



Sandia  
National  
Laboratories

# A Bayesian Framework for Coupling Optimal Experimental Design and Optimal Control

Rebekah White<sup>†</sup>, Bart van Bloemen Waanders<sup>†</sup>,  
Arvind Saibaba<sup>‡</sup>, and Alen Alexanderian<sup>‡</sup>

---

<sup>†</sup> Sandia National Laboratories, Machine Learning org. 1441

<sup>‡</sup> North Carolina State University



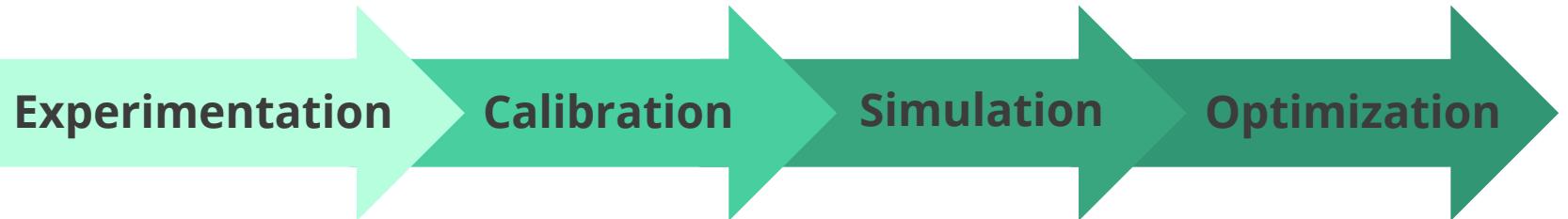
# Optimal experimental design (OED)

What data is informative

# Optimal experimental design (OED)

What data is informative

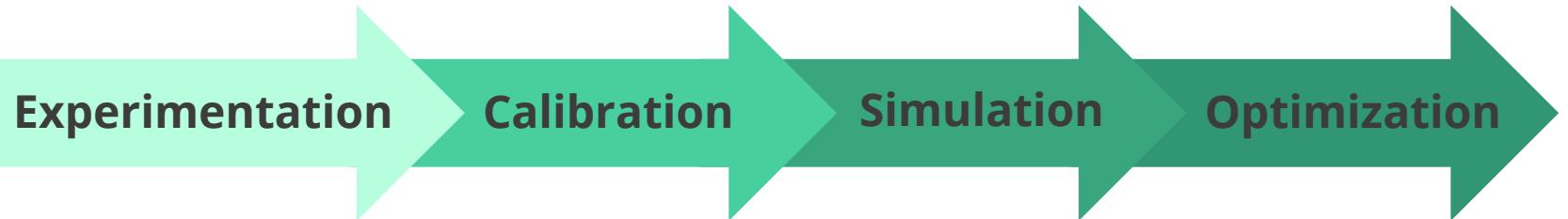
Workflow for how experimental data is utilized



# Optimal experimental design (OED)

What data is informative

Workflow for how experimental data is utilized



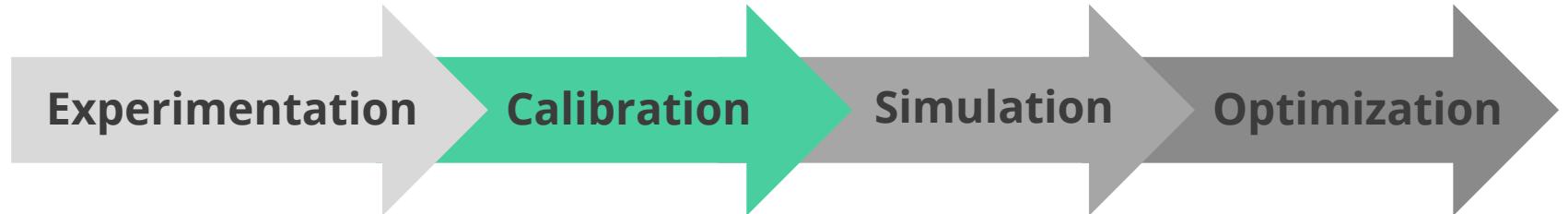
How informative data is, depends on the modeling goals



# Optimal experimental design (OED)

What data is informative

Workflow for how experimental data is utilized



Classical approaches focus on model calibration



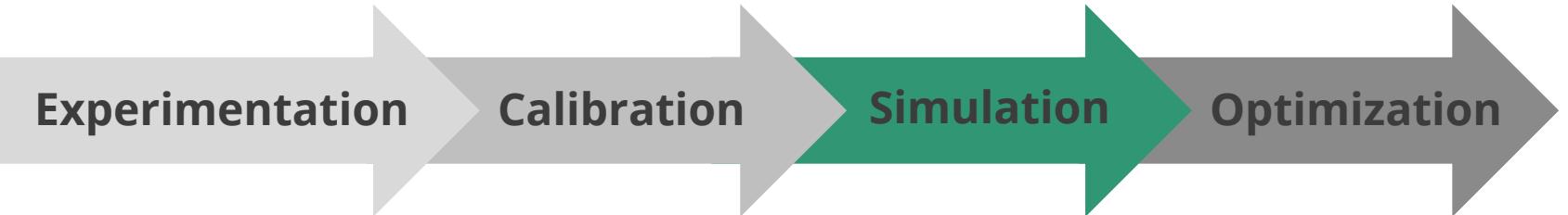
Reduce uncertainties in the inverse problem solution



# Optimal experimental design (OED)

What data is informative

Workflow for how experimental data is utilized



Goal-oriented approaches focus on reducing uncertainty in model predictions directly



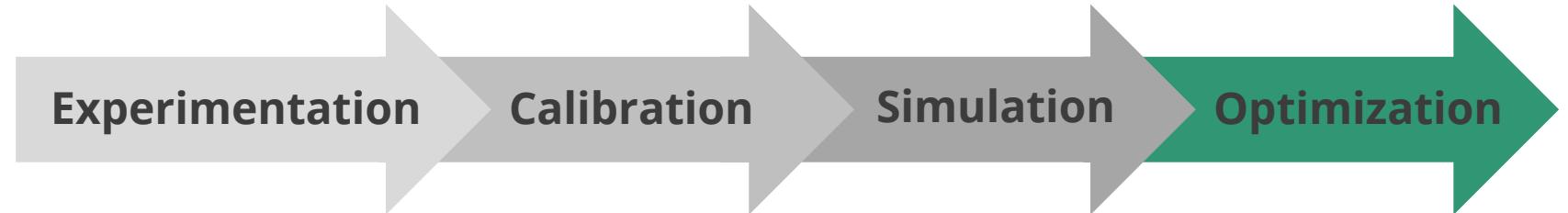
Shown to be very beneficial



# Optimal experimental design (OED)

What data is informative

Workflow for how experimental data is utilized



Consider how those uncertainties propagate to optimization



Reduce uncertainties related to an optimal control objective



# Goals for this presentation

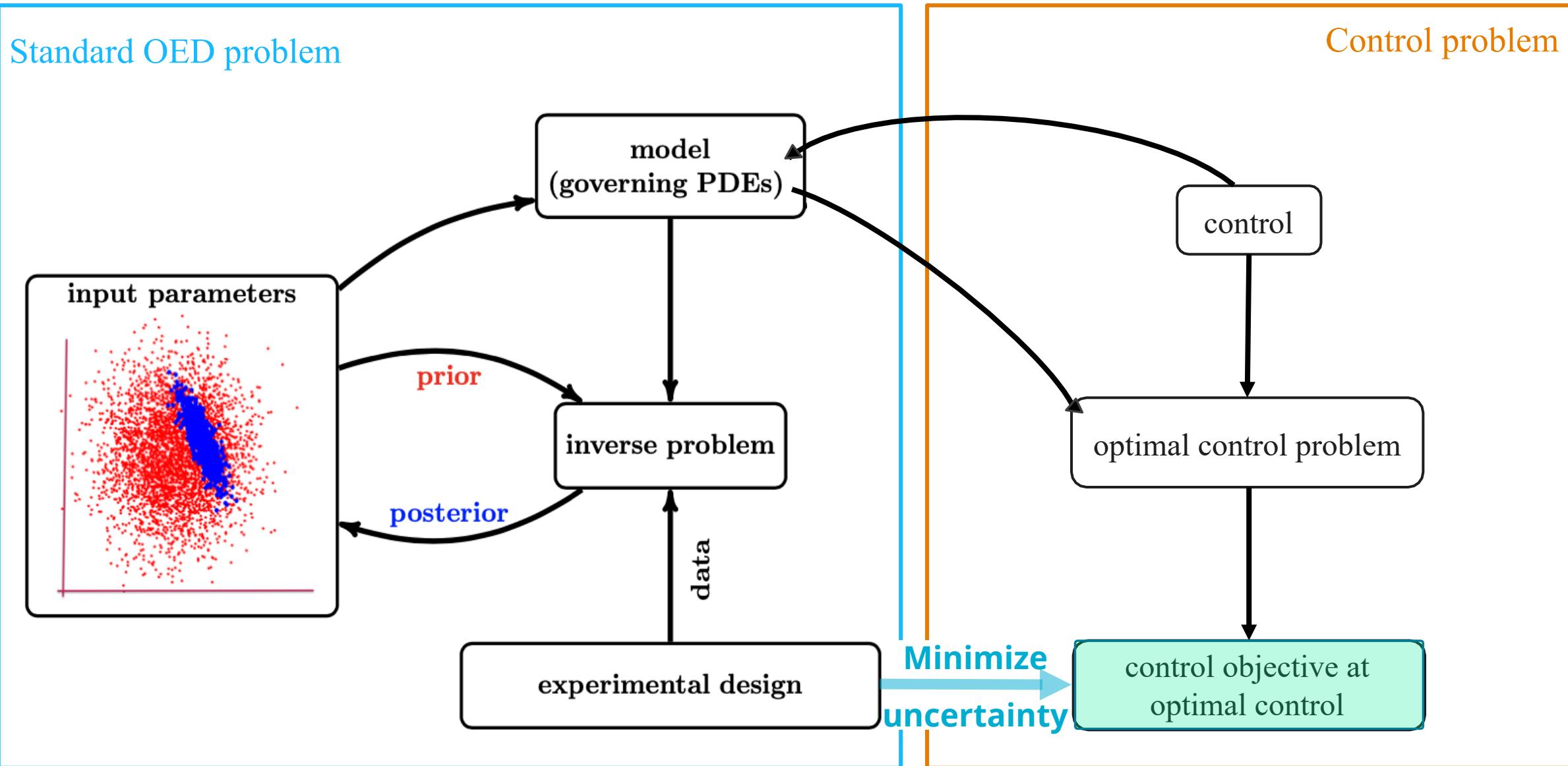


Show how we can derive OED criteria to relate the informativeness of data to optimal control goals



