
An Inexact Trust-Region Algorithm for

Nonsmooth Nonconvex Optimization

Drew P. Kouri, Robert J. Baraldi
SIAM Conference on Computational Science and Engineering
Amsterdam, The Netherland

March 1, 2023
SAND2023–XXXXX C

SAND2023-12929C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.



2 Problem Formulation Inifinite-Dimensional Nonsmooth Optimization

Goal: Develop an efficient algorithm to solve the nonsmooth optimization problem,
min
x∈H

f(x) + φ(x).

– H is a Hilbert space with inner product (·, ·) and associated norm ‖ · ‖;
– φ : H→ [−∞,+∞] is proper, closed and convex, but may be nonsmooth;
– f : H→ R has Lipschitz continuous gradients on an open set containing domφ;
– F := f + φ is bounded below on domφ.

Key Requirements of Algorithm

1. Large-Scale Problems: Rapid convergence, mesh independence, and matrix free.
2. Leverage Inexactness: Converges even when f and∇f are computed inexactly viaadaptive discretization, reduced-order modelling, compression, etc.
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3 Motivating Application Sparse Control

Goal: Determine a control z that produces a state close to w and that has small support.
Given a domain Ω ⊂ Rd, a target state w ∈ L2(Ω), bounds a ≤ 0 ≤ b a.e.,and penalty parameters α, β ≥ 0,

min
z∈L2(Ω)

∫
Ω

|S(z)− w|2(x) dx +
α

2
∫

Ω

|z|2(x) dx + β

∫
Ω

|z|(x) dx
subject to a ≤ z ≤ b a.e.,

where S(z) = u ∈ H10(Ω) solves
−∆u + u3 = z in Ω

u = 0 in ∂Ω

Optimal Control

Challenges: Objective function is nonsmooth, nonconvex, and expensive.
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4 Motivating Application Elastic Topology Optimization

Goal: Determine a binary ρ that is maximally stiff and that satisfies the volume constraint.

  

u=0

K(ρ):εn=T

Given a domain Ω ⊂ Rd and a volume fraction v ∈ (0, 1),
min

ρ∈L2(Ω)

∫
Γt

T(x) · [S(ρ)](x) dx
subject to

∫
Ω

ρ(x) dx ≤ v|Ω|, 0 ≤ ρ ≤ 1 a.e.,
where S(ρ) = u ∈ (H1(Ω))d solves

−∇ · (K(ρ) : ε) = 0, ε = 12 (∇u +∇u>) in Ω

K(ρ) : εn = T on Γt

u = 0 on Γd

Challenges: Objective function is expensive and highly nonconvex due to material models likethe Solid IsotropicMaterial with Penalization (SIMP).
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5 Motivating Applications Existing Methods

Sparse Control:

1. Subgradient and Bundle Methods: Convergence is generally slow (e.g., sublinear).

2. Proximal Gradient Methods: Robust yet slow convergence on highly nonconvex problems.
3. Proximal Newton Methods: Rapid convergence, but require nonstandard prox computations.
Topology Optimization:

1. Optimality Criterion Method: Heuristic fixed-point iteration that converges slowly.
2. Method of Moving Asymptotes: Seq. rational opt. approach is inherently finite dimensional.
3. Augmented Lagrangian: Inner-outer iteration can be overly expensive.
4. Interior Points: Nonconvexity can lead to expensive inertia correction.

It can be extremely difficult to incorporate inexactness in these methods!
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6 Nonsmooth Trust Regions Basic Algorithm

Require: An initial guess x1, initial trust-region radius∆1 > 0, 0 < η1 < η2 < 1 and 0 < γ1 ≤ γ2 < 1
1: for k = 1, 2, . . . do
2: Model Selection: Choose a subproblem model fk of f near xk
3: Step Computation: Compute x+

k that approximately solves
min
x∈H
{mk(x) := fk(x) + φ(x)} subject to ‖x − xk‖ ≤ ∆k

4: Evaluate Objective: Compute the actual reduction aredk := F(xk)− F(x+
k )

5: if ρk := aredk
mk(xk)−mk(x+

k )
< η1 then

6: xk+1 ← xk and∆k+1 ∈ [γ1∆k, γ2∆k]
7: else

8: xk+1 ← x+
k9: if ρk < η2 then

10: ∆k+1 ∈ [γ2∆k,∆k]
11: else

12: ∆k+1 ∈ [∆k,∞)
13: end if

14: end if

15: end for
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7 Nonsmooth Trust Regions Subproblem

Trust-Region Subproblem: At each iteration, we approximately solve
min
x∈H
{mk(x) := fk(x) + φ(x)} subject to ‖x − xk‖ ≤ ∆k,

where∆k > 0 is the radius and fk : H→ R is a model of the f near the iterate xk.

