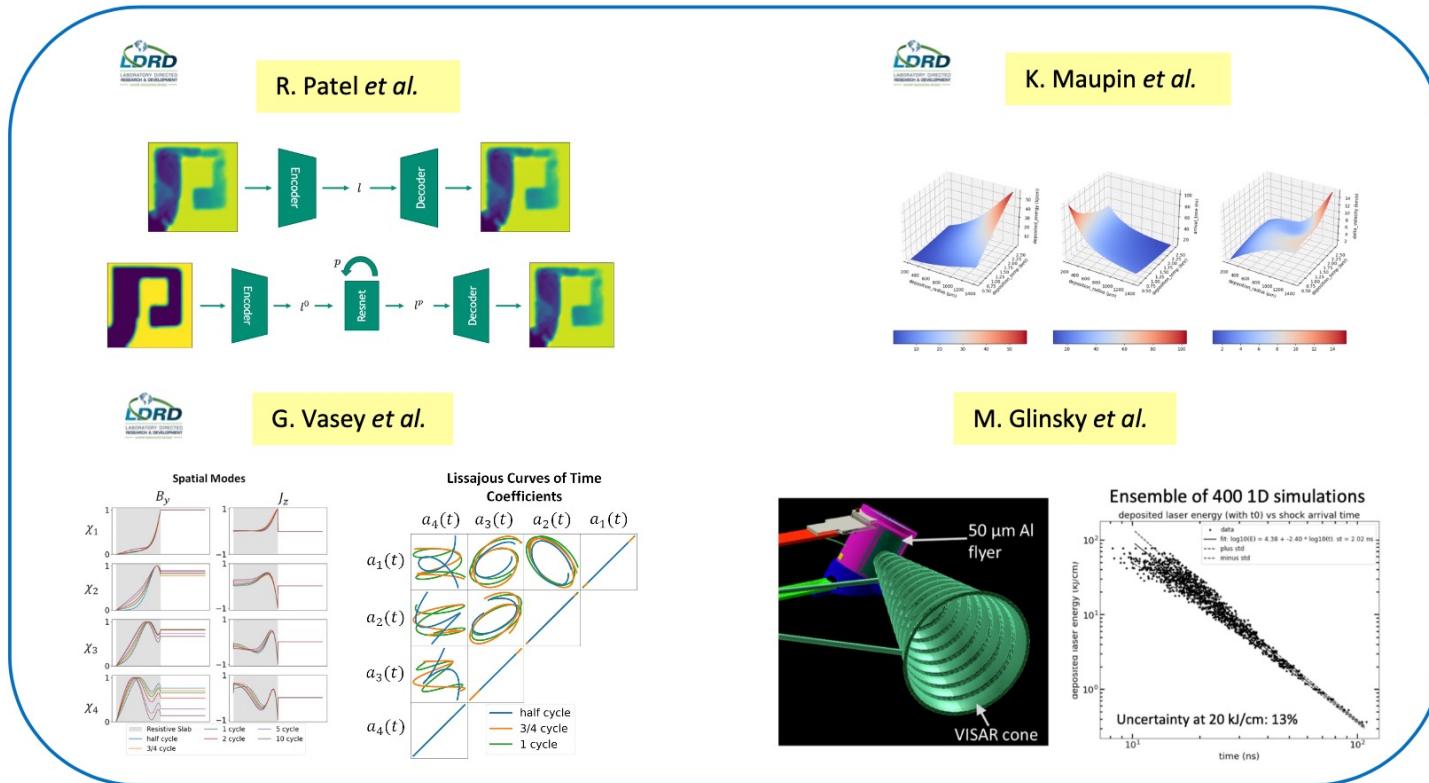
Submitted to special issue of Rev. Sci. Instrum.

Data-driven methods have found successful application across a range of problems in HEDP at Z and continues to grow!

