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Introduction and motivation

J Recent developments have efficiently applied the harmonic balance method to strongly nonlinear systems

» Systems include aircraft, spacecraft, gear drives, bladed disks, etc.
» Applications include continuation procedures, bifurcation detection and tracking, nonlinear modal analysis, etc.

» Advantages include reduced computational costs and capture of unstable solutions
» Difficulties include chaotic/aperiodic responses and non-smooth or discontinuous solutions (Gibbs phenomenon)

» How can we simulate “stiff” contact or friction systems efficiently with HBM?
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Introduction and motivation

d Review of the literature—simulation approaches include:
» Lanczos filtering to improve the values of the Fourier coefficients
» Append additional, non-smooth or discontinuous terms to a system’s solution
» Replace some or all the terms in classical Fourier series with non-smooth terms
» Utilize event-driven schemes to find and integrate between the state transition times to compute nonlinear forces
» Non-smooth temporal and spatial transformations

] Difficulties:

» Gibbs phenomenon: slow convergence (polynomial) compared to smooth systems (exponential)
» A priori knowledge of the state transition times may be required

Colaitis, Y. and Batailly, A, 2021, "The harmonic balance method with arc-length continuation in blade-tip/casing contact problems," Journal of Sound and Vibration, 502, p.116070. Doi: https://doi.org/10.1016/j.jsv.2021.116070

Brake, M.R. and Segalman, D.J,, 2013, "Modelling localized nonlinearities in continuous systems via the method of augmentation by non-smooth basis functions," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
469(2158), 20130260. Doi: https://doi.org/10.1098/rspa.2013.0260

Kim, W.J. and Perkins, N.C., 2003, "Harmonic balance/Galerkin method for non-smooth dynamic systems," Journal of Sound and Vibration, 261(2), pp. 213-224. Doi: https://doi.org/10.1016/5S0022-460X(02)00949-5

Krack, M., Panning-von Scheidt, L., and Wallaschek, J., 2013, "A high-order harmonic balance method for systems with distinct states,” Journal of Sound and Vibration, 332(21), pp. 5476-5488. Doi: https://doi.org/10.1016/jjsv.2013.04.048

Pilipchuk, V.N., 2010. Nonlinear dynamics: between linear and impact limits (Vol. 52). Springer Science & Business Media.

Wang, W., Lu, ZR,, and Liu, J,, 2021, "Convergence rates of harmonic balance method for periodic solution of smooth and non-smooth systems," Communications in Nonlinear Science and Numerical Simulation, 99, 105826. Doi:

https://doi.org/10.1016/j.cnsns.2021.105826


https://doi.org/10.1016/j.jsv.2021.116070
https://doi.org/10.1098/rspa.2013.0260
https://doi.org/10.1016/S0022-460X(02)00949-5
https://doi.org/10.1016/j.jsv.2013.04.048
https://doi.org/10.1016/j.cnsns.2021.105826

J Motivating idea:

Introduction and motivation

» Non-smooth periodic motions can be represented by infinite Fourier series

» Can we append the Fourier series representation with entire non-smooth basis functions?
» This approach may allow us to capture a large set of harmonics with a small number of non-smooth functions
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Introduction and motivation

(d Desirable basis function traits:

» Easy to mathematically represent
» Convenient mathematical properties (Fourier series, derivatives, etc.)

» Intuitive, non-smooth counterparts to sine and cosine functions

O Goals of this work:
> Select functions with € smoothness for capturing a non-smooth functional representation of a solution

» Use goodness-of-fit metrics to evaluate the classical Fourier series and the non-smooth basis functions

» Develop a framework that can later be implemented into harmonic balance formulations
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Non-smooth Galerkin formulation

(J Non-smooth triangle waves are chosen for study

Amplitude

» “Triangle sine” and “triangle cosine”

» The same periodicity, maxima, minima, and roots as sine and cosine waves
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Non-smooth Galerkin formulation

 Infinite series representation:
cO
£(6) = ag + Z a, tric(not) + b, tris(not)
n=1
(] A different form for numerical convenience

f(t) =ap+ Z a,tris(nwt + 6,,)
n=1

O Now we can study these functions for }'w- \M\\I

desirable properties and advantages

Barbosa, L, 2013, “Fourier series and transform,” Wikipedia. https://commons.wikimedia.org/wiki/File:
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Mathematical properties

1 The non-smooth functions have similar properties to sine/cosine:

> Reflections:

O reflectedina = 0 O reflectedina = " 0 reflected in a = % 0 reflected in a = JT“ O reflectedina ==
tris(—0) = —tris(@ . (T R tris(m — 6) = +tris(0 3T tris(2m — 0) = —tris(0
tric(—0) = +tric(0 . (T s tric(m—0) = —tric(6 3w tric(2m — 0) = +tric(0

» Shifts and periodicity:

Shift by one quarter period Shift by one half period Shift by three quarter periods Shift by full periods
tris(8+4+m) tris(&)

T tris{B+2Zmk ) =+ tris
Wis(ai§)=itric(5) mg(aif‘;) T tric(8) tris (822 ) = + tris (8)

T T tric| 8- =— tricld ' tric{B+2nk ) =+ tric
mc(aii)zﬁris{m e ) n'iC(E'ijTﬂ)=irris{E] ez )

Miscellaneous:
» |tris(0)| + [tric(8)| =1
» Angle sums/phase shifts: not straightforward



Mathematical properties

 Fourier series representations (w integer)

tris(wt) = Z b,sin(nt), b, = - :rr2 Z( 1)k+1 g4 ((Zk ;ml)nﬂ)
n=1

| o 2w—1 ) knﬂ'
tric(wt) = ay + z a,cos(nt), ap, = 0, a, = nznz Z (—1)* cos
n=1

» Examples:
oo

tris(t) = Z b,sin(nt), b, =
n=1

HZE:TZ sin (HZ?T) B 8 —8 8 -8

8 8 8

- 10: JOJI ;0; g mas
w2’ 792’ ' 252" 7 4972

tric(t) = Z a,cos(nt), a, = nf > [1 = cos(nm)] =

n=1

. . . . . 8w
» First derivatives: square waves with coefficients & =

.. . ) i 8
» Second derivatives: Dirac combs with coefficients n—(';
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Mathematical properties

1 The functions numerically satisfy the following orthogonality relationships:

27
f tris(mx)dx = 0,
0
21
f tric(mx)dx = 0,
0
21
f tric(mx)tric(nx)dx = ¢, 0mn,
0
21
f tris(mx)tris(nx)dx = d,;, 6,
0

2m
f tric(mx)tris(nx)dx = 0,
0

“;ﬁf’

‘;.i"

For integers m, n and constants ¢,,, d,,
Omn denotes Kronecker delta
Result: biorthogonal system, just like sine and cosine

A functional infinite series representation, similar to Fourier
series, 1s possible

Reiterate: no rigorous proof of this
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Least-squares regression analysis

d The system: a forced Duffing oscillator with freeplay X+ 2w0,(x + wix + RV fel) _p cos(wt),
m m m

LIS

S ez o g

+ [ S |
( Y Y ) » Two different contact laws—contact
penalty stiffness, and elastic impact:

Kc(x—l'jl): X< —j1
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De Langre, E., Lebreton, G., 1996, “An Experimental and Numerical Analysis of Chaotic Motion in Vibration with Impact," ASME 8™ International Conference on Pressure Vessel Technology, Montreal, Quebec, Canada, July 21 - 26, 1996.

12



Displacement, x(t)

Least-squares regression analysis

Medium stiffness, K. = 1.4 * 1042, w=9Hz
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» Smooth system response
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» Classical Fourier series converges much faster than non-

smooth Fourier series
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Welocity, vit)

-0.02

-0.04

1 WRIF
2006 F 1 4 HH L WL
2008 1 i )
FH
0 1 1 |

Least-squares regression analysis

Data
S,Nh:1

SN, =1

T [ II‘II—I-LI-I—I—I—I-I—I-I—I—I
Data FF 1

008 ' 5N, =12 | A Al SN, =12 ||
NS, N, =1 NS,N, =1
0.04 | NS, N, =12 |1 - NS, N, =12
ot ] ; 3 .
002 F ] , 1 .

Contact forces, Fc(t)

Acceleration, a(t)
i
—
. —

=20

_ 2475 248 2485 249 2495 25

Time ¢ 2475 248 24 85 249 2495 25 24.75 248 24.85 249 24.95

Time, t Time, t

» Now let’s look at the velocity, acceleration, and contact forces obtained using low- and high-quality fits
» Both smooth and non-smooth velocities use the coefficients obtained from curve-fitting the displacement:

co

x(t) =ay + Z a,tric(nwt) + b,tris(nwt) = v(t) = Z a,nwsquc(nwt) + b,nwsqus(nwt)
n=1 n=1
» Smooth acceleration is done similarly; non-smooth is computed using Matlab gradient

» Velocities and contact forces are captured well
» Accelerations show a limitation in the non-smooth formulation
» Dirac combs everywhere!

