
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
SAND

Incremental Update Techniques for Online Analysis of Streaming Tensor Data
Eric Phipps, Saibal De, Hemanth Kolla (Sandia National Laboratories), Nick Johnson (Cerebras Systems), Tammy Kolda (MathSci.ai), Zitong Li (UC-Irvine)

Tensors, or multidimensional arrays of data, are ubiquitous in data science
applications. Analysis of tensor data is often facilitated through tensor
decompositions, akin to matrix factorizations for two-dimensional data, and
are higher dimensional analogs of techniques such as SVD, PCA, and POD.

In many cases, tensor data has a streaming character where data is
gradually observed over time. In some cases the data stream may never
end (i.e., infinite streaming) or maybe too large to fit in memory. Thus
approaches that incrementally update tensor decompositions are needed.

Common tensor decomposition approaches include Canonical Polyadic (CP)
and Tucker. In this work, we consider streaming CP decompositions for
sparse tensors and streaming Tucker decompositions for dense tensors.

Streaming Generalized CP Decompositions1

Streaming Tucker Decompositions6

CP decompositions discover important relationships in data, and are useful for unsupervised tasks such as pattern
identification and anomaly detection. CP Model

Data

A1(:, 1)

A2(:, 1)

A3(:, 1)

A1(:, 2)

A2(:, 2)

A3(:, 2)

A1(:,R)

A2(:,R)

A3(:,R)

X M⇡ =
+ + · · ·+

Streaming Tensor Setup
• Updates are processed in discrete batches indexed by time t = 1,2, …
• At each time 𝑡, a 𝑑-way tensor is observed
• All tensor dimensions are fixed throughout time
• By stacking observed tensors along a new time mode, a 𝑑 + 1-way tensor is

created with an ever growing time mode

…

…

Challenges & Approach
• Data stream potentially unbounded, so must compute decompositions without revisiting sufficiently old data
• Compute a batch decomposition on initial data
• Update factorization after each new tensor arrives
• Balance reconstruction of old data with new

<latexit sha1_base64="ih+JYYAOwnrkOmVcVR3YTU3t/hw=">AAAEiXicbVNdT9swFE1Zt7GwD9ge92KtQgLEUNOhDU2qxIQ07YWJTRSQ6q5ynNvUEMeR7TCK5b+yP7Wn/ZvdhIIIYCnSzbnn3E87LjJhbLf7r7XwqP34ydPFZ+HS8xcvXy2vvD4yqtQcBlxlSp/EzEAmchhYYTM4KTQwGWdwHJ/tVf7jc9BGqPzQzgoYSZbmYiI4swiNl//QGFKRu5TZKegNH9JDd+LXxDjaFOPeJk2UNWgl64SyotDqgiBh/2ECDfuEmlKO3Wk/8r9+EhpL98WPo5p9uj7/7a1VQvytpPSalCCaIBpSyJObcsbLne5Wtz7kvhHNjU4wPwfjlYW/GJeXEnLLM2aMi3EaoH24SksDBeNnLIUhmjnCZuTqEXqyikhCJkrjl1tSoyE1YK/kqqjG5aYiAZIrC8bfclqQRcYsuMpDCozvhwiIfBRWObETCS6BCSszi7qmKGfnIq2XYWYyVplB3M5COsVlaRSXhSuSSRVUqgT6AwPfVQ6309e1Ym4tWUYsXFjv4rTvw/BWw45JU8XHRiWO1tz1VeBDvmFpJzsjJ/KixFL51ZwmJeZRpLpOJBEauM1maDCuhRWc8CnTjFusvpklSxUSplJw33BYcXb5nicNcFhXwvXIQclZhnnJV9wNncMNfSxv3LFseIyVTM90Ui0fR5tU6pDm8JsrKRleM3roh73RcOSqS9iJrsO7Ts9732Tu32dq+RBRzolNElZwszAjLrFrXBTB8vDxkQwmtt+VcvM2qEU6rVHcJD6D6O6lv28c9baij1vbP3qd3Z35g1gM3gbvgrUgCj4Fu8G34CAYBLzVbm20PrS220vtqL3T/nxFXWjNNW+Cxmnv/QeNS4V5</latexit>

X(i1, i2, . . . , id) ⇡ M(i1, i2, . . . , id)

=
RX

j=1

A1(i1, j)A2(i2, j) . . . Ad(id , j)

Generalized CP (GCP)2 allows for flexible use of data fit functions in defining optimization problem for a
broader range of statistical models:

min F (X,M) =
X

i

f (Xi ,Mi)

s.t. M = JA1,A2, . . . AdK

Example Loss Functions
Normal (𝑥,𝑚 ∈ ℝ)

Poisson (𝑥 ∈ ℕ,𝑚 > 0)

Bernoulli (𝑥 ∈ 0,1 ,𝑚 > 0)

𝛽-divergence (𝑥 > 0,𝑚 > 0, 𝛽 = !
"
)

Minimization problem solved via derivative-based optimization. Cost of gradient computation grows
exponentially with tensor dimensions, so solve using stochastic gradient descent (SGD)3.

Streaming GCP problem solved after receiving each streamed tensor :

Problem solved using two-step optimization process (each step using SGD):
• Solve for new row of temporal factor holding non-temporal factors fixed (old rows are not updated)
• Solve for updated non-temporal factors holding temporal factor fixed

20 40 60 80 100 120 140 160 180 200
slice

0.038

0.039

0.04

N
or

m
al

iz
ed

 L
os

s

Local Normalized Loss

OnlineGCP
True
Static GCP
Online SGD
OnlineCP
Static CP-ALS

20 40 60 80 100 120 140 160 180 200
slice

0.0385
0.039

0.0395
0.04

N
or

m
al

iz
ed

 L
os

s

Global Normalized Loss

OnlineGCP
True
Static GCP
Online SGD
OnlineCP
Static CP-ALS

20 40 60 80 100 120 140 160 180 200
slice

0.7

0.8

0.9

sc
or

e

K-tensor Score

OnlineGCP
Static GCP
Online SGD
OnlineCP
Static CP-ALS

50 100 150 200 250 300 350
Days

-0.04

-0.02

0

0.02

0.04

N
or

m
al

iz
ed

 L
os

s

Local Normalized Poisson Loss

OnlineGCP
Static GCP
Static CP-APR

50 100 150 200 250 300 350
Days

-0.04

-0.02

0

0.02

0.04

N
or

m
al

iz
ed

 L
os

s

Global Normalized Poisson Loss

OnlineGCP
Static GCP
Static CP-APR

Synthetic (Normal) NYC Taxicab (Poisson)

Computational Experiments (Sparse Tensors)