- Simulations:

- May be **prohibitively costly** for all but the smallest of scoping studies or uncertainty quantification

Surrogate modeling efforts



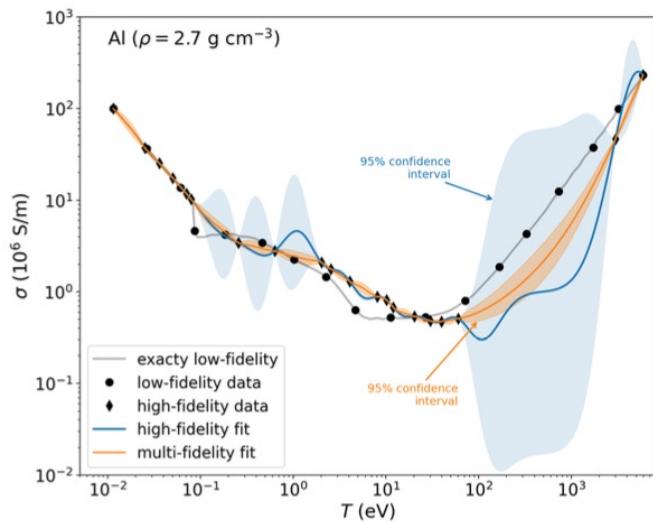
Data-driven methods have found successful application across a range of problems in HEDP at Z and continues to grow!

- Simulations/Experiment:
 - Missing, uncertain, or “aliased” contributions from known and unknown physics

Sensitivity analysis, uncertainty quantification, and causal statistics

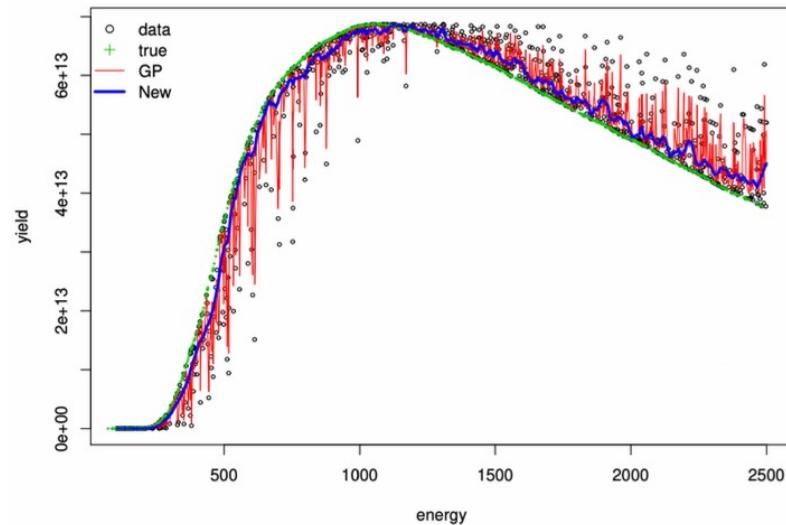
Maxwell Fellowship

L. Stanek *et al.*



LDRD
LABORATORY-DRIVEN
RESEARCH & DEVELOPMENT

R. Joseph and K. Maupin *et al.*

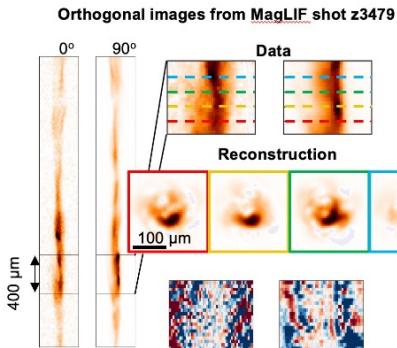


Data-driven methods have found successful application across a range of problems in HEDP at Z and continues to grow!

- Experiments:
 - Sparsity constraints (e.g. few view angles)
 - Potentially ill-conditioned diagnostic inversion

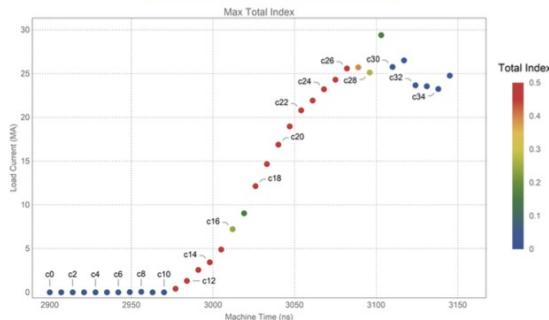
Working with sparse data and ill-posed diagnostic inversion

J. Fein *et al.*

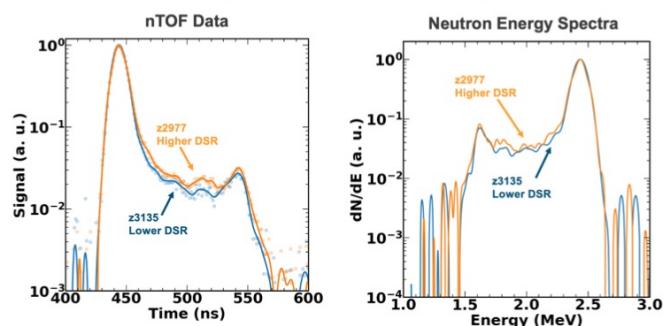


Tomographic reconstruction of MagLIF stagnation columns from orthogonal projections using learned basis functions

