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2 Outline

I Introduction:

I Land ice simulation and UQ big picture;
I Extreme event probabilities;

I Optimization approach;

I Computation of the most likely point;
I Importance sampling;

I Numerical results;

I Implementation and test problems;
I Probabilities and performance;

I Conclusions and future work.



3 Unlikely events with high impacts

Unlikely events with high impacts:

I Are difficult to quantify with standard approaches;
events with small probability require a large number of samples to be evaluated precisely;

I Can have severe consequences (even if they are rare);
large tsunamis are very rare but can lead to high losses.

When unlikely events have high impacts, it is important to have a precise estimation of their
probabilities.



4 Unlikely events with high impacts

Unlikely events with high impacts:

I Are difficult to quantify with standard approaches;
events with small probability require a large number of samples to be evaluated precisely;

I Can have severe consequences (even if they are rare);
large tsunamis are very rare but can lead to high losses.

When unlikely events have high impacts, it is important to have a precise estimation of their
probabilities.
Example:

In Infinity War, Dr Strange simulated 14 million samples
and saw only one case where the Avengers win; the event
was extremely unlikely but had severe consequences.

©Disney



5 Unlikely events with high impacts for land ice simulation

In the case of land ice simulation, this will allow us to estimate smaller probabilities for
different levels of sea level rise due to land ice mass loss.

Grounding line

Grounding line flux

http://www.climate.be

Random parameter: the basal friction between the ice sheet and the bedrock (random field),
Unlikely event of interest: to have a flux at the grounding line above a certain threshold.

http://www.climate.be


6 UQ big picture and flow chart

observed data

inverse problem

characterization of
the uncertainties

forward analysis

probability of
extreme events

The work presented in this talk.

300K parameters, 14M unknowns.

Initialization: 10 hours on 2k cores on NERSC Cori (Haswell),

The optimization is constrained by the coupled velocity-temperature solvers.



7 Introduction: Extreme event probability estimation

Given a n-variate Gaussian variable θ ∼ Nn(0, I) and a F parameter-to-event map (involved
PDE solve), quantity of interest:

F : θ ∼ Nn(0, I)→ R

Ω(z)

F (θ)−−−→

z

Target: Estimate the measure of extreme event sets for z � 0
Ω(z) := {θ : F (θ) ≥ z} i.e., compute P(F (θ) ≥ z) when P(F (θ) ≥ z)� 1.

Tong, S., Vanden-Eijnden, E., & Stadler, G. (2021). Extreme event probability estimation using PDE-constrained optimization and large deviation theory, with

application to tsunamis. Communications in Applied Mathematics and Computational Science, 16(2), 181-225.



8 Extreme event probabilities using optimization theory

The used strategy relies on finding θ?(z) the most likely point above
the threshold which can be computed by solving the PDE-constrained
optimization problem:

θ?(z) = arg min
θ∈Ω(z)

I (θ),

where I (θ) = 1
2 ‖θ‖

2 for θ ∼ Nn(0, I) as pdf (θ) = c exp(−I (θ)).

Then, the probability can be approximated as follows:

P(F (θ) ≥ z) ≈ C0(z) exp (−I (θ?(z))) , as z →∞,
where C0(z) is a sub-exponential prefactor.

The method relies on 2 steps:

I Compute the most likely point θ?,

I Compute the prefactor C0(F (θ?)).

Ω(z)

I (θ)

θ?



9 Computation of the most likely point

Under some assumptions, the minimizer over Ω(z) is reached on ∂Ω(z)
and the inequality constraint is now active:

θ?(z) = arg min
θ∈∂Ω(z)

I (θ).

We used a quadratic penalty method as follows:

θ?(z) = arg min
θ

I (θ) + α (F (θ)− z)2
,

where α is a penalty weight that should be large enough such that
F (θ?) ≈ z .

The used strategy is the following:

I Select an increasing sequence z1, . . . , zm of quantity of interest,

I For a given zi , solve the corresponding optimization problem
using θ?(zi−1) as the initial guess,

I Deduce the sequence θ?(z1), . . . , θ?(zm).

Ω(z)

θ?

∂Ω(z)



10 Computation of the prefactor with a sampling strategy

One strategy is to use an Importance Sampling (IS) strategy:

I to draw N random samples θ1, . . . , θN from the initial
distribution,

I for a given value of zi :

I shift the samples: θ̃k = θk + θ?(zi ),
I evaluate F for all the N shifted samples,
I evaluate:

P IS
N (z) = e−I (θ

?) 1

N

N∑
k=1

[
1Ω(z)

(
θ̃k

)
exp

(
−
(
θ̃k − θ?

)>
θ?
)]

,

where z can be different from F (θ?).

I Advantages: E
[
P IS
N (z)

]
= P(z) and variance in 1/N,

I Challenges: this approach requires N ×m evaluations of F
where m is the number of z values.

Ω(z)

θ?

∂Ω(z)



11 Monte Carlo strategy



12 Optimization strategy with shifted Monte Carlo sampling



13 Optimization strategy with shifted Monte Carlo sampling



14 Numerical strategies and used software

I FE software: Albany,

I PDE constrained optimizer: algorithm: trust region, software: ROL,

I Non-linear solver: algorithm: Newton solver, software: NOX,

I Linear solver: algorithm: GMRES, software: Belos,

I Preconditioner: algorithm: Schwarz, software: FROSch,

I Preconditioner: algorithm: multigrid, software: MueLu,

I First and second derivative computation: algorithm: automatic differentiation (AD),
software: Sacado,

I Reduced Hessian and Gradient vector product computed using ROL and AD.