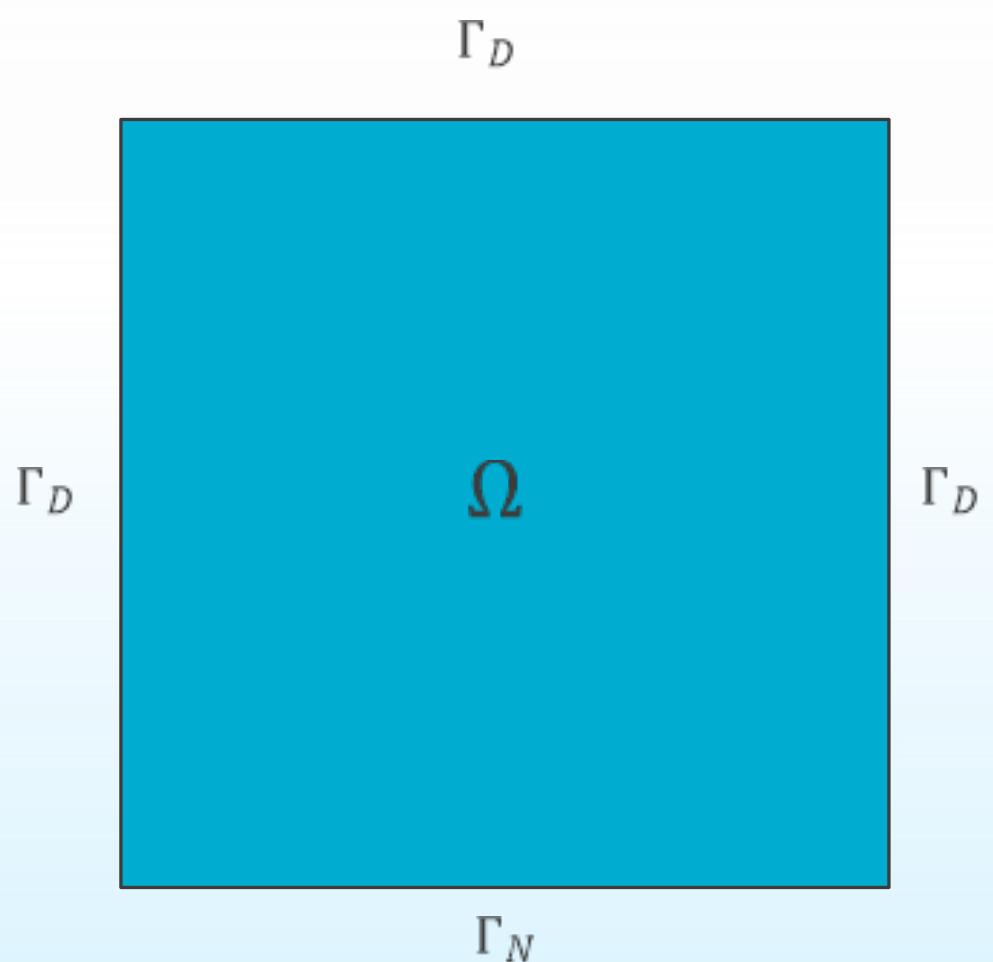
Do this using a simple problem formulation  
looking at contaminant diffusion across a 2D  
domain

# How can determine optimal experimental designs when the modeling objective is **optimal control**?



## We model contaminant spread using steady-state diffusion equations

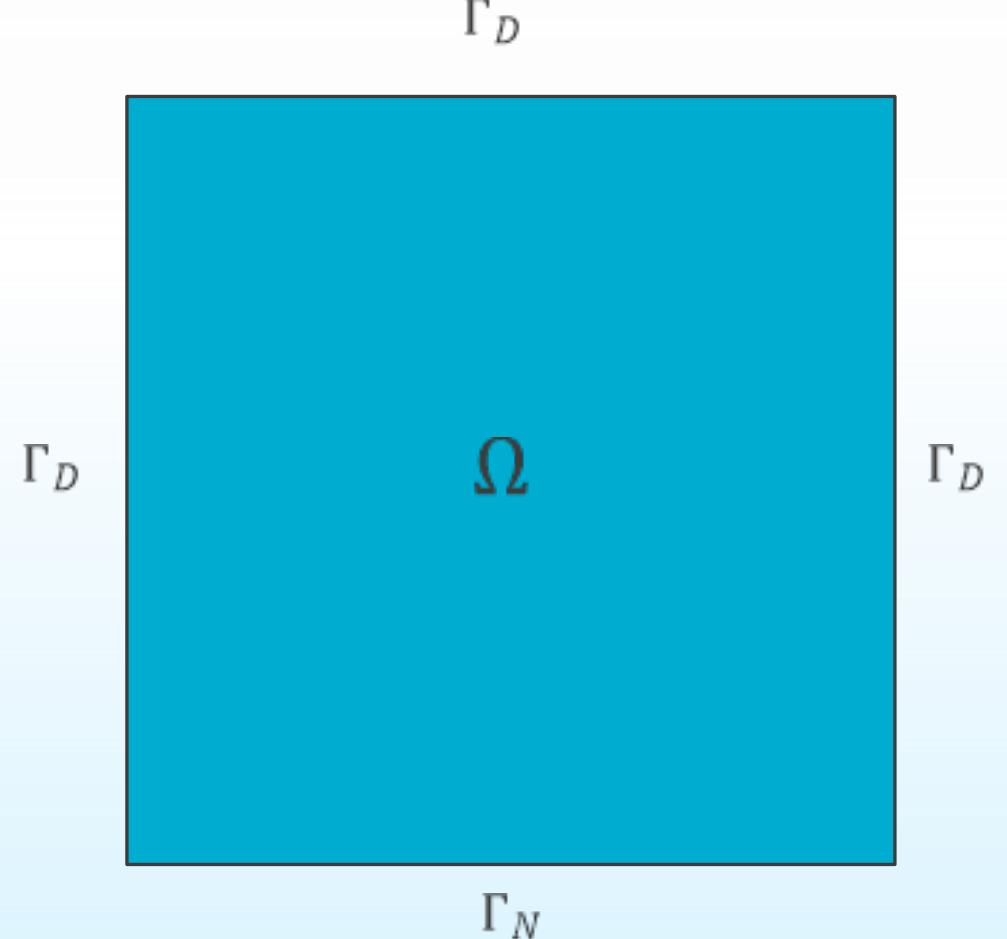
$$\begin{aligned} -\kappa\Delta u(x, y) &= z(x, y) && \text{in } \Omega \\ u(x, y) &= 0 && \text{on } \Gamma_D \\ -\kappa\nabla u(x, y) \cdot \mathbf{n} &= p(x) && \text{on } \Gamma_N \end{aligned}$$



## We model contaminant spread using steady-state diffusion equations

$$\begin{aligned} -\kappa \Delta u(x, y) &= z(x, y) && \text{in } \Omega \\ u(x, y) &= 0 && \text{on } \Gamma_D \\ -\kappa \nabla u(x, y) \cdot n &= p(x) && \text{on } \Gamma_N \end{aligned}$$

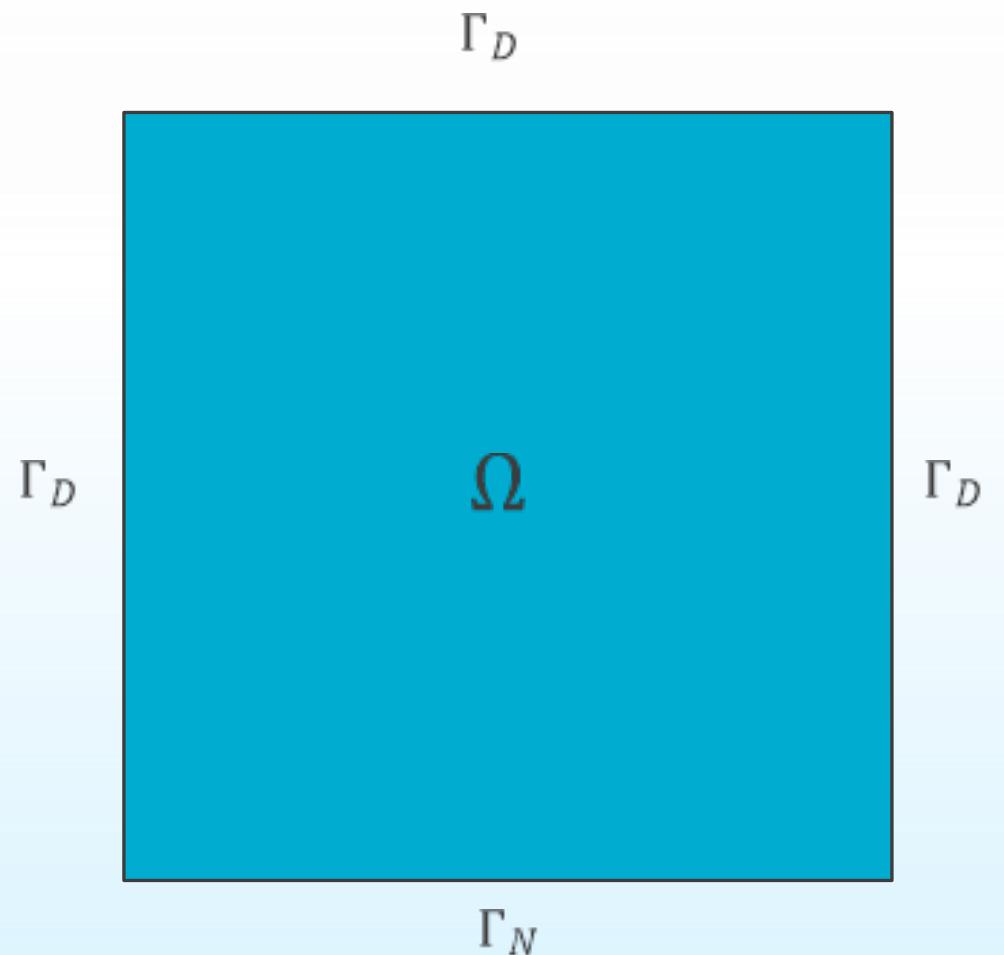
Contaminant concentration



## We model contaminant spread using steady-state diffusion equations

$$\begin{aligned} -\kappa\Delta u(x, y) &= z(x, y) && \text{in } \Omega \\ u(x, y) &= 0 && \text{on } \Gamma_D \\ -\kappa\nabla u(x, y) \cdot \mathbf{n} &= p(x) && \text{on } \Gamma_N \end{aligned}$$