A. Porwitzky *et al.*



O. Mannion *et al.*



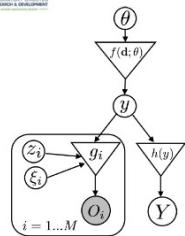
Jeffrey R. Fein¹ and et al.¹
Sandia National Laboratories, Albuquerque, New Mexico 87185 USA

Data-driven methods have found successful application across a range of problems in HEDP at Z and continues to grow!

- Experiments:
 - Low repetition rates
 - Costly to execute

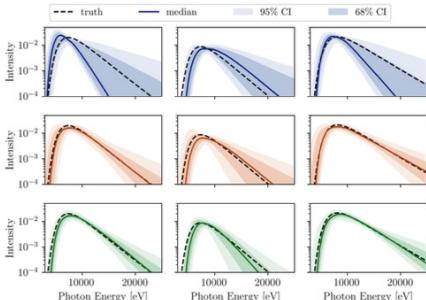
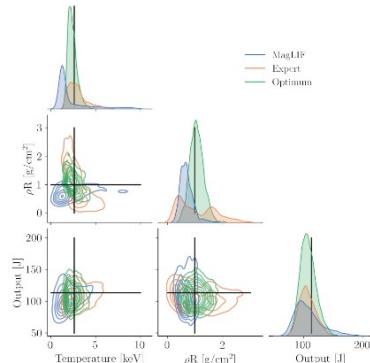
Quantifiable performance, optimization of diagnostics and experiment design

P. Knapp *et al.*



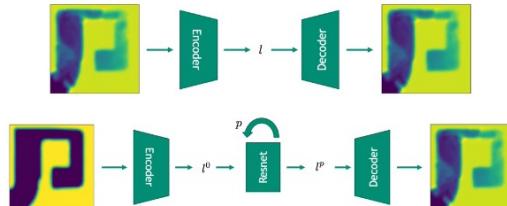
$$\mathcal{M} = \log(MSE + \lambda L)$$

$$Z_{\text{opt}} = \operatorname{argmin}_{z_i} \sum_{j=1}^J \mathcal{M}_j$$



P.F. Knapp *et al.* J. Plasma Phys. (2023).

R. Patel *et al.*



A. Porwitzky and Gabriel Shipley *et al.*

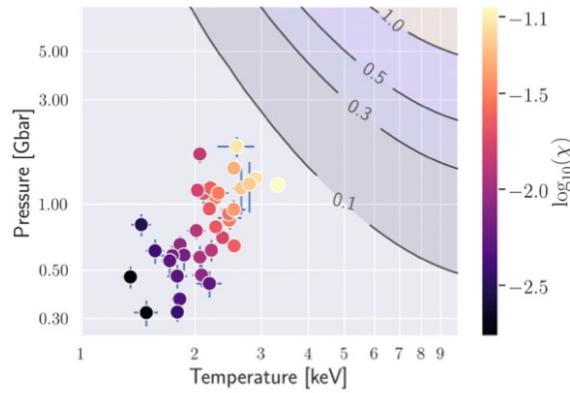
STAY TUNED!

Data-driven methods have found successful application across a range of problems in HEDP at Z and continues to grow!

- Experiments:
 - Low repetition rates
 - Measurements are performed **in harsh environments** resulting in known and unknown artifacts
 - Sparsity constraints (e.g. few view angles)
 - Multi-modal and often highly spatio-temporally **integrated** data (e.g. x-ray imaging, neutron time of flight, etc.)
 - Defining accessible and relevant observables