15 PyAlbany: A Python interface to Albany

PyAlbany allows to easily and quickly:

I Use Albany without C++ or bash knowledge
(convenient for students),

I Prototype applications that require multiple Albany
solves,

I Enable fast pre-processing and post-processing in
Python,

I Use Python as a glue language to couple Albany
with other software:

I For UQ methods (PyDakota),
I For machine learning (TensorFlow, Keras,

Scikit-learn),
I For plotting (Matplotlib, Paraview).

Liegeois, K., Pergeo, M., & Hartland, T. (2023). PyAlbany: A Python interface to the C++ multiphysics solver Albany.

Journal of Computational and Applied Mathematics, 425, 115037.



16 Land ice test problem: Humboldt glacier

Mean case:
Basal friction: Surface ice velocity:

Courtesy of
T. Hillebrand.

The velocity is faster if the friction is smaller, the quantity of interest is the flux at the
grounding line; we expect the extreme events to be associated to smaller basal friction values.



17 Land ice test problem: Humboldt glacier

I Random parameter: the basal friction represented using a log-normal random field and a
KL expansion with 24 modes:

β(x , θ) =e log(m(x))+
∑n

i=0

√
λiεi (θ)fi (x),∫

Ω
Cov(x , x ′)fi (x ′)dx ′ =λi fi (x),

Cov(x , x ′) =σ e−
‖x−x′‖

` ,

with σ = 0.1, ` = 50 km, and n = 24. Those modes allow to capture 99% of the
variance.

I Quantity of interest: flux at the grounding line.
I PDE: steady state first order Stokes equation, Blatter-Pattyn model.

θ ∼ Nn(0, I)

m, λ1, . . . , λn, f1, . . . , fn

β(θ)

I (θ)

F (β)
I +α (F − z)2



18 Quantity of interest and random samples
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Histogram of 20 000 samples, the orange curve is a log-normal distribution that fits the data
the best.



19 Probability of the extreme events
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For smaller values of z , all the methods are consistent. When increasing z , the MC approach
needs more and more samples to be consistent with the importance sampling.



20 Performance

Average cost per simulation (measured on Skylake):

Wall-clock time Relative cost

To compute F (θ) cF = 13 sec 1

To compute θ?(z) cθ? = 2257 sec 174

Expected cost per method:

E [c] E [c/cF ]

Monte Carlo NMC cF NMC

Importance Sampling per θ? cθ? + NIS cF 174 + NIS

Comparison of Monte Carlo with NMC = 20 000 and importance sampling with NIS = 1000:

NMC

174 + NIS
=

20 000

1174
= 17,

the importance sampling is 17 times faster.
The more extreme the event, the more samples will be required for the Monte Carlo method
and the more efficient the importance sampling will be compared to standard Monte Carlo.



21 Land ice test problem: Thwaites glacier

Mean case:
Basal friction: Surface ice velocity:

courtesy of T. Hillebrand,
modified from Quantarctica

The velocity is faster if the friction is smaller, the quantity of interest is the flux at the
grounding line; we expect the extreme events to be associated to smaller basal friction values.



22 Land ice test problem: Thwaites glacier

I Random parameter: the basal friction represented using a log-normal random field and a
KL expansion with 50 modes:

β(x , θ) =e log(m(x))+
∑n

i=0

√
λiεi (θ)fi (x),∫

Ω
Cov(x , x ′)fi (x ′)dx ′ =λi fi (x),

Cov(x , x ′) =σ e−
‖x−x′‖

` ,

with σ = 0.3, ` = 50 km, and n = 50. Those modes allow to capture 99% of the
variance.

I Quantity of interest: flux at the grounding line.
I PDE: steady state first order Stokes equation, Blatter-Pattyn model.

θ ∼ Nn(0, I)

m, λ1, . . . , λn, f1, . . . , fn

β(θ)

I (θ)

F (β)
I +α (F − z)2



23 Quantity of interest and random samples
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Histogram of 10 000 samples, the orange curve is a log-normal distribution that fits the data
the best.



24 Probability of the extreme events
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For smaller values of z , all the methods are consistent. When increasing z , the MC approach
needs more and more samples to be consistent with the importance sampling.



25 Performance

Average cost per simulation (measured on Skylake):

Wall-clock time Relative cost

To compute F (θ) cF = 39 sec 1

To compute θ?(z) cθ? = 11842 sec 304

Expected cost per method:

E [c] E [c/cF ]

Monte Carlo NMC cF NMC

Importance Sampling per θ? cθ? + NIS cF 304 + NIS

Comparison of Monte Carlo with NMC = 10 000 and importance sampling with NIS = 1000:

NMC

304 + NIS
=

10 000

1304
= 7.66,

the importance sampling is 7 times faster.
The more extreme the event, the more samples will be required for the Monte Carlo method
and the more efficient the importance sampling will be compared to standard Monte Carlo.



26 Conclusions, current and future work

Conclusions:

I Discussion of the usage of optimization strategies to compute the probability of extreme
events,

I Discussion of the implementation using open source libraries and software,

I Computation of the extreme event probabilities of high fluxes at the grounding line of
the Humboldt and Thwaites glacier,

I Performance comparison of the proposed approach with the standard Monte Carlo
method.

Current work:

I Move towards transient analysis.

Future work:

I Consider solving the constrained problem instead of using a quadratic penalty method,

I Consider larger problems,

I Use characterization of the uncertainties computed using the inverse problem,

I Deduce probability of extreme sea level rise due to land ice mass loss for the future.
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