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Tensors, or multidimensional arrays of data, are ubiquitous in data science In many cases, tensor data has a streaming character where data is Common tensor decomposition approaches include Canonical Polyadic (CP)
applications. Analysis of tensor data is often facilitated through tensor gradually observed over time. In some cases the data stream may never and Tucker. In this work, we consider streaming CP decompositions for
decompositions, akin to matrix factorizations for two-dimensional data, and end (i.e., infinite streaming) or maybe too large to fit in memory. Thus sparse tensors and streaming Tucker decompositions for dense tensors.
are higher dimensional analogs of techniques such as SVD, PCA, and POD. approaches that incrementally update tensor decompositions are needed.

Streaming Tensor Setup Challenges & Approach

e Data stream potentially unbounded, so must compute decompositions without revisiting sufficiently old data
e Compute a batch decomposition on initial data
o™  Update factorization after each new tensor arrives
X e RN X N2x N xT * Balance reconstruction of old data with new

 Updates are processed in discrete batches indexed by timet=1,2, ...

 Ateachtimet, ad-way tensor is observed

* All tensor dimensions are fixed throughout time

* By stacking observed tensors along a new time mode, a d + 1-way tensor is
created with an ever growing time mode x® X g RN1xN2xNs

Streaming Tucker Decompositions®

Tucker decompositions capture high-variance subspaces and are useful for surrogate modeling and data
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CP decompositions discover important relationships in data, and are useful for unsupervised tasks such as pattern = Xy~ AC)(Ag @ QA1 D A1 D @ A)'
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identification and anomaly detection. CP Model s %=X xp A = Zpy = AX(p
Data - N ~ (Ryx RyXRy) / \
/A?)(:7 1) / A3(:7 2) / A3(:, R) . | . | n-mode product Matricization along mode n
X(Il,lz,...,ld)%M(Il,lg,...,ld) . . .
Algorithm 1 Sequentially truncated higher order SVD (ST-HOSVD)
Ay(:, 1) Ay(:,2) Ax(:, R) B R A DAL A Tucker decompositions often computed through Require: Data tensor X € RN < XNa_tolerance 1 > 0
™ T =2 _ A )Ax(2,)) - Adalia ) sequence of SVD/eigenvector calculations: ~ Ensure: Core € € R 4 bases A, € RNk for 1 <k < d
' 1: Compute truncation: & < 7||X||r/vd
Ai(:,1) Aq(:,2) Ai(:, R) Challenges for streaming Tucker decompositions: :f;: }nitizlizelcfreé S X
. . Ior = 0] (0]
Generalized CP (GCP)? allows for flexible use of data fit functions in defining optimization problem for a * Update factor matrices and core tensor 4:  Compute Gram matrix: G ¢ C)C(y,
broader range of statistical models: - without revisiting prior data 5:  Eigendecompose: A, A « eig(G) ;
Example Loss Functions  Allow Tucker ranks to evolve to ensure g: ?etermtmega’nk: i'z B méng{g Aot A <0
: runcate: L < O R a1y 2
min  F(X, M) = Z £(2C;, M) Normal (x,m € R) f(z,m) = (x —m)’ truncation satisfies prescribed error tolerance: g dUigdate core: € = € xy Ay
_ I I :
7 i 7 Poisson (x € N,m > 0) f(z,m)=m — xlogm ||x_M||F < 7_||x||F e
st. M= [A A Al Bernoulli (x € {0,1},m > 0) f(z,m) =log(m+ 1) — zlogm Outline of streaming ST-HOSVD algorithm implemented in TuckerMPI’:
Y B-divergence (x > 0,m > 0,8 =2)  f(x,m) = x/\/m + /m * Assume decomposition X ~ € x1 A1 -+ Xg Ag X411 Ag+1 has been computed and new slice Y is observed

. . L L . .  Sequentially update factor matrices for non-streaming modes, e.g., for mode-1:
Minimization problem solved via derivative-based optimization. Cost of gradient computation grows 9 yup 8 &

