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Today I’ll be representing the work of a large group of talented and 
dedicated colleagues at the intersection of data science and HEDP.
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• R.G. Patel (1441), B.T. Klein (5681), K.A. Maupin (1463), A. Tran (1441), T. Moore (6754), E. Cyr (1442)
• 1V.R. Joseph, 1C.F.J. Wu, 2J. Gunning, 3G. Vasey, B. 3O’Shea, 4M. Evans, 5Shailaja Humane

1School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA
2CSIRO, Petroleum, Clayton, Victoria, Australia
3Department of Computational Mathematics, Science, and Engineering, East Lansing, MI
4Department of Physics and Astronomy, University of Rochester, Rochester, NY
5Nuclear Engineering & Radiological Sciences Department, University of Michigan, Ann Arbor, MI
*current location, Los Alamos National Laboratory, Los Alamos NM
**current location, BNZ Energy Inc., Santa Fe NM
***current location, Lawrence Livermore National Laboratory, Livermore CA

Our team is growing!
Center 1600’s first Maxwell fellow, Luke Stanek
Actively recruiting and seeking collaborations
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•Introduction 

◦Sandia’s Z Pulsed Power Facility 

◦Magnetized Liner Inertial Fusion

•Exemplars of applied data science for MagLIF

◦stagnation image analysis

◦ fuel magnetization parameter analysis

◦ future directions and collaboration opportunities!

•Overview of other efforts and concluding remarks  

Talk overview
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Sandia’s Z Pulsed Power Facility
The Earth’s largest pulsed power 
machine

Z Building

Sandia’s Z Pulsed Power Facility
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Sandia’s Z Pulsed Power Facility

Z Building

Z Machine

Pulsed Power 
Development 

Area

Z-Beamlet 
Laser

Target Chambers

Sandia’s Z Pulsed Power Facility
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Ø 20 MA peak current
Ø 4 kJ, 1 TW laser
Ø 2 MJ’s soft x-ray
Ø kJ’s warm x-rays
Ø kJ’s fusion yield

Ø Mbar’s planar drive

Capabilities
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Dynamic Material
Properties

Inertial Confinement 
Fusion Radiation Science

• Weapon survivability

• Laboratory Astrophysics
• Pu aging and manufacturing
• Planetary science

• Thermonuclear burn
• Basic fusion research

As a world class facility, Z provides a powerful resource for investigating 
critical national security questions and exciting fundamental science.  
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The Magnetized Liner Inertial Fusion (MagLIF) concept relies on 
three stages to reach fusion relevant conditions.
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Stagnation
ImplosionPreheatApply Axial Magnetic Field

Gaseous
DD fuel
0.7 mg/cc

Be liner

~100ns

imploded by ~20 MA 
provided by Z 

6-8 mm

S.A. Slutz et. al., Phys. Plasmas 17, 056303  (2010).
M.R. Gomez et al. Phys. Rev. Lett. 113, 155003 (2014).



6 Helmholtz-like coils are used to premagnetize the MagLIF load

without Bz with Bz

random helical

Premagnetize fuel
• embed 7-20 T in ~ms timescale
• reduce radial thermal conduction
• compress + traps fusion products

Bz

D. C. Rovang et al., Rev. Sci. Instrum. 85, 124701 (2014).



7 Z Beamlet laser preheats the fuel establishing a higher adiabat

Preheat the fuel
• Z-Beamlet laser delivers 

~2-3 kJ to the Z chamber.
• Laser heats fuel through 

Inverse Bremsstrahlung 
(~100-200 eV, 1-2 kJ)

• Laser preheat sets the 
adiabat of the implosion.

M. R. Weis, et al., Phys. Plasmas 28, 012705 (2021).
A. J. Harvey-Thompson, et al., Phys. Plasmas 27, 113301 (2020).
A. J. Harvey-Thompson, et al., Phys. Plasmas 26, 032707 (2019).
A. J. Harvey-Thompson, et al., Phys. Plasmas 25, 112705 (2018).
M. Geissel, et al., Phys. Plasmas 25, 022706 (2018).
A. J. Harvey-Thompson, et al., Phys. Rev. E 94, 051201 (2016).
A. J. Harvey-Thompson, et al., Phys. Plasmas 22, 122708 (2015).
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Compress liner and fuel
• Lorentz force accelerated the 

liner.
• Fuel is then quasi-adiabatically 

compressed.
• Liner implosion leads to flux 

compression, amplifying B-field R. McBride et al., Phys. Plasmas 23, 012705 (2016).
3D implosion movie courtesy of C. Jennings.