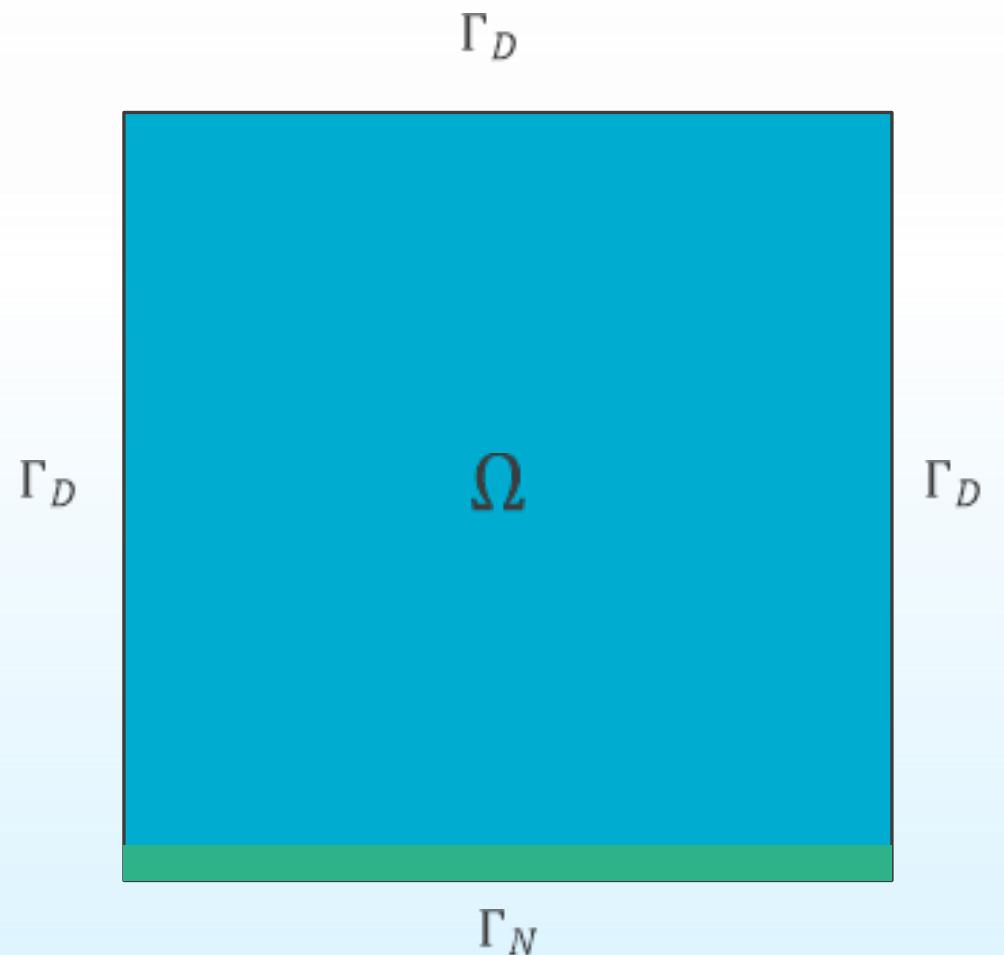
Control



## We model contaminant spread using steady-state diffusion equations

$$\begin{aligned}
 -\kappa \Delta u(x, y) &= z(x, y) && \text{in } \Omega \\
 u(x, y) &= 0 && \text{on } \Gamma_D \\
 -\kappa \nabla u(x, y) \cdot \mathbf{n} &= p(x) && \text{on } \Gamma_N
 \end{aligned}$$

Uncertain Neuman boundary condition



# We model contaminant spread using steady-state diffusion equations

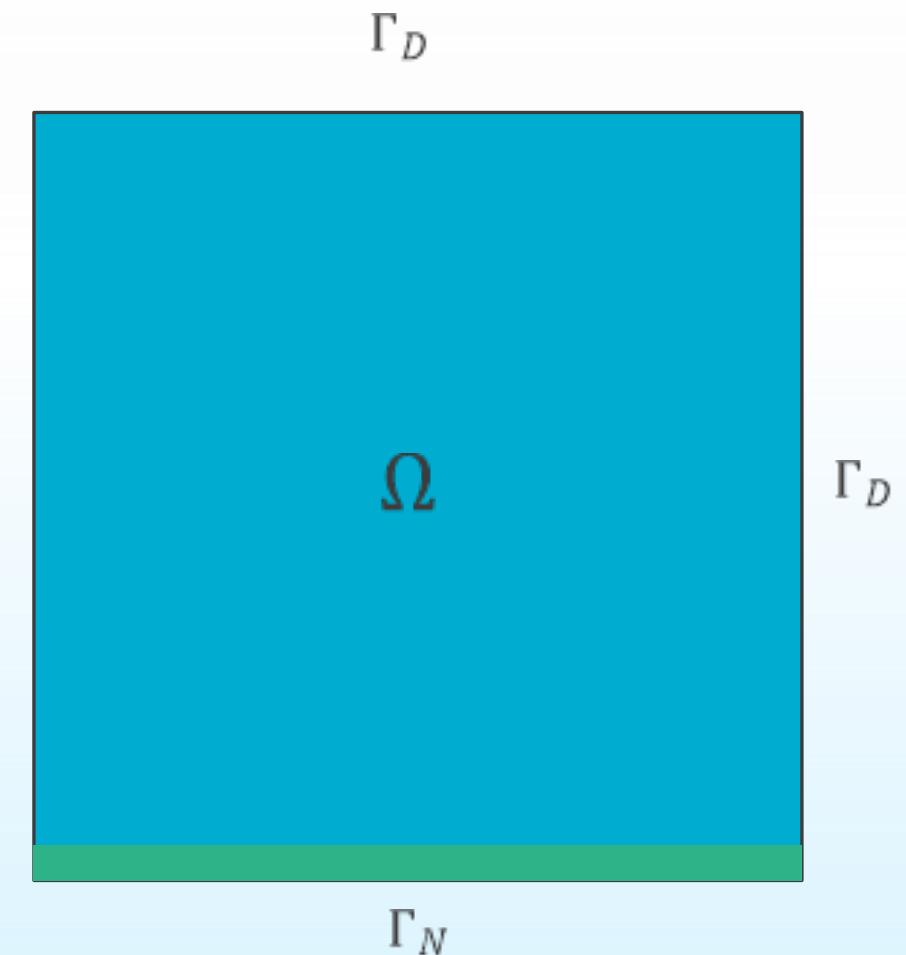
$$\begin{aligned}
 -\kappa\Delta u(x, y) &= z(x, y) && \text{in } \Omega \\
 u(x, y) &= 0 && \text{on } \Gamma_D \\
 -\kappa\nabla u(x, y) \cdot \mathbf{n} &= p(x) && \text{on } \Gamma_N
 \end{aligned}$$

