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Measuring Power Loss due to Erosion2

• A probabilistic model of the power 
loss due to erosion has been 
developed based on wind tunnel 
tests of simulated eroded airfoils

• The present work aims to validate 
the loss predicted in this model 
through the comparison of turbines 
with unrepaired LEE damage to 
repaired turbines with protection 
tape

• Local met tower data and archival 
wind plant SCADA data used from 
turbines classified as having 
undergone Category 4 erosion 

Field measurements of erosion[1, 2] Category 4 erosion wind tunnel tests
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Probabilistic power curve model of erosion, categories 2-4[3]



Data Input and Filter Method3

• Local met tower data and archival wind plant SCADA data used from 
turbines classified as having undergone Category 4 erosion 
• Measurements included windspeed, wind direction, temperature, atmospheric 

pressure, power production, nacelle direction, and other channels observed from 
January 2016-June 2020

• Field observations for power production were compared to 
expected values from rated power curve for associated turbine 
model
• Involved linearly approximating field values to rated curve and taking difference 

between observed power and expected power values, then filtering out records with 
higher differences

• Additionally, differences between wind speeds recorded at turbine 
hub height vs nearby met tower considered
• Records with turbine wind speeds of absolute differences greater than 1.5 m/s from 

met tower wind speeds were filtered out



Fitting Power Curves using Average Wind Speed Bins4

• For each turbine, all power 
observations were averaged 
across 1% wind speed bins to 
produced binned average wind 
speed power curve

• This was used to compare with 
the reference power curve, 
which recorded expected 
power values for 0.5 m/s 
divisions ranging from 3-15 m/s

• Binned power curves produced 
for observations before and 
after each turbine repair date

F post bin 
F pre bin 

D pre bin 
D post bin 

Average Wind Speed Binned Power 
Curves for Turbines D and F



Fitting Power Curves using Regression Models5

• Additionally, for each month, power 
curves graphed for each turbine and 
fitted using three-parameter logistic 
function
• Used to capture slope and boundary 

conditions of wind power curve, where the 
slope of the power curve is zero up to the 
cut-in wind speed and at rated wind speed

• Values filtered started at cut-in wind 
speed of 3 m/s, or normalized value of 
20% of rated wind speed of 15 m/s

P =
ϕ1

1 + exp ϕ2 − S
ϕ3

P = power
S = speed
Φi = smoothing parameter



Comparing Turbine Pairs– Overall Power Curves6

• While power curves for turbine look 
similar, slight differences in overall 
area toward region 3 contribute to 
greater differences in power 
performance 

• Overall, turbines generated less 
power after the repairs to turbines C 
and F

• Therefore we must compare the 
relative power loss for both turbines

• If turbines C and F had better relative 
performance, we can conclude the 
repair was effective

• For each month, power curves 
graphed for each turbine and fitted 
using three-parameter logistic 
function



Comparing Turbine Pairs– Relative Power Differences7

• Turbine C was generating 1-2% more 
power for the same wind speed in 
middling wind speeds, with 
approximately equal production at the 
extremes

• After repairs that advantage largely 
disappeared, resulting a net loss in 
relative power gain

• Turbine F was generating 5-8% less 
power for the same wind speed in 
middling wind speeds, with 
approximately equal production at the 
extremes

• After repairs that disadvantage was 
mitigated slightly, resulting a net gain in 
relative power gain of 1-2% across 
middling wind speeds

~2% power loss

~2% power gain



Estimation of Required Turbine Pair Sample Size8

• Modeled the likelihood of detecting an 
increase in the relative power output of a 
set of turbine pair samples with a given 
sample size using a one-sample t-test of 
differences

• Assumed the mean difference is 3% based 
on the modeling results

• Estimated the corrected standard 
deviation is as 2.8%

• Based on 2 turbine pair samples with 
+2 and -2% change in power, then the 
effect size is 1.06 

• 10 turbine pair samples would be needed 
to have a >90% probability of detecting a 
3% change in power due to erosion repairs 
given a 2.8% power difference standard 
deviation

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

90% probability of detection

Ef
fe

ct
 s

iz
e 

= 
1.

06

=
3%

2.83%
= 1.06



Conclusion and Future Work9

• The comparative turbine analysis of the field data showed strong dependence on correcting 
for turbine to turbine power production variability, with one turbine pair showing a relative 
improvement after the repair and one showing a relative loss

• A longer period of post-repair data is needed to test corrections for the effects of seasonal 
variability

• The impact of the LEE repair appears most noticeably in middle wind speeds, primarily in 
upper Region 2 operation

• The field data analysis showed a peak power loss lower than the model predictions in 
repaired versus unrepaired power at all wind speeds, with higher discrepancies near cut-in 
and rated wind speeds

Future work:

• Continued analysis over a longer time period and using more turbine pairs

• Develop a probabilistic simulation of site conditions and an uncertainty analysis of the field 
data for a more direct comparative analysis, including uncertainty in repaired condition

• Release field data power performance analysis software openly and support use by external 
partners
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