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ABSTRACT

The predictive capability maturity model (PCMM) uses the expert elicitation process to generate
credibility evidence for a particular analysis. To ensure Gemma has the capability to efficiently
produce this credibility evidence, next generation workflows (NGW) are created for the solution
verification, calibration/validation, and input uncertainty quantification portions of the PCMM
assessment. These workflows are then used on the Higgins cylinder problem, which is
representative of applications involving external-to-internal electromagnetic field coupling
through a slot. The uncertainties calculated using these workflows are then used to calculate the
validation comparison error and the validation uncertainty for the model following the American
Society of Mechanical Engineers (ASME) verification and validation (V&V) 20 standard. These
workflows will enable analysts to iterate each element of PCMM more efficiently than if
completed without using a NGW workflow. An example of this iterative process is shown in
Section 7.2.
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1. INTRODUCTION TO PCMM

Gemma is a computational electromagnetics code developed by Sandia National Laboratories for
the analysis of electromagnetic (EM) coupling and scattering in nuclear deterrence applications.
To ensure the proper modeling of such high-consequence systems, credibility of the modeling
approach must be rigorously assessed. One way of assessing model credibility is to apply the
predictive capability maturity model (PCMM).

A PCMM is constructed based on input from subject matter experts assessing the model itself as
well as available verification, validation, and uncertainty quantification (VVUQ) for the
model [19]. More specifically, a PCMM examines credibility evidence for a numerical model
using six separate elements: code verification, representation and geometric fidelity, physics and
material model fidelity, solution verification, validation, and uncertainty quantification (UQ). This
report demonstrates the use of the Next-Generation Workflow (NGW) tool to assess three of the
more quantitative PCMM elements for a problem similar to those for which Gemma will be used
in a production environment. These workflows provide a straightforward way for analysts to set
up Gemma simulations and post-process results for accurate VVUQ assessments. The resulting
uncertainty metrics can then be combined using the American Society of Mechanical Engineers
(ASME) verification and validation (V&V) 20 methodology [2].

Further detail on ASME V&V 20 is given in Section 1.1. The problem used to demonstrate the
VVUQ workflows is described in Section 2. The workflows themselves are illustrated in
Section 3. Sections 4–9 discuss the assessment of the PCMM elements for the problem of interest
and include results generated by the workflows for solution verification (Section 7), validation
(Section 8), and uncertainty quantification (Section 9).

1.1. ASME V&V 20 Standard Methodology

The ASME V&V 20 standard is a methodology to assess accuracy of a computational simulation.
While the standard focuses on the application of computational fluid dynamics and computational
heat transfer, the methodology is applicable to all physics disciplines. The standard quantifies the
validation comparison error and bounds it with a validation uncertainty. The validation
comparison error E is defined as

E = S−D = (T +δS)− (T +δD) = δS−δD, (1.1)

where S is the simulation result, D is the experimental data, T is some unknown truth value, δS is
S−T , and δD is D−T . The simulation error δS is made up of the following contributions,

δS = δmodel +δnum +δinput (1.2)
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where δmodel is the modeling error, δnum is the error from numerical sources, and δinput is the error
from incorrect input. Rearranging (1.1) and (1.2) allows the modeling error to be expressed as

δmodel = E−
(
δnum +δinput−δD

)
. (1.3)

Unfortunately, these errors cannot be measured. Instead, the errors can be bounded by
uncertainties computed in the PCMM. Additionally, the ASME V&V 20 standard indicates that
the modeling error is bounded by the validation uncertainty uval which is a combination of
numerical uncertainty unum input uncertainty, uinput, and experimental uncertainty uexp as

uval =
√√√√√ unum

2︸ ︷︷ ︸
Solution

Verification

+ uinput
2︸ ︷︷ ︸

Input Parameter
Uncertainty

+ uexp
2︸︷︷︸

Experimental
Uncertainty

. (1.4)

Solution verification is discussed in Section 7, input uncertainty is discussed in Section 9.1, and
experimental uncertainty is discussed in Section 8. Note that this analysis does not include the
three other sources of uncertainty, namely, coding error uncertainty, representation and geometric
fidelity uncertainties, and physics and material model fidelity uncertainties. Coding error
uncertainty is reduced to a negligible amount through the completion of code verification (see
Section 4). Representation and geometric fidelity uncertainties are assessed by estimating the
geometric discretization error and are shown to be small (see Section 5). Physics and material
model fidelity uncertainties are assumed to be low based on subject matter expert (SME)
judgment, as documented in the relevant phenomenon identification and ranking table (PIRT)
shown in Section 6.