Example: Perhaps the most common model fk is the quadratic Taylor model
fk(x) = (gk, x − xk) +

1
2 (Bk(x − xk), x − xk),

where gk ≈ ∇f(xk) and Bk encapsulates curvature information, e.g., Bk = ∇2f(xk) or anapproximation thereof (e.g., quasi-Newton).
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8 Nonsmooth Trust Regions Approximate Subproblem Solution

Recall: TR methods use a Cauchy point to measure sufficient decrease of the trial iterate x+
k .

We generalize the Cauchy point to nonsmooth problems using the proximal gradient path

xcpk = pk(tk) where pk(t) := proxtφ(xk − tgk),

where the proximity operator is given by
proxtφ(x) := arg min

y∈H

{ 12t‖y − x‖2 + φ(y)
}
.

We require that the step length tk satisfies both
1. Trust-Region Feasibility: ‖xcpk − xk‖ ≤ ν1∆k

2. Sufficient Decrease: mk(xcpk )−mk(xk) ≤ µ1[(gk, xcpk − xk) + φ(xcpk )− φ(xk)]
and at least one of the following conditions:

tk ≥ ν2t′k or tk ≥ ν3,
where t′k satisfies
mk(pk(t′k))−mk(xk) ≥ µ2[(gk, pk(t′k)− xk) + φ(pk(t′k))− φ(xk)] or ‖pk(t′k)− xk‖ ≥ ν4∆k.
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9 Nonsmooth Trust Regions Generalized Cauchy Point

I GCP Computation: Can compute xcpk with finitely many evals of pk(t).

I Consequence of GCP: There exists a trial iterate x+
k that satisfies

‖x+
k − xk‖ ≤ νrad∆k, νrad ≥ ν1

mk(xk)−mk(x+
k ) ≥ µ3[mk(xk)−mk(xcpk )], 0 < µ3 ≤ 1.

I Trial Iterate Requirements: Avoid GCP computation by ensuring that x+
k satisfies

‖x+
k − xk‖ ≤ νrad∆k

mk(xk)−mk(x+
k ) ≥ κfcdhk min

{
hk

1+ ωk
,∆k

}
,

(FCD)

where hk := ‖pk(r0)− xk‖/r0 for fixed r0 > 0 and ωk ≥ 0 measures the curvature of fk.
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10 Nonsmooth Trust Regions Inexact Algorithm

Require: An initial guess x1, initial trust-region radius∆1 > 0, 0 < η1 < η2 < 1 and 0 < γ1 ≤ γ2 < 1
1: for k = 1, 2, . . . do
2: Model Selection: Choose a subproblem model fk of f near xk
3: Step Computation: Compute x+

k that approximately solves
min
x∈H
{mk(x) := fk(x) + φ(x)} subject to ‖x − xk‖ ≤ ∆k

4: Evaluate Objective: Compute the actual reduction aredk := F(xk)− F(x+
k )

5: if ρk := aredk
mk(xk)−mk(x+

k )
< η1 then

6: xk+1 ← xk and∆k+1 ∈ [γ1∆k, γ2∆k]
7: else

8: xk+1 ← x+
k9: if ρk < η2 then

10: ∆k+1 ∈ [γ2∆k,∆k]
11: else

12: ∆k+1 ∈ [∆k,∞)
13: end if

14: end if

15: end for
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11 Nonsmooth Trust Regions Inexactness Conditions

In infinite-dimensional optimization, the objective function and its gradient are often
impossible to compute without discretization, iteration, etc., leading to inexactness.
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12 Nonsmooth Trust Regions Inexactness Conditions

In infinite-dimensional optimization, the objective function and its gradient are often
impossible to compute without discretization, iteration, etc., leading to inexactness.

When evaluating the of reduction of the objective function, we approximate
credk ≈ aredk := (f(xk) + φ(xk))− (f(xk+1)− φ(xk+1)),

where credk satsifies:
∃κobj > 0, ζ > 1, η < min{η1, 1− η2}, and θk ↘ 0 such that
|aredk − credk| ≤ κobj[ηmin{mk(xk)−mk(xk+1), θk}]ζ ∀ k.

