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2 | Measuring Power Loss due to Erosion

« A probabilistic model of the power
loss due to erosion has been
developed based on wind tunnel
tests of simulated eroded airfoils

« The present work aims to validate
the loss predicted in this model
through the comparison of turbines
with unrepaired LEE damage to
repaired turbines with protection
tape

* Local met tower data and archival
wind plant SCADA data used from
turbines classified as having
undergone Category 4 erosion
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Field measurements of erosions, 2 Category 4 erosion wind tunnel tests
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Data Input and Filter Method

* Local met tower data and archival wind plant SCADA data used from

turbines classified as having undergone Category 4 erosion
« Measurements included windspeed, wind direction, temperature, atmospheric

pressure, power production, nacelle direction, and other channels observed from
January 2016-June 2020

* Field observations for power production were compared to
expected values from rated power curve for associated turbine

model

« Involved linearly approximating field values to rated curve and taking difference
between observed power and expected power values, then filtering out records with
higher differences

« Additionally, differences between wind speeds recorded at turbine

hub height vs nearby met tower considered

« Records with turbine wind speeds of absolute differences greater than 1.5 m/s from
met tower wind speeds were filtered out
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* For each turbine, all power

observations were averaged
across 1% wind speed bins to
produced binned average wind
speed power curve

This was used to compare with
the reference power curve,
which recorded expected
power values for 0.5 m/s
divisions ranging from 3-15 m/s

Binned power curves produced
for observations before and
after each turbine repair date
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Fitting Power Curves using Regression Models

Additionally, for each month, power
curves graphed for each turbine and
fitted using three-parameter logistic

function
» Used to capture slope and boundary
conditions of wind power curve, where the
slope of the power curve is zero up to the
cut-in wind speed and at rated wind speed
Values filtered started at cut-in wind
speed of 3 m/s, or normalized value of

20% of rated wind speed of 15 m/s

OF P = power
P = $y— S S = speed
1+ exp ( 2(|) ) ®, = smoothing parameter
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* Therefore we must compare the
relative power loss for both turbines

Turbine D Power Curve (Control-2)
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 If turbines C and F had better relative
performance, we can conclude the
repair was effective

« For each month, power curves
graphed for each turbine and fitted
using three-parameter logistic 000 > ool A
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7 I Comparing Turbine Pairs— Relative Power Differences
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Estimation of Required Turbine Pair Sample Size

Modeled the likelihood of detecting an
increase in the relative power output of a
set of turbine pair samples with a given
sample size using a one-sample t-test of
differences

Assumed the mean difference is 3% based
on the modeling results

Estimated the corrected standard
deviation is as 2.8%

« Based on 2 turbine pair samples with
+2 and -2% change in power, then the
effect size is 1.06

10 turbine pair samples would be needed
to have a >90% probability of detecting a
3% change in power due to erosion repairs
given a 2.8% power difference standard
deviation

Paired t-test Power, 95% Confidence Level

___________________________________________________________________________

90% probability of detection

/i Sample
/! Size

— 10
20
40

Probability to Detect Change

s
*Effect size = 1.06-.

Effect size i

Expected power dif ference

Effect size =
2 Standard deviation in power dif ference

3%




9 I Conclusion and Future Work

« The comparative turbine analysis of the field data showed strong dependence on correcting
for turbine to turbine power production variability, with one turbine pair showing a relative
improvement after the repair and one showing a relative loss

A lon%elr period of post-repair data is needed to test corrections for the effects of seasonal
variability

« The impact of the LEE repair appears most noticeably in middle wind speeds, primarily in
upper Region 2 operation

* The field data analysis showed a peak power loss lower than the model predictions in
repaired versus unrepaired power at all wind speeds, with higher discrepancies near cut-in
and rated wind speeds

Future work:
« Continued analysis over a longer time period and using more turbine pairs

» Develop a probabilistic simulation of site conditions and an uncertainty analysis of the field
data for a more direct comparative analysis, including uncertainty in repaired condition

» Release field data power performance analysis software openly and support use by external
partners
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