Applying (1.3) to validation data (see Section 8) and (1.4) to the validation uncertainty evaluated
in Section 9.2, the model error δmodel can be bounded as

δmodel = E︸︷︷︸
Validation

± uval︸︷︷︸
Total Uncertainty

. (1.5)

According to ASME V&V 20 Section 6-2, conclusions about the suitability of the model and its
implementation can be drawn based on the sizes of E and uval. When |E|>> uval, δmodel ≈ E,
which means that the modeling error is quite large compared to all other errors and that
improvements to the model should be made if δmodel is too large to make a decision. When
|E| ≤ uval, the model error δmodel is of the same order as δnum +δinput−δD, which means that the
modeling error is within the noise level of numerical, input, and experimental uncertainties. In
this case, if δmodel is too large to make decisions, efforts should be made to reduce the latter
sources of uncertainty.
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2. EXAMPLE PROBLEM DESCRIPTION

To develop PCMM workflows representative of realistic scenarios, a problem with coupling
through a narrow aperture is needed. Additionally, a problem where experimental data is available
for comparison allows for realistic validation calculations. The cylindrical cavity coupling
problem documented in [10], often referred to as the Higgins cylinder problem, meets these
criteria and also has a reasonably short execution time, allowing for faster testing and debugging
of workflows.

2.1. Problem Setup

The cylinder has a 10.16 cm (4 in) inner radius, a 60.96 cm (24 in) inner height, and a 6.35 mm
(0.25 in) wall thickness. The cavity walls are solid aluminum with a conductivity of 2.6×107 S

m .
Midway along the length of the cylindrical wall is an azimuthal slot with a chord length of
5.08 cm (2 in) on both the inner and outer slot walls. The aperture has a width of 0.508 mm. More
details on the structure and its construction can be found in [10].

The space outside the cavity is modeled as an infinite open region. Both this region and the
interior cavity region are modeled with a lossless free space permittivity and permeability. An
electric field integral equation (EFIE) [20] with a resistive boundary condition (conductivity
2.6×107 S

m ) is imposed on the inner cavity surface. Because losses on the exterior surface have
negligible impact on the result, the exterior surface is modeled as a perfect electrical conductor. In
order to avoid spurious resonances, a combined field integral equation (CFIE) is applied on the
exterior surface, except on elements adjacent to the slot aperture, where the EFIE must be used
(descriptions of the CFIE and EFIE implemented in Gemma can be found in Gemma’s theory
manual [13]). The slot aperture is modeled using Gemma’s “thick” slot model with a wall
conductivity of 2.6×107 S

m and a depth (cavity wall thickness) of 0.25 in. The incident plane
wave has an electric field amplitude of 1 V

m for convenience. The frequency range simulated runs
from 1.12 GHz to 1.15 GHz and captures the first cavity resonance. For more details about the
numerical setup, see Appendix A for the input deck used.

The quantity of interest in the problem is the ratio of electric field magnitude at a probe point to
the incident field magnitude (which in this case is just the plane wave amplitude, typically set to 1
for convenience). More specifically, the ratio between the magnitude of the normal field |E⊥| at
the probe point and the amplitude |~E inc| of the incident EM excitation is of interest, where the
probe point is on the inner cavity wall on one of the flat end-caps, offset 2.54 cm from the cylinder
axis away from the slot aperture. This ratio is usually expressed in dB using the formula