Current from the Z pulsed power generator provides a magnetic 
pressure driving the liner to implode compressing the fuel
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Stagnation

6-8 mm

S.A. Slutz et. al., Phys. Plasmas 17, 056303  (2010).
M.R. Gomez et al. Phys. Rev. Lett. 113, 155003 (2014).

Shot ID z3289

𝑅̇!"# 70 km/s

Rburn 50 um

Tburn 2.7 keV

pburn 1.9 Gbar

𝐵𝑅 0.2-0.5 MG$cm

𝜏$% 2 ns

Y (DT equivalent) 2 kJ

When thermal pressure exceeds magnetic pressure, the liner 
decelerates resulting in stagnation
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MagLIF offers a rich physics platform with paths to high yield at a next 
generation pulsed power (NGPP) facility.

D.E. Ruiz et. al., (Submitted) Phys. Plasmas.

•Physics:

◦ magnetized HED plasmas

◦ fusion relevant temperatures and densities

◦ thermonuclear neutron generation

•NNSA Stockpile Stewardship Program

◦ Y>100MJ in controlled fashion in the lab

◦ NGPP may help achieve this goal

•May provide route to fusion-energy on the grid*

◦ high-yield pulsed-power ICF has relevant gain factor

– need G~100

*S. Atzeni and J. Meyer-ter Vehn, The Physics of Inertial Fusion, (Oxford University Press Inc., New York, 2009).



A critical aspect of confidently scaling to NGPP is to ensure we 
understand and characterize the physics of MagLIF on Z today.
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P.F. Knapp et al., Phys. Plasmas 29, 052711 (2022).
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A.J. Harvey-Thompson et al. Phys. Plasmas 25, 112705 (2018).
D.A. Yager-Elorriaga et al. Nucl. Fusion 62, 042015 (2022).
W.E. Lewis et al. Phys. Plasmas (Submitted).

Final feed

Experimental input conditions Experimental performance



Data-driven methods paired with physics insight, theory, and 
simulation are playing a key role in this effort.

11

Statistics, ML/DL, 
expert knowledge
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13 Stagnation morphology is a complex but important piece of the 
puzzle of understanding performance and reproducibility

•MagLIF stagnation images show significant variance



14 Stagnation morphology is a complex but important piece of the 
puzzle of understanding performance and reproducibility

T.J. Awe et al. Phys. Rev. Lett. 111, 235005 (2013).
A.J. Harvey-Thompson et al. Phys. Plasmas 25, 112705 (2018).
M.R. Weis et. al., Phys. Plasmas 28, 012705  (2021).
D.A. Yager-Elorriaga et al. Nucl. Fusion 62, 042015 (2022).

•Wish to understand sources of variance e.g.

◦magneto-Rayleigh Taylor and deceleration instabilities

– feedthrough

– seed mechanism(s)

– relation to mix

◦ preheat induced mix

◦ preheat induced vorticity



15 Stagnation morphology is a complex but important piece of the 
puzzle of understanding performance and reproducibility

P.F. Schmit et al. Phys. Rev. Lett. 117, 205001 (2016).
A.J. Harvey-Thompson et al. Phys. Plasmas 25, 112705 (2018).
G.A. Shipley et al. Phys. Plasmas 26, 102702 (2019).
S.M Miller et al. Rev. Sci. Instrum. 91, 063507 (2020).
B.R. Galloway et al. Phys. Plasmas 28, 112703 (2021).
A.J. Harvey-Thompson et al. Rev. Sci. Instrum. (Submitted).
D.J. Ampleford, D.A. Yager-Elorriaga et al. (In Preparation).

•Want to investigate mitigation mechanisms

◦ dielectric coatings

◦ dynamic screw pinch

◦ laser gate

◦ cryogenic cooling



16 Stagnation morphology is a complex but important piece of the 
puzzle of understanding performance and reproducibility

•Can we characterize relation to variance in performance?

