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2 PrObIem FormUIation Inifinite-Dimensional Nonsmooth Optimization

Goal: Develop an efficient algorithm to solve the nonsmooth optimization problem,

min £(4) + 0(x).

- His a Hilbert space with inner product (-, -) and associated norm || -

- ¢ : H— [—00,400] is proper, closed and convex, but may be nonsmooth;
- f : H— R has Lipschitz continuous gradients on an open set containing domg;
- F:=f 4+ ¢is bounded below on dom¢.
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2 PrObIem FormUIation Inifinite-Dimensional Nonsmooth Optimization

Goal: Develop an efficient algorithm to solve the nonsmooth optimization problem,

min f(x) + ¢(x).

His a Hilbert space with inner product (-, -) and associated norm || -

i

¢ H— [—00,+00] is proper, closed and convex, but may be nonsmooth;

f : H— R has Lipschitz continuous gradients on an open set containing domg;
F:=f + ¢ is bounded below on dom¢.

Key Requirements of Algorithm
1. Large-Scale Problems: Rapid convergence, mesh independence, and matrix free.

2. Leverage Inexactness: Converges even when f and Vf are computed inexactly via
adaptive discretization, reduced-order modelling, compression, etc.
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Motivating Application  sparse control

Goal: Determine a control z that produces a state close to w and that has small support.

Given a domain  C RY a target state w € L?(Q2), boundsa < 0 < b a.e,,

and penalty parameters «, 5 > 0,
Optimal Control

i S(z) — d x)d I
min [ 15G) —witax+ S [ Peoder s [ i) ox

0.6

subject to a<z<b ae, -
0.4
where S(z) = u € H}(R) solves 02
00 0.5 1
—Au+uP=z inQ *
u=0 indQ

Challenges: Objective function is nonsmooth, nonconvex, and expensive.

Drew Kouri Inexact Nonsmooth Trust Regions



4 Motivati ng Appl ication Elastic Topology Optimization

Goal: Determine a binary p that is maximally stiff and that satisfies the volume constraint.

Given a domain Q C R? and a volume fraction v € (0, 1),

w0 min /r T(x) - [S(p)](x) dx

per2(@) Jr,

subject to / p(x)dx <v|Q], 0<p<1 ae,
Q

Kpren=T  where S(p) = u € (H'(Q))? solves

—V - (K(p):€) =0, e=3(Vu+Vu') in Q
K(p):en=T onl,
u=20 only

Challenges: Objective function is expensive and highly nonconvex due to material models like
the Solid Isotropic Material with Penalization (SIMP).
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5| Motivating Applications  cxisting Methods

Sparse Control:

1. Subgradient and Bundle Methods: Convergence is generally slow (e.g., sublinear).
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5| Motivating Applications  cxisting Methods

Sparse Control:

1. Subgradient and Bundle Methods: Convergence is generally slow (e.g., sublinear).
2. Proximal Gradient Methods: Robust yet slow convergence on highly nonconvex problems.

3. Proximal Newton Methods: Rapid convergence, but require nonstandard prox computations.

Topology Optimization:

1. Optimality Criterion Method: Heuristic fixed-point iteration that converges slowly.
2. Method of Moving Asymptotes: Seq. rational opt. approach is inherently finite dimensional.
3. Augmented Lagrangian: Inner-outer iteration can be overly expensive.

4. Interior Points: Nonconvexity can lead to expensive inertia correction.

It can be extremely difficult to incorporate inexactness in these methods!
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sl Nonsmooth Trust Regions  sasic aigorithm

Require: An initial guess x;, initial trust-regionradius A1 > 0,0 <1 < < Tand0 <y <y <1
1. fork=1,2,...do

2. Model Selection: Choose a subproblem model fi of f near x

3. Step Computation: Compute x;” that approximately solves

r)‘(f‘lelﬂ {mi(x) == fi(x) + &(x)} subject to Ix = x|] < Ax

Evaluate Objective: Compute the actual reduction aredy := F(x) — F(x;)
if py = aredy < 11 then

my(xi)—mi (")