20log10
|E⊥|
|E inc|

. (2.1)
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In this report this quantity is referred to as “field coupling” or “EM coupling” and is a measure of
the ability of exterior EM energy to couple through the cavity walls to the probe location. Note
that the quantity in (2.1) is the negative of the “shielding effectiveness” for the enclosure, which is
defined in the EMC literature (e.g. in [11]) as

10log10
Sincident

Sinterior

where S ∝ |~E|2 signifies power density. Note that Sandia’s EM literature often refers to the
quantity in (2.1) as “shielding effectiveness” as it differs only in sign, and so to avoid ambiguity
this report prefers the “coupling” terminology. Some of the workflow diagrams, however, still
refer to “shielding effectiveness” or “SE”, where the term should be understood to signify the
value in (2.1).

In this report, the problem is excited by a plane EM wave normally incident to the cylindrical wall
at the center of the slot aperture. The field is polarized for maximum coupling, that is, with the
electric field perpendicular to the slot length (parallel to the cylinder axis). The setup is
diagrammed in Figure 2-1.

As the cylinder is empty with conductive walls, a relatively high quality factor can be expected at
the resonant frequencies of the cavity. The high quality factor allows us to test our simulation
codes in worst-case coupling scenarios where relatively little energy is dissipated within the
cavity compared to the amount entering through the aperture. The ratio between the electric field
magnitude at the probe location and that of the incident wave is used to characterize the field
coupling of the cavity enclosure, that is, to gauge its ability to shield interior components from
external EM environments. Since design, safety, and reliability decisions are made using the field
coupling, specifically at resonance peaks, it is the primary quantity of interest (QoI) used in this
report.

2.2. Numerical Model

This section describes the geometric and physical input parameters supplied to Gemma in the
simulations described in this report.

2.2.1. Mesh Description

The surfaces of interest in the problem are the exterior cylindrical structure boundary and the
interior cylindrical cavity boundary. As a slot subcell model is used to calculate wave propagation
through the slot aperture, the small surfaces within the aperture are not explicitly modeled, and
the slot openings into the exterior infinite region and into the interior cavity region are collapsed
into curves of no thickness and discretized as series of bar elements. The surfaces are discretized
with flat triangles. In this report, following the general recommendation for accuracy at a given
frequency, meshes have element edge lengths of less than one tenth the problem wavelength. Two
of these meshes are depicted in Figure 2-2, where all exterior triangle elements that share a node

14
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Figure 2-1. Higgins cylinder problem setup. ~E indicates incident field polar-
ization, k̂ shows direction of wave propagation.
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with the slot aperture curve are colored a lighter shade of blue. At these elements, as mentioned in
Section 2.1, an electric field boundary condition must be imposed, and so they are grouped
separately from the remainder of the exterior surface. For more details about the mesh, see
Appendix B for the meshing file used.

It was noticed after running the analysis that the outer radius in the meshing file does not match
the value given in the geometry description in Section 2.1. Additional analysis and spot-checking
were carried out, and it was determined that the impact of this discrepancy on the solution was
negligible. The surface area was altered by less than 1% and the field coupling by less than 0.1%.
Compared to the error from other sources these differences are insignificant.

(a) Fine Mesh, h≈ λ

30 (b) Coarse Mesh, h≈ λ

15

Figure 2-2. A variety of meshes are generated to complete a mesh conver-
gence study. The size h of the mesh elements is chosen based on the prob-
lem wavelength, where historically element sizes of less than λ

10 are consid-
ered sufficiently small for accurate discretization at a given frequency.
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3. NGW WORKFLOWS

To increase the speed at which an analyst can generate credibility evidence, workflows have been
developed for three out of the six PCMM elements. Additionally, for Gemma to interface with
NGW, a separate Gemma workflow is developed to run Gemma and parse its output on both the
common engineering environment (CEE) and high-performance computing (HPC) machines.

3.1. Gemma Workflow

The first workflow developed was the Gemma workflow, which allows the analyst to specify the
input parameters, execute Gemma, and post-process the results. The workflow structure is
illustrated in Figure 3-1. The post-processed outputs include the EM coupling data at the cavity
resonance peaks, the L2 error norm for a comparison between the simulated frequency response
and experimental data (stored in the post-processing workflow), as well as useful plots for
reference. This workflow is used as a component in the PCMM workflows to run Gemma and
generate quantities of interest. The various pieces of this workflow are described below.