Discretized PDE

$$\mathbf{u} = \mathbf{A}\mathbf{z} + \mathbf{B}\mathbf{p} + \mathbf{c}$$

Parameter-to-observable map

$$\mathbf{y} = \mathbf{O}\mathbf{u} + \boldsymbol{\eta}$$

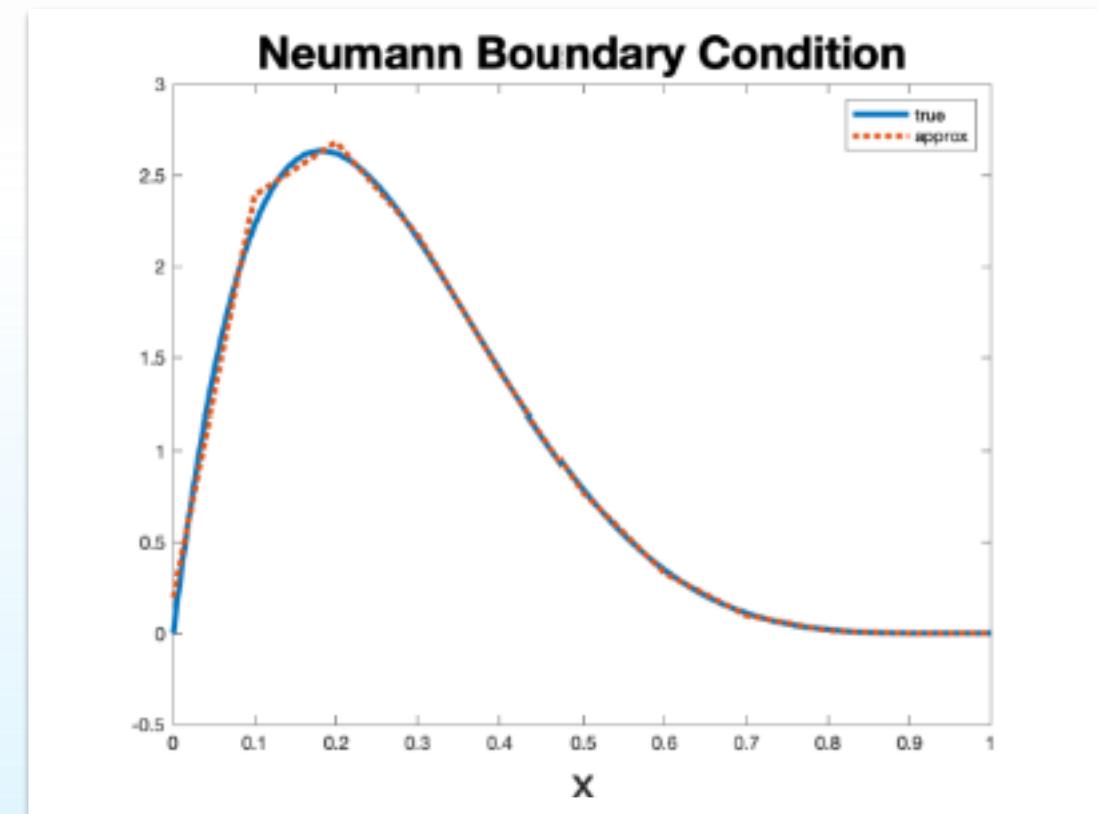


# The boundary flux is the uncertain model parameter



Assumption – finite dimensional parameters

$$p(x) = \sum_{i=1}^{n_p} p_i \phi^i(x)$$



# The boundary flux is the uncertain model parameter

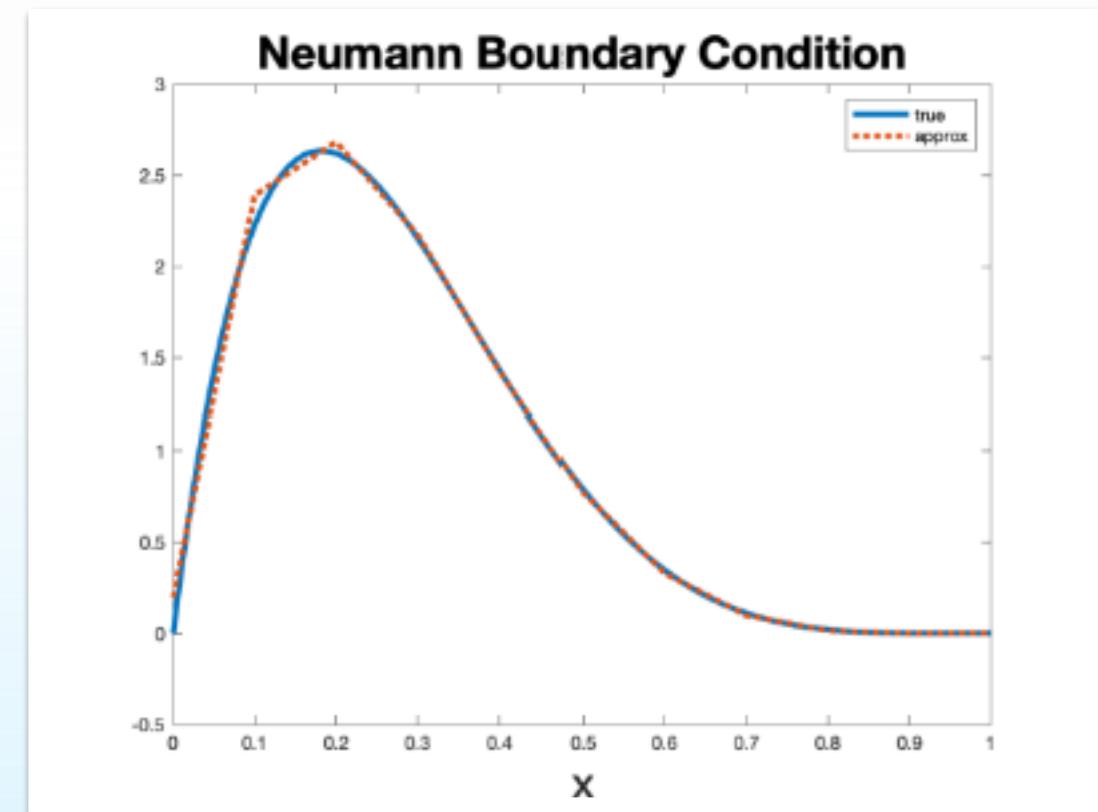


Assumption – finite dimensional parameters

$$p(x) = \sum_{i=1}^{n_p} p_i \phi^i(x)$$

estimate coefficients  $\mathbf{p} = \{p_i\}$  from data  $\mathbf{y}$

$$\pi(\mathbf{p} | \mathbf{y}) \propto \pi(\mathbf{y} | \mathbf{p}) \pi_{\text{pri}}(\mathbf{p})$$



# The boundary flux is the uncertain model parameter



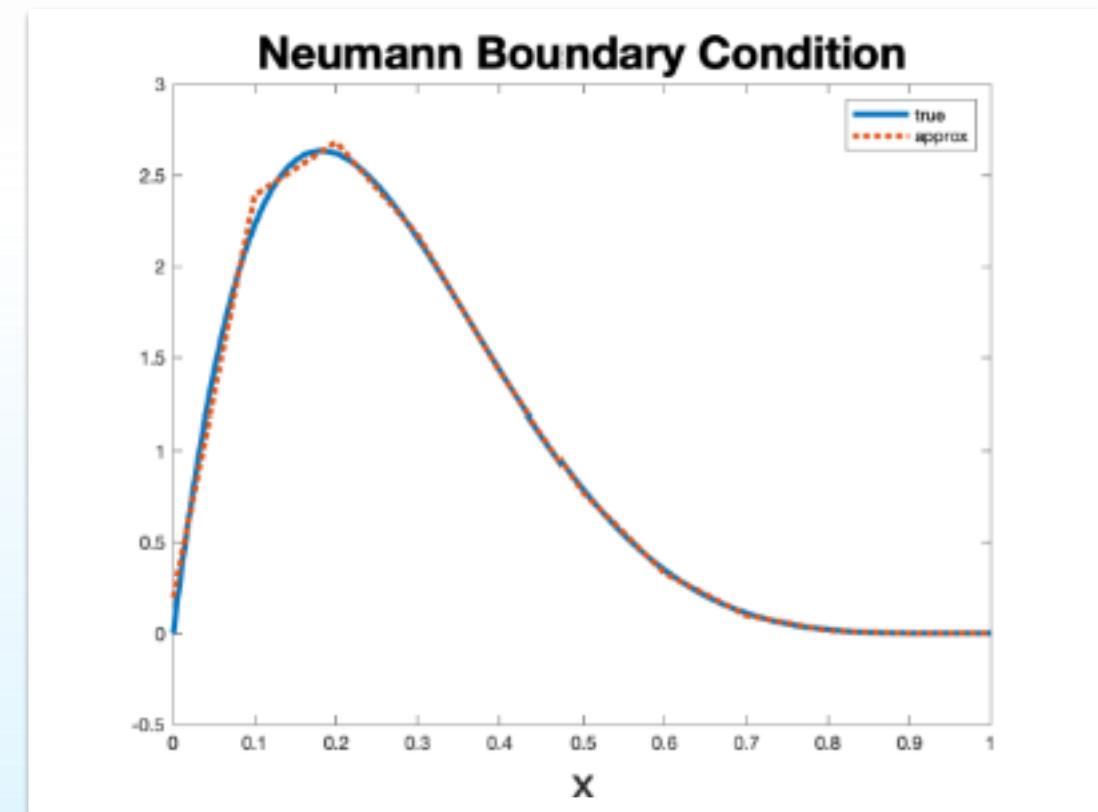
Assumption – finite dimensional parameters

$$p(x) = \sum_{i=1}^{n_p} p_i \phi^i(x)$$

estimate coefficients  $\mathbf{p} = \{p_i\}$  from data  $\mathbf{y}$

$$\pi(\mathbf{p}|\mathbf{y}) \propto \pi(\mathbf{y}|\mathbf{p}) \pi_{\text{pri}}(\mathbf{p})$$

posterior



# The boundary flux is the uncertain model parameter



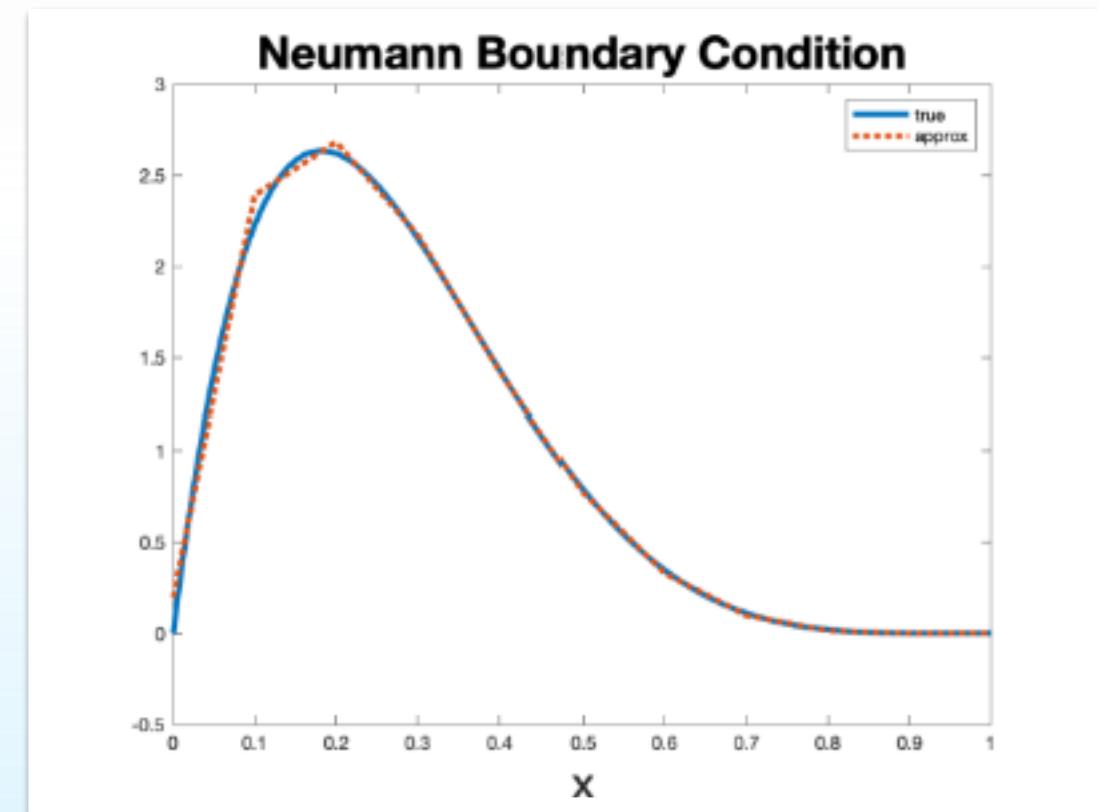
Assumption – finite dimensional parameters

