SAND2023-12027C

14423 IMAC-XLI

Stabilizing a Strongly Nonlinear Structure Through Shaker
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3 I Background and Motivation

* Force and amplitude control stepped sine testing generally results in:
* Bifurcations leading to jumping behavior

* Imperfect quality in the control parameter

* Control-based continuation [4-6] and phase-locked loop [7, 8] are used to stabilize systems through bifurcations,
but they rely on specialized algorithms that are not readily available with many data acquisition software packages

* Need to explore other test strategies for system identification

Loss of quality in the force control parameter at the jump down frequency
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Theoretical Background
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Fixed Frequency Voltage Control Tests
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* Fixed frequency voltage control (FEFVC): Open-loop control where ° - O
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6 I Problem Statement

Current research has demonstrated a new
method to apply experimental continuation [1]

500
NA ® * ’
L ..
\E<400 i * .
C °
S .
iz :
2 300+ *
(O] °
O
(@) .
<
200 ‘
7 7.5 8

Force,(N)

Outcome: nonlinear system effectively
stabilized (S-curve measured)
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New experimental continuation method applied to
a nonlinear vibro-impact system
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Outcome: unexpected jumping behavior
has been observed

Goal: understand why this is occurring
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7 1 Problem Statement Continued

* It has been demonstrated in various research that the electromechanical shaker dynamics can influence the
structure under test [11-15]

* It 1s through FFVC tests and the electromechanical shaker dynamics that a nonlinear system is
stabilized [1,9]
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8 I Approach

FFVC (S-curves)
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Electromechanical Shaker Dynamics

Acceleratio
w
o
o

M,

X1

O O

l.amp

eamp ep = BL(xZ - xl)

Goal: Use the various mechanical
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shaker to investigate the stability of
the nonlinear system
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lll. Parametric Study through

Simulations
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10  Nonlinear Cantilever Beam Simulation

* Harmonic balance (HB) was used with an ) N LI
electromechanical shaker model and a 20 Nonlinear / - /%, o
node Euler-Bernoulli beam with a cubic System Y A

nonlinearity at the free end

* The goal was to perform FFVC tests using +

HB and change various shaker parameters "

in the model to assess the stability on the ", o

system through the reconstructed S-curves — —

Fcircu:t 2 X3
I—. X2
Shaker x;
. . . Dynamics AN QD

* Insight from these simulations were later Y . R, L,

used in experimental tests for validation famp

T Gy
amp ep = BL(%3 — %1)
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11 I Stabilizing Behavior

Stabilizing behavior: singular valued force drop-out curves (generally near the second local minimum)
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* The stability of the shaker drive-point locations were investigated by

* The stabilized force drop-out curves at the local minimum were
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Moving Shaker Drive-Point Locations

moving the shaker node-to-node from the fixed end to the tip
The force drop-out curves

became singular valued when the
shaker was attached to the beam
between the mid span and tip

dominated by the third harmonic
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Fixing Shaker at Node 8 — Force Drop-out Curves

* The shaker drive-point was fixed at node 8 on the beam to investigate the
BL parameter change at an inherently unstable drive-point node

* BL = electromechanical coupling factor

* Scaling factors that increased the BL parameter resulted in singular valued
force drop-out curves suggesting a stabilizing effect was occurring
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4 I Harmonic Balance and Time Integration Comparison

* An experimental simulation using time integration was conducted with the shaker attached to node 8 on the

beam - the results were compared to the MHB results

The BL factor was again scaled at

. . -3
different integers to demonstrate the x10
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15 I Parametric Study Outcomes Summary

Moving Shaker Drive Points Scaling the BL, Parameter
Increasing (%, — x;) Increasing BL
K K
VW / &0t .
M, — M, = [ |— ep = back electromotive force (EMF) voltage that
— no S |7» couples the mechanical motion to the electrical circuit

Shaker Dynamics AN QD
\ I_i;mp R, L,
O O

For practical experimental implementation, changing the shaker drive-points on the structure to more active
locations in the target mode (increasing (x, — x;)) 1s more feasible than changing the BL parameter
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V. Experimental Setup

Fixture-Pylon Assembly
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| Fixture-Pylon Assembly Overview

*Linear resonance 1s approximately 9.1 Hz

*Through the spacing of the washers on
the upper pylon blocks, a contact is
created between the upper blocks and
beam that creates a strong hardening
vibro-impact nonlinearity [3]

*A small electromechanical shaker
(integrated amplifier) was used in a fixed
boundary condition with a long steel
stinger
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V. Experimental FFVC Tests

on Assembly
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19 1 Initial Experimental FFVC Tests ° |
R IR ®
. z ’
* Hach point in the force drop-out and S-curve figures =39 @
represents the steady state amplitude from individual S5l
sine tests at 9.7 Hz at increasing voltage steps L
1 L
* Initially, jumping was occurring between the upper and ) I
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Modified FFVC Tests Based on Parametric Study Outcomes

* Based on the outcomes of the cantilever beam simulations, a set of experiments was designed to validate
the previous hypothesis and see if there 1s any corroboration between the simulation and experiment
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21 I FRFs from Different Drive-Point LLocations
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Lowest FRF
magnitudes
* Random vibration experimental tests at each of the four drive-
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22 I Modified FFVC Tests Based on Simulation Outcomes

Bottom Fixture Upper Pylon Block
* The two bottom excitation drive-point —— 15
locations effectively mitigated the previous 2| ) l . .
jumping behavior such that the unstable —15| ) . 4l - .
. ' ° o N Z ¢ ° .
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. . oqg e st 1 L] ° 8 . ¢ *
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VI. Conclusions
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24 8 Conclusions

* Increasing (decreasing) the BL parameter at inherently unstable (stable) drive points resulted in stabilizing
(non-stabilizing) behavior in the system

* One of the most significant stabilizing parameters in terms of practical experimental
implementation was moving the shaker to active locations in the mode (increasing (x; — k1))

* There was strong corroboration between the simulated and experimental results based on this finding

* Future research including a stability analysis based on a model of the shaker and assembly will help validate
the results demonstrated by this research
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Thank You! Questions?
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Fixing Shaker at Node 8 — Reconstructed S-Curves
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* Reconstructing the force drop-out curves to S-curves and viewing the different harmonic interactions
resulted in different agreement between the two turning points and middle branches
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31 1 Fixing Shaker at Node 7 — Force Drop-out Curves

* Factoring the K; and C; parameters demonstrated similar results to those

, . * K, = armature stiffness
shown before but required more extreme scaling factors !

* Changing the R, parameter also resulted in the desired stabilizing behavior * (; = armature damping

but only required a minimal decrease * R, = shaker resistance

7 . | . ;
——R_ factor = 0.25, 1w .-
6 - - -R_factor=025,3w|~ " . . .
K factor = 45. 1 Observe the different behaviors of each curve:
5| 1 i i
K, factor = 45, 3., * Different local minimum voltages
—(C, factor=65, 1w - .
4 ! / * Wide or narrow voltage ranges
- = _C:1 factor = 65, 3w
e Different harmonic interactions

[F]

The underlying dynamics of the system is
likely changing
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Fixing Shaker at Node 17 — Force Drop-out Curves

* When starting at an inherently stable drive-point node the reverse effect was observed —

I,
N1

decreasing the BL factor destabilized the system such that the force drop-out curves were no
longer singular valued

* Higher harmonic distortion was still present at the local minimums
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