Figure 3-1. Screenshot of the Gemma workflow in NGW.

3.1.1. Construct Workstation Workflow

The construct workstation workflow allows the analyst to run Gemma either locally on the
engineering workspace or remotely on the HPCs. This workflow was developed since NGW
requires a different "node" depending on which machine the analyst would like to use. In
Figure 3-2, the remote nested workflow to run Gemma on an HPC machine requires a config.dat

17



file, which specifies HPC executable information and an HPC path. These two inputs are not
required to run the nested workflow. Future work will allow a third submission location, the
non-engineering workspace CEE machines, to ensure these workflows can be used on most
Sandia resources.

Figure 3-2. Screenshot of the construct workstation workflow in NGW.

Once the analyst selects the desired type of nested workflow (local versus remote), the nested
workflow, which is shown in Figure 3-3, runs the meshing workflow and the solve workflow and
then returns the field coupling peak value and the field coupling curve.

Figure 3-3. Screenshot of the Run Gemma workflow in NGW.

18



3.1.2. Meshing Workflow

The meshing workflow, illustrated in Figure 3-4, uses a templatized journal file to generate the
Genesis mesh using CUBIT. To fill in the templatized journal file, aprepro takes the
"gemma_input" variables list and substitutes reference variables into the journal file. This process
makes refining or coarsening the mesh or slot discretization relatively simple. Future work would
additionally implement the morph mesher into this workflow, making analysis of the impact of
defeaturing significantly easier.

Figure 3-4. Screenshot of the meshing workflow in NGW.

3.1.3. Solve Workflow

Once the Genesis mesh is generated, the solve workflow takes the mesh and the .yaml file and
runs Gemma on the analyst-specified machine, as shown in Figure 3-5. This workflow takes the
longest to finish since this is the bulk of the computational effort. The two key outputs are the
rational interpolation plot file, from which the coupling response across the specified frequency
range can be readily plotted, and the peaks file, which provides the location and height of each
resonant peak detected in the simulation. To reduce the error of rational interpolation, the rational
interpolation error tolerance was set to a relative tolerance of 1e−3, which is significantly lower
than other sources of uncertainty.

3.1.4. Post-Processing Workflow

The post-processing workflow, shown in Figure 3-6, plots the frequency response output in the
solve workflow and extracts the coupling peaks from the peak file. This workflow could be
modified or expanded to perform post-processing for additional analysis types for other quantities
of interest.

3.2. Solution Verification Workflow

Now that the Gemma workflow is set up, we can use a Dakota node to control the inputs to
Gemma. In the solution verification workflow, shown in Figure 3-7, Dakota sends the Gemma

19



Figure 3-5. Screenshot of the solution workflow in NGW.

Figure 3-6. Screenshot of the prostprocessing workflow in NGW.
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workflow updated values for the mesh size. Since the journal file, which creates the mesh, is
templatized, sending updated values allows the analyst to complete a mesh refinement study.

Figure 3-7. Screenshot of the solution verification workflow in NGW.

3.2.1. StREEQ Workflow

Once Dakota runs all of the meshes specified, the program StREEQ is applied to the mesh
convergence results to estimate discretization error. The StREEQ workflow, which is shown in
Figure 3-8, calculates the median Richardson extrapolation with a 95% bootstrap confidence
interval.

Figure 3-8. Screenshot of the StREEQ workflow in NGW.
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3.3. Calibration Workflow

The calibration workflow, illustrated in Figure 3-9, calibrates the slot width to best match the
experimental data. Since the slot width is difficult to measure and describe as a single value, the
calibration provides a representative slot width that minimizes the uncertainty due to varying
width. The workflow runs different widths and collects the L2 norm difference between the
computational and experimental data. Using the L2 norm data, an interpolation function is fitted
to the L2 norm data and the function is minimized to calculate the optimum slot width. Using the
optimum slot width, the difference between the experimental peak coupling level and the
Richardson extrapolated median peak values is computed during the validation assessment.

