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Introduction and motivation

L Bearing-mounted shaft structures are common in mechanical engineering systems

» Can be subject to various nonlinear phenomena: large deformations, friction, intermittent contact, etc.

» Micro-clearances within the bearings can lead to contact/impact nonlinearities

» Other factors can cause shock or vibration effects: base excitations, unbalance, gear dynamics, ...

O Shock environments

High amplitude, short time duration

Often activates broadband frequency content
Decays to rest after the shock event

Energy can transfer between modes
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O Vibrational environments

Low amplitude, long time duration

Often activates isolated frequency content (resonances)
Steady, non-decaying oscillation

Energy can transfer between modes
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Introduction and motivation

d System of interest:
» Goldberg et al. studied a non-rotating shaft-bearing assembly, both numerically and experimentally

» Transient ringdown and nonlinear modal analysis showed interesting behavior

O Questions:

» What types of behavior can we see in the system under a vibrations environment? Chaos? Nonlinear resonances? Isolas?

» Explore the effects of asymmetries in the system, such as unequal stiffnesses or gap sizes

J Goals of this work:

» Characterize the complex nonlinear dynamics in a non-
rotating shaft-bearing assembly subject to forced vibration

» Inform and design further experiments

Goldberg, N.N., Demsky, S., Youssef, A.A,, Carter, S.P., Fowler, D., Jackson, N., Kuether, R.J.,, and Steyer, A., "Experimental and computational investigation of nonlinear dynamics of a simplified bearing-and-shaft assembly," 40th International Modal
Analysis Conference (IMAC XL), Orlando, FL, February 7-10, 2022.



System formulation and numerical methods

This assembly is a simplified physical model of a non-rotating,
bearing-mounted shaft with micro-clearances

The system can be excited by an impact hammer or a shaker
Adjustable contact heads—soft, medium, hard

Adjustable contact gaps via threaded rods

Interchangeable springs

 Shaft-bearing assembly

VVVY 'V

$
]
l'.
-
rh;
]
3
b
49
g
5
q
{3
{4
.
!
L
-
BT
?.
.
.
H
- B

Accelerometers on the box tube

Impact load cells (mirrored
(mirrored on the opposite side)

on the other end)

Goldberg, N.N., Demsky, S., Youssef, A.A,, Carter, S.P., Fowler, D., Jackson, N., Kuether, R.J.,, and Steyer, A., "Experimental and computational investigation of nonlinear dynamics of a simplified bearing-and-shaft assembly," 40th International Modal

Analysis Conference (IMAC XL), Orlando, FL, February 7-10, 2022.



System formulation and numerical methods

U 3 DOF simplified model equations of motion
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» Penalty stiffness contact law

» Frictionless, undamped contacts
» Equal linear viscous damping

» QGravity ignored
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System formulation and numerical methods

( Simulations are done using Matlab® ode45 with Event Location
» Piecewise time integration, which prevents accumulating roundoff error
» A timestep is always forced at every instance of contact to ensure accuracy
» Past validation has shown good results
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Saunders, B.E., Vasconcellos, R., Kuether, R.J., and Abdelkefi, A., 2021, "Relationship between the contact force strength and numerical inaccuracies in piecewise-smooth systems," International Journal of Mechanical Sciences, 210, 106729. Doi:
https://doi.org/10.1016/j.iimecsci.2021.10672
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System formulation and numerical methods

il Newton-Raphson
1 Additional simulations using a multi-harmonic balance method (MHB) corrector iterations
1 1 : . 1st-order predictor
» The form of the solution is assumed to be a Fourier series: OIEGTPIECiEol -

-0

\/é Adaptive stepsize

M + CX + KX + f,,;(x, %) = f (),

o

Np
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< Global Newton method
for initial point

» This solution form is combined with pseudo-arclength continuation *
to then trace out solution branches