4
5
6: Xk1 < Xk and Ak+1 S [’}/1 Ak, ’YzAk]
7:
8

else

: X1 < X

9: if px < m2 then
10: JAVIRINS [’YzAk,Ak]
11: else
12: Apyr € [Ag, 00)
13: end if
14. endif
15: end for

Drew Kouri Inexact Nonsmooth Trust Regions



71 Nonsmooth Trust Regions  susproblem

Trust-Region Subproblem: At each iteration, we approximately solve
min {me(x) :=fi(x) = 6(x)}  subjectto [lx — x| < A,

where Ay > 0is the radius and f; : H — R is a model of the f near the iterate x.

Example: Perhaps the most common model fi is the quadratic Taylor model
1
Je) = (8o x = xe) + 5 (Bilx = x),x = xe),

where gy ~ Vf(x¢) and By encapsulates curvature information, e.g., By = V2f(x¢) or an
approximation thereof (e.g., quasi-Newton).
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8 Nonsmooth Trust Regions Approximate Subproblem Solution

Recall: TR methods use a Cauchy point to measure sufficient decrease of the trial iterate x,".
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gl Nonsmooth Trust Regions  approximate subproblem solution
Recall: TR methods use a Cauchy point to measure sufficient decrease of the trial iterate x,".
We generalize the Cauchy point to nonsmooth problems using the proximal gradient path
X" =pilte)  where  py(t) := prox, (X« — tg),
where the proximity operator is given by

ProX,,(x) := argergin {&lly =xI?+ o)} .
y
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gl Nonsmooth Trust Regions  approximate subproblem solution
Recall: TR methods use a Cauchy point to measure sufficient decrease of the trial iterate x,".
We generalize the Cauchy point to nonsmooth problems using the proximal gradient path
X" =pilte)  where  py(t) := prox, (X« — tg),
where the proximity operator is given by

ProX,,(x) := argerﬂin {&lly =xI?+ o)} .
y

We require that the step length t, satisfies both
1. Trust-Region Feasibility: ||x,” — x| < 114

2. Sufficient Decrease: mi(x.P) — me(xi) < pal(8rs xi” — k) + A7) — d(xx)]
and at least one of the following conditions:

ty > sz,/( or ty > v,
where t; satisfies

mi(pi(te)) — mi(xi) > p2l(8ks Pr(te) — xi) + G(pi(te)) — d0a)]  or  lpi(te) — xll > valis.
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9 Nonsmooth Trust Regions Generalized Cauchy Point

> GCP Computation: Can compute x,” with finitely many evals of p(t).
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9 Nonsmooth Trust Regions Generalized Cauchy Point

> GCP Computation: Can compute x,” with finitely many evals of p(t).

> Consequence of GCP: There exists a trial iterate x, that satisfies

||X/j_ _XkH < VradDk,  Vrad 2> 1

mi(x) — mi(x") = pslmic(xe) — me(”)l, 0 < ps < 1.

> Trial Iterate Requirements: Avoid GCP computation by ensuring that x;r satisfies

”le_ _XkH < VradAk

. h (FCD)
M%) = M) = ol min {Hw Ak} |

where hy := ||p«(ro) — xk||/ro for fixed ry > 0 and wy > 0 measures the curvature of f;.
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10 Nonsmooth Trust Regions Inexact Algorithm

Require: An initial guess x;, initial trust-region radius A1 > 0,0 <1 < < Tand0 <y <y <1
1. fork=1,2,...do

2. Model Selection: Choose a subproblem model fi of f near x

3. Step Computation: Compute x;” that approximately solves

r)‘(f‘lelﬂ {mi(x) == fi(x) + &(x)} subject to Ix = x|] < Ax

Evaluate Objective: Compute the actual reduction aredy := F(x) — F(x;)
if py = aredy < 11 then

my(xi)—mi (")