Figure 3-9. Screenshot of the calibration and validation workflow in NGW.

3.4. Input Parameter Uncertainty Quantification Workflow

Figure 3-10 shows the input parameter uncertainty quantification workflow, which computes the
local sensitivity for a variety of input parameters. A Dakota node is used to run a parameter
sweep to generate Gemma output for each input parameter independently. From this output, the
low-resolution (low-res) validation method is used to calculate the corresponding input parameter
uncertainty.
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Figure 3-10. Screenshot of the input parameter uncertainty quantification
workflow in NGW.
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4. CODE VERIFICATION

According to ASME V&V 10 standard [1], verification is the "process of determining that a
computational model accurately represents the underlying model and its solution." Additionally,
verification is split up into code and solution verification. Code verification is the process of
reducing the probability of coding errors, while solution verification estimates the difference
between the discretized model and the continuous model. This section focuses on code
verification work while Section 7 focuses on solution verification work.

Rather than assessing the uncertainty due to coding errors, code verification’s aim is to detect
these errors to allow code developers to remove them from the code, which effectively minimizes
coding error uncertainty. To minimize the errors, code verification measures the observed order of
accuracy and compares it to the theoretical order of accuracy. When the relative difference
between the two is less than some tolerance (typically 10%), we assume that minimal coding
errors exist within the code. This process is regarded as one of the most sensitive metrics to
determine if implementation errors exist within a code [16]. Unfortunately, the field of
computational electromagnetics does not have a lot of information about the theoretical order of
accuracy or the method of manufactured solutions. This means Gemma’s code verification efforts
are split into two categories: research and development and code verification testing on
Gemma.

4.1. Research and Development

Code verification techniques for EM simulation with the method of moments are the subject of
ongoing research and development. Verification researchers at Sandia have recently applied the
method of manufactured solutions, which has historically been neglected for electromagnetic
radiation problems, to both the EFIE and the magnetic-field integral equations (MFIE) [7, 5, 9, 8,
6]. This work also provides information about the theoretical order of accuracy of different QoIs
computed within Gemma, specifically for the EFIE and MFIE. Verification techniques for the
CFIE and the slot model are currently being developed.

4.2. Gemma Code Verification Testing

Gemma has a number of code verification tests to ensure the numerical method is implemented
correctly. These tests compare Gemma results for multiple mesh refinements and calculate an
observed order of accuracy. The observed order of accuracy is then compared against the
theoretical order of accuracy. Gemma’s order-of-accuracy verification tests have been automated
using vvtest, a Sandia-developed test harness that wraps around Gemma to generate and
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(a) Status of nightly build tests.

(b) VVTest status.

(c) Code coverage tool computes percentage of code lines covered by unit and regression test suite.

Figure 4-1. Build and test information provided to developers on Gemma’s
CDash site.

analyze data for a given test. This mesh refinement data is post-process the mesh refinement data
with StREEQ [17] and integrated into Gemma’s testing dashboard CDash. A relative difference
of less than some specified tolerance yields a pass result. A difference greater than the tolerance
is indicated by a diff result. If the test does not finish, a fail results. Additionally, developers
can view vvtest pass/fail status on a CDash board along with the status of nightly build testing
and an estimate of code test coverage, as shown in Figure 4-1.