<latexit sha1_base64="yZhvs0DZ20oUlCoWkbzCMFzPUx0=">AAAFmXicbVRtjxM3EN5LSaHbF7i23/hiNTrproQoG6EWgSKBqNCpEhVV74Aqzq28tnfXir27tb1AMP5J/TV86r/p7MtFWe4sRZqdeZ5nZjzjJJUUxs7n/x2Mvrgx/vLmra/Cr7/59rvbdw6/f2XKWlN+TktZ6jcJMVyKgp9bYSV/U2lOVCL562TzrIm/fsu1EWVxZrcVXyuSFSIVlFhwxYcH/+KEZ6JwGbE51z/7ECtRxA6fuRc+th7hx/gxwqZWsUDpMbj/9rETftoBwLpwx/bEn4QI3UM41YS6yLuF7zgux6JAWIE4JdKdtpLv4hzhjzghukvTSOQn/n770dn4Y/z8YoEwBtmjS10soS9G9tQ3y8hfMBBDOFHuqY83qGfuOKru8DuIY/cif2ynj04a7OIyC1ZJ+d6ZmZ0B+J+agGpfDnSHlghLmYDghtteJ5piVloz7T/ZNLySAGvdc8Kj7h6vpTrmp9cUl3EkYxZiXrDddOI7k/ls3h501Yh6YxL052V8OPoEuWiteGGpJMa4BLaDaw8V1YZXUB3J+ArMAtxm7dqV8ugIPAylpYZfYVHrDbHhtqOXVbM+LheMo6K03Pi9oOWqksRy10RQBfp+BQ5RrMMmJ3SiuGM8JbW0wBuSCvJWZO1ymi2MRBrw222Ic1heDeS6chVLG1FVMr48N/yPsuD76dtaIbdWRCLL31vvkmzpw3CvYUeUafSh0WY3zeexxnldbFXb9OHaiaKqoVTa3VNaQ54SNc8LMaE5tXILBqFaWEERzQksgYXqh1lkVgIgV4L6QcCKzYf7lA2cq7YSqteO1/CQIC96DrPBvXvAT9QunKhBxFhF9FazZvhwtaxhh7jg72ipFIE1w2d+tViv1q5Zx0l0Ke8mC+/9EPniKlKr64CqBw5BUMFuYEZ8gK5hUAjKg/8iJHlql3OlpvtOLbK89cIk4RlEny/9VePVYhb9Mnvw52Ly5GH/IG4Fd4OfguMgCn4NngSnwcvgPKCjH0ePRs9Gv43vjp+OT8e/d9DRQc/5IRic8V//A17m5lo=</latexit>

min
Mt

X

i

f (Yi ,M
(t)
i) +

1

2

X

h2Ht

whkM̄
(h) �M(h)k2F

s.t. M(t) = JA1, . . . ,Ad ,Ad+1(t, :)K

CP Model for time step 𝑡

GCP loss for tensor Y History regularization term

Temporal history window

<latexit sha1_base64="jj8Ayso+qoBIHy/p3PcWPIEOXp8=">AAAEtXicfVPfb9MwEE5HgRF+bfDIi0U1tEGZmgqxCanSEBLiZWhI6zapDsVxnMSanUS2M+gs/4O88sR/wyXLpmYDLEW6fN/dfee7c1QKrs1o9Lu3cqt/+87d1Xv+/QcPHz1eW39ypItKUTalhSjUSUQ0EzxnU8ONYCelYkRGgh1Hpx9q/viMKc2L/NAsShZKkuY84ZQYgOZrP3HEUp5bIniav3Q+PrT77qvdzLYcejFBWIhIEXrKDI6kfe/mwRDHhdHD9je+NGz8KnCb2fDdFlaqDUEY+zgiyjZJ/5G1ppsUy7mXwP8q+Jjl8WXt87XBaHvUHHTTCFpj4LXnYL6+8gsEaSVZbqggWtsIOseU8zdwpVkJEiRlMzBzgHVom3Y7tAFIjJJCwZcb1KA+1sxchBdl3Vqb8ZihvDBMuyXSMFkKYpitGVRCfjcDgOehX2uajElmY5aQShiI6wbl5IynzeD0QkaF0ICbhY8zGKyC4Kq0ZZzUSWURs8lUs89Fzpblm1pBW0kikGE/jLNROnG+v3RhS6Su88NFJTGZvs7V4N+4WWWS3dDyvKygVHrRp6QCnQLVq4dirhg1YgEGoYobThHNCEzSQPVdFZEW4JBJTl2HMPz0/DWNO+CsqYSq0LKKEgG66CPMBrdwJz6SV3QkO4w2kqiFiuvhQ2vjOtrHOftOCykJbBk+dLNxOAubzRwEl+ntYOyc63ru3/RU8m+OsnXsOkEFVwPT/BxuDYNCUB48VCRYYiYjKYfLoOJp1qAwSXgGwfWlv2kcjbeDt9tvvowHe7vtg1j1nnnPvU0v8Ha8Pe+Td+BNPdob9Y568963/k4/7Mf95MJ1pdfGPPU6p1/8ATu9mm4=</latexit>

M(h) = JA1, . . . ,Ad ,Ad+1(h, :)K

M̄
(h)

= JĀ1, . . . , Ād ,Ad+1(h, :)K

CP Model using current factors and historical time step ℎ

CP Model using prior factors and historical time step ℎ

Approach implemented in GenTen4 , for parallel GCP decompositions targeting HPC architectures
• Shared memory parallelism (CPU, GPU) via Kokkos5
• Distributed memory parallelism via MPI

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Day

3

3.5

4

4.5

N
or

m
al

iz
ed

 L
os

s

Local Normalized Binary Loss

OnlineGCP
Static GCP

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Day

3.5

4

4.5

N
or

m
al

iz
ed

 L
os

s

Global Normalized Binary Loss

OnlineGCP
Static GCP

Chicago Crime (Bernoulli)

1. E. Phipps, N. Johnson, T. Kolda, “Streaming Generalized Canonical Polyadic Tensor Decompositions,” accepted to PASC’23, https://arxiv.org/abs/2110.14514.
2. D. Hong, T. Kolda, J.Duersch, “Generalized Canonical Polyadic Tensor Decomposition,” SIREV, 2020, https://doi.org/10.1137/18M1203626.
3. T. Kolda, D. Hong, “Stochastic Gradients for Large-Scale Tensor Decomposition,” SIMODS, 2020, https://doi.org/10.1137/19M1266265.
4. GenTen software: https://gitlab.com/tensors/genten
5. Kokkos software: https://github.com/kokkos/kokkos
6. S. De, H. Kolla, Z. Li, E. Phipps “Efficient Computation of Tucker Decomposition for Streaming Scientific Data Compression,” submitted to ISC’23.
7. TuckerMPI software: https://gitlab.com/tensors/TuckerMPI
8. M. Brand, “Incremental Singular value Decomposition of Uncertain Data with Missing Values,” Euro. Conf. on Comp. Vision, 2002, https://doi.org/10.1007/3-540-47969-4_47.
9. H. Kolla, K. Aditya, J.H. Chen, “Higher Order Tensors for DNS Data Analysis and Compression. In: Pitsch, H., Attili, A. (eds) Data Analysis for Direct Numerical Simulations of

Turbulent Combustion. Springer, 2020, https://doi.org/10.1007/978-3-030-44718-2_6.

Tucker decompositions capture high-variance subspaces and are useful for surrogate modeling and data
compression.

(𝑁!×𝑁"×𝑁#)

𝑨𝟑
(𝑁#×𝑅3)≈X

(𝑅!× 𝑅"×𝑅3)

𝑨𝟏
(𝑁!×𝑅!)