4
5
6: Xk1 < Xk and Ak+1 S [’}/1 Ak, ’YzAk]
7:
8

else

: X1 < X

9: if px < m2 then
10: JAVIRINS [’YzAk,Ak]
11: else
12: Apyr € [Ag, 00)
13: end if
14. endif
15: end for
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10 Nonsmooth Trust Regions Inexact Algorithm

Require: An initial guess xi, initial trust-region radius A1 > 0,0 < < < land0 <y <92 < 1
1. fork=1,2,...do
2. Model Selection: Choose a subproblem model fi of f near x

3. Step Computation: Compute a trial iterate x;” that satisfies (FCD)
4:  Evaluate Objective: Compute the actual reduction aredy := F(x¢) — F(x;")
5. ifpy = ﬁ% < 7 then

6: Xk+1 < Xx and Dyqq € [’y1 Ak, ’yzAk]

7. else

8 X1 < X

9: if px < m2 then

10: DApir € 124, A4]

11: else

12: JAVERINS [Ak, OO)

13: end if

14:  endif

15: end for
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10 Nonsmooth Trust Regions Inexact Algorithm

Require: An initial guess xi, initial trust-region radius A1 > 0,0 < < < land0 <y <92 < 1
1. fork=1,2,...do

2. Model Selection: Choose a subproblem model fi of f near xx Inexact!
3:  Step Computation: Compute a trial step x;” that satisfies (FCD)
4:  Evaluate Obje::tive: Evaluate the computed reduction credy ~ aredy Inexact!
5. ifp = ﬁnﬁk(ﬁ) < 7 then
6: Xk+1 < Xx and Dyqq € [’y1 Ak, ’yzAk]
7. else
8 X1 < X
9: if px < m2 then
10: DApir € 124, A4]
11: else
12: JAVERINS [Ak, OO)
13: end if
14:  endif
15: end for
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1 Nonsmooth Trust Regions Inexactness Conditions

In infinite-dimensional optimization, the objective function and its gradient are often
impossible to compute without discretization, iteration, etc., leading to inexactness.
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11 Nonsmooth Trust Regions

Inexactness Conditions

In infinite-dimensional optimization, the objective function and its gradient are often
impossible to compute without discretization, iteration, etc., leading to inexactness.

Adaptive Finite Elements
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12 Nonsmooth Trust Regions Inexactness Conditions

In infinite-dimensional optimization, the objective function and its gradient are often
impossible to compute without discretization, iteration, etc., leading to inexactness.

When evaluating the of reduction of the objective function, we approximate

credy ~ ared, := (f(xk) + ¢(xc)) — (F(Xir1) — ¢(Xe+1)),

where credy satsifies:

Jkobj >0, ¢>1, n<min{m,1—n}, and 6 \,0 suchthat

|aredk — CI’Edkl < Kobj [n min{mk(xk) — I’T‘?/((X/<+1)7 gk}]C V k.
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12 Nonsmooth Trust Regions Inexactness Conditions

In infinite-dimensional optimization, the objective function and its gradient are often
impossible to compute without discretization, iteration, etc., leading to inexactness.

When evaluating the of reduction of the objective function, we approximate

credy ~ ared, := (f(xk) + ¢(xc)) — (F(Xir1) — ¢(Xe+1)),

where credy satsifies:

Jkobj >0, ¢>1, n<min{m,1—n}, and 6 \,0 suchthat

|aredk — CI’Edkl < Kobj [n min{mk(xk) — I’T‘?/((X/<+1)7 gk}]< V k.

We also require that the model gradient gx must satisfy:

[ Elﬂgrad >0 such that ||Vf(Xk) *gk” < Kgrad min{hk, Ak} Vk. ]
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131 Convergence Theory

e ™)
Under the stated assumptions, the iterates produced by the TR algorithm satisfy

liminf hy =0 — liminf h(x,t)=0 Vt >0,
k— o0 k— o0

where  hy := L||prox, s (x — rogk) — xell and  h(x,t) := ¢[[prox,,(x — tVf(x)) — x|.