For the cylindrical cavity coupling problem, the EFIE and MFIE are used together with the
reduced-order slot model. While current Gemma verification testing focuses on the EFIE and
MFIE applied to surfaces, verification of the slot model has yet to be addressed. Once the latter is
available, it may help to explain the lack of mesh convergence in the cylindrical cavity coupling
problem (see Section 7.2). Further details on the test cases in Gemma’s vvtest suite can be
found in Gemma’s credibility documentation [15].
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5. REPRESENTATION AND GEOMETRIC FIDELITY

Representation and geometric fidelity quantifies the uncertainty due to defeaturing a model and
also quantifies the agreement between the model and the as-built geometry. Since the Higgins
cylinder is a simple geometric shape, there was no defeaturing of the model and therefore no
workflow was created to estimate the associated uncertainty. Additionally, since
three-dimensional scans of the experiment were not collected, the uncertainty due to modeling the
designed and not the as-built geometry was ignored. However, the geometric discretization error
was studied and will be presented at the end of Section 7.2.
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6. PHYSICS AND MATERIAL MODEL FIDELITY

The goal of the physics and material model fidelity element of PCMM is to identify the important
physics and materials used in the model as well as any modeling. One way of completing this
assessment is to complete a phenomenon identification ranking table (PIRT) for both the
identification and gap assessment portion of the physics and material model fidelity element. A
PIRT involves meeting with subject-matter experts (SME) to fill out the phenomenon list,
importance rankings, and adequacy rankings of the PIRT, where math model, code, validation,
and model parameter are the four dimensions of adequacy. Based on the level of importance of a
given phenomenon, the adequacy columns are colored based on meeting/not meeting the
adequacy level required by the importance. The three colors are green, yellow, and red. Green
means that the adequacy level is the same level or higher than the importance rank. Yellow means
that the adequacy level is one level lower than the importance rank. Red means that the adequacy
level is two levels lower than the importance rank. Using a PIRT as a gap analysis tool, the colors
highlight areas where the most improvement could be made.

A PIRT assessment was completed for the Higgins cylinder, which is shown in Table 6-1.

Many of the gaps in the PIRT are due to a lack of validation. Additionally, order-of-accuracy
testing for the various model implementations would raise the code adequacy rankings to high.
Due to the tight interactions between the various phenomena, most parameters are assigned an
importance level of high, though future iterations of this PIRT should be completed to determine
which phenomenon impacts the QoIs the most. This improvement will allow stakeholders to
identify which gaps are most significant.
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Table 6-1. FY22 Coupling though a slot PIRT with comments on adequacy
ID Phenomenon Imp Math Code Val Param Adequacy Comments
A Excitation and Interactions with Exterior

A1 Incident environ-
ment (Plane Wave
Model)

H H H H H Code implementation simple and
easily checked by unit/regression
tests. Validation performed with
slot-in-infinite-plate and wire/body
scattering test cases.

A2 Exterior surface
scattering (PEC
boundary con-
dition / EFIE /
CFIE)

H H H M H Cursory validation against monos-
tatic cylinder RCS. No UQ, no ex-
trapolation. Mie series sphere verifi-
cation gives confidence in MoM im-
plementation for scattering, but does
not include sharp edges.

B Ports of Entry
B1 Slot penetration H H M M L Formal validation needs to be com-

pleted. Slot width model parameter
is not well understood.

B2 Slot depth reso-
nance

L H M M L Not present.

B3 Slot wall losses H H M M H Formal code verification and valida-
tion still needed. Sensitivity studies
being performed.

C Interior of Cavity
C1 Material Absorp-

tion of EM En-
ergy

L H M L M No absorbers in this problem.

C2 Interior wave/-
field propagation

H H M L M Convergence study and rigorous val-
idation lacking.

C3 High Q Fre-
quency Variation

H H M M H Convergence study and rigorous val-
idation lacking.

C4 Wall Losses/Sur-
face Resistance

H H M L H Partially verified in regression test
comparisons with EIGER and satu-
ration Q test case in vvtest. Lack-
ing rigorous validation study.
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7. SOLUTION VERIFICATION

Solution verification assesses the numerical uncertainty within a simulation. According to
Oberkampf and Roy [16], there are four sources of error that either need to be bounded with an
estimate or minimized: discretization error, iteration error, statistical sampling error, and roundoff
error.

Since Gemma is a deterministic code, there is no statistical sampling error. Roundoff error is
minimized by using double precision variables by default. Moment-method matrix equations for
coupling problems cannot be reliably solved by the iterative solvers used in Gemma, and so a
direct factor/solve algorithm is used (specifically the lower-upper or “