25
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Least-squares regression analysis

Displacement, x(t)
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» Less-smooth of a system response
» The non-smooth series converges faster until N, = 8
» For more harmonics, the smooth curve-fit becomes better

RMSE

10°

1P 10 107
Number of harmonics



Velocity, v(h)
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Contact forces, Fc(t)

» Both smooth and non-smooth velocities agree well and match closely to the data
» Smooth and non-smooth accelerations agree well away from the points of contact

» Non-smooth acceleration overshoots significantly

» Contact forces agree very well
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Displacement, x(t)

Least-squares regression analysis

Very hard stiffness, K¢ = 1.4 1010~ w = 15 Hz
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For more harmonics, the smooth curve-fit becomes better
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Velocity, v(t)

Least-squares regression analysis
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» Velocities are again in agreement with each other and the data

» The non-smooth response best captures the peaks in acceleration

» Poor agreement everywhere else, however, for both smooth and non-smooth
» Contact forces are essentially Dirac impulses by now

» None of the curve-fits capture the contact force

» Why? Because the penalty stiffness force definition
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Displacement, x(t)

Least-squares regression analysis

Elastic impact, COR = 1,w = 15 Hz
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» Explicit hard impact using coefficient of restitution instead
of penalty stifiness, aka the limitas K. — oo

» The non-smooth fit converges faster until N, = 18

» Then the smooth fit until N,, = 54

» Then the non-smooth fit again
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Velocity, vt
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» Velocities are still in good agreement

» Both smooth and non-smooth capture the peaks in acceleration
» Poor agreement everywhere else, still

» Contact forces are Dirac impulses

Contact forces, F (1)
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Additional studies

 Consider a different curve fit of the following form:

Amplitude (m)

Co

f(t)=ay+ Z a,tris(nwt + 6,,)

n=1

» Motivation: to better match up the locations of contacts/impacts with the phase-shifts that would produce them,
hopefully reducing the number of terms needed

» Every additional non-smooth term means additional contacts and impulses/Dirac combs 1n the acceleration, which

becomes unrealistic

%1074
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Left: hard-contact case with different curve fits of
a single triangle function

3 different manual curve fits

4t cyrve fit using Matlab nonlinear least squares
First 3 tend to capture only amplitude or phase
accurately, not both

4th one captures both well

21



Additional studies
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» Compare the improved curve fit to the Fourier fit for N, = 1
» Original tris:  RMSE = 1.22 x 107°

» Fourier:
» New tris:

RMSE = 3.88 % 10>
RMSE = 8.55 % 10~°

» 1.5 times better now!
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Velocity, v(t)
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» The improved non-smooth fit keeps good agreement with the velocity, acceleration, and contact force

» Further evidence that more terms does not necessarily improve the fit if performed naively
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Conclusions

U Evaluated the usefulness of non-smooth basis functions for obtaining the response of a contact/impact system
1 Non-smooth, triangular sine and cosine functions were defined

L Mathematical properties were highlighted

O Applied curve fits to time histories of a contact/impact system and studied for quality

L Results show Fourier series is superior for smooth responses, as expected

L The non-smooth series becomes superior for increasingly non-smooth responses

O Fourier series tends to become more accurate again when many harmonics are used

O A modified series form showed better results than the original naive series form
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Future work

L Continue studying non-smooth series representation and how to improve accuracy
L Optimal combinations of smooth and non-smooth terms based on when Fourier series regains highest accuracy

J Mathematical properties amenable to addition in a harmonic balance code

25



Acknowledgements

New Mexico State University
Sandia National Laboratories—Laboratory-Directed Research and Development (LDRD)
Sao Paulo State University (UNESP)

NM @ Elg?igir?al

Laboratories

STATE

UNIVERSITY

Thank you for your attention!
Please ask any questions

This study describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy
or the United States Government. This article has been authored by an employee of National Technology & Engineering Solutions of Sandia, LLC under Contract No. DE-NA0003525 with the U.S.
Department of Energy (DOE). The employee owns all right, title and interest in and to the article and is solely responsible for its contents. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this
article or allow others to do so, for United States Government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan
https://www.energy.gov/downloads/doe-public-access-plan. SAND2023-12312C. R. Vasconcellos acknowledges the financial support of the Brazilian agency CAPES (grant 88881.302889/2018-01).

26