= — ~ v A C P
exponentially with tensor dimensions, so solve using stochastic gradient descent (SGD)3: X(%Cl,(l)a P=A{Yy, E=Yy-AP=USV' = X, =[Xy Yuyl~AC o =|[A U [ L) UTE]
. o Prior partial core
Streaming GCP problem solved after receiving each streamed tensor Y * Can show updated core obtained by row/column augmentation of prior (full) core | p4steq fagmamx Updated partial core
GCP loss folr tensor Y History reg“'firiza“"” term (so no need to save prior cores)
1 _ e Choose Usothat ||[E— UUTE|r < 7||Yllr/Vd
Rin 3 A9 M) 5 3 Y - | Ir < 7I¥le/
' 2 heH: — ~ X
ot MO — [A, ;\d Apor(t.)] Temporal history window * For streaming mode, compute updated SVD of X 411) = [ (;’;51)] .y = vec(Y), given SVD Xd+1) = AgX w'
(h) _ . «<— CP Model usi t fact d historical time step h . : : : PR P~
o Model ot sten 3\_/[ - [[{\17 L {\d’ Agii(h, )] odel using current factors and historical time step This can be done, without accessing X 4.1y, using incremental-SVD? to obtainA,, ;
M( ) — [[A17 .. Ay, Ad-l—l(ha )]] <«<—— CP Model using prior factors and historical time step h o Updated core:
: L : d+1 . T . .
Problem solved using two-step optimization process (each step using SGD): [X(d;rl)] ~ [A( )TC(d+1(Ad X ®TA1) ] =Ag1Cai(Ag® - ® Al)T — é(d+1) _ A’Ll [Ad+1 C}(dﬂ)]
e Solve for new row of temporal factor holding non-temporal factors fixed (old rows are not updated) y d'(Ag @@ Ar) d
e Solve for updated non-temporal factors holding temporal factor fixed
Leverage ADAM SGD optimizer in both steps: Computational Experiments (Dense Tensors)
* Temporal factors assumed to change significantly over time, so reset ADAM moments each time step Compression of Homogeneous Charge Compression Ignition (HCCI) simulation data® provided by S3D DNS code
* Non-temporal factors assumed to change slowly, so don’t reset ADAM moments after each time step | Comparison of batch and streaming algorithm performance in TuckerMPI (1 MP! rank)
Original Data : : :
Approach implemented in GenTen#, for parallel GCP decompositions targeting HPC architectures 900.0 _1100. 1300. 1500. _1700. Tucker compression with T = 1072 Tolerance (7)  Algorithm Rank Memory Time Relative Brror
. ! . 1071 Batch (35,27,8,7) 33.68 2091 9.6 x 1077
e Shared memory parallelism (CPU, GPU) via Kokkos> Streaming (110)  (46,37,9,7) 14.06 2059 9.4 x 1072
e Distributed memory parallelism via MPI Streaming (130) (44, 36,9,8) 16.57 - 19.55 9.6 x 10:?
Streaming (150) (43, 34,9,9) 19.09 21.23 1.0 x 10

o o 102 Batch (122,110,21,29)  38.70 22.65 9.6 x 1077

comPUtatlonal Experlments (Sparse TensorS) Streaming (110) (139, 126,24,28)  16.34 29.24 9.6 x 1077

Synthetic (Normal) NYC Taxicab (Poisson) Chicago Crime (Bernoulli) Streaming (130) (137,124, 23,27) 19.24 28.93 9.9 x 1077

Local Normalized Loss Local Normalized Poisson Loss . Local Normalized Bin%ry Loss Streaming (150) (134, 121, 23, 28) 22.09 28.15 9.6 X 10_3

g s ] ] e e B g 1073 Batch  (231,213,29,67) 4642 2443 9.5x 10"

g * Onine 5aD [ 2 Streaming (110) (249, 230,30,96)  19.64 65.65 9.8 x 107*

© OnlineCP o] Lol 4
E , , , L , x| +_static CP-ALS 8 8 Streaming (130) (248,227,30,77)  23.15 56.51 9.9 x 10~

= S s § g 100 200 300 400 500 600 ' o e e Streaming (150) (245, 225,30,64)  26.59 50.90 9.8 x 10*
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3 Static GCP Days Day . E. Phipps, N. Johnson, T. Kolda, “Streaming Generalized Canonical Polyadic Tensor Decompositions,” accepted to PASC’23, https://arxiv.org/abs/2110.14514.
g : AT : OnlineCP Global Normalized Poisson Loss . Global Normalized Binary Loss D. Hong, T. Kolda, J.Duersch, “Generalized Canonical Polyadic Tensor Decomposition,” SIREV, 2020, https://doi.org/10.1137/18M1203626.
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0.02 H_*_Static CP-APR GenTen software: https://gitlab.com/tensors/genten

Kokkos software: https://github.com/kokkos/kokkos
S. De, H. Kolla, Z. Li, E. Phipps “Efficient Computation of Tucker Decomposition for Streaming Scientific Data Compression,” submitted to ISC’23.

TuckerMPI software: https://gitlab.com/tensors/TuckerMPI
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