𝑨𝟐
(𝑁"×𝑅")

𝑛-mode product Matricization along mode 𝑛

Tucker decompositions often computed through
sequence of SVD/eigenvector calculations:

Efficient Streaming Tucker Decomposition 5

Algorithm 1 Sequentially truncated higher order SVD (ST-HOSVD)

Require: Data tensor X 2 RN1⇥···⇥Nd , tolerance ⌧ > 0
Ensure: Core C 2 RR1⇥···⇥Rd , bases Ak 2 RNk⇥Rk for 1  k  d
1: Compute truncation: � ⌧kXkF /

p
d

2: Initialize core: C X
3: for k = 1 to d do
4: Compute Gram matrix: G C(k)C

>
(k)

5: Eigendecompose: �,A eig(G)
6: Determine rank: Rk min`{` : �`+1 + · · ·+ �Nk  �2}
7: Truncate: Ak A(:, 1 : Rk)
8: Update core: C C⇥k A>

k

9: end for

2.3 Sequentially truncated higher-order SVD

More often instead of an exact low-rank representation as in eq. (5), we seek
an approximation to the data tensor. We can compute such a low-rank repre-
sentation via a series of truncated singular value decompositions (SVDs). This
algorithm is known as the truncated higher order SVD (T-HOSVD) [27]; it loops
over the modes k = 1, . . . , d of a data tensor X, and computes the principal left
singular vectors Uk of the corresponding unfolding matrices X(k). Then the core
is C is obtained by projecting the data tensor along these singular vector spans:
C = X ⇥1 U

T
1 · · · ⇥ UT

d . The resulting Tucker approximation satisfies

kX � (C ⇥1 U1 · · · ⇥d Ud)kF  ⌧kXkF , (9)

where k·kF denotes the Frobenius norm and ⌧ > 0 is the error tolerance specified
to the algorithm.

It was noted [1, 2] that, since ⌧ is usually larger than the square root of
machine precision, it is computationally more efficient to determine rank Rk from
an eigendecomposition of the Gram matrix (X(k)X

>
(k) which is of size Nk ⇥Nk)

instead of SVD of the much larger unfolding matrix X(k).
Vannieuwenhoven et al. [27] present an important refinement of T-HOSVD,

where the computation is much more efficient and the error guarantee, eq. (9),
is still preserved. This algorithm works with “partial cores”, constructed by se-
quentially projecting the data tensor along already computed principal mode
subspaces:

C⇤
k = X ⇥1 U

>
1 · · · ⇥k U>

k 2 RR1⇥···⇥Rk⇥Nk+1⇥···⇥Nd , (10)

instead of the full tensor in constructing the principal subspace of the next
unprocessed mode. Note that in this sequentially truncated higher-order SVD
(ST-HOSVD) variant, the order in which the modes are processed is important;
this is in contrast with the T-HOSVD algorithm where modes can be processed in
any order. In the following, to avoid introducing additional notations, we assume
the modes are processed in the order k = 1, . . . , d. During the computation, the

Challenges for streaming Tucker decompositions:
• Update factor matrices and core tensor

without revisiting prior data
• Allow Tucker ranks to evolve to ensure

truncation satisfies prescribed error tolerance:

Outline of streaming ST-HOSVD algorithm implemented in TuckerMPI7:
• Assume decomposition has been computed and new slice is observed
• Sequentially update factor matrices for non-streaming modes, e.g., for mode-1:

• Can show updated core obtained by row/column augmentation of prior (full) core
(so no need to save prior cores)

• Choose 𝑼 so that

• For streaming mode, compute updated SVD of , given SVD

• This can be done, without accessing , , using incremental-SVD8 to obtain
• Updated core:

16 Hemanth Kolla and Konduri Aditya and Jacqueline H. Chen

Fig. 8 Contour plots of temperature (Kelvin) in the HCCI case from the original data (top), from
data compressed to ✏ = 10�4 (middle), and data compressed to ✏ = 10�2 (bottom). The plots are
shown at two instants: 1 ⇥ 10�3s (left), and 2 ⇥ 10�3s (right).

error, as expected. The histograms also show that for temperature, all elements are
within the largest magnitude bin, 10�2

� 100, while for OH mass fraction a consid-
erable number of elements are in the 10�10

�10�8 bin. For elements with such small
magnitudes, even an absolute error as small as 10�5 translates to a large relative er-
ror ⇠ 105. Since truncated SVD cannot provide control of reconstruction accuracy
for individual elements, this is a peril of Tucker compression, particularly for data
sets with a large spread of element magnitudes. Another consideration, particularly
for combustion DNS data, is that truncated HOSVD is not guaranteed to preserve
fundamental realisability constraints such as ensuring the mass fractions stay posi-

16 Hemanth Kolla and Konduri Aditya and Jacqueline H. Chen

Fig. 8 Contour plots of temperature (Kelvin) in the HCCI case from the original data (top), from
data compressed to ✏ = 10�4 (middle), and data compressed to ✏ = 10�2 (bottom). The plots are
shown at two instants: 1 ⇥ 10�3s (left), and 2 ⇥ 10�3s (right).

error, as expected. The histograms also show that for temperature, all elements are
within the largest magnitude bin, 10�2

� 100, while for OH mass fraction a consid-
erable number of elements are in the 10�10

�10�8 bin. For elements with such small
magnitudes, even an absolute error as small as 10�5 translates to a large relative er-
ror ⇠ 105. Since truncated SVD cannot provide control of reconstruction accuracy
for individual elements, this is a peril of Tucker compression, particularly for data
sets with a large spread of element magnitudes. Another consideration, particularly
for combustion DNS data, is that truncated HOSVD is not guaranteed to preserve
fundamental realisability constraints such as ensuring the mass fractions stay posi-

Efficient Streaming Tucker Decomposition 15

Table 2: Performance of the batch and streaming ST-HOSVD methods,
when compressing the HCCI combustion data tensor with mode sizes
(N1, N2, N3, N4) = (672, 672, 33, 268), at three ST-HOSVD tolerances. Stream-
ing compressions are initialized with 110, 130, and 150 snapshots. We report
the Tucker ranks, maximum ST-HOSVD memeory usage (in GBs), computation
time (in seconds), and estimated relative reconstruction errors.

Tolerance (⌧) Algorithm Rank Memory Time Relative Error

10�1 Batch (35, 27, 8, 7) 33.68 20.91 9.6⇥ 10�2

Streaming (110) (46, 37, 9, 7) 14.06 20.59 9.4⇥ 10�2

Streaming (130) (44, 36, 9, 8) 16.57 19.55 9.6⇥ 10�2

Streaming (150) (43, 34, 9, 9) 19.09 21.23 1.0⇥ 10�1

10�2 Batch (122, 110, 21, 29) 38.70 22.65 9.6⇥ 10�3

Streaming (110) (139, 126, 24, 28) 16.34 29.24 9.6⇥ 10�3

Streaming (130) (137, 124, 23, 27) 19.24 28.93 9.9⇥ 10�3

Streaming (150) (134, 121, 23, 28) 22.09 28.15 9.6⇥ 10�3

10�3 Batch (231, 213, 29, 67) 46.42 24.43 9.5⇥ 10�4

Streaming (110) (249, 230, 30, 96) 19.64 65.65 9.8⇥ 10�4

Streaming (130) (248, 227, 30, 77) 23.15 56.51 9.9⇥ 10�4

Streaming (150) (245, 225, 30, 64) 26.59 50.90 9.8⇥ 10�4

5.2 HCCI combustion dataset

Following a previous study [10], we consider a simulation of auto-ignition pro-
cesses of a turbulent ethanol-air mixture, under conditions corresponding to a
homogeneous charge compression ignition (HCCI) combustion mode of an inter-
nal combustion engine, to assess the streaming ST-HOSVD algorithm applied
to scientific data. The simulation was performed on a rectangular Cartesian grid
of a 2D spatial domain with 672 ⇥ 672 grid points, which constitute the first
two modes of the tensor. The simulation state comprises 33 variables at each
grid point—the third mode—and 268 time snapshots (the last of a total of 626
timesteps) are considered which constitutes the streaming mode of a fourth-
order tensor. Since this is not a synthetic data set with an exact known low-rank
structure, the results of the streaming and batch ST-HOSVD algorithms are
likely to produce different results due to our lack of knowledge about the exact
truncation criteria; however they should still be comparable for a fixed relative
error tolerance ⌧ .