$$p(x) = \sum_{i=1}^{n_p} p_i \phi^i(x)$$

estimate coefficients  $\mathbf{p} = \{p_i\}$  from data  $\mathbf{y}$

$$\pi(p|y) \propto \pi(y|p) \pi_{\text{pri}}(p)$$

likelihood



# The boundary flux is the uncertain model parameter



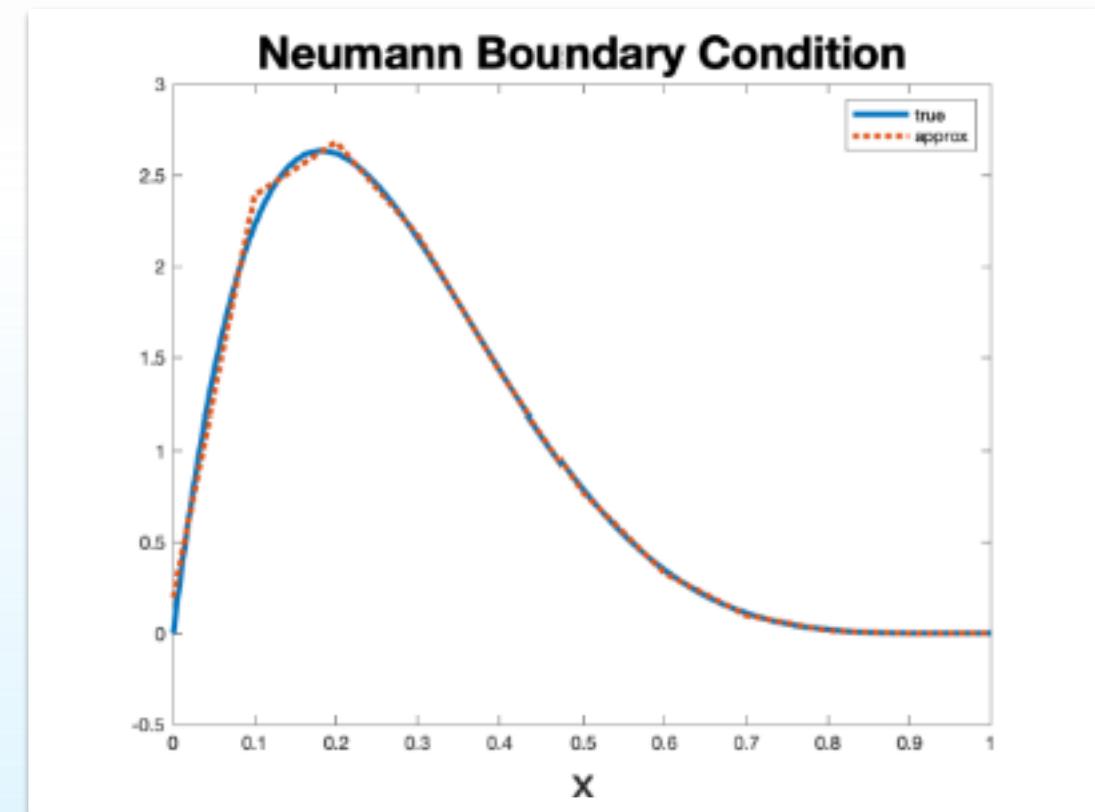
Assumption – finite dimensional parameters

$$p(x) = \sum_{i=1}^{n_p} p_i \phi^i(x)$$

estimate coefficients  $\mathbf{p} = \{p_i\}$  from data  $\mathbf{y}$

$$\pi(p|y) \propto \pi(y|p) \pi_{\text{pri}}(p)$$

prior



# The boundary flux is the uncertain model parameter



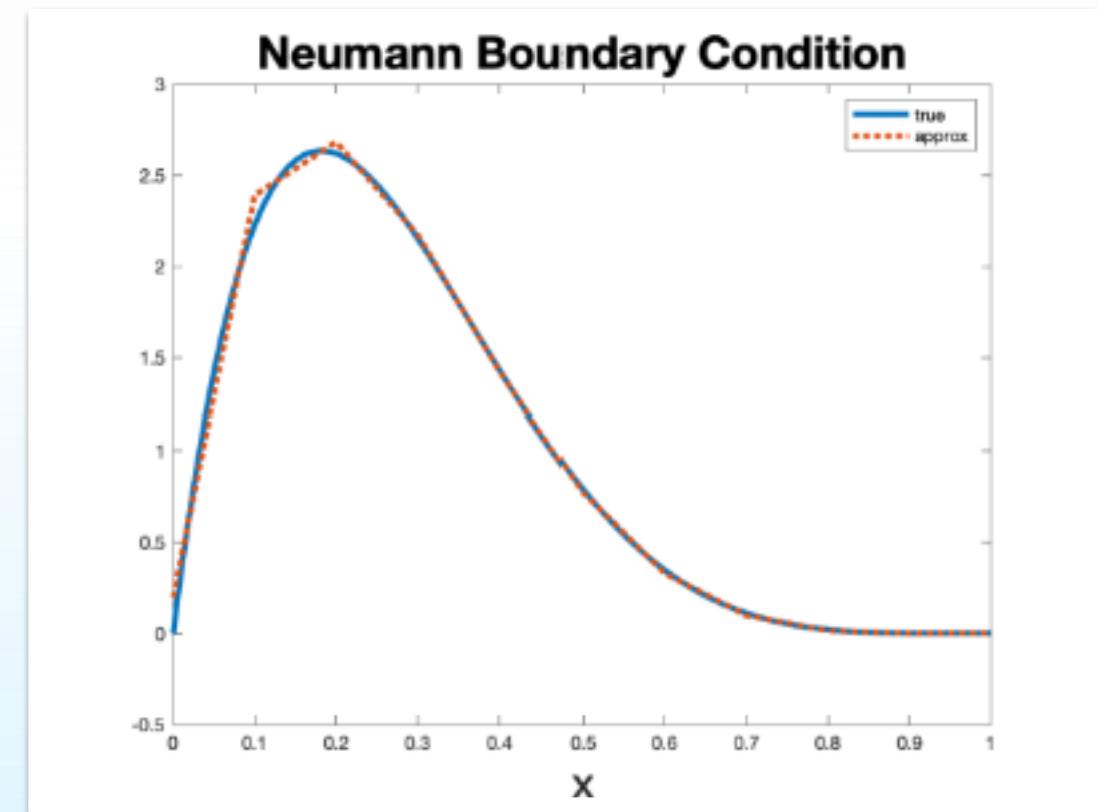
Assumption – finite dimensional parameters

$$p(x) = \sum_{i=1}^{n_p} p_i \phi^i(x)$$

estimate coefficients  $\mathbf{p} = \{p_i\}$  from data  $\mathbf{y}$

$$\pi(p|y) \propto \pi(y|p) \pi_{\text{pri}}(p)$$

$$\pi(y|p) \propto \exp\left(-\frac{1}{2} \|f(p) - y\|_F^2\right)$$



# We consider binary optimal experimental designs



## Experimental design

$$\xi = \left\{ \begin{matrix} x_1, \dots, x_k \\ w_1, \dots, w_k \end{matrix} \right\}$$

- $x_i \in [0, 1] \cup [0, 1]$  – Fixed spatial design candidates
- $w_i \in \{0, 1\}$  – Binary weights
- $\sum w_i = N$  – Budget

# Bayesian OED for inverse problems – minimize uncertainty in boundary coefficients



OED objective function – average variance in parameters

$$U(\xi) = \text{trace}(\boldsymbol{\Gamma}_{\text{post}}(\xi))$$

Gaussian prior + linear parameter-to-observable map  $\rightarrow$  Gaussian posterior

$$\pi_{\text{post}} \sim \mathcal{N}(\boldsymbol{m}_{\text{post}}, \boldsymbol{\Gamma}_{\text{post}})$$

Analytic expression for the posterior covariance  $\rightarrow$  Analytically evaluate objective function

$$\boldsymbol{\Gamma}_{\text{post}} = \left( \boldsymbol{F}_2^T \boldsymbol{\Gamma}_{\text{noise}}^{-1}(\xi) \boldsymbol{F}_2 + \boldsymbol{\Gamma}_{\text{pr}}^{-1} \right)^{-1}$$

The optimal control problem is to maintain a target concentration across the domain

## Optimal control

$$\mathbf{z}^* = \operatorname{argmin}_{\mathbf{z}} \frac{1}{2} \int_{[0,1] \times [0,1]} (u(\mathbf{z}) - \bar{u})^2 dx dy + \frac{\gamma}{2} \|\mathbf{z}\|_2^2$$

## Target concentration

$$\bar{u}(x, y) = -1$$

The optimal control problem is to maintain a target concentration across the domain