We also require that the model gradient gk must satisfy:
∃κgrad > 0 such that ‖∇f(xk)− gk‖ ≤ κgrad min{hk,∆k} ∀ k.
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13 Convergence Theory

Under the stated assumptions, the iterates produced by the TR algorithm satisfy
lim inf
k→∞

hk = 0 =⇒ lim inf
k→∞

h(x, t) = 0 ∀ t > 0,
where hk := 1

r0 ‖proxr0φ(xk − r0gk)− xk‖ and h(x, t) := 1
t ‖proxtφ(x − t∇f(x))− x‖.

Finite Termination: ∀ τ > 0 ∃ Kτ ∈ N such that hKτ ≤ τh1.

Tikhonov Regularization: If f(x) = f0(x) + α2 ‖x − x0‖2, where α > 0, x0 ∈ H, ∇f0 is
completely continuous and r0 ≥ α−1, then any weak accumulation point of {xk} is a
critical point of f + φ. See, e.g., sparse control.
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t ‖proxtφ(x − t∇f(x))− x‖.

Finite Termination: ∀ τ > 0 ∃ Kτ ∈ N such that hKτ ≤ τh1.

Strong Local Convergence: Suppose f is strongly convex on a convex set U ⊆ Hwith U ∩ domφ 6= ∅ and ∃ K0 ∈ N such that xk ∈ U for k ≥ K0. If ∃ x̄ ∈ U satisfying
h(x̄, t) = 0 ∀ t > 0, then xk → x̄. That is, {xk} converges strongly to a critical point.
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hk = 0 =⇒ lim inf
k→∞

h(x, t) = 0 ∀ t > 0,
where hk := 1

r0 ‖proxr0φ(xk − r0gk)− xk‖ and h(x, t) := 1
t ‖proxtφ(x − t∇f(x))− x‖.

Finite Termination: ∀ τ > 0 ∃ Kτ ∈ N such that hKτ ≤ τh1.

Convergence Rates: Further, suppose fk is a quadratic Taylor model and∇2f is Lipschitz.
1. If τk → 0, then xk converges superlinearly.
2. If τk ≤ τh1+αk for τ > 0 and α ≥ 0, then xk converges quadratically.

Requires additional assumptions on subproblem solver, see Bobby Baraldi’s talk (MS252).

For our numerical results, we compute trial iterates using spectral proximal gradient.
Baraldi & Kouri, A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations, Math. Prog., 2022.Kouri, A matrix-free trust-region Newton algorithm for convex-constrained optimization, Opt. Letters, 2022.
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14 Numerical Results Sparse Control

Goals: 1. Comparison of TR method with modern nonsmooth methods.

2. Demonstration of mesh independence for TR method.

Let Ω = (0, 1)2, w ≡ −1, a ≡ −25, b ≡ 25, α = 10−4 and β = 10−2, and consider
min

z∈L2(Ω)

∫
Ω

|S(z)− w|2(x) dx +
α

2
∫

Ω

|z|2(x) dx + β

∫
Ω

|z|(x) dx
subject to a ≤ z ≤ b a.e.,

where S(z) = u ∈ H10(Ω) solves
−∆u + u3 = z in Ω

u = 0 in ∂Ω

Discretization: P1 FEM for state variables and piecewise constant for controls.
Problem Size: 131,072 control degrees of freedom.
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15 Numerical Results Sparse Control

method iter fval grad hess phi prox time (s) TR speedup?

TR 4 5 5 39 57 142 22.88 1.0000

PG 59 149 60 0 149 209 498.56 21.79

SPG 30 46 31 0 46 62 168.26 7.35

R2 106 107 46 0 107 153 368.27 16.10

nmAPG 93 194 186 0 194 196 1018.66 44.52

iPiano 103 240 104 0 104 344 816.96 35.71

FISTA 141 430 283 0 430 290 1532.58 66.98

PANOC 83 285 108 0 272 287 948.04 41.44

ZeroFPR 21 70 43 0 45 93 247.39 10.81

Proximal Gradient Methods Accelerated Methods Proximal Quasi-Newton Methods

?TR speedup is the ratio of the wallclock time for TR divided by the times for the other methods.
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16 Numerical Results Sparse Control

τop 1e-4 1e-6 1e-8

mesh iter npde lpde prox iter npde lpde prox iter npde lpde prox

64x64 3 4 56 80 5 6 108 129 7 8 186 181

128x128 3 4 54 79 4 5 79 102 6 7 129 151

256x256 3 4 56 80 5 6 108 129 6 7 133 153

512x512 3 4 54 78 5 6 102 123 6 7 127 147

Trust-region algorithm demonstratesmesh independence with respect tothe number of iterations and the number of PDE solves!
Requires only modest additional computational work to achieve tight tolerances!
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17 Numerical Results Elastic Topology Optimization

Goals: 1. Comparison of TR method with modern projected and AL methods.

