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I. Introduction



Background and Motivation

• Force and amplitude control stepped sine testing generally results in:

• Bifurcations leading to jumping behavior

• Imperfect quality in the control parameter

• Control-based continuation [4-6] and phase-locked loop [7, 8] are used to stabilize systems through bifurcations, 
but they rely on specialized algorithms that are not readily available with many data acquisition software packages

• Need to explore other test strategies for system identification
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II. Theoretical Background



Fixed Frequency Voltage Control Tests5

S-Curve

• Fixed frequency voltage control (FFVC): Open-loop control where
the DAQ voltage is stepped at a fixed frequency

• The DAQ voltage serves as the continuation parameter and the force 
drop-out phenomena is utilized [1]

Force amplitude, 𝐹 and acceleration response 
amplitude, 𝑅 are single valued functions of  the 
input voltage, 𝑉



Problem Statement

Current research has demonstrated a new 
method to apply experimental continuation [1]
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New experimental continuation method applied to 
a nonlinear vibro-impact system

Outcome: nonlinear system effectively 
stabilized (S-curve measured)

Outcome: unexpected jumping behavior 
has been observed 

Goal: understand why this is occurring



Problem Statement Continued7

• It has been demonstrated in various research that the electromechanical shaker dynamics can influence the 
structure under test [11-15]

• It is through FFVC tests and the electromechanical shaker dynamics that a nonlinear system is 
stabilized [1,9]

Shaker Electrical Model Shaker Mechanical Model 

Body
Armature Load Cell



Approach8

Goal: Use the various mechanical 
and electrical parameters in the 
shaker to investigate the stability of  
the nonlinear system 

FFVC (S-curves)                                                         Electromechanical Shaker Dynamics

1.) Parametric Study

•𝑀1, 𝑀2, 𝑀3

•𝐾𝑜, 𝐾1, 𝐾2

•𝐶𝑜, 𝐶1, 𝐶2

•𝐵𝐿, 𝑅𝑒, 𝐿𝑒, 𝐾𝑎, 𝑊𝑏

2.) Experimental Study

+



III. Parametric Study through 
Simulations



Nonlinear Cantilever Beam Simulation

• Harmonic balance (HB) was used with an 
electromechanical shaker model and a 20 
node Euler-Bernoulli beam with a cubic 
nonlinearity at the free end

• The goal was to perform FFVC tests using 
HB and change various shaker parameters 
in the model to assess the stability on the 
system through the reconstructed S-curves 

• Insight from these simulations were later 
used in experimental tests for validation
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Nonlinear 

System 

Shaker 

Dynamics



Stabilizing Behavior

Stable Behavior
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Unstable Behavior

Outcome: sequential continuation 
along the voltage parameter – results 
in fully resolved curve

Outcome: sequential continuation 
not possible – results in bifurcations 
leading to jumping behavior

Stabilizing behavior: singular valued force drop-out curves (generally near the second local minimum)

Region of  
multiple 
solutions due to 
turning point 
bifurcations



Moving Shaker Drive-Point Locations

• The stability of  the shaker drive-point locations were investigated by 
moving the shaker node-to-node from the fixed end to the tip 

• The stabilized force drop-out curves at the local minimum were 
dominated by the third harmonic 
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Stabilizing 

Region

Non-Stabilizing 

Region

The force drop-out curves 
became singular valued when the 
shaker was attached to the beam 
between the mid span and tip

Bifurcations



Fixing Shaker at Node 8 – Force Drop-out Curves 

• The shaker drive-point was fixed at node 8 on the beam to investigate the 
𝐵𝐿 parameter change at an inherently unstable drive-point node 

• 𝐵𝐿 = electromechanical coupling factor

• Scaling factors that increased the 𝐵𝐿 parameter resulted in singular valued 
force drop-out curves suggesting a stabilizing effect was occurring  

13

Stabilizing 

Region

Non-Stabilizing 

Region

The force drop-out curves 
at the local minimum were 
dominated by the third 
harmonic 



Harmonic Balance and Time Integration Comparison

• An experimental simulation using time integration was conducted with the shaker attached to node 8 on the
beam - the results were compared to the MHB results
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The NLFRC was plotted to show how the 
S-curve intersects and how the intermediate 
branch is obtainedThe 𝐵𝐿 factor was again scaled at 

different integers to demonstrate the 
stabilizing and non-stabilizing behaviors



Parametric Study Outcomes Summary15

For practical experimental implementation, changing the shaker drive-points on the structure to more active 
locations in the target mode (increasing ሶ𝑥2 − ሶ𝑥1 ) is more feasible than changing the 𝐵𝐿 parameter