## Optimal control

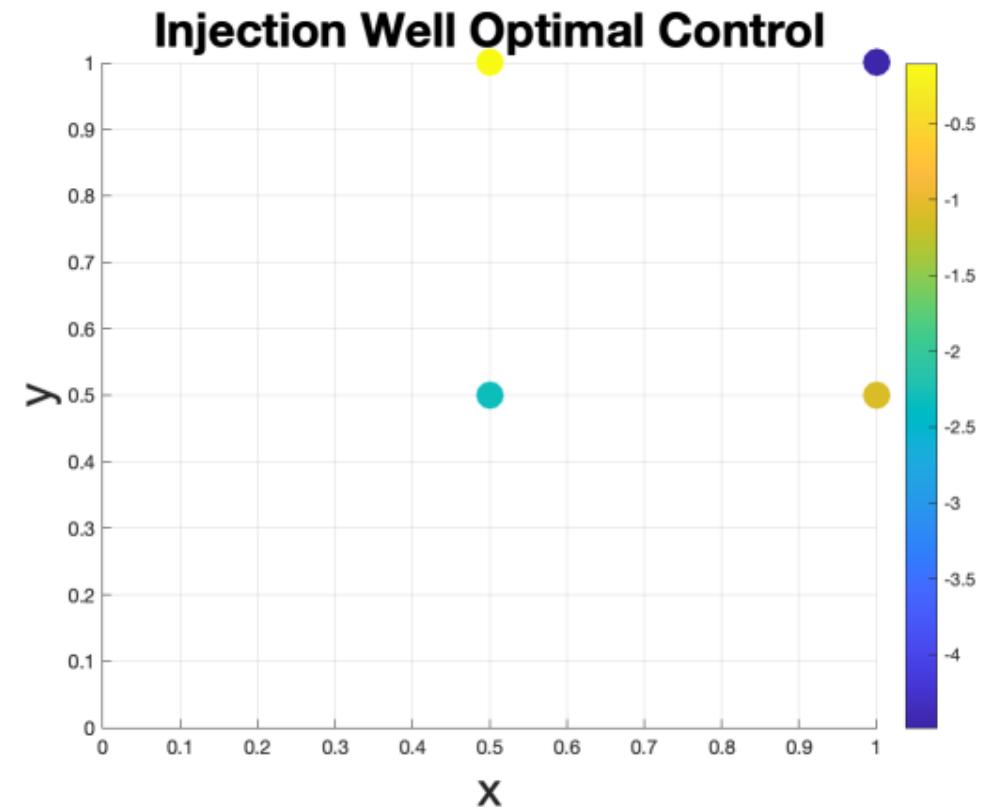
$$\mathbf{z}^* = \operatorname{argmin}_{\mathbf{z}} \frac{1}{2} \int_{[0,1] \times [0,1]} (u(\mathbf{z}) - \bar{u})^2 dx dy + \frac{\gamma}{2} \|\mathbf{z}\|_2^2$$

## Target concentration

$$\bar{u}(x, y) = -1$$

## Discrete injection/reuptake wells

$$\mathbf{z} = [z_1, z_2, z_3, z_4]$$



The optimal control problem is to maintain a target concentration across the domain

## Optimal control

$$\mathbf{z}^* = \operatorname{argmin}_{\mathbf{z}} \frac{1}{2} \int_{[0,1] \times [0,1]} (u(\mathbf{z}) - \bar{u})^2 dx dy + \frac{\gamma}{2} \|\mathbf{z}\|_2^2$$

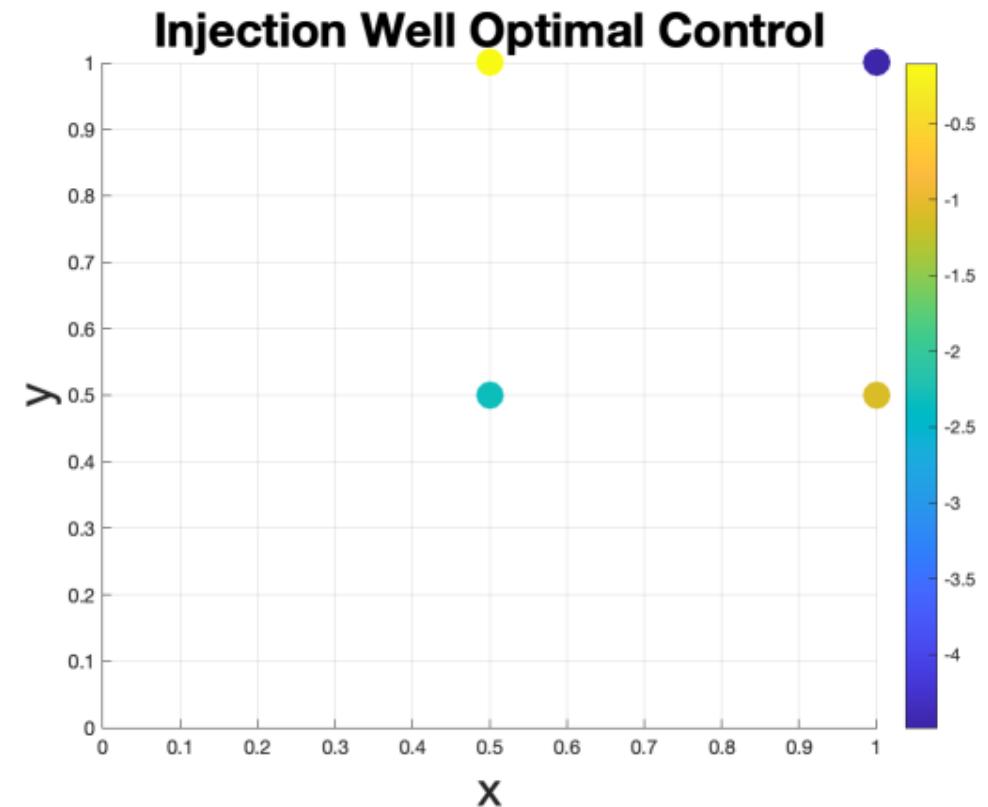
## Target concentration

$$\bar{u}(x, y) = -1$$

## Discrete injection/reuptake wells

$$\mathbf{z} = [z_1, z_2, z_3, z_4]$$

$$\mathbf{z}^*(\mathbf{p}) = \hat{A}\mathbf{p} + \hat{\mathbf{c}}$$



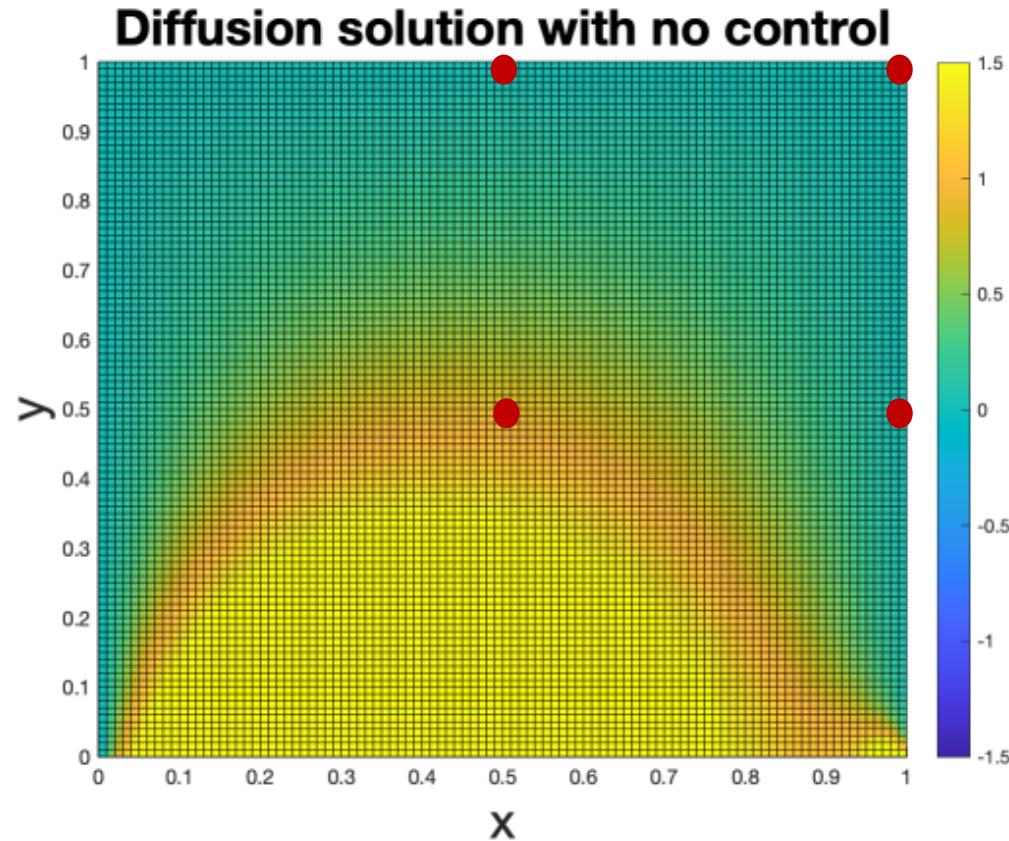
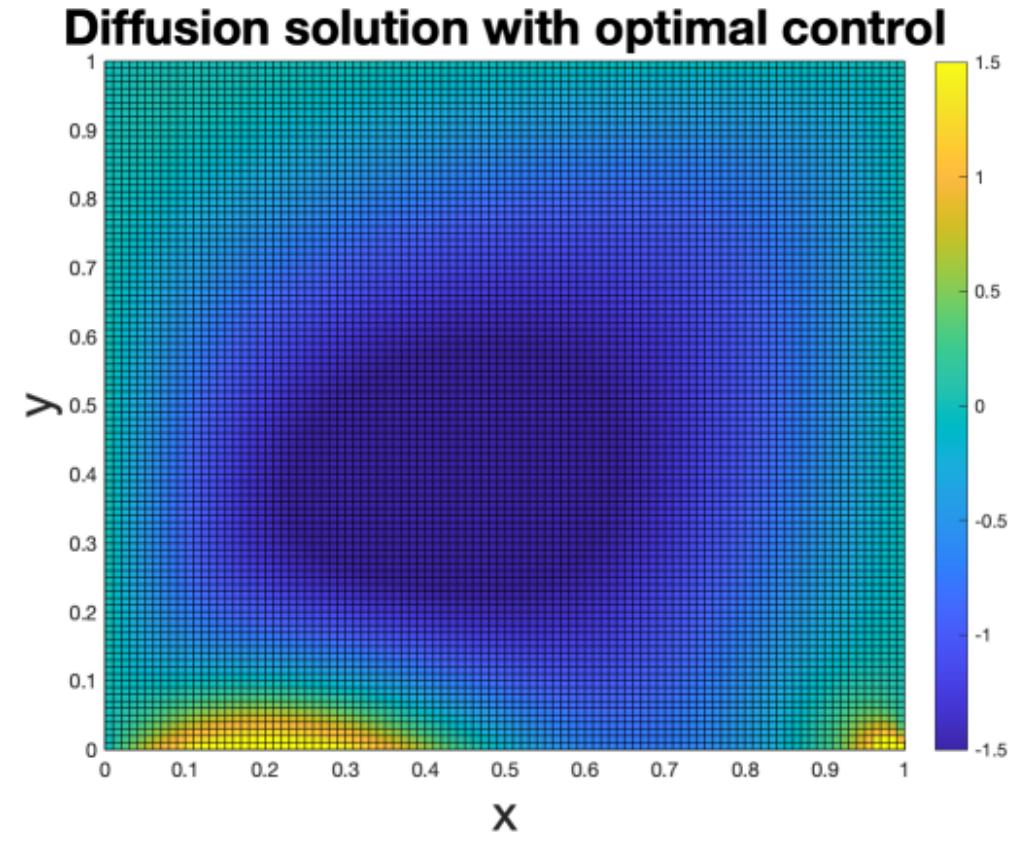
# Injection/reuptake wells control the contaminant concentration