Finite Termination: V7 >0 3K, €N suchthat hy < T7hy.

Tikhonov Regularization: If f(x) = fo(x) + $[|x — xo|?, where @ > 0, xo € H, Vfy is
completely continuous and ry > o', then any weak accumulation point of {x;} is a
critical point of f 4 ¢. See, e.g., sparse control.
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131 Convergence Theory

e \
Under the stated assumptions, the iterates produced by the TR algorithm satisfy
liminf hy =0 == liminf h(x,t) =0 Vt>O0,
k— o0 k— 00
where  hy := L|lprox, s(x —rogc) = xell and  h(x,t) := ¢[[prox,,(x — tVf(x)) — x||.
Finite Termination: V7 >0 dK, € N suchthat hyx < 7h;.
-
Strong Local Convergence: Suppose f is strongly convex on a convex set U C H
with U N dom¢ # () and 3Ky € N such that x, € U for k > Ko. If 3x € U satisfying
h(x,t) = 0Vt > 0, then x, — X. Thatis, {xx} converges strongly to a critical point.
G J
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131 Convergence Theory

e

Under the stated assumptions, the iterates produced by the TR algorithm satisfy

liminf hy =0 = liminf h(x,t) =0 Vt>0,
k— 00

k—00

where  hi:= |[prox, ,(xc — rogc) — xc| and  h(x,t) := ¢[lprox.,(x — tVf(x)) — x|.
Finite Termination: V7 >0 dK, € N suchthat hyx < 7h;.

\.

Convergence Rates: Further, suppose f; is a quadratic Taylor model and V2 is Lipschitz.
1. If ¢« — 0, then x, converges superlinearly.
2. If < Thff”‘ for 7 > 0 and a > 0, then xx converges quadratically.

J

Requires additional assumptions on subproblem solver, see Bobby Baraldi's talk (MS252).

For our numerical results, we compute trial iterates using spectral proximal gradient.

Baraldi & Kouri, A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations, Math. Prog., 2022.
Kouri, A matrix-free trust-region Newton algorithm for convex-constrained optimization, Opt. Letters, 2022.
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Numerical ReSUItS Sparse Control

Goals: 1. Comparison of TR method with modern nonsmooth methods.
2. Demonstration of mesh independence for TR method.

LetQ=(0,1),w=—1,a=-25b=25a=10"%and § = 1072, and consider
min / 15(2) 2(x)dx + = / |2|%(x) dx + B/ |z|(x) dx
z€12(Q Q Q
subject to a<z<b ae,

where S(2) = u € H}(R2) solves
~Au+uP=z inQ
u=0 1inoQ

Discretization: P1 FEM for state variables and piecewise constant for controls.

Problem Size: 131,072 control degrees of freedom.
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151 Numerical Results

Sparse Control

method iter fval grad hess phi prox time (s) ‘ TR speedup”
TR 4 5 5 39 57 142 22.88 1.0000
PG 59 149 60 0 149 209 498.
SPG 30 46 31 0 46 62 168.
R2 106 107 46 0 107 153 368.
nmAPG 93 194 186 0 194 196 1018.
iPiano 103 240 104 0 104 344 816.
FISTA 141 430 283 0 430 290 1532.
PANOC 83 285 108 0 272 287 948.
ZeroFPR 21 70 43 0 45 93 247.

Proximal Gradient Methods

Accelerated Methods

Proximal Quasi-Newton Methods

*TR speedup is the ratio of the wallclock time for TR divided by the times for the other methods.