𝑒𝑏 = 𝐵𝐿 ሶ𝑥2 − ሶ𝑥1

𝑒𝑏 = back electromotive force (EMF) voltage that 
couples the mechanical motion to the electrical circuit

Moving Shaker Drive Points

Increasing ሶ𝑥2 − ሶ𝑥1

Scaling the BL Parameter

Increasing 𝐵𝐿

Shaker Dynamics



IV. Experimental Setup 
Fixture-Pylon Assembly



Fixture-Pylon Assembly Overview 17

•Linear resonance is approximately 9.1 Hz

•Through the spacing of  the washers on 
the upper pylon blocks, a contact is 
created between the upper blocks and 
beam that creates a strong hardening 
vibro-impact nonlinearity [3]

•A small electromechanical shaker 
(integrated amplifier) was used in a fixed 
boundary condition with a long steel 
stinger



V. Experimental FFVC Tests 
on Assembly



Initial Experimental FFVC Tests19

• Each point in the force drop-out and S-curve figures 
represents the steady state amplitude from individual 
sine tests at 9.7 Hz at increasing voltage steps

• Initially, jumping was occurring between the upper and 
lower branches such that the middle branch was 
unresolved [10]

Excitation drive point at 
middle of  fixture 

Output accelerometer 
location  



Modified FFVC Tests Based on Parametric Study Outcomes

• Based on the outcomes of  the cantilever beam simulations, a set of  experiments was designed to validate 
the previous hypothesis and see if there is any corroboration between the simulation and experiment 
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Stabilizing 

Region

Non-Stabilizing 

Region

𝑒𝑏 = 𝐵𝐿 ሶ𝑥2 − ሶ𝑥1



FRFs from Different Drive-Point Locations

• Random vibration experimental tests at each of  the four drive-
points on the assembly confirmed that the two bottom drive-
points resulted in more active responses in the mode
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Shaker armature accelerometerBottom pylon accelerometer

Highest FRF 
magnitudes

Lowest FRF 
magnitudes

Output 
accelerometer 
location𝑒𝑏 = 𝐵𝐿 ሶ𝑥2 − ሶ𝑥1

This term increases with 
increasing FRF magnitudes



Modified FFVC Tests Based on Simulation Outcomes

• The two bottom excitation drive-point 
locations effectively mitigated the previous 
jumping behavior such that the unstable 
middle branch was measured – the assembly 
is now experimentally stabilized!

• Unlike the upper pylon block drive-point 
location, there was actually no distortion from 
the second harmonic at the bottom fixture 
drive-point location at the local minimum

22

Bottom Fixture Upper Pylon Block



VI. Conclusions



Conclusions

• Increasing (decreasing) the BL parameter at inherently unstable (stable) drive points resulted in stabilizing 
(non-stabilizing) behavior in the system 

• One of  the most significant stabilizing parameters in terms of  practical experimental 
implementation was moving the shaker to active locations in the mode (increasing ሶ𝒙𝟐 − ሶ𝒙𝟏 )

• There was strong corroboration between the simulated and experimental results based on this finding 

• Future research including a stability analysis based on a model of  the shaker and assembly will help validate 
the results demonstrated by this research
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Thank  You!
Questions?

Thank You! Questions?

Lower Branch Vibration Middle Branch Vibration Upper Branch Vibration
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Fixing Shaker at Node 8 – Reconstructed S-Curves 

• Reconstructing the force drop-out curves to S-curves and viewing the different harmonic interactions 
resulted in different agreement between the two turning points and middle branches
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Poor agreement at the 
middle branch between 
the upper and lower 
turning points due to 
the higher harmonics

Good agreement 
between the first 
harmonic in the force 
drop-out curves

Maximum absolute value of  

load cell force 

Fundamental harmonic of  

load cell force



Fixing Shaker at Node 7 – Force Drop-out Curves 

• Factoring the 𝐾1 and 𝐶1 parameters demonstrated similar results to those 
shown before but required more extreme scaling factors 

• Changing the 𝑅𝑒 parameter also resulted in the desired stabilizing behavior 
but only required a minimal decrease 
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Observe the different behaviors of  each curve:

• Different local minimum voltages

• Wide or narrow voltage ranges

• Different harmonic interactions

The underlying dynamics of  the system is 
likely changing

• 𝐾1 = armature stiffness

• 𝐶1 = armature damping

• 𝑅𝑒 = shaker resistance



Fixing Shaker at Node 17 – Force Drop-out Curves 

• When starting at an inherently stable drive-point node the reverse effect was observed –
decreasing the BL factor destabilized the system such that the force drop-out curves were no 
longer singular valued

• Higher harmonic distortion was still present at the local minimums 
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