Injection/reuptake wells



Target concentration



## Bayesian control-oriented OED – minimize uncertainty in control objective

Control objective is quadratic in the model parameter

$$\phi(\mathbf{z}^*(\mathbf{p})) = \frac{1}{2} \int_{\Omega} (u(\mathbf{z}^*(\mathbf{p})) - \bar{u})^2 dx dy \approx \frac{1}{2} \langle \mathbf{F}\mathbf{p} + \mathbf{d}, \mathbf{Q}(\mathbf{F}\mathbf{p} + \mathbf{d}) \rangle,$$

## Bayesian control-oriented OED – minimize uncertainty in control objective



Control objective is quadratic in the model parameter

$$\phi(\mathbf{z}^*(\mathbf{p})) = \frac{1}{2} \int_{\Omega} (u(\mathbf{z}^*(\mathbf{p})) - \bar{u})^2 dx dy \approx \frac{1}{2} \langle \mathbf{F}\mathbf{p} + \mathbf{d}, \mathbf{Q}(\mathbf{F}\mathbf{p} + \mathbf{d}) \rangle, \quad \mathbf{p} \sim \mathcal{N}(\mathbf{m}_{\text{post}}, \mathbf{\Gamma}_{\text{post}})$$

# Bayesian control-oriented OED – minimize uncertainty in control objective



Control objective is quadratic in the model parameter

$$\phi(\mathbf{z}^*(\mathbf{p})) = \frac{1}{2} \int_{\Omega} (u(\mathbf{z}^*(\mathbf{p})) - \bar{u})^2 dx dy \approx \frac{1}{2} \langle \mathbf{F}\mathbf{p} + \mathbf{d}, \mathbf{Q}(\mathbf{F}\mathbf{p} + \mathbf{d}) \rangle, \quad \mathbf{p} \sim \mathcal{N}(\mathbf{m}_{\text{post}}, \mathbf{\Gamma}_{\text{post}})$$

Analytic expressions for the variance of quadratic functionals of Gaussian random vectors

$$\begin{aligned} \psi(\mathbf{y}, \xi) &:= \text{Var} \left[ \frac{1}{2} \langle \mathbf{F}\mathbf{p} + \mathbf{d}, \mathbf{Q}(\mathbf{F}\mathbf{p} + \mathbf{d}) \rangle \right] \\ &= \frac{1}{2} \text{tr} \left[ (\tilde{\mathbf{A}}\mathbf{\Gamma}_{\text{post}})^2 \right] + \langle \tilde{\mathbf{A}}\mathbf{m}_{\text{post}} + \tilde{\mathbf{b}}, \mathbf{\Gamma}_{\text{post}} (\tilde{\mathbf{A}}\mathbf{m}_{\text{post}} + \tilde{\mathbf{b}}) \rangle \end{aligned}$$

# Bayesian control-oriented OED – minimize uncertainty in control objective



Control objective is quadratic in the model parameter

$$\phi(\mathbf{z}^*(\mathbf{p})) = \frac{1}{2} \int_{\Omega} (u(\mathbf{z}^*(\mathbf{p})) - \bar{u})^2 dx dy \approx \frac{1}{2} \langle \mathbf{F}\mathbf{p} + \mathbf{d}, \mathbf{Q}(\mathbf{F}\mathbf{p} + \mathbf{d}) \rangle, \quad \mathbf{p} \sim \mathcal{N}(\mathbf{m}_{\text{post}}, \mathbf{\Gamma}_{\text{post}})$$

Analytic expressions for the variance of quadratic functionals of Gaussian random vectors

$$\begin{aligned} \psi(\mathbf{y}, \xi) &:= \text{Var}\left[\frac{1}{2} \langle \mathbf{F}\mathbf{p} + \mathbf{d}, \mathbf{Q}(\mathbf{F}\mathbf{p} + \mathbf{d}) \rangle\right] \\ &= \frac{1}{2} \text{tr}\left[\left(\tilde{\mathbf{A}}\mathbf{\Gamma}_{\text{post}}\right)^2\right] + \langle \tilde{\mathbf{A}}\mathbf{m}_{\text{post}} + \tilde{\mathbf{b}}, \mathbf{\Gamma}_{\text{post}} (\tilde{\mathbf{A}}\mathbf{m}_{\text{post}} + \tilde{\mathbf{b}}) \rangle \end{aligned}$$

# Bayesian control-oriented OED – minimize uncertainty in control objective



Control objective is quadratic in the model parameter

$$\phi(\mathbf{z}^*(\mathbf{p})) = \frac{1}{2} \int_{\Omega} (u(\mathbf{z}^*(\mathbf{p})) - \bar{u})^2 dx dy \approx \frac{1}{2} \langle \mathbf{F}\mathbf{p} + \mathbf{d}, \mathbf{Q}(\mathbf{F}\mathbf{p} + \mathbf{d}) \rangle, \quad \mathbf{p} \sim \mathcal{N}(\mathbf{m}_{\text{post}}, \mathbf{\Gamma}_{\text{post}})$$

Analytic expressions for the variance of quadratic functionals of Gaussian random vectors

$$\begin{aligned} \psi(y, \xi) &:= \text{Var}\left[\frac{1}{2} \langle \mathbf{F}\mathbf{p} + \mathbf{d}, \mathbf{Q}(\mathbf{F}\mathbf{p} + \mathbf{d}) \rangle\right] \\ &= \frac{1}{2} \text{tr}\left[\left(\tilde{\mathbf{A}}\mathbf{\Gamma}_{\text{post}}\right)^2\right] + \langle \tilde{\mathbf{A}}\mathbf{m}_{\text{post}} + \tilde{\mathbf{b}}, \mathbf{\Gamma}_{\text{post}} (\tilde{\mathbf{A}}\mathbf{m}_{\text{post}} + \tilde{\mathbf{b}}) \rangle \\ &\quad \downarrow \\ &\mathbf{F}^T \mathbf{Q} \mathbf{F} \end{aligned}$$

# Bayesian control-oriented OED – minimize uncertainty in control objective



Control objective is quadratic in the model parameter

$$\phi(\mathbf{z}^*(\mathbf{p})) = \frac{1}{2} \int_{\Omega} (u(\mathbf{z}^*(\mathbf{p})) - \bar{u})^2 dx dy \approx \frac{1}{2} \langle \mathbf{F}\mathbf{p} + \mathbf{d}, \mathbf{Q}(\mathbf{F}\mathbf{p} + \mathbf{d}) \rangle, \quad \mathbf{p} \sim \mathcal{N}(\mathbf{m}_{\text{post}}, \mathbf{\Gamma}_{\text{post}})$$

Analytic expressions for the variance of quadratic functionals of Gaussian random vectors

$$\begin{aligned} \psi(y, \xi) &:= \text{Var}\left[\frac{1}{2} \langle \mathbf{F}\mathbf{p} + \mathbf{d}, \mathbf{Q}(\mathbf{F}\mathbf{p} + \mathbf{d}) \rangle\right] \\ &= \frac{1}{2} \text{tr}\left[\left(\tilde{\mathbf{A}}\mathbf{\Gamma}_{\text{post}}\right)^2\right] + \langle \tilde{\mathbf{A}}\mathbf{m}_{\text{post}} + \tilde{\mathbf{b}}, \mathbf{\Gamma}_{\text{post}} (\tilde{\mathbf{A}}\mathbf{m}_{\text{post}} + \tilde{\mathbf{b}}) \rangle \\ &\quad \downarrow \\ &\quad \mathbf{F}^T \mathbf{Q} \mathbf{d} \end{aligned}$$