◦ 7 of top 10 performers coated

◦ 1 of bottom 10 performers coated

•Improved morphology partially responsible?

P.F. Knapp et al., Phys. Plasmas 29, 052711 (2022).



Several challenges make addressing these questions difficult. 17

•Bespoke tools 

◦ Time consuming

◦ possible variation from user to user

Challenge
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W.E. Lewis et al., J. Plasmas Phys. 88, 895880501 (2022).

18
Machine learning provides a route towards automating preprocessing 
steps improving reproducibility and data throughput.

Synthetic training data Segmentation convolutional neural network

Registration and background subtraction pipeline



•Need statistics on image noise, background, and structure

◦ E.g. for Bayesian inference or ML synthetic training data

19

Challenge

M.E. Glinsky et al., Phys. Plasmas 27, 112703 (2020).
P.F. Knapp et al., Phys. Plasmas 29, 052711 (2022).
W.E. Lewis et al., J. Plasmas Phys. 88, 895880501 (2022).

Several challenges make addressing these questions difficult. 



W.E. Lewis et al., J. Plasmas Phys. 88, 895880501 (2022).

20
Machine learning aided pipelines enable “large-scale” analysis and 
statistical characterization

Statistical characterization of slowly varying background, noise, and signal levels
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E.C. Harding et. al., (Submitted).

•Unspecified experiment dependent SNR

•Multiple distinct spherical crystal imaging modalities

◦ Continuum vs spectral lines

◦ Resolution

◦ Views

•Typically no spatial fiducial 

◦ Registration

Challenge

W.E. Lewis et al., J. Plasmas Phys. 88, 895880501 (2022).

Several challenges make addressing these questions difficult. 



Invited paper ICDDPS-4 W.E. Lewis et al., (In Preparation).

22
We can turn this to our advantage using ideas of data augmentation 
common in training machine learning algorithms
“Model-free” data augmentation help understand sensitivities and engineer metrics

Noise filtering can remove unwanted sensitivity to SNR

filter
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• Image metrics may vary between practitioners and studies

◦ Uncertain how sensitive metrics are to previous factors

◦ Need statistical studies to understand importance

23

Challenge

Characterizing stagnation morphology is a complex but important 
part of comparing experiments understanding performance

M.R. Gomez et al., Phys. Rev. Lett. 125, 155002 (2020).
M.E. Glinsky et al., Phys. Plasmas 27, 112703 (2020).
P.F. Knapp et al., Phys. Plasmas 29, 052711 (2022).
D.J. Ampleford, D.A. Yager-Elorriaga et al. (In Preparation).



Invited paper at ICDDPS-4 W.E. Lewis et al., (In Preparation).

24
Data-driven methods are enabling metric exploration that is building to 
more detailed understanding of important features.

Randomly selected uncoated targets

Randomly selected coated targets
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Invited paper at ICDDPS-4 W.E. Lewis et al., (In Preparation).
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Large-scale studies can aid in investigating non-obvious structure in our data 

Data-driven methods are enabling metric exploration that is building to 
more detailed understanding of important features.



26 Future directions and potential for collaboration

•Identification of features determining similarity

◦ E.g. axial brightness variation frequency, helical excursion, mean and variance of strand radius/CR, etc.

– May try to answer by studying correlations across full image database

D.J. Ampleford, D.A. Yager-Elorriaga et al. (In Preparation).

Extend to larger database and 
study correlations



27 Future directions and potential for collaboration

•Extension of sensitivity study to alternate metrics 

M.R. Gomez et al., Phys. Rev. Lett. 125, 155002 (2020).
M.E. Glinsky et al., Phys. Plasmas 27, 112703 (2020).
W.E. Lewis et al., Phys. Plasmas 28, 092701 (2021).
P.F. Knapp et al., Phys. Plasmas 29, 052711 (2022).
D.J. Ampleford, D.A. Yager-Elorriaga et al. (In Preparation).