2. Demonstration of TR inexactness control for 3D problems.

  

Ω Γt

Γd

Let Ω = (0, 2)× (0, 1)d, d = 1, 2, and v = 0.4, and consider
min

ρ∈L2(Ω)

∫
Γt

T(x) · [S(ρ)](x) dx
subject to

∫
Ω

ρ(x) dx = v|Ω|, 0 ≤ ρ ≤ 1 a.e.,
where S(ρ) = u ∈ (H1(Ω))d+1 solves

−∇ · (K(ρ) : ε) = 0 in Ω

ε =
1
2 (∇u +∇u>) in Ω

K(ρ) : εn = T on Γt

u = 0 on Γd
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18 Numerical Results 2D Elastic Topology Optimization

Formulation: SIMP power p = 3 with Helmholtz filtering (radius= 0.1).
Discretization: Q1 FEM for displacement variables and piecewise constant for density.
Problem Size: 26,880 density degrees of freedom.

method iter fval grad hess proj time(s) TR speedup?

TR 9 10 10 236 1200 16.49 1.0000

LMTR 33 34 31 418 391 32.42 1.9660

PQN 126 235 127 0 4972 164.49 9.9751

SPG 84 90 85 0 170 52.36 3.1753

AL-TR 9 52 51 1153 0 61.98 3.7586

AL-LMTR 11 276 263 4368 0 280.77 17.0267

Projected Newton-Type Methods Spectral Projected Gradient AL Methods

?TR speedup is the ratio of the wallclock time for TR divided by the times for the other methods.
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19 Numerical Results 3D Elastic Topology Optimization

Formulation: SIMP power p = 3 with Helmholtz filtering (radius= 0.1).
Discretization: Q1 FEM for displacement variables and piecewise constant for density.
Problem Size: 221,184 density degrees of freedom.
Inexact Solves: Solve using CG with AMG preconditioning.
– Helmholtz Filter: Requires∼8 iterations to achieve the relative error of∼ 10−12

=⇒ Considered to be exact.
– Elasticity Equations: Trust-region algorithm controls accuracy of linear solver.
k F(xk) hk ‖xk − xk−1‖ ∆k fval grad hess proj obj tol grad tol

0 1.0000 4.017e-2 --- 1e1 1 1 0 3 1.000e-2 1.000e-2

1 0.8157 1.927e-2 1.000e1 1e2 2 2 12 44 1.000e-2 1.000e-2

2 0.4716 1.279e-2 5.420e1 1e3 3 3 25 75 1.000e-2 1.000e-2

3 0.4144 6.280e-3 1.260e1 1e4 4 4 39 103 4.632e-3 1.000e-2

4 0.1600 3.101e-3 1.990e2 1e4 5 5 52 132 1.000e-2 1.000e-2

5 0.1300 1.226e-3 1.085e2 1e5 6 6 65 161 2.970e-3 1.000e-2

6 0.1262 1.242e-5 6.044e1 1e6 7 7 78 190 3.539e-4 1.000e-2

7 0.1254 6.590e-6 5.821e1 1e7 8 8 91 220 6.971e-5 6.590e-3

8 0.1251 3.221e-6 3.599e1 1e8 9 9 104 249 1.942e-5 3.221e-3
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Conclusions:

– Numerical solution of infinite-dimensional problems requires expensive approximations
– Often, the objective function and its gradient can only be computed inexactly
– Nonsmooth trust region is provably convergent even with inexact computations
– We can efficiently compute a trial step using the spectral proximal gradient method

– SPG trust-region subproblem solver ismatrix free, but may requiremany prox computations
Future: Can we incorporate inexact prox computations? Can we handle nonconvex φ?

– Nonsmooth trust-region method outperforms existing nonsmooth methods!
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