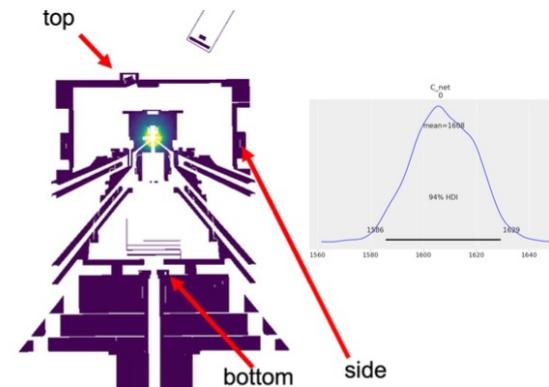
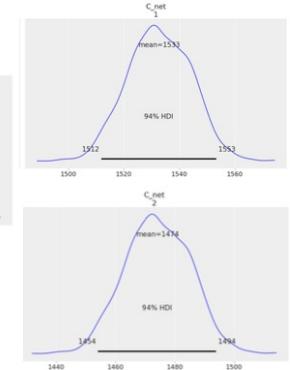
Rigorous uncertainty quantification and Bayesian inference

P. Knapp *et al.*



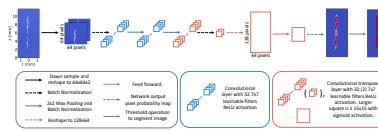
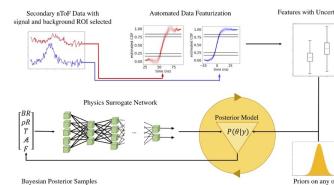
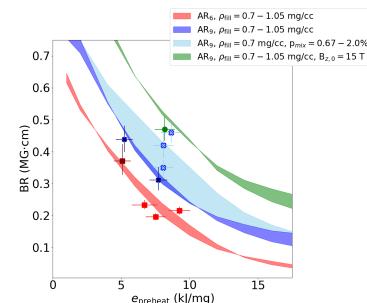
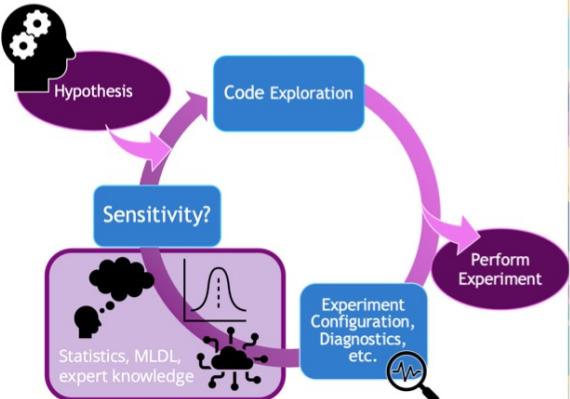
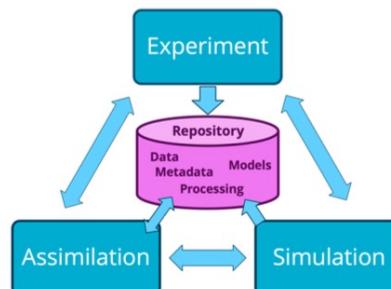
P.F. Knapp *et al.* Phys. Plasmas (2022).

M. Mangan *et al.*

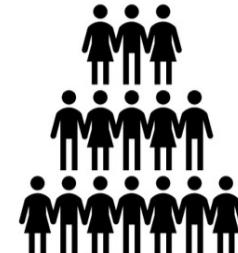


Closing remarks

- Research at the intersection of applied machine-learning and physics
 - is accelerating the cycle of experiment design and physics discovery.
 - tools and technology that enable the physicist to do what they do best
- Looking to explore applications of data science to
 - Next generation pulsed power (e.g. current delivery scaling)
 - 3D effects
 - Experiment design
 - Etc.
- We are interested in collaborations across many areas in HEDP. Please reach out!



Needs



Focused on the right problems

Backup Slides

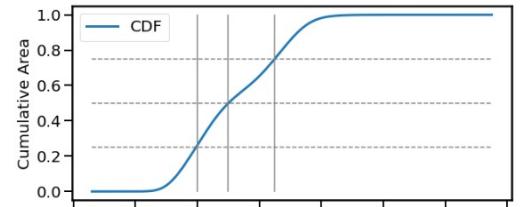
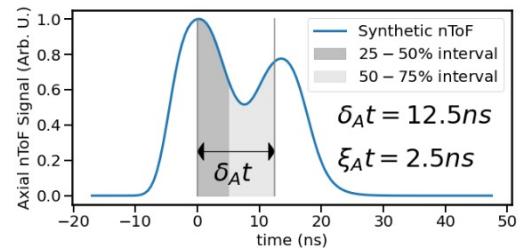
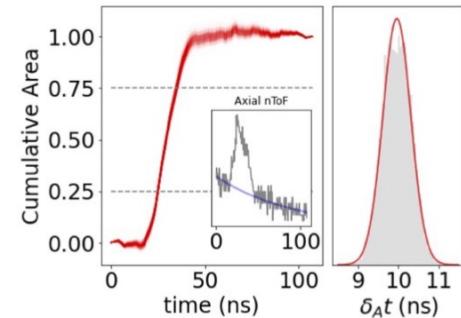
We wish to “featurize” the nToF data collected experimentally to reduce dimensionality while retaining relevant information.