In table 2, we compare the performance of the batch and streaming Tucker
factorizations. We compress the data tensor with three error tolerances, and ini-
tialize the streaming versions with data from the first 110, 130, and 150 timesteps
of interest. We observe that the target error tolerance is satisfied in all the exper-
iments. Additionally, as we increase the number of initial time steps, the Tucker
ranks from the streaming algorithm approach those computed from the batch
algorithm, while simultaneously lowering the total computational time for the

Computational Experiments (Dense Tensors)
Compression of Homogeneous Charge Compression Ignition (HCCI) simulation data9 provided by S3D DNS code

Original Data
Tucker compression with τ = 10!"

Comparison of batch and streaming algorithm performance in TuckerMPI (1 MPI rank)

<latexit sha1_base64="Qh6adpetCBByRdJXNH5HPtVzUHw=">AAAEXnicbVNNa9wwEPUm23y4TZO0l0Ivokug9COsl9LmEkgJlF5aUsgmgfWyyPLYFrEsV5LTbIR+ZU+59Z+0Y8cN6yQC49F7M3ozmlFU5lyb4fC6t7Tcf7SyurbuP36y8XRza/vZiZaVYjBmMpfqLKIacl7A2HCTw1mpgIooh9Po/LDmTy9AaS6LYzMvYSpoWvCEM2oQmm3pMIKUFxZ+Vg3yxvnhsT1zJKRlqeQlIbg9dKHhAvQsCCNhPzv8x9LoFoxbMG73Nn4buBZrbD+EIl5QmG0NhrvDZpH7RtAaA69dR7Ptpd8oyCoBhWE51dpGWCIo5++ElYaSsnOawgTNAmE9tc29OLKDSEwSqfArDGlQP9RgbsJlWedjMx4DKaQB7RZIA6LMqQFbM6TE890EAV5M/VrTZCDAxpDQKjcY1w0q6AVPm2r1XEQy14ibuR9m2AGFwVVpyzipDxUyhv2xhu+ygEX5JlfUVoLmxMClcTZK953vLxRsqdD1+ViooCbTd7kafIibVCbZm1pelBWmym7uKalQR5J6RkjMFTCTz9GgTHHDGWEZVZQZzL6rkqcSHTLBmesQhp9fvWdxB5w0mTA1tVAxmqMu+YK9CVu4Ex+JWzoSHUYbQdVcxXXz8WrjOtoPC/jFpBAUBy08dpPRdDK19QwOgv/H28HIOdf1/HbfU4mHHEXr2HXCDG4bpvkVVo2NIpgeviiSQ2L2h0K8WwQVT7MGxU7iMwjuDv1942S0G3zc/fBjNDjYax/EmvfSe+W99gLvk3fgffWOvLHHvGvvb2+tt778p7/S3+hv3rgu9dqY515n9V/8A0yPfMs=</latexit>

X ⇡ C⇥1 A1 · · ·⇥d Ad ⇥d+1 Ad+1

Updated factor matrix Updated partial core

<latexit sha1_base64="aQSYJnYs7nfdgOfkluXBQdwmBAo=">AAAFNXicdVNNb9NAEHVKgGK+WjhyWREVFQRVHCHoJVKrCgQHUJGatigO0Xo9cVb12tbuujS19j9x44cgIXFAcEBc+QvMOm6Im7KS5dk38+bN7swGWcyVbre/NZYuNS9fubp8zb1+4+at2yurd/ZVmksGPZbGqTwMqIKYJ9DTXMdwmEmgIojhIDjasf6DY5CKp8menmQwEDRK+IgzqhEarjZe+wFEPCkiqscgHxnX1zwOofADURwaMyzWvYeGdF1CqsBAUC35iSEIWdCGVVEPyu37amspkIQzgt3TLJPpCZnT2EYNbx7YsaLe46ksWdSdyW5b4lSyd6HYf3g7//JP2buG+H7pPrfOkn/Ys/8XiyLl7uzmhiut9ka7XGTR8Cqj5VRrd7i69MUPU5YLSDSLqVJFgJ0Dadw1P1eQUXZEI+ijmSCsBkXZbkPWEAnJKJX4JZqUqOsr0FN6mtnWFmMeAklSDcrMOTWILKYaCushGeY3fQR4MnCtJp5EQBHCiOaxRl6dlNBjHpWDoyYiSGOFuJ64/hgHSyI5z4osHNmkIg2h21PwNk1gXr6sFbWloDHRcKJNEURd47pzBy6oUDY/HhTveazO+yx4ka+f69HmoOBJlmOpbHpPoxx1UmJHn4RcAtPxBA3KJNecETamkjKN1ddV4ijFgLHgzNQcmh+dPmFhDeyXlTA5KCBnNEZd8hJ741dwjR+ImTsQNY/SgsqJDG3z8WpDy3b9BD6yVAiKY+bvmX5n0B+Uj6TlnaUvWh1jTD3yzWKkFBcFiiqwHoQVzBqm+CmeGhtFsDx8TiSGke62hXg8D0oejUsUO4nPwDs/9IvGfmfDe7bx9F2ntbVZPYhl555z31l3POe5s+W8cnadnsManxpfGz8aP5ufm9+bv5q/p6FLjYpz16mt5p+/tJjBXg==</latexit>

X̃(1) =
⇥
X(1) Y(1)

⇤
⇡ Ã1C̃1,(1) =

⇥
A1 U

⇤ C1,(1) P
UTE

�
<latexit sha1_base64="3+fgjt76KSexM5NlBqdnDiOcFSs=">AAAEtXicbVNdb9MwFE1HgRG+NnjkxaKaNNA2NRVik6ZJQxOIF9AQbTfUZMVxblJrcRxsZ6yL/Ad55Yl/w03aVc02S4muzjn32w7zlGvT7f5rrdxr33/wcPWR+/jJ02fP19ZfDLUsFIMBk6lUpyHVkPIMBoabFE5zBVSEKZyE50cVf3IBSnOZ9c00h0DQJOMxZ9QgNF7744eQ8KxMqJmAemtdPxTlqR2Xm94bS4hP81zJS1KhH+zYq40jpL2tSrBF/H1/vwaPrQ+/Cn6xkJ71K+vHPNSS8uOy8prfvnabxWokHtjq/73+D+1Zn/hc4GxAuz5k0aL08Vqnu9OtD7lteHOj48zP8Xh95a8fSVYIyAxLqdZliJMDZd0Nv9CQU3ZOExihmSGsg7IetyUbiEQklgq/zJAadX0NZuYu82q05YRHQDJpQNsl0gCWTg2UFUNyjG9HCPAscKuc2ImAMoKYFqmpltFwyugFT+rF6akIZaoRN1PXn+BiFToXeZlHcRVUyAgOBhq+ygyW09e1Ym4laEoMXBpbhsmBdd2lhksqdBUfGxU4Wn2Tq8C7uFFh4r2g5FleYKlsNqe4wDySVFePRFwBM+kUDcoUN5wRNqGKMoPVN7OkiUTBRHBmG4Th51fbLGqAo7oSpoISCkZTzEs+4W78OdzwD8WCDkWD0UZQNVVRtXwcbVR5u34Gv5kUguI18/t21AtGQVldw453Hb7s9Ky1TeWX20ol7hKKubApwgoWC9P8CrvGRREsDx8qSSE2B10htpZBxZNJjeIm8Rl4Ny/9bWPY2/He77z71usc7s0fxKrzynntbDqes+scOp+dY2fgsFa3NWyNWz/bu+2gHbXjmXSlNfd56TROW/4Hx82Z5A==</latexit>

