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3 | Background — vibrations of electronic assemblies

» Electronic assemblies can be exposed to harsh
mechanical environmental conditions

* Packaging 1s vital to ensure proper function under
these conditions

* Failures resulting from demanding static
(assembly) and dynamic (vibration
or shock) environments include:
* Cracking of circuit board base
* Discontinuity of soldered connections

* Permanent failure of strain-sensitive components
(ceramic capacitors, ball grid arrays, etc.)

Modular Foam Approach: Use layers of compressed
soft and rigid foams to protect the electronics by
taking advantage of AM to control assembly stiffness

Severed Trace due to Vibrations [2]




4+ I Introduction — Foam Encapsulation Approaches

Traditional Additive
Potted Foam Manufacturing/
Modular Approach
Overall Cost ,@
Reusability .@
Serviceability .@
Environment ) P
Damping @ @
Mechanical Support 'Q '@
Repeatability .@

Potted Foam XS

Modular Foam




Objectives

- Project Goals | Loading
~ - I_ Condition |
* Establish a computational model that === ===1 Sierra/SM
validates modular foam experimental I Geometry/Mesh |
outcomes e
* Successfully preload the modeltn

preloaded state for a modal and frequency T 77777 (preloaded eigen,
modalranvibe)

Sierra/Solid Mechanics and handoff the I Damping { Sierra/SD J
L
l

response analysis in Sierra/Structural

Dynamics v — Density input _ |
* Investigate etfects of various preloading

conditions on the modal response
Mode Shapes

Mode # and Frequency
Power Spectral Density




¢ I Geometry

* The assembly of interest 1s composed of:
* An aluminum enclosure (housing and lid)
* Direct Ink Write (DIW) AM Lattice
® Foam layers

* Electronics components encapsulated by the enclosure and foams

* The assembly is roughly 7x 7 x 4 in (17.8 x 17.8 x 10.3 cm)

[Silicone DIW FRS

| Modular Foam




7 ‘ Experimental Methods
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Tests used for model validation 200
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* Load-Displacement Testing:

Load (Ibf)

-400

° Inform pre-compression levels for structural . —0.06501n
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dynamics tests More Linear i

600 Regime of ~ —0.07451in

. Response 0.0875 in

® - ° -700
Free-Free Modal Testing: » o B .
> Accelerometers fixed at key points [Lid Level] Actuatr Stroke (10%-3 in)

° Experimentally measure mode frequencies and

damping ratios 5 Accelerometers on 5 Accelerometers
the Bottom Plate on the Top Plate

* Fixed-Base Uniaxial Vibration Testing:
° Evaluate acceleration response of electronics

o Unit-unit variability



s | Material Modeling

* 6061 Aluminum Lid and Housing: [Silicone DIW FRS
o [inear elastic material

Encapsulant |

| Modular Foam

* Raspberry Pi:

° Blastic-plastic material based on test

o
* Bolts, pins, and fasteners: -

o [inear elastic material

*PMDI Modular Foam:

° Foam damage model for the solid mechanics simulation

° Blatz-Ko model for structural dynamics simulation

* Sylgard® 184 Encapsulant Foam:
o Gent model for solid mechanics

> Neo-Hookean model for structural dynamics

*Silicone DIW Foam Replacement Structure (FRS):

° Hyperfoam model based on experimental data



9 ‘ Homogenization of the Silicone DIW Lattice

* Homogenization based on:
> Uniaxial Compression tests of Direct Ink Write (DIW) lattices

° Parameter Estimation to fit the stress-strain response to the Hyperfoam model

e Advantages to homogenization:
> Reduce model complexity
> Reduce computational costs
° Simple to change material parameters

> No need to create each variation of the lattice structure

b)
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10 ‘ Modeling Additively Manufactured Soft Foams — Hyperfoam

Storaker (Hyperfoam) compressible hyperelastic model [3]
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Strain energy density dependent on principal stretch ratios (Ay)

> Compressibility of each order: B; = vj/(1 — 2v;)
The order, N, determines how many parameters are needed

For each order, a;, y;, and v; need to be estimated
If N = 3, a total of 9 parameters need to be estimated
IfN=1,a; = =2, 4y = u, and vy = 0.25, the Blatz-Ko model is recovered
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11 ‘ Methods — (mesh, elements, BC, Loadings)

* Quasistatic preload in Sierra/SM
* Handoff to Sierra/SD for dynamic analyses

* Mesh includes approx. 73,000
8-node Hexahedral elements (selective deviatoric)

SM Solution SD Solution

* Fixed base in direction of loading * Linearize preloaded state, material
tangent update

* Free and fixed base for modal
analysis

* Applied base acceleration for

* Temperature was fixed at 300 K random vibration analysis

* Cosine ramp to prescribe lid
displacement and compress assembly

* Artificial strain on bolts to close gap



2 I Finite Element Model Considerations

Solid Mechanics Simulations Structural Dynamics Simulations

* Computational Cost * Cases and Parameters

° Explicit time integration o Handoff
° Full model with no modifications, 12 hour sim ° Figenfrequencies and mode shapes computed up to
> Addition of mass scaling of non critical components 3000 Hz

(base, lid)

: _ S _ ° Applied acceleration amplitude of 0.01 g¢"2/Hz
o After verification, sim time of 105 minutes

modulated from 0 to 2000 Hz

o Post processin
* Contact, Contact, Contact P 5

° A contact paradigm of general contact in the normal
direction and friction model tangentially

o Constraints had to be modified in order to fix contact
1ssues

* Application of acceleration input
° Concentrated mass at the end of rigid bar
° Force applied to concentrated mass
° Desired acceleration is applied to base

* The Handoff to SD

° Concentrated mass at the end of rigid bar
o Material model inconsistencies
° Ensuring the proper state in the simulation is handed

off

* Tuning
> Global damping at 2%
° First dominant mode damping at 5%
° Second dominant mode damping at 3.25%



13 ‘ Results — Load-Displacement

* Results for 0.0875 in Lattice Structure:
° FEA result slightly over predicts the maximum load

°FEA does not consider long-time relaxation

o Results are filtered with a Butterworth filter
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14 ‘ Results — Frequencies and Modes

a) 1391.6 Hz b) 1443.2 Hz
* Results for 0.0875 in Lattice Structure:
° Free-Free and Fixed-Based simulations
> Hyperelastic materials are linearized for the SD simulations
° Acceleration Response at Raspberry Pi #2 and #3 are [
compared to experiments
° Frequency range of interest: 0 Hz to 2,000 Hz
Y Y
<X X
o Pi 2 Acceleration Response 1o Pi 3 Acceleration Response Unit Free-Free Fixed-Base
" | m—Nominal Input s Nominal Input ] Frequency (Hz) Frequency (Hz)
: _EE;TUW : o it : FE Model 1443 1392
[ Test Unit 2 ) | Y s Test Unit 2 - Test Unit 1 1390 ~1265
' Test Unit 2 1526 ~1370

ASD (g°/Hz)

Silicone DIW FRS

Modular Foam Encapsulant
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15 ‘ Conclusion

* Successful validation for an analysis involving an electronics assembly consisting of modular
encapsulation and AM silicone foam lattice
* Nonlinear Sierra/SM model showed comparable load-displacement behavior to testing
* Successful handoff to a linearized Sierra/SD model
* SD model shows modal and vibrations results that match well with experimental data
* Future work will explore various thicknesses and designs of the lattice structure

* Investigate the effect of varying levels of preload on the static and dynamic responses of the assembly
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