- Width and asymmetry features with uncertainty

- percentiles of nToF signals
 - integration smooths noise
 - error from Bayesian fitting

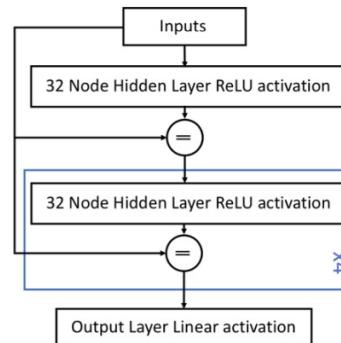
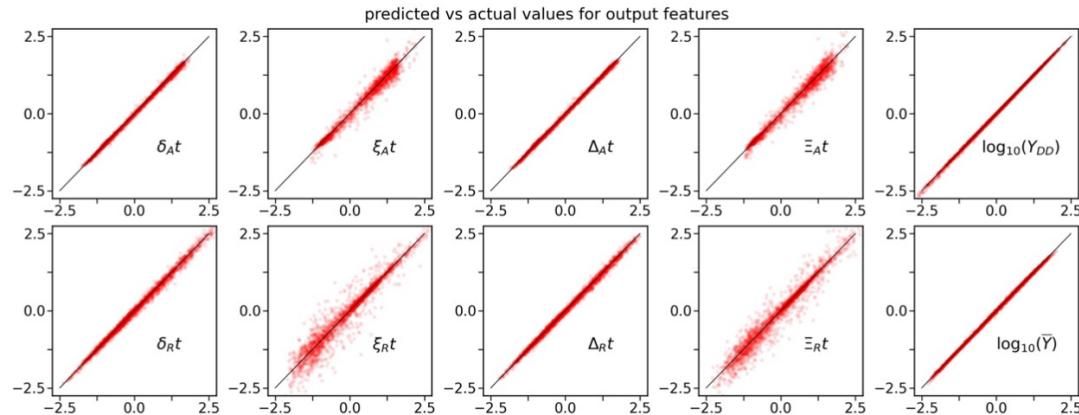
- nToF avoids e.g.

- unavailable timing fiducial
 - ill-posed instrument response deconvolution



The physics model is used to generate training data for a neural network surrogate, which drastically improves evaluation times.

- ~65k simulation samples
 - 95%-4%-1% train-validation-test split
- neural network with skip connections
 - about 5.5k fit parameters
- Validation data used to estimate error
 - propagate uncertainty of surrogate



Bayes theorem allows us to incorporate multiple sources of data and rigorously define statistical data models for UQ.

Bayes theorem

$$p(\mathbf{x}|\mathbf{y}) = p(\mathbf{y}|\mathbf{x})p(\mathbf{x})/p(\mathbf{y})$$

Posterior distribution for parameters (\mathbf{x}) given data (\mathbf{y})

Prior information on parameters

Likelihood function describing distribution of data around model

Parameter independent normalization (unimportant)

- Provides a distribution of model parameters most consistent with data
- We incorporate sources of uncertainty from:
 - use of NN surrogate
 - featurizing nToF
 - DD and DT yield measurements

A bit of maths...

Bayes theorem and manipulations:

Posterior distribution for parameters (\mathbf{x}) given data (\mathbf{y})

$$p(\mathbf{x}|\mathbf{y}) = p(\mathbf{y}|\mathbf{x})p(\mathbf{x})/p(\mathbf{y})$$

Prior information on parameters

Likelihood function describing distribution of data around model

Parameter independent normalization (unimportant)

Introduce latent variable \mathbf{z} to track uncertainty from surrogate

$$p(\mathbf{x}|\mathbf{y}) = \int p(\mathbf{x}, \mathbf{z}|\mathbf{y}) d\mathbf{z}$$