X(1) ⇡ A1C1,(1), P ⌘ AT
1 Y(1), E ⌘ Y(1) � A1P ⇡ USV T =)

<latexit sha1_base64="tKWr5XCN+K83aU7b1DgPOZe6cLA=">AAAERnicbVPPb9MwFPbWASP82uDIJaKahBAbbYVgl0mTEBMX0JDabSgJleO8plbtJLOdQef5j+PGnRN/ATcEB8SVl7RMzTZLbZ6+933vpx0XgmvT6XxfWm6tXLt+Y/Wmd+v2nbv31tbvH+i8VAwGLBe5OoqpBsEzGBhuBBwVCqiMBRzGk1eV//AElOZ51jfTAiJJ04yPOKMGoeFaEMaQ8sym1IxBPXFeeBbG0r52m9Vn4Gb/H/szMDwb7oUCjkNDSyT27YcaehbqY2VsgmrIkvNYw7V2Z6tTH/+y0Z0bbTI/+8P15W9hkrNSQmaYoFrbGFsB5byNsNRQUDahKQRoZgjryNb9O38DkcQf5Qp/mfFr1As1mJk8L6pe7Zgn4Ge5Ae0WnAZkIagBW3n8AuO7AAGeRV6VEzuRYBMY0VIY1DVFGT3haT1JPZVxLjTiZuqFY5y0QnFZ2CIZVUFlnsDOQMO7PIPF9HWtmFtJKnwDn42zcbrjPG+hYUulruJjoxJHqy/6KvAqX1Ca0XZkeVaUWCqbzWlUYp7cr+6Cn3AFzIgpGpQpbjjz2ZgqygxW38wi0hwJY8mZazgMn5xusqQBBnUlTEUWSkYF5vX3cDfhHG7oY3nujmXDo42kaqqSavk42qRSe2EGn1guJcVrFvZd0IuCyFZ3s939H962e865JvPtZaaSVxHlnNgkYQXnC9P8FLvGRflYHr4cX8DI7HSkfLoIKp6OaxQ3ic+ge/HSXzYOelvdF1vP3/fau9vzB7FKHpJH5DHpkpdkl7wh+2RAGPlCfpBf5Hfra+tn60/r74y6vDTXPCCNs0L+ASLZeG4=</latexit>

kE � UUTEkF  ⌧kYkF/
p
d

<latexit sha1_base64="ltFlFGXQEzhA/kaGQmDgbHrQsL8=">AAAEDnicbVNLaxRBEO5kfcTxkUSPXhqXgIiG3UU0l0BAEC9KhGwS2RlCT0/NbJN+DN090U0zP8Cb/8Sb6EG8evfkv7FmsoadJA0zFN9Xj6+qutNSCucHg79Ly71r12/cXLkV3b5z997q2vr9fWcqy2HMjTT2MGUOpNAw9sJLOCwtMJVKOEiPXzX8wQlYJ4ze87MSEsUKLXLBmUfoaK0fp1AIHQrmp2Cf1FG8Fz7gH3R2jqHXYHPQHnrZGM6NPpmf3aP15T9xZnilQHsumXMhRUlg62gjrhyUjB+zAiZoaoRdEto+arqBSEZzY/HTnrZoFDvwZ+GmbDSHqciAauPB1QukB1VK5iE0DC0xfz1BQOgkampiJwpCBjmrpMe4bpBmJ6JoJ+JmKjXSIe5nUTzFiVkMrspQZnmTVJkMtscO3hkNi+VbrVjbKiaph0++DmmxXUfRQsOBKdfkx0YVjtZd5BrwKm5S+XwrCUKXFUrlZ3PKK6xjaLNTmgkL3MsZGoxb4QWnfMos4x7Vd6vIwqDDVAledwgvjk+f8awDTlol3CYBKs4k1qWvcTfxHO7Ep+qcTlWHcV4xO7NZs3wcbdZER7GGj9woxfCaxXv1ZJRMkoCRoT/8nz70R3Vddz3fXva06ipHNXfsOqGC84U5cYpd46IoysMXQCXkfnug1NNF0Ipi2qK4SXwGw4uX/rKxP9ocvth8/n7U39maP4gV8pA8Io/JkLwkO+QN2SVjwsln8pV8Jz96X3rfej97v85cl5fmMQ9I5/R+/wPFE2D/</latexit>

Y

<latexit sha1_base64="9h2WZvFxsLQ9LXIK30A0Y5SsJxk=">AAAEDnicbVNLaxRBEO5kfcTxkUSPXhqXgIiG3UU0l0AgIF6UCNkksDOEnp6a2Sb9GLp7optmfoA3/4k30YN49e7Jf2PNZA07SRpmKL6vHl9VdaelFM4PBn+Xlns3bt66vXInunvv/oPVtfWHB85UlsOYG2nsUcocSKFh7IWXcFRaYCqVcJie7Db84SlYJ4ze97MSEsUKLXLBmUfoeK0fp1AIHQrmp2Cf1VG8H3bxDzq7wNBrsDloD71qDOdGn8zP3vH68p84M7xSoD2XzLmQoiSwdbQRVw5Kxk9YARM0NcIuCW0fNd1AJKO5sfhpT1s0ih3483BTNprDVGRAtfHg6gXSgyol8xAahpaYv54gIHQSNTWxEwUhg5xV0mNcN0izU1G0E3EzlRrpEPezKJ7ixCwGV2Uos7xJqkwG22MH742GxfKtVqxtFZPUwydfh7TYrqNooeHAlGvyY6MKR+sucw14HTepfL6VBKHLCqXy8znlFdYxtNkpzYQF7uUMDcat8IJTPmWWcY/qu1VkYdBhqgSvO4QXJ2cveNYBJ60SbpMAFWcS69I3uJt4DnfiU3VBp6rDOK+YndmsWT6ONmuio1jDR26UYnjN4v16MkomScDI0B/+Tx/6o7quu57vrnpadZ2jmjt2nVDBxcKcOMOucVEU5eELoBJyvz1Q6vkiaEUxbVHcJD6D4eVLf9U4GG0OX22+/DDq72zNH8QKeUyekKdkSF6THfKW7JEx4eQz+Uq+kx+9L71vvZ+9X+euy0vzmEekc3q//wF2RWDp</latexit>