## Bayesian control-oriented OED – minimize uncertainty in control objective

OED control-oriented objective function – variance in control objective

$$U(\xi) = E_y[\psi(y, \xi)], \quad y \sim \pi(y|\xi)$$

## Bayesian control-oriented OED – minimize uncertainty in control objective



OED control-oriented objective function – variance in control objective

$$U(\xi) = E_y[\psi(y, \xi)], \quad y \sim \pi(y|\xi)$$

Analytically evaluate objective function and compare to OED for inverse problems

## Bayesian control-oriented OED – minimize uncertainty in control objective



OED control-oriented objective function – variance in control objective

$$U(\xi) = E_y[\psi(y, \xi)], \quad y \sim \pi(y|\xi)$$

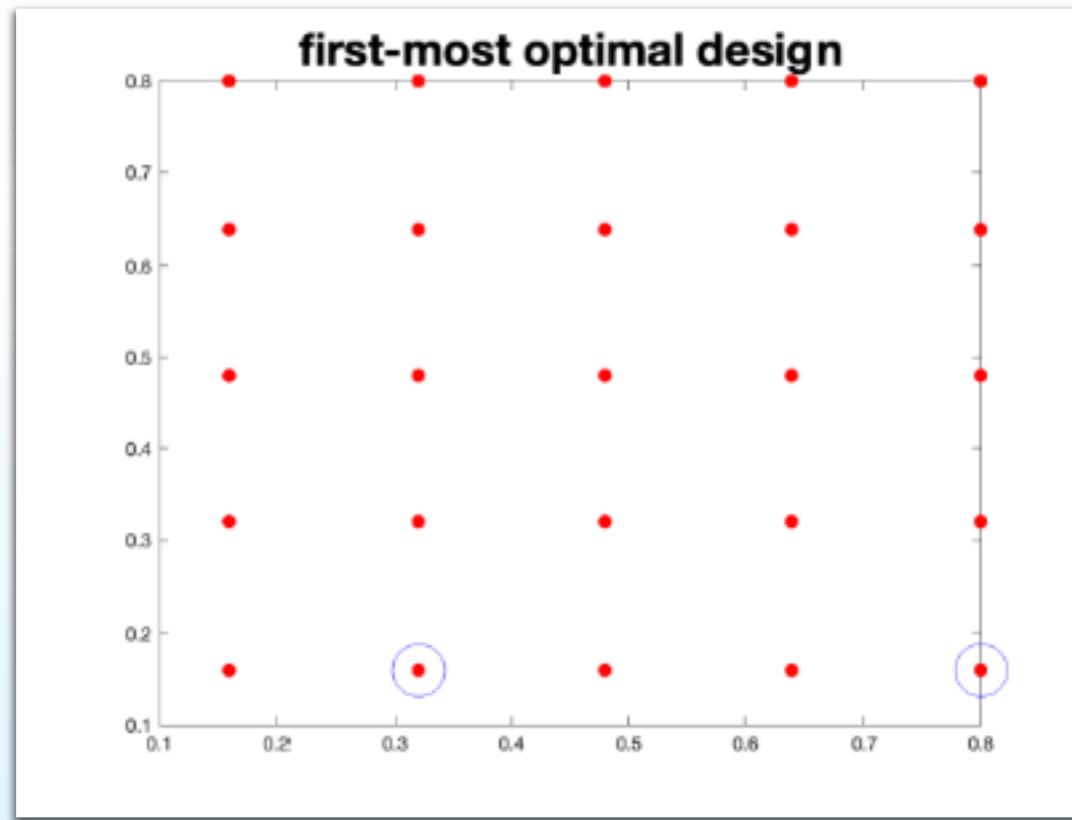
Analytically evaluate objective function and compare to OED for inverse problems

OED objective function – average variance in parameters

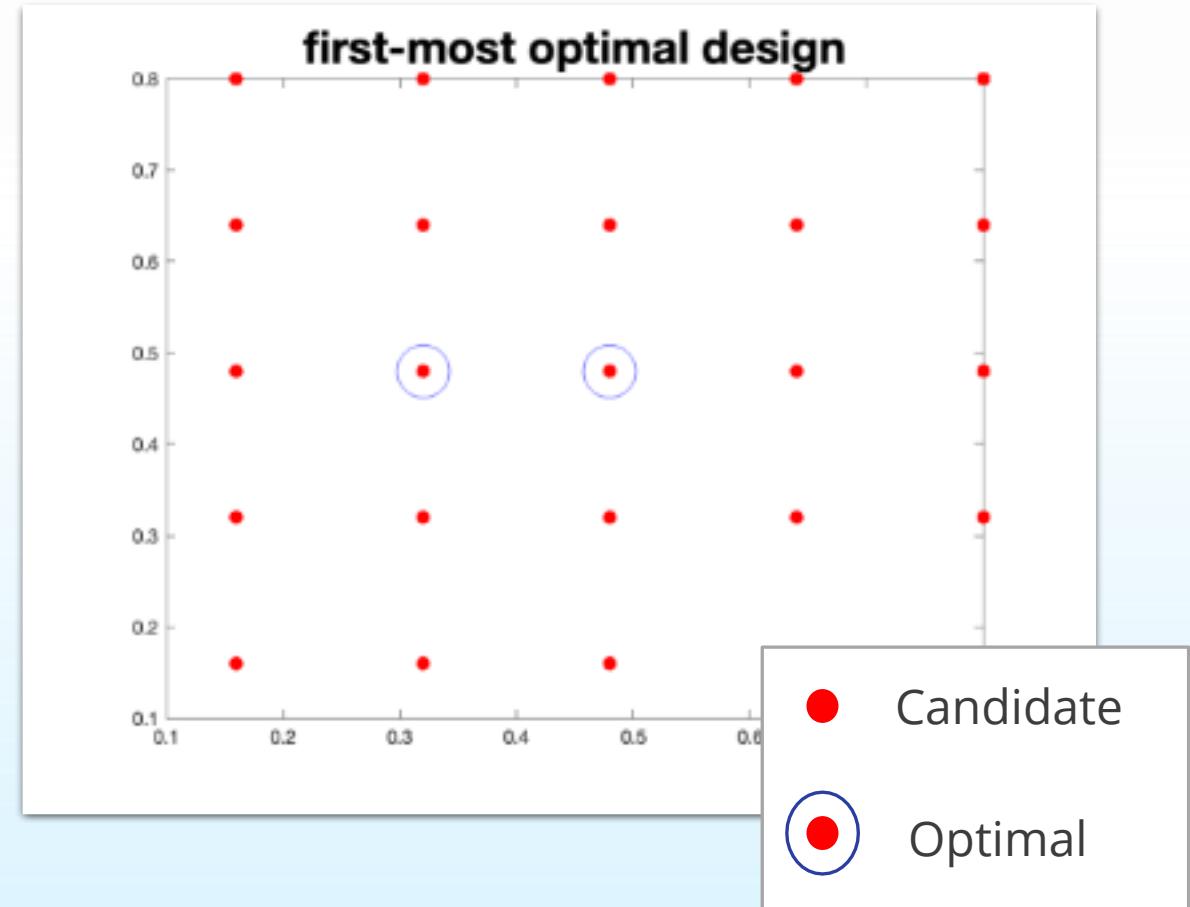
$$U(\xi) = \text{trace}(\boldsymbol{\Gamma}_{\text{post}}(\xi))$$

# Compare the optimal designs for OED for inverse problems versus control-oriented OED with a budget of 2 sensors

Minimize parameter uncertainty



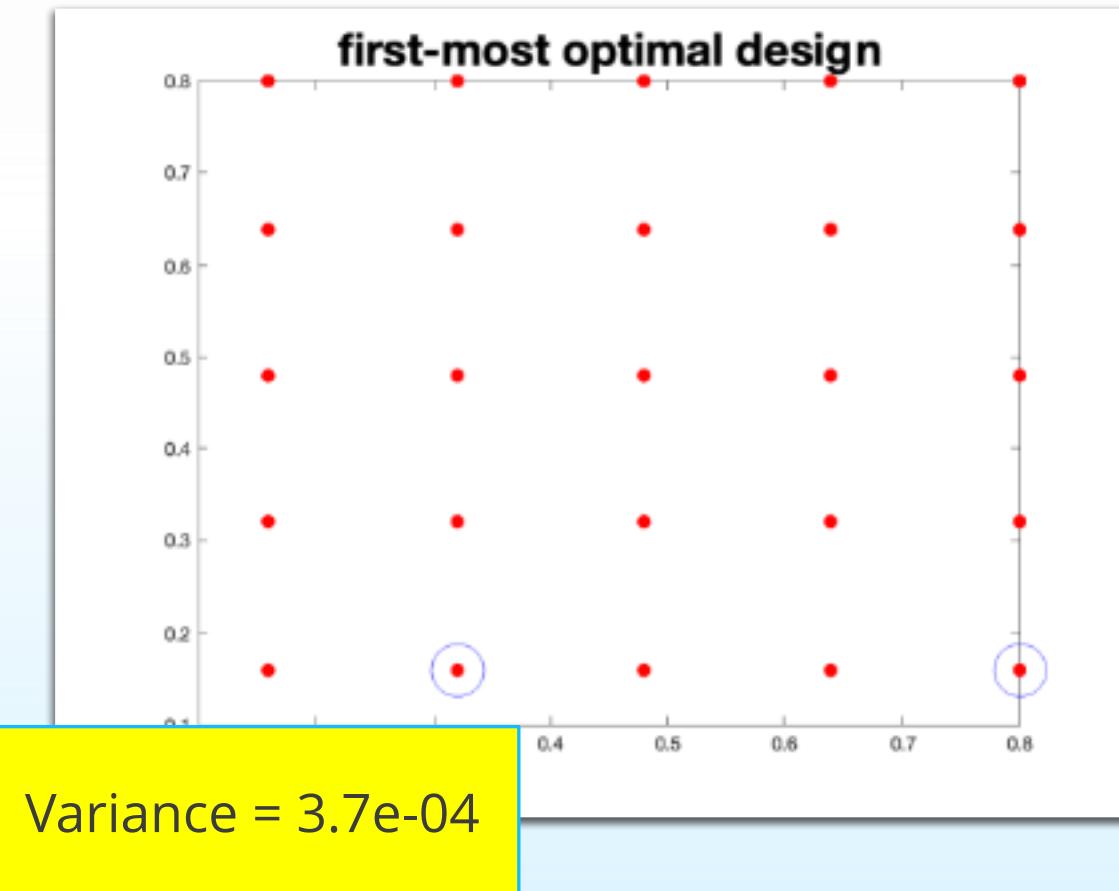
Minimize control objective uncertainty



# Compare the optimal designs for OED for inverse problems versus control-oriented OED with a budget of 2 sensors

Minimize parameter uncertainty

Minimize control objective uncertainty





- Derived a control-oriented OED objective function – reduce uncertainties in an optimization goal
- Control objective uncertainty that is three times smaller than classical OED strategies provide

## Future work

Scale this to more complicated problems

- Transient
- Infinite dimensional parameters
- Nonlinear parameter-to-observable maps