Apply model free data-
augmentations and understand 

sensitivities
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28 Future directions and potential for collaboration

•Multiple view angles
◦Do differences in image metric between multiple views contain valuable “integrated” information?
– E.g. value even if tomographic inversion ill-posed

•Quantifying mix morphology, liner opacity impact

E.C. Harding et al. (Submitted to RSI).
J.R. Fein et al., (In Preparation).



29 Future directions and potential for collaboration

•Extension to other imaging diagnostics/platforms
◦ e.g. pinhole camera, radiography, etc.
◦ wire arrays, gas puffs, etc.

L.A. McPherson et al. Rev. Sci. Instrum. 87, 063502 (2016).
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The magnetic field-fuel radius product (BR), determines charged fusion 
product confinement and electron thermal conduction losses. 

W.E. Lewis et. al., PoP (Submitted)

BR determines trapping of fast charged particles:

Effective BR for Bz(r) profile:

trapping condition for particles born at r=0

31



•Ideal flux compression ~1000x B-field amplification

◦ trapping of fusion products and reduction of electron heat conduction

•Physical mechanisms leading to flux loss

◦Resistive diffusion

◦Nernst advection

A variety of plasma transport effects will modify the flux compression 
process. Measuring BR could provide insights into these effects. 

Resistive diffusion

Nernst effect

∇𝑇

𝑣!"#$%& =
𝛽∧∇(𝑇"
𝑒𝐵

𝜏) ~𝜇*𝜎 𝐿+

𝜎 ∝ 𝜏,-..

32

• Increased preheat ∝ ∇(𝑇) increases Nernst

• Increased Bz decreases Nernst

•What about geometry?

•Fill density?

• Impact of mix throughout implosion    

•Measurements needed to study effects

◦ can’t do proton deflectometry/radiography

– O(50 MG) fields driving Z-pinch!

•Current disrupted by collisions
◦ Allows magnetic field diffusion

•B-field locked into warm electrons
•Thermal transport perpendicular to 

B transports flux



Radially and axially viewed secondary DT neutron spectra and 
yield ratio !𝑌 = 𝑌!"/𝑌!! are sensitive to fuel magnetization. 

P.F. Schmit et al., PRL (2014)
P.F. Knapp et. al., PoP (2015)

•Surrogacy of tritons for 𝛼!𝑠
◦ similar Larmor radius
◦3.5 MeV 𝛼 stopping length ~ 0.5x1.01 MeV tritons W.E. Lewis et al., Phys. Plasmas 28, 092701 (2021).

33

ℓ ∝ 𝑓(𝐵𝑅)Magnetized 

𝜌𝑅

•Pure Deuterium fuel
◦ ~1.01 MeV tritons produced by DD fusion

Increase in PDT increases )𝑌

𝜌𝑍
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•Pure Deuterium fuel
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W.E. Lewis et al., Phys. Plasmas 28, 092701 (2021).
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W.E. Lewis et al., Phys. Plasmas 28, 092701 (2021).



•Pure Deuterium fuel
◦ ~1.01 MeV tritons produced by DD fusion 14 MeV in CM

No Doppler shift
Bz ~ probability

DT D

Radially and axially viewed secondary DT neutron spectra and 
yield ratio !𝑌 = 𝑌!"/𝑌!! are sensitive to fuel magnetization. 

P.F. Schmit et al., PRL (2014)
P.F. Knapp et. al., PoP (2015)

•Surrogacy of tritons for 𝛼!𝑠
◦ similar Larmor radius
◦3.5 MeV 𝛼 stopping length ~ 0.5x1.01 MeV tritons W.E. Lewis et al., Phys. Plasmas 28, 092701 (2021).

33

ℓ ∝ 𝑓(𝐵𝑅)Magnetized 

𝜌𝑅 𝜌𝑍

nDT

Low probability High probability



Characterizing stagnation morphology is a complex but important 
part of comparing experiments understanding performance

34

•Computational cost of forward physics model 

◦ O(10-100) CPU hours evaluation on a high-performance 

cluster

Challenge
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•Computational cost of forward physics model 

◦ O(10-100) CPU hours evaluation on a high-performance 

cluster

◦ 10k-100k + evaluations per experiment for inference and 

uncertainty quantification

Challenge



W.E. Lewis et al., J. Plasmas Phys. 88, 895880501 (2022).