C

<latexit sha1_base64="ltFlFGXQEzhA/kaGQmDgbHrQsL8=">AAAEDnicbVNLaxRBEO5kfcTxkUSPXhqXgIiG3UU0l0BAEC9KhGwS2RlCT0/NbJN+DN090U0zP8Cb/8Sb6EG8evfkv7FmsoadJA0zFN9Xj6+qutNSCucHg79Ly71r12/cXLkV3b5z997q2vr9fWcqy2HMjTT2MGUOpNAw9sJLOCwtMJVKOEiPXzX8wQlYJ4ze87MSEsUKLXLBmUfoaK0fp1AIHQrmp2Cf1FG8Fz7gH3R2jqHXYHPQHnrZGM6NPpmf3aP15T9xZnilQHsumXMhRUlg62gjrhyUjB+zAiZoaoRdEto+arqBSEZzY/HTnrZoFDvwZ+GmbDSHqciAauPB1QukB1VK5iE0DC0xfz1BQOgkampiJwpCBjmrpMe4bpBmJ6JoJ+JmKjXSIe5nUTzFiVkMrspQZnmTVJkMtscO3hkNi+VbrVjbKiaph0++DmmxXUfRQsOBKdfkx0YVjtZd5BrwKm5S+XwrCUKXFUrlZ3PKK6xjaLNTmgkL3MsZGoxb4QWnfMos4x7Vd6vIwqDDVAledwgvjk+f8awDTlol3CYBKs4k1qWvcTfxHO7Ep+qcTlWHcV4xO7NZs3wcbdZER7GGj9woxfCaxXv1ZJRMkoCRoT/8nz70R3Vddz3fXva06ipHNXfsOqGC84U5cYpd46IoysMXQCXkfnug1NNF0Ipi2qK4SXwGw4uX/rKxP9ocvth8/n7U39maP4gV8pA8Io/JkLwkO+QN2SVjwsln8pV8Jz96X3rfej97v85cl5fmMQ9I5/R+/wPFE2D/</latexit>

Y

<latexit sha1_base64="vXy07Oo3tmoMBSVaVmEaYW3n57Y=">AAAEgXicbVNda9swFHXabOu8r3Z73ItoKLRbV5IwtkIJFAZjLxsdJG1HlAVZvrFFLdtIctdU6G/sj+1p/2UPu3bcELcVCC7nnPstBXkitOl2/7bW1tsPHj7aeOw/efrs+YvNrZenOisUhxHPkkydB0xDIlIYGWESOM8VMBkkcBZcfCr5s0tQWmTp0MxzmEgWpWImODMITTd/0wAikdqImRjUG+dTI5IQLA2kPXduanfDt709RwbEr5WBZEaJK+cTshAtNZQiVoFz93PoU0jDpXqf0CN6VJMYjcogu7KXwN0uHdofbm8hvyljutnpHnSrQ+4avdroePU5mW6t/aFhxgsJqeEJ09oGOAVQzt+hhYac8QsWwRjNFGE9sdXoHNlBJCSzTOFNDalQn2owC/csL8dkYxECSTMD2q2QBmSeMAO2ZEiO8d0YAZFO/DIndiLBhjBjRWJcOb5Vp5Rdiqhagp7jLBKNuJn7NMYlKXQucpuHszKozEIYjDR8y1JYTV/VirmVZAkxcGWcDaKB8/2Vhi2TuoyPjeIiYn2bK8H7uHFhZocTK9K8wFL5Yk6zAvNkpHxGJBQKuEnmaDCuhBGc8Jgpxg1W38ySRBkKYim4axBGXFy/42EDHFeVcDWxUHCWYF7yGXdDa7jhH8glHcgGo41kaq7Ccvk42rD09mkKv3gmJcNnRodu3J+MJ9Uz7/RuwttO3znXVH69q1TyPqGshU0RVrBcmBbX2DUuimB5+JVIAjMz6Eq5vwoqEcUVipvEb9C7/ejvGqf9g96Hg/ff+53jw/pDbHivvW1v1+t5H71j74t34o087v1rbbfetvbb6+29drfdX0jXWrXPK69x2kf/AQ49hTo=</latexit>

X̃(d+1) =


X(d+1)

yT

�
, y = vec(Y)

<latexit sha1_base64="BQTUmPPtshGXqxTVxTq5jcAFygE=">AAAEPHicbVPLaxQxGE+7Pur4avXoJbgU6qvsLqK9FCqCeFFa7LaFnXXJZL6ZDZ1MhiRTuw35u7z5T3jy4E30IF49+2W7lp22gWE+fr/v/UiqQhjb6XxbWGxduXrt+tKN6Oat23fuLq/c2zOq1hz6XBVKHyTMQCFK6FthCzioNDCZFLCfHL4O/P4RaCNUuWsnFQwly0uRCc4sQqPlnTiBXJQuZ3YM+rGP4kS6Az9ya+mT7iNPY1ZVWh3TAL/yozT84w8il8wHcd9/3KVRDGV65mG03O6sd6aPXhS6M6FNZm97tLL4NU4VryWUlhfMGJdgAaB9tBrXBirGD1kOAxRLhM3QTav2dBWRlGZK41daOkWj2IA9NVdVqNCNRQq0VBaMnyMtyKpgFlxgaIX+/QABUQ6jEBMrkeBSyFhd2NCThlHJjkQ+7Z+ZyEQVBnE7ieIx9lejcV25Ks2CU6lS2OwbeK9KmA8/zRVja8kKauHYepfkmz6K5gp2TJrgHwuV2FpzngvgZdygttnG0ImyqjFVftqnrMY4ioYNoKnQwG0xQYFxLazglI+ZZtxi9s0oRa5QYSwF9w3CisOTZzxtgINpJlwPHdScFRiXvsHZxDO4YZ/IMzqRDcZYyfREp2H42No0WEdxCZ+4kpLhmsW7ftAbDoYurF+7+9+9a/e8903Ndxc1tbxMUc4Um0qYwdnAjDjBqnFQFNPDe6EFZHazI+XTeVCLfDxFcZJ4Bt3zS39R2Outd1+sP9/ptbc2ZgexRB6Qh2SNdMlLskXekm3SJ5x8Jt/JT/Kr9aX1o/W79edUdXFhZnOfNF7r7z+IA3PG</latexit>

X(d+1) ⇡ Ad⌃W T

<latexit sha1_base64="2gpyglCsgYHFNLOPc+TcnG4ALa4=">AAAEF3icbVNLaxRBEO5kfcTxlejRy+ASiBrD7iKaSyAgiBclQjYJ7AxLT0/NbJN+DN090U0zf8Kb/8Sb6EG8iif/jTWz67KTpGGg5vvq8VVVd1IIbl2v93dltXPt+o2ba7eC23fu3ru/vvHgyOrSMBgyLbQ5SagFwRUMHXcCTgoDVCYCjpPT1zV/fAbGcq0O3bSAWNJc8Ywz6hAar29HCeRc+Zy6CZinVRAl0p9UY7+VPus/wV9Q6YIcr3d7O73mhJeN/tzokvk5GG+s/olSzUoJyjFBrfUJagNTBZtRaaGg7JTmMEJTIWxj3zRUhZuIpGGmDX7KhQ0aRBbcLFwXtXg/4SmESjuw1RLpQBaCOvA1ExaYvxohwFUc1DWxEwk+hYyWwtXttoIUPeN5Mxo7lYkWFnE3DaIJjs5gcFn4Is3qpFKnsDe08F4rWC7faMXaRlIROvjkKp/ke1UQLDXsqbR1fmxU4mjtRa4Gr+JGpct2Y89VUaJUNptTVmIdHdbLDVNugDkxRYMywx1nIZtQQ5lD9e0qItfoMJGcVS3C8dPz5yxtgaNGCTOxh5JRgXXDN7ibaA634hO5oBPZYqyT1ExNWi8fR5vW0UGk4CPTUlK8ZtFhNRrEo9jXd7Db/5/edwdVVbU93132NPIqRzl3bDuhgsXCLD/HrnFRIcrDpxAKyNxeT8rtZdDwfNKguEl8Bv2Ll/6ycTTY6b/cefFh0N3fnT+INfKIPCZbpE9ekX3ylhyQIWHkM/lKvpMfnS+db52fnV8z19WVecxD0jqd3/8AzXVkOw==</latexit>

