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Atom Interferometry Large Momentum Transfer
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« Setup can be compact
» Short pulse time interactions
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* Now to consider the atom interferometer acceleration phase relation
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« Figure of merit of the error which incorporates both AC fluctuation and DC
offset

FOM = (a4 — (dev(a)))? + var(dev(a))
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« FOM vs 1t Raman Pulses
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« NOTE - an increased detuning is better
but requires more intensity which will
effect contrast



s | Conclusions

* For low pulse numbers the quantum information loss is small and the FOM is
dominated by N;* dependent error reduction.

«  When pulse numbers get high, the quantum information loss increases and the FOM
becomes dominated by the DC offset.

* Increasing the single-photon detuning, A, will increase the number of pulses for
minimum FOM (i.e. decrease the amount of spontaneous emission).

* Increasing the two-photon detuning, &, will decrease the number of pulses for
minimum FOM (i.e. the efficiency of the pulses decreases).

 For an idealized system, we see error on the order of 10~° m/s?.

«  Combining with error compensating techniques could realize very precise atomic
accelerometers34,
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« Determining the parameter Q
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« Parameters used for a Rubidium-85 atom interferometer system

System Parameters

Free evolution time 100 ms
Time between successive pulses 150 ps
m-pulse length () 2.00 us

7/2 pulse length (¢, /2) 1.00 ps
Single-photon detuning (A) 2 —20 GHz
Two-photon detuning (4) 0 — 63 kHz
Rabi frequency (21 = Q2) 212 MHz
Raman laser wavelength (A1 = A2)|780 nm
Spontaneous decay rate (I) 38.117 MHz

Mass of Rb®®

1.419 - 1025 kg

MOT temperature

2 uK

Atr

1.85-107° m/s?
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« System with 200 us m pulse and lower single photon detuning
FOM vs Number of Pi Pulses - A = 0.1 GHz
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«  Start to see larger ground state populations at the
end of the pulsing sequence



