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How informative data is, depends on the |

modeling goals
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Optimal Workflow for how experimental data is utilized Eﬂﬁ
experimental

FESIER(CED) #
Experimentation

Classical approaches focus on model calibration

1

Reduce uncertainties in the inverse problem solution

What data is
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Optimal Workflow for how experimental data is utilized Eﬂi
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Experimentation Calibration

Goal-oriented approaches focus on reducing
uncertainty in model predictions directly

1

Shown to be very beneficial

What data is
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Experimentation Calibration

Consider how those uncertainties propagate to
optimization

1

. Reduce uncertainties related to an optimal control
What data is objective




Show how we can derive OED criteria to relate the

|
s | Goals for this presentation m
informativeness of data to optimal control goals ‘

1

Do this using a simple problem formulation
looking at contaminant diffusion across a 2D |
domain
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How can determine optimal experimental designs when the

modeling objective is optimal control?

Standard OED problem

input parameters

model
overning PDEs
g g

inverse problem]

posterior

Control problem

[ experimental design
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Minimize
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uncertainty
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optimal control problem J
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control objective at
optimal control
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We model contaminant spread using steady-state diffusion
equations

10

— kAu (x, y) = z(x, y) in ()
u(_;u[;Jl y) = () on FD
— }c?u(x, y) n = p(x) on 'y




We model contaminant spread using steady-state diffusion
equations
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— hﬁu(x, y) = :r:(.r, 1) n {)
u(x, y) = on['p
— kVu(x,y) -n=p(x) only

Contaminant concentration




We model contaminant spread using steady-state diffusion
equations
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Control




We model contaminant spread using steady-state diffusion
equations

13

— kAu (x, y) = Z(x, y) in O
u(x, y) =0 on [
— kVu(x,y) -n=p(x) onTly

Uncertain Neuman boundary condition




We model contaminant spread using steady-state diffusion
equations

14

— kAu (x, y) = z(x, y) in ()
u(_;u[;Jl y) = () on FD
— }c?u(x, y) n = p(x) on 'y

Discretized PDE
u=Az+ Bp +c

Parameter-to-observable map

}’=0“‘|'7I




5 \ The boundary flux is the uncertain

pE) = ) Pigi)
=1

model parameter
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Neumann Boundary Condition
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16 \ The boundary flux is the uncertain model parameter

pE) = ) Pigi)
=1

estimate coefficients p = {p;} from data y "

Neumann Boundary Condition
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17 \ The boundary flux is the uncertain model parameter

pE) = ) Pigi)
=1

estimate coefficients p = {p;} from data y

n(ply) «<n(y|

Neumann Boundary Condition
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18 \ The boundary flux is the uncertain model parameter

pE) = ) Pigi)
=1

estimate coefficients p = {p;} from data y

p|y) xn(y |p)

Neumann Boundary Condition
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19 \ The boundary flux is the uncertain model parameter

pE) = ) Pigi)
=1

estimate coefficients p = {p;} from data y

(v (v [P) mpi(P)

Neumann Boundary Condition
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20 | The boundary flux is the uncertain model parameter

pE) = ) Pigi)
=1

estimate coefficients p = {p;} from data y "

p|y) xn(y [p)

Neumann Boundary Condition
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g_{xl,...,xk}
Wq, ..., Wy

|
21 ‘ We consider binary optimal experimental designs m
= x; €0,1] U [0, 1] - Fixed
spatial design candidates
= w; € {0, 1} - Binary weights
|

= >»w; = N - Budget



> | Bayesian OED for inverse problems - minimize uncertainty in m
boundary coefficients

U(¢) = trace (F pust(f))

Gaussian prior + linear parameter-to-observable map — Gaussian posterior
Mpost ™ W(mpusu rpust)
Analytic expression for the posterior covariance — Analytically evaluate objective function

o ) _any—1
rpust - (P grxmilsc (E)f 2 T rprl)



concentration across the domain

Z
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23 | The optimal control problem is to maintain a target @!
N . 1 —\ 2 y 2
z* = argmin — (u(z) — u)“dxdy + =|lz||5
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24 | The optimal control problem is to maintain a target
concentration across the domain

1 _\ 2 Yz
z* = argmin — (u(z) — u)“dxdy + =|lz||5
z  2Joa)x[01] 2

Injection Well Optimal Control
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25 | The optimal control problem is to maintain a target
concentration across the domain

1 _\ 2 Yz
z* = argmin — (u(z) — u)“dxdy + =|lz||5
z  2Joa)x[01] 2

Injection Well Optimal Control
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26 | Injection/reuptake wells control the contaminant concentration

® Injection/reuptake wells B Target concentration

1 Diffusion solution with no control Qiﬂusion solution with optimal control
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»7 | Bayesian control-oriented OED - minimize uncertainty in control @!

objective

1 1
6@ ®) = 5 | W ®) ~@)?dxdy ~ 5 (Fp +d,QFp + ).



s | Bayesian control-oriented OED - minimize uncertainty in control @!
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Bayesian control-oriented OED - minimize uncertainty in control m
objective

29

1 1
¢ (p) =3 f (u(z*(p)) — W)?dxdy ~ >{Fp+d,Q(Fp +d)), P~ N(mpost I'po:
Q
Analytic expressions for the variance of quadratic functionals of Gaussian random vectors

p(y, &) : VarE(Fp -d, Q(Fp d))]

— N _ ~ -
=27 |(ATpost)”| + (Ampost + B, Fpost (Ampost + b))



50 | Bayesian control-oriented OED - minimize uncertainty in control m

objective

1 1
¢ (p) =3 f (u(z*(p)) — W)?dxdy ~ >{Fp+d,Q(Fp +d)), P~ N(mpost I'po:
Q
Analytic expressions for the variance of quadratic functionals of Gaussian random vectors
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;1 | Bayesian control-oriented OED - minimize uncertainty in control m

objective

1 1
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5> | Bayesian control-oriented OED - minimize uncertainty in control m

objective

1 1
¢ (p) =3 f (u(z*(p)) — W)?dxdy ~ >{Fp+d,Q(Fp +d)), P~ N(mpost I'po:
Q
Analytic expressions for the variance of quadratic functionals of Gaussian random vectors
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;3 | Bayesian control-oriented OED - minimize uncertainty in control m

objective

u(§) =Eyfw(y.¢)] ¥~ TR



Bayesian control-oriented OED - minimize uncertainty in control @!
objective

34

u(§) =Eyfw(y.¢)] ¥~ TR

Analytically evaluate objective function and compare to OED for inverse problems



;5 | Bayesian control-oriented OED - minimize uncertainty in control m

objective

u(§) =Eyfw(y.¢)] ¥~ TR

Analytically evaluate objective function and compare to OED for inverse problems

U(E) — tra{:e(rpust(f))



3 | Compare the optimal designs for OED for inverse problems
versus control-oriented OED with a budget of 2 sensors
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;7 | Compare the optimal designs for OED for inverse problems
versus control-oriented OED with a budget of 2 sensors

Minimize parameter Minimize control objective
uncertainty uncertainty
., first-most optimal design ) I _first—lr:'mst optimal design .
. - ™ ™ - ¢ as - a - - L
" ™ . ™ ™ [ - . . . .
. | a1 . @ C(Candidate
Variance = 3.7e-04 Variance = 1.3e-04 @ Optimal




ss | Conclusions

» Derived a control-oriented OED objective function - reduce ‘
uncertainties in an optimization goal
« Control objective uncertainty that is three times smaller than |

classical OED strategies provide

Scale this to more complicated problems

* Transient |
* Infinite dimensional parameters
* Nonlinear parameter-to-observable maps