X(d+1)

<latexit sha1_base64="FF2zcmJfRC0wdMox2qRm1POzLJA=">AAAEHXicbVPLahRBFK1kfMT2lejSTeMQEB9hZhDNJhARxI0SIZMEppuhuvpOTzH1aKqqo5Oi/sOdf+JOdCFuXIh/4+3OGKaTFBRczjn3XZWVglvX6/1dWe1cuXrt+tqN6Oat23furm/cO7C6MgyGTAttjjJqQXAFQ8edgKPSAJWZgMNs9rrmD4/BWK7VvpuXkEpaKD7hjDqExuuDJIOCK19QNwXzOESJ4yIHn2TSvwph7PMnfQRB5WeS8Xq3t9VrTnzR6C+MLlmcvfHG6u8k16ySoBwT1FqfYYVgQrSZVBZKyma0gBGaCmGb+qatEG8ikscTbfAqFzdolFhwp+66rFvwU55DrLQDG5ZIB7IU1IGvmbjE+GGEAFdpVOfETiT4HCa0Eg792k6KHvOiGZCdy0wLi7ibR8kUB2jQuSp9mU/qoFLnsDO08F4rWE7f1Iq5jaQidvDJBZ8VOyGKlhr2VNo6PjYqcbT2PFeDl3Gjyk22U89VWWGp7HROkwrz6LhecZxzA8yJORqUGe44i9mUGsocVt/OIgqNgqnkLLQIx2cnz1jeAkdNJcykHipGBeaN3+BukgXc8s/kGZ3JFmOdpGZu8nr5ONq89o4SBR+ZlpLiM0v2w2iQjtLmCXb7/8P77iCE0Fa+u6g08jKhXAjbIqzgbGGWn2DXuKgYy8MPEQuYuJ2elE+XQcOLaYPiJvEb9M8/+ovGwWCr/2Lr+YdBd3d78SHWyAPykDwiffKS7JK3ZI8MCSOfyVfynfzofOl86/zs/DqVrq4sfO6T1un8+Qe+HWd1</latexit>

Ãd+1

Leverage ADAM SGD optimizer in both steps:
• Temporal factors assumed to change significantly over time, so reset ADAM moments each time step
• Non-temporal factors assumed to change slowly, so don’t reset ADAM moments after each time step

<latexit sha1_base64="/Hn7dioL+cqQ5Gu8C2pTP6RzqkU=">AAAE7XicjVNba9RAFM7WVWu8tfroy+BSaL2U3UW0L4VKQXxRKuy2hc12mUzOJkMzmTAzqd0O8xd8E30QX/1BPvlvPMmmZdNWMBA4833nOt+ZME+5Nt3un9bSjfbNW7eX7/h3791/8HBl9dG+loViMGQyleowpBpSnsHQcJPCYa6AijCFg/B4t+QPTkBpLrOBmeUwFjTO+JQzahCarLZaQQgxz2xMTQLqmfPrcyioUfzU+YQEobCHbmLXo+e9DUeCALEKnLmjgR9AFl14k4DmuZKn/8jy1h3VWcrTbp3Trc+5iY1cIA0XoINIGn1uz8nextFgoXaEtf877lKT8+P5xJOVTnezW33kqtGrjY5Xf3uT1aXfWIcVAjLDUqq1DfHGQTl/LSg05JQd0xhGaGYI67GtZHJkDZGITKXCPzOkQv1Ag5mHy7yUxCY8ApJJA9otkAZEnlIDtmRIjvndCAGejf2yJk4iwEYwpUVqKg0XgzJ6wuNKcD0ToUw14mbmBwkuhMLgIrd5NC2TChnB9lDDR5nBYvmqV6ytBE2JgVPjbBhvO99fGNhSocv8OChedKIvcyV4HTcqzHRrbHmWF9gqm9/TtMA6kpQrSyKugJl0hgZlihvOCEuoosxg980qaSzRIRGcuQZh+PHZSxY1wFHVCVNjCwWjKdYl71CboIYb8aG4oEPRYLQRVM1UVIqPVxuV0X6QwWcmhaC4ZsHAjfrj0diW+9jpnae3nb5zrun54aqnEtc5itqx6YQdXAim+RlOjUIRbA9fIklhara7QrxYBBWPkwpFJfEZ9C4v/VVjv7/Ze7356lO/s7NVP4hl74n31Fv3et4bb8d77+15Q4+1ktaX1rfW97Zsf23/aP+cuy616pjHXuNr//oLDQWwtA==</latexit>
X(d+1)

yT

�
⇡


A(d+1)C(d+1(Ad ⌦ · · ·⌦ A1)T

dT (Ad ⌦ · · ·⌦ A1)T

�
<latexit sha1_base64="RjtAV7jBcOYODy8dc1H0vnOfT1o=">AAAEZ3icbVNba9swFHbabOu8S9MOxmAv3kKh3aXEYWx9CXQUxl42OmjaQpwFWT52RC3JSHK3VNOv3NNe97Z/sWMnLXFbgeDwfd+5S3GRM216vT+tldX2nbv31u77Dx4+erze2dg81rJUFIZU5lKdxkRDzgQMDTM5nBYKCI9zOInPDir+5ByUZlIcmVkBY04ywVJGiUFo0vkVxZAxYTNipqBeOX/gR4blCdgo5vajcxObvA7dEnZQYdsI7rjtuQYlLpKGcdBRIo2+tOdkuPP9KIgYx25A+xGI5CrZpNPt7fbqE9w0woXR9RbncLKx8hsz0JKDMDQnWtsYewXl/K2o1FAQekYyGKEpENZjWw/IBVuIJEEqFV5hghr1Iw1m7i6Lahh2yhIIhDSg3RJpAEsnBmzFBAXGdyMEmBj7VU7shINNICVlbtCv6STIOcvqUesZj2WuETczP5riKhQ6l4UtkrQKymUCg6GGr1LAcvq6VsytOMkDAz+Ns3E2cL6/1LAlXFfxsVGOo9XXuQq8jRuVJt0bWyaKEkul8zmlJeaRQfVYgoQpoCafoUGoYobRgE6JItRg9c0seSZRMOWMugZh2NnFW5o0wFFdCVVjCyUlOeYNPuFuogXc8I/5FR3zBqMNJ2qmkmr5ONqk8vYjAT+o5JzgM4uO3Kg/Ho3rZ9sNL8Pbbt8511R+ualU/DYhXwibIqzgamGaXWDXuKgAy8OvFeSQmkGP8zfLoGLZtEZxk/gNwuuP/qZx3N8N3++++9bv7u8tPsSa99x76W17offB2/c+e4fe0KPe39Zaa6O1ufqvvd5+2n42l660Fj5PvMZpv/gPM3x/UA==</latexit>

