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Background – vibrations of electronic assemblies3

•  Electronic assemblies can be exposed to harsh 
mechanical environmental conditions
•  Packaging is vital to ensure proper function under 
these conditions

•  Failures resulting from demanding static 
(assembly) and dynamic (vibration 
or shock) environments include:
•  Cracking of  circuit board base

•  Discontinuity of  soldered connections

•  Permanent failure of  strain-sensitive components 
(ceramic capacitors, ball grid arrays, etc.)

Broken Capacitor from Flexure [1]

Severed Trace due to Vibrations [2]

Modular Foam Approach: Use layers of  compressed 

soft and rigid foams to protect the electronics by 

taking advantage of  AM to control assembly stiffness



Introduction – Foam Encapsulation Approaches4
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Objectives

•  Project Goals
•Establish a computational model that 
validates modular foam experimental 
outcomes 

•  Successfully preload the model in 
Sierra/Solid Mechanics and handoff  the 
preloaded state for a modal and frequency 
response analysis in Sierra/Structural 
Dynamics

• Investigate effects of  various preloading 
conditions on the modal response
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Geometry

•  The assembly of  interest is composed of:
•An aluminum enclosure (housing and lid)

•Direct Ink Write (DIW) AM Lattice

• Foam layers

•Electronics components encapsulated by the enclosure and foams

•  The assembly is roughly 7 x 7 x 4 in (17.8 x  17.8 x 10.3 cm)
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Experimental Methods 7

 Tests used for model validation

 • Load-Displacement Testing:

◦ Inform pre-compression levels for structural 
dynamics tests

 • Free-Free Modal Testing:
◦Accelerometers fixed at key points

◦Experimentally measure mode frequencies and 
damping ratios

 • Fixed-Base Uniaxial Vibration Testing:
◦  Evaluate acceleration response of  electronics

◦  Unit-unit variability



 • 6061 Aluminum Lid and Housing:
◦Linear elastic material

 • Raspberry Pi:
◦Elastic-plastic material based on test

 • Bolts, pins, and fasteners:
◦Linear elastic material

 •PMDI Modular Foam: 
◦Foam damage model for the solid mechanics simulation

◦Blatz-Ko model for structural dynamics simulation

 • Sylgard® 184 Encapsulant Foam:
◦Gent model for solid mechanics 

◦Neo-Hookean model for structural dynamics

 •Silicone DIW Foam Replacement Structure (FRS): 
◦Hyperfoam model based on experimental data

Material Modeling8



 • Homogenization based on:

◦Uniaxial Compression tests of  Direct Ink Write (DIW) lattices

◦Parameter Estimation to fit the stress-strain response to the Hyperfoam model

 • Advantages to homogenization:

◦Reduce model complexity

◦Reduce computational costs

◦ Simple to change material parameters

◦No need to create each variation of  the lattice structure

Homogenization of the Silicone DIW Lattice9



Modeling Additively Manufactured Soft Foams – Hyperfoam 10



Methods – (mesh, elements, BC, Loadings)11

•  Quasistatic preload in Sierra/SM

•  Handoff  to Sierra/SD for dynamic analyses

•  Mesh includes approx. 73,000 

8-node Hexahedral elements (selective deviatoric)

SM Solution

•  Fixed base in direction of  loading

•  Cosine ramp to prescribe lid 
displacement and compress assembly

•  Artificial strain on bolts to close gap

•  Temperature was fixed at 300 K

SD Solution
•Linearize preloaded state, material 
tangent update
•  Free and fixed base for modal 
analysis
•Applied base acceleration for 
random vibration analysis



Finite Element Model Considerations12

•  Computational Cost
◦ Explicit time integration
◦ Full model with no modifications, 12 hour sim
◦ Addition of  mass scaling of  non critical components 

(base, lid)
◦ After verification, sim time of  105 minutes

•  Contact, Contact, Contact
◦ A contact paradigm of  general contact in the normal 

direction and friction model tangentially 
◦ Constraints had to be modified in order to fix contact 

issues

•  The Handoff  to SD
◦ Concentrated mass at the end of  rigid bar
◦ Material model inconsistencies
◦ Ensuring the proper state in the simulation is handed 

off

Solid Mechanics Simulations Structural Dynamics Simulations

•Cases and Parameters
◦ Handoff

◦ Eigenfrequencies and mode shapes computed up to 

3000 Hz

◦ Applied acceleration amplitude of  0.01 g^2/Hz 

modulated from 0 to 2000 Hz

◦ Post processing

•  Application of  acceleration input
◦ Concentrated mass at the end of  rigid bar

◦ Force applied to concentrated mass

◦ Desired acceleration is applied to base

•  Tuning
◦ Global damping at 2%

◦ First dominant mode damping at 5%

◦ Second dominant mode damping at 3.25%



Results – Load-Displacement 13

 • Results for 0.0875 in Lattice Structure:

◦FEA result slightly over predicts the maximum load

◦FEA does not consider long-time relaxation

◦Results are filtered with a Butterworth filter 



Results – Frequencies and Modes 14

 • Results for 0.0875 in Lattice Structure:

◦Free-Free and Fixed-Based simulations

◦Hyperelastic materials are linearized for the SD simulations

◦Acceleration Response at Raspberry Pi #2 and #3 are 
compared to experiments

◦Frequency range of  interest: 0 Hz to 2,000 Hz

Unit Free-Free 
Frequency (Hz)

Fixed-Base 
Frequency (Hz)

FE Model 1443 1392

Test Unit 1 1390 ~1265

Test Unit 2 1526 ~1370



Conclusion15

• Successful validation for an analysis involving an electronics assembly consisting of  modular 

encapsulation and AM silicone foam lattice
• Nonlinear Sierra/SM model showed comparable load-displacement behavior to testing

• Successful handoff  to a linearized Sierra/SD model

• SD model shows modal and vibrations results that match well with experimental data

• Future work will explore various thicknesses and designs of  the lattice structure
• Investigate the effect of  varying levels of  preload on the static and dynamic responses of  the assembly
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