Bayes theorem for data including surrogate model

$$p(\mathbf{x}, \mathbf{z}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{x}, \mathbf{z})p(\mathbf{z}|\mathbf{x})p(\mathbf{x})$$

Our data models:

Physics model value normally distributed about NN prediction with OOS estimate of covariance

$$p(\mathbf{z}|\mathbf{x}) \sim \mathcal{N}(f_{NN}(\mathbf{x}), \Lambda_{NN})$$

Assumed independence of different measured quantities

$$\begin{aligned} p(\mathbf{y}|\mathbf{x}, \mathbf{z}) &= p(\mathbf{y}|\mathbf{z}) \\ &= p(\mathbf{y}_{\text{nToF}}|\mathbf{z}_{\text{nToF}})p(y_Y|z_Y)p(y_{\bar{Y}}|z_{\bar{Y}}) \end{aligned}$$

Observations normally distributed about “latent model”

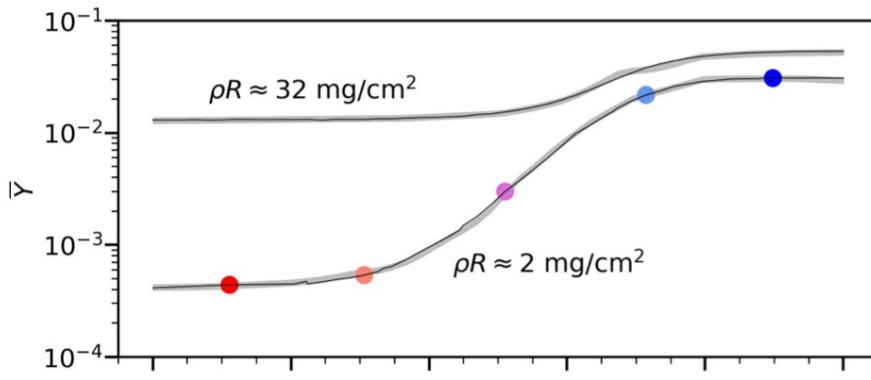
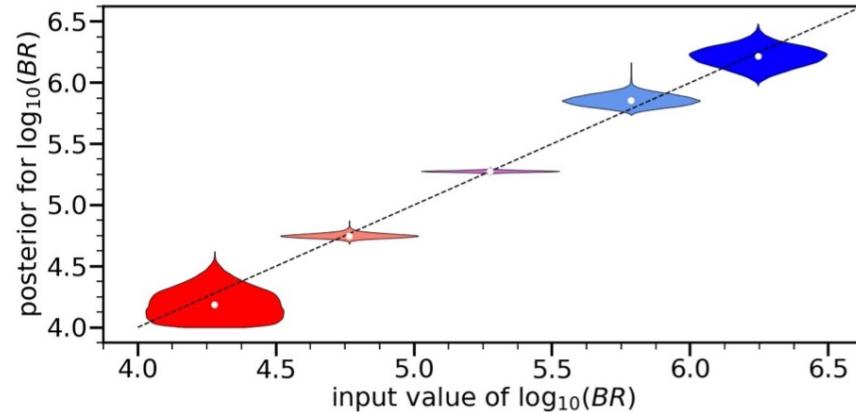
$$p(y_Y|z_Y) \sim \mathcal{N}(z_Y, \Lambda_Y)$$

$$p(y_{\bar{Y}}|z_{\bar{Y}}) \sim \mathcal{N}(z_{\bar{Y}}, \Lambda_{\bar{Y}})$$

$$p(\mathbf{y}_{\text{nToF}}|\mathbf{z}_{\text{nToF}}) \sim \mathcal{N}(\mathbf{z}_{\text{nToF}}, \Lambda_{\text{nToF}})$$