» The freeplay force is approximated with a fully smooth (regularized) function:
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Colaitis, Y. and Batailly, A, "The harmonic balance method with arc-length continuation in blade-tip/casing contact problems," Journal of Sound and Vibration, 502, p.116070, 2021. Doi: g 1 1 D-Sisplacgment XD'S 1 e /1&32
https://doi.org/10.1016/j.jsv.2021.116070

Saunders, B.E., Vasconcellos, R. Kuether, R.J., and Abdelkefi, A., 2022, “Insights on the continuous representation of piecewise-smooth nonlinear systems: limits of applicability and
effectiveness," Nonlinear Dynamics, 107 (2), pp. 1479-1494. Doi: https://doi.org/10.1007/s11071-021-06436-w
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Linear analysis

L Linear modal analysis

» Symmetric open-gap mode shapes:

Mode 1 Mode 2 Mode 3
o
Description Symbol Value
Suspension spring stiffness k. 2.03e3 N /m
Torsional spring stiffness K 79161 N = m/rad
Gap spring stiffness K. 3.502e7 N/m
Half-length L 0.1614m
Gap g 2.04e — 4 m
Left mass My 0.629 kg
Middle mass e 1.258 kg
Right mass My 0.629 kg
Damping coefficient C N +5/m
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Linear analysis

L Linear modal analysis
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» Frequency response curves as linear

stiffness becomes asymmetric

» The inherent symmetry and forcing
location both contribute to the
presence or absence of the second

resonance peak
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1 Forcing excitation effects

Peak (m)

Nonlinear analysis
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» Significant challenges due to hard contact

» Time integration shows chaos surrounding resonance peaks

» Solution jumping due to sensitivity

» MHB shows flat-top response without classical jump behavior
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Nonlinear analysis

(J Nonlinear behavior due to contact stiffness—high frequency
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» Time integration shows a few isolas around the third resonance peak
» MHB shows many isolas are present

» Period-5, period-7, up to period-13

» The majority of each isola is unstable

» Quasiperiodic isolas cannot be traced out by the MHB
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Nonlinear analysis

O Nonlinear behavior due to contact stiffness — high frequency
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» Basins of attraction at two frequencies

» Left: 687 Hz. Right: 705 Hz. Both cut through several isolas
» The low-amplitude attractor on the main branch is dominant
» Low likelihood of the system settling onto an isola here

13



Nonlinear analysis

L Perform continuation with respect to the forcing magnitude
» These “S-curves” show the response at a fixed frequency
» Reveal the minimum forcing level required for various nonlinear phenomena

» Below: NLFRs and S-curves for main solution branches and some isolas near the high-frequency resonance
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Nonlinear analysis

(J NLFRs and S-curves of isolas

» NLFRs atp = 25 N, S-curves at w = 705 Hz
» NLFRs: some i1solas intersect the main solution branch
» S-curves: some i1solas also intersect the main branch
» Main S-curve does not intersect NLFR 1solas
» Isolas can form with as littleas = 2.25 N forcing
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Nonlinear system with asymmetry

 Existence of asymmetry—gap size and contact stiffness

k k 3.502 = 107 N
= = 3. * —,
g1 g3 m

g1 = 2.54%10"*"m

» All three resonance peaks present for
largest gap size
» Isolas may occur at high frequency
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Conclusions

W The nonlinear frequency responses and characteristics of an idealized shaft-bearing assembly have been
investigated

O Several complex nonlinear dynamical behaviors were observed and characterized using both time integration and
harmonic balance methods

O Chaos near primary resonances grows with larger forcing and disappears with softer contact stiffnesses
O A cloud of many isolas forms at high frequency for softer contact

O Isolas can form for forces as low as 2.25 N

d Asymmetric system configurations showed similar presence of resonances and isolas

O The experimental setup is likely robust to small discrepancies in spring stiffnesses, gap sizes, etc.
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Future work

L Vibrational experiments on the simplified physical system to complement past shock experiments
L More certain representation of the damping in the system, along with the influence of any contact damping

U Improved research on combining harmonic balance and continuation principles for quasiperiodic motions,
especially for 1solas

L How to capture chatter behavior efficiently
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