= Ãd+1C̃(d+1)(Ad ⌦ · · ·⌦ A1)
T =)

<latexit sha1_base64="C+N4eKHx2xfSBcTD0MktqZ+v+nU=">AAAEgXicbVNda9swFHXabOu8r3Z73ItoKLRrF5IwtsIIdBTGXjY6aNpCnAVZvnZEJdtIctdU6G/sj+1p/2UPu3bcLm4rMFyfc8/9lMJccG16vT+tldX2g4eP1h77T54+e/5ifePlic4KxWDEMpGps5BqEDyFkeFGwFmugMpQwGl4fljypxegNM/SYzPPYSJpkvKYM2oQmq7/CkJIeGoTamag3jg/MFxEYINQ2kPnpnY72u3vODIkS8SnkkDc/Tj2a30oqVH80vmELDwWDoswN1GCoOajSgpp9F9Y/V2XMV3v9Lq96pC7Rr82Ol59jqYbK7+DKGOFhNQwQbW2IU4BlPO3gkJDTtk5TWCMZoqwnthqdI5sIRKROFP4pYZUqB9oMAt5lpdjsjMeAUkzA9otkQZkLqgBWzIkx/hujABPJ36ZEzuRYCOIaSGMKwe1LErpBU+qJei5DDOhETdzP5jhkhSKi9zmUVwGlVkEw5GGb1kKy+mrWjG3klQQA5fG2TAZOt9fathSqcv42CjOeaZvcyV4HzcuTLw/sTzNCyyVLeYUF5gnI+U1IhFXwIyYo0GZ4oYzwmZUUWaw+mYWkWToMJOcuQZh+PnVWxY1wHFVCVMTCwWjAvOSz7iboIYb+lDe0KFsMNpIquYqKpePo41KtR+k8JNlUlK8ZsGxGw8m40l1mzv96/C2M3DONT2/3vVU8j5HWTs2nbCCm4VpfoVd46IIloePhgiIzbAn5d4yqHgyq1DcJD6D/u1Lf9c4GXT777vvvg86B/v1g1jzXnub3rbX9z54B94X78gbecz729ps7bb22qvtnXavPVi4rrRqzSuvcdof/wFmjIac</latexit>

C̃(d+1) = ÃT
d+1


Ad+1C(d+1)

dT

�

Prior partial core

<latexit sha1_base64="kmoW1xe5bRq5fa/SEp7e22enYGI=">AAAEMXicbVNba9RAFJ52vdR4a/XRl8GlIGLL7iLal0JBKL5UKnTbwmZZJpOT7LAzmTgzqW6n+Ue++U/0qeiD+Oqf8CSNZdN2IOTwfec715kol8K6Xu98ablz6/aduyv3gvsPHj56vLr25NDqwnAYci21OY6YBSkyGDrhJBznBpiKJBxFs3cVf3QCxgqdHbh5DmPF0kwkgjOH0GR1N4wgFZlPmZuCeVkG4Vl44I9LukHxv1eGZ5NdGkr4REPHioaswCCELL6UTVa7vc1efeh1o98YXdKc/cna8o8w1rxQkDkumbU+wqrBlMF6WFjIGZ+xFEZoZgjbsa9bLek6IjFNtMEvc7RGg9CCu5DrvGrLT0UMNNMObLlAOlC5ZA58xdAc45cjBEQ2Dqqc2IkCH0PCCulQ1xZl7ESk9dDsXEVaWsTdPAinOFSD4iL3eZxUQZWOYXto4YPOYDF9XSvmNopJ6uCLK32UbpdBsNCwZ8pW8bFRhaO1V7kKvIkbFS7ZGnuR5QWWyi/mlBSYR9Nq7TQWBriTczQYN8IJTvmUGcYdVt/OIlONDlMleNkinJidbvC4BY7qSrgZeyg4k5iX7uJuwgZu6SN1SUeqxVinmJmbuFo+jjau1EGYwWeulWJ4zcKDcjQYj8Yelb7b/x/edwdlWbY99657GnWTo2oc205YweXCrDjFrnFRFMvDR0IlJG67p9SrRdCIdFqjuEl8Bv2rl/66cTjY7L/ZfP1x0N3Zah7ECnlGnpMXpE/ekh3ynuyTIeHkK/lOfpJfnW+d887vzp8L1+WlRvOUtE7n7z//k27s</latexit>

kX�MkF  ⌧kXkF

<latexit sha1_base64="mWwdafZaCHt9UqIIkUuYVMndKrQ=">AAAFLXicbVTLbhMxFJ2UAGV4tbBkYxFRlUerJELQTaRWlRCboiKlbdQ4RB6PJ7E69oxsT2lq+X/Y8SdsEAIkxJbf4M4jkGlrKfL1Ofdx7HsnQRpzbdrtn42la83rN24u3/Jv37l77/7K6oNDnWSKsgOaxIkaBESzmEt2YLiJ2SBVjIggZkfByW7OH50ypXki+2aWspEgE8kjTokBaLza2MEBm3BpScwn8pnzcd8OHFrDJE1VcobguOdQL993HTZcMD3u4EDYHQd7ee5W5y4OE6MrMKzAEGHsYx5F+XngxnZdPl3MX3rJfN+t2PV5KE6KXGXayi4pK5933EVo4z90RUTHPf3QL8T07bFbK+80mN9Jlm4oV1qIOp5L7VUaF/X7mMlw/mTjlVZ7s10sdNnoVEbLq9b+eHXpKwikmWDS0JhobQPoGFPOf4IzzVJCT8iEDcGUAOuRLdrs0BNAQhQlCn7SoAL1sWamDE/SvKV2ykOGZGKYdgukYSKNiWE2Z1AK+d0QAC5Hfl7TTJlgNmQRyWIDcfUgSU75pBgYPRNBEmvAzczHUxgoBcFZatMwypOKJGS9A83eJZItli+0Qm0lSIwMOzPOBpOe8/2FC1sidJ4fLiqImeqLXA5exQ0zE22NLJdpBlJp+U5RBnUSlI88Crli1MQzMAhV3HCK6JQoQg2or1eJJwk4TAWnrkYYfnK+QcMaOCyUUDWyLKMkhrroDfQGV3AtPhD/6EDUGG0EUTMV5s2Hpw3zaB9L9pEmQhCYMtx3w+5oOLL5ALY68/S21XXO1T33LnsqcZWjqBzrTqDgX8M0P4dbQ6MQyIP/BxSzyPTaQrxYBBWfTAsUOgmfQefi0F82DrubnVebL993W9tb1Qex7D3yHnvrXsd77W17b71978CjjU+NL43vjR/Nz81vzV/N36XrUqOKeejVVvPPXwKPzKM=</latexit>

X ⇡ M = C⇥1 A1 ⇥2 A2 · · ·⇥d Ad

() X(n) ⇡ AnC(n)(Ad ⌦ · · ·⌦ An+1 ⌦ An�1 ⌦ · · ·⌦ A1)
T

Z = X⇥n A () Z(n) = AX(n)

SAND2023-12776C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

https://arxiv.org/abs/2110.14514
https://doi.org/10.1137/18M1203626
https://doi.org/10.1137/19M1266265
https://gitlab.com/tensors/genten
https://github.com/kokkos/kokkos
https://gitlab.com/tensors/TuckerMPI
https://doi.org/10.1007/3-540-47969-4_47
https://doi.org/10.1007/978-3-030-44718-2_6