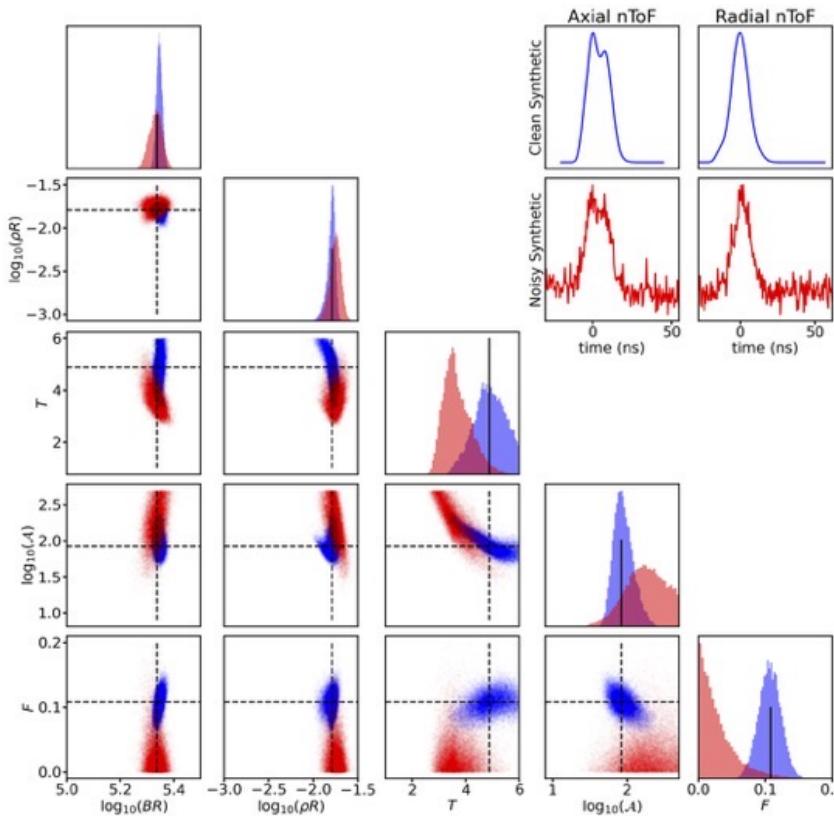
The analysis performed well when benchmarked against synthetic datasets and the only available previously analyzed experiment.

- Surrogate model quantitatively captures features of physics model
- We have demonstrated that BR inference on noisy synthetic data is robust to S/N ratios comparable to experiment
- Results are consistent with the only available previously analyzed experiment.



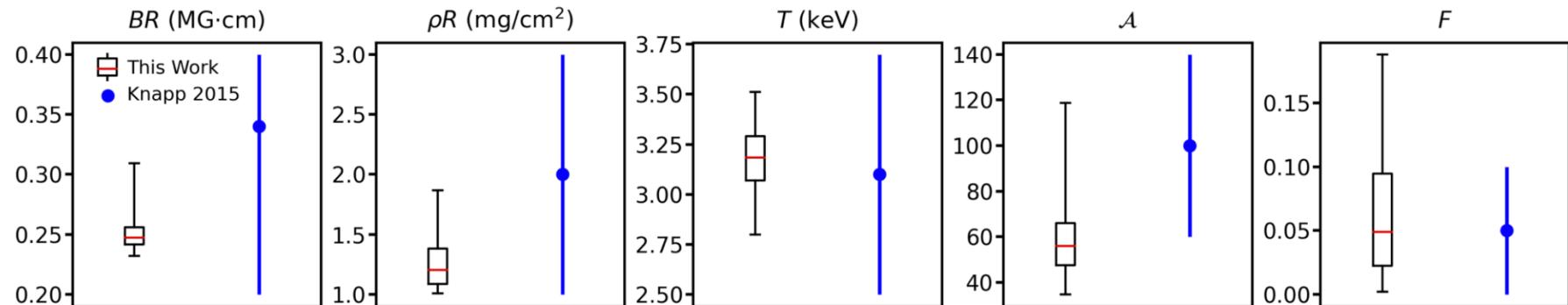
The analysis performed well when benchmarked against synthetic datasets and the only available previously analyzed experiment.

Shape features, DD and DT yields sufficient for BR recovery from noisy synthetic data even when other model parameters obscured.