Drew Kouri
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16 Numerical ReSUItS Sparse Control

Top le-4 le-6 le-8
mesh iter npde 1lpde prox | iter npde 1lpde prox | iter npde 1lpde prox
64x64 3 4 56 80 5 6 108 129 7 8 186 181
128x128 3 4 54 79 4 5 79 102 6 7 129 151
256x256 3 4 56 80 5 6 108 129 6 7 133 153
512x512 3 4 54 78 5 6 102 123 6 7 127 147

Trust-region algorithm demonstrates mesh independence with respect to
the number of iterations and the number of PDE solves!

Requires only modest additional computational work to achieve tight tolerances!
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171 Numerical Results ciastic Topology optimization

Goals: 1. Comparison of TR method with modern projected and AL methods.
2. Demonstration of TR inexactness control for 3D problems.

LetQ = (0,2) x (0,1)% d = 1,2, and v = 0.4, and consider

min /r T(x) - [S(0)](x) dx

PEl?(€)

subject to / p(x)dx=v|Q|, 0<p<1 ae,
Q

L where S(p) = u € (H'(2))?*" solves

-V -(K(p):€)=0 in Q
€= %(VU-I—VUT) inQ
K(p):en=T onT;
u=20 only
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18 N umerical ReSUItS 2D Elastic Topology Optimization

Formulation: SIMP power p = 3 with Helmholtz filtering (radius= 0.1).
Discretization: Q1 FEM for displacement variables and piecewise constant for density.

Problem Size: 26,880 density degrees of freedom.

method iter fval grad hess proj time(s) ‘TR speedup*

TR 9 10 10 236 1200 16.49 1.0000
LMTR 33 34 31 418 391 32.
PQN 126 235 127 0 4972 164.
SPG 84 90 85 0 170 52.
AL-TR 9 52 51 1153 0 61.

AL-LMTR 11 276 263 4368 0 280.

Projected Newton-Type Methods Spectral Projected Gradient AL Methods
*TR speedup is the ratio of the wallclock time for TR divided by the times for the other methods.
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191 Numerical Results o eiastic Topology optimization
Formulation: SIMP power p = 3 with Helmholtz filtering (radius= 0.1).
Discretization: Q1 FEM for displacement variables and piecewise constant for density.
Problem Size: 221,184 density degrees of freedom.

Inexact Solves: Solve using CG with AMG preconditioning.
- Helmbholtz Filter: Requires ~8 iterations to achieve the relative error of ~ 1072

— Considered to be exact.

- Elasticity Equations: Trust-region algorithm controls accuracy of linear solver.

k F(xk) he  |Ixk —xxk—1]] Ak fval grad Thess proj obj tol grad tol
0 1.0000 4.017e-2 --- 1lel 1 1 0 3 1.000e-2 1.000e-2
1 0.8157 1.927e-2 1.000e1 le2 2 2 12 44 1.000e-2 1.000e-2
2 0.4716 1.279e-2 5.420el le3 3 3 25 75 1.000e-2 1.000e-2
3 0.4144 6.280e-3 1.260e1l led 4 4 39 103  4.632e-3 1.000e-2
4 0.1600 3.101e-3 1.990e2 1e4 5 5 52 132 1.000e-2 1.000e-2
5 0.1300 1.226e-3 1.085e2 1eb 6 6 65 161 2.970e-3  1.000e-2
6 0.1262 1.242e-5 6.044el le6 7 7 78 190 3.539e-4 1.000e-2
7 0.1254 6.590e-6 5.821el le7 8 8 91 220 6.971le-5 6.590e-3
8 0.1251 3.221e-6 3.599e1 1e8 9 9 104 249 1.942e-5 3.221e-3
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20

Conclusions:

Numerical solution of infinite-dimensional problems requires expensive approximations
Often, the objective function and its gradient can only be computed inexactly

Nonsmooth trust region is provably convergent even with inexact computations

We can efficiently compute a trial step using the spectral proximal gradient method

SPG trust-region subproblem solver is matrix free, but may require many prox computations
Future: Can we incorporate inexact prox computations? Can we handle nonconvex ¢?

Nonsmooth trust-region method outperforms existing nonsmooth methods!
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