35 Machine learning offers a route to avoiding repeat calculations by 
interpolating/surrogating results from representative simulations.

•Evaluates observables in sub millisecond times on a laptop



•First systematic study of magnetic confinement properties of any neutron producing magneto-inertial fusion platform

◦ Enabled by deep-learning and Bayesian inference

W.E. Lewis et al., Phys. Plasmas 28, 092701 (2021).

36 Machine learning enables rigorously defined UQ through coupling into a 
Bayesian inference framework.



We can use our deep-learning based inference tool discover the larger 
story behind the physics of magnetic confinement in MagLIF

•1D resistive radMHD code Kraken* for comparison
◦ C.A. Jennings implementation of GORGON system of MHD equations

37
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W.E. Lewis et al., Phys. Plasmas (Submitted).



Indeed, there are physics arguments that can explain the variance in the 
data and capture the results for all but two experimental cases.

38

•Nernst advection leads to significant decay of (𝐵𝑅)* with 𝑒+,)-)".

•Higher aspect ratio
◦ reduces mass increasing 𝑣/!+ and convergence 

•Mix enhanced radiative losses reduces ∇(𝑇
◦ Reduces Nernst advection enhances (𝐵𝑅)*
◦ Reduces performance

• Increased 𝐵0 results increases initial (𝐵𝑅)1
◦ Enhances (𝐵𝑅)* and improves thermal insulation

𝑒+,)-)". =
𝐸+,)-)".
𝑚*2)3

𝑇+,)-)". ∝ 𝑒+,)-)".

𝐶𝑅 =
𝑅/4,1
𝑅/4,*

(𝐵𝑅)*= 𝐶𝑅
𝜙*
𝜙1

(𝐵𝑅)1

𝑣6),47. =
𝛽∧∇(𝑇)
𝑒𝐵

W.E. Lewis et al., Phys. Plasmas (Submitted).



Pairing data driven methods with physics insight, we find that Nernst advection 
and mix are indeed integral to performance scaling in MagLIF.

•Nernst advection enhanced flux loss limits the gains by increasing preheat alone

◦𝜌3455, 𝐵6 , 𝐼789 etc. must be improved while mitigating mix to enable performance (𝜒) gains

39

W.E. Lewis et al., Phys. Plasmas (Submitted).



40 Future directions and potential for collaboration

Magnetic field topology alters secondary neutron spectra

B. Appelbe et al., HEDP 22, 27 (2017).

•Relaxed model assumptions
◦ nToF shape features
◦ 2 ns Gaussian burn history
◦𝑇! = 𝑇"
◦ uniform mix assumption
◦ 1D power law profile model with
– 𝐵# ∝ 𝜌
– Axially uniform B-field

◦Unknown impact of 3D effects

C.A. Jennings M.R. Weis et. al., Phys. Plasmas 28, 012705  (2021).



41 Future directions and potential for collaboration

•Scaling to Next Generation Pulsed Power

D.E. Ruiz et. al., (Submitted) Phys. Plasmas.

Magnetization of 𝛼’s improves when scaling up 
in current. Simulation with 𝛼 heating show a 

“plateau” due to reduced CRin near stagnation.
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•Introduction 

◦Sandia’s Z Pulsed Power Facility 

◦Magnetized Liner Inertial Fusion

•Exemplars of applied data science for MagLIF

◦stagnation image analysis

◦ fuel magnetization parameter analysis

◦ future directions and collaboration opportunities!

•Overview of other efforts and concluding remarks  

Talk overview

Fuel magnetization 

Image analysis
L
2 distance
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Publications at the intersection of HEDP on Z and data science:

Data-driven methods have found successful application across a range 
of problems in HEDP at Z and continues to grow!
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• Simulations:
◦ May be prohibitively costly for all but the smallest of scoping studies or uncertainty quantification

Surrogate modeling efforts

Data-driven methods have found successful application across a range 
of problems in HEDP at Z and continues to grow!



45

• Simulations/Experiment:
◦ Missing, uncertain, or “aliased” contributions from known and unknown physics

Sensitivity analysis, uncertainty quantification, and causal statistics

Data-driven methods have found successful application across a range 
of problems in HEDP at Z and continues to grow!
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• Experiments:
◦ Sparsity constraints (e.g. few view angles)
◦ Potentially ill-conditioned diagnostic inversion

Data-driven methods have found successful application across a range 
of problems in HEDP at Z and continues to grow!

Working with sparse data and ill-posed diagnostic inversion
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• Experiments:
◦ Low repetition rates
◦ Costly to execute

Data-driven methods have found successful application across a range 
of problems in HEDP at Z and continues to grow!

Quantifiable performance, optimization of diagnostics and experiment design
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• Experiments:
◦ Low repetition rates
◦ Measurements are performed in harsh environments resulting in known and unknown artifacts
◦ Sparsity constraints (e.g. few view angles)
◦ Multi-modal and often highly spatio-temporally integrated data (e.g. x-ray imaging, neutron time of flight, etc.)
◦ Defining accessible and relevant observables

Data-driven methods have found successful application across a range 
of problems in HEDP at Z and continues to grow!

Rigorous uncertainty quantification and Bayesian inference
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•Research at the intersection of applied machine-learning and physics
◦ is accelerating the cycle of experiment design and physics discovery.
◦ tools and technology that enable the physicist to do what they do best

•Looking to explore applications of data science to
◦ Next generation pulsed power (e.g. current delivery scaling)

◦ 3D effects
◦ Experiment design
◦ Etc.

•We are interested in collaborations across many areas in HEDP. Please reach out!

*courtesy P.F. Knapp
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We wish to “featurize” the nToF data collected experimentally to 
reduce dimensionality while retaining relevant information.

•Width and asymmetry features with uncertainty

◦percentiles of nToF signals

– integration smooths noise

–error from Bayesian fitting

•nToF avoids e.g. 

◦unavailable timing fiducial

◦ill-posed instrument response deconvolution

W.E. Lewis et al., Phys. Plasmas 28, 092701 (2021).



The physics model is used to generate training data for a neural 
network surrogate, which drastically improves evaluation times.

•~65k simulation samples

◦95%-4%-1% train-validation-test split

•neural network with skip connections

◦about 5.5k fit parameters

•Validation data used to estimate error

◦propagate uncertainty of surrogate

W.E. Lewis et al., Phys. Plasmas 28, 092701 (2021).



Bayes theorem allows us to incorporate multiple sources of data 
and rigorously define statistical data models for UQ.

•Provides a distribution of model parameters most consistent with data
•We incorporate sources of uncertainty from:
◦use of NN surrogate
◦ featurizing nToF
◦DD and DT yield measurements



A bit of maths…



The analysis performed well when benchmarked against synthetic 
datasets and the only available previously analyzed experiment. 

W.E. Lewis et al., Phys. Plasmas (2021).

•Surrogate model quantitatively captures 
features of physics model

•We have demonstrated that BR inference on 
noisy synthetic data is robust to S/N ratios 
comparable to experiment

•Results are consistent with the only available 
previously analyzed experiment.



The analysis performed well when benchmarked against synthetic 
datasets and the only available previously analyzed experiment. 

Shape features, DD and DT 
yields sufficient for BR 

recovery from noisy 
synthetic data even when 
other model parameters 

obscured.

W.E. Lewis et al., Phys. Plasmas (2021).



The analysis performed well when benchmarked against synthetic 
datasets and the only available previously analyzed experiment. 

W.E. Lewis et al., Phys. Plasmas (2021).

Results are consistent with previous analysis of z2591



When posterior parameter samples are run through the full 
physics model, good agreement with observations is obtained.

W.E. Lewis et al., accepted Phys. Plasmas (2021).

The agreement obtained with observations indicates that our results are consistent with what 
would be obtained were it feasible to conduct a Bayesian analysis using the full physics model.



Observations of BR generally consistent with scaling expected 
from magnetic Reynolds and Nernst dimensionless parameters

W.E. Lewis et al., Phys. Plasmas (Submitted).D.E. Ruiz et. al., (Submitted) Phys. Plasmas.



Anomalously large BR appears consistent with enhanced mix to 
mix inference has large error bars.