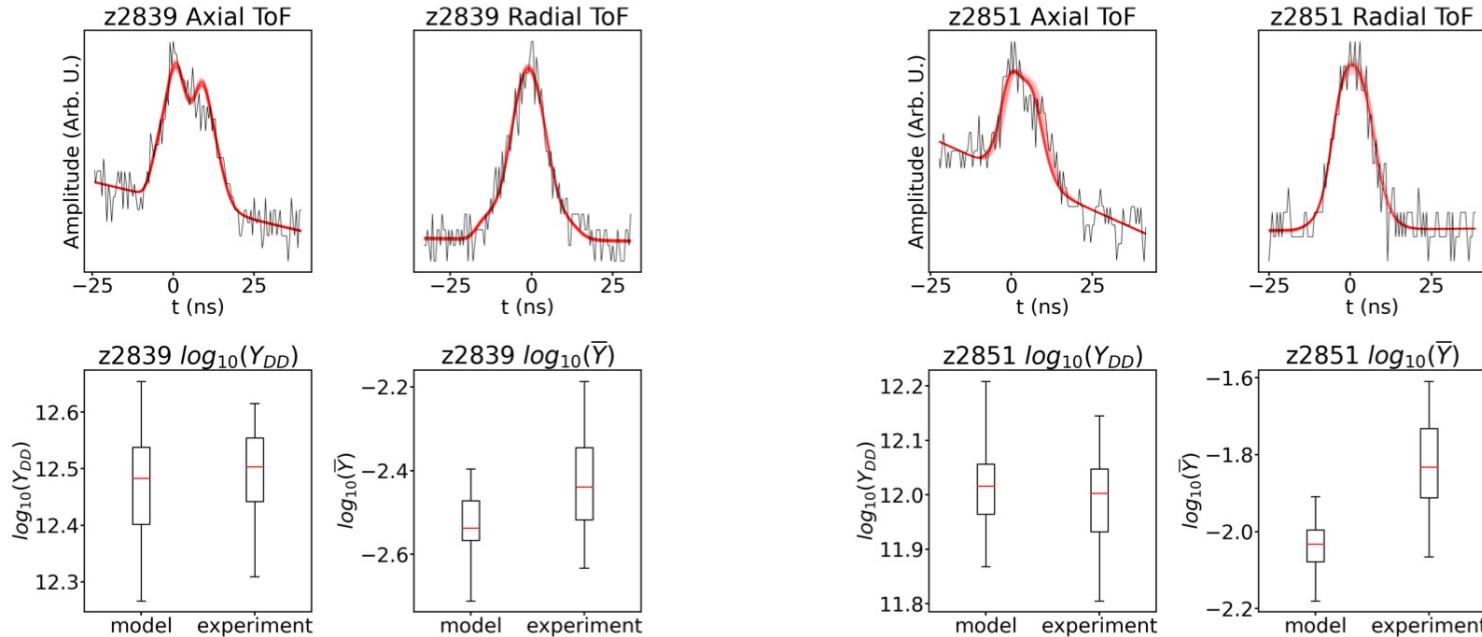


The analysis performed well when benchmarked against synthetic datasets and the only available previously analyzed experiment.

Results are consistent with previous analysis of z2591



When posterior parameter samples are run through the full physics model, good agreement with observations is obtained.



The agreement obtained with observations indicates that our results are consistent with what would be obtained were it feasible to conduct a Bayesian analysis using the full physics model.

Observations of BR generally consistent with scaling expected from magnetic Reynolds and Nernst dimensionless parameters

$$BR(t) = CR(t) \Psi(t) (BR)_0$$

$$Rm \doteq 0.01 \frac{[BR(\text{T cm})] \cdot [\dot{R}(\text{km/s})]}{[T(\text{keV})]}.$$

$$Ne \doteq 200 \frac{[T(\text{keV})]}{[BR(\text{T cm})] \cdot [\dot{R}(\text{km/s})]} \beta_{\wedge}^{uT}(x_e)$$

$$\beta_{\wedge}^{uT} \doteq x_e \frac{3.053 + 1.5x_e^2}{3.7703 + 14.79x_e + x_e^4}.$$

$$x_e = 6.40 \cdot (10)^{-3} \frac{[T(\text{keV})]^{3/2} \cdot [B_z(\text{T})]}{\ln \Lambda \cdot [\rho(\text{g/cm}^3)]},$$

Rm considers thermal conduction losses in Bohm-like regime and combined effects of internal flow in isobaric cores and Nernst advection

Ne is the ratio of characteristic Nernst velocity and characteristic implosion velocity

flux losses will decrease (i.e., Ψ will become larger) when:

- (i) the magnetization of the plasma is greater as measured by the BR product or the electron Hall parameter x_e ,
- (ii) the implosions are faster resulting in relatively weaker Nernst velocity v_{Ne} and less time for magnetic-flux to escape,
- (iii) the fuel temperature is lower, *e.g.* as a result of lower e_{preheat} or enhanced radiative losses from mix less reducing transport of magnetic field due to thermal gradients.

Anomalously large BR appears consistent with enhanced mix to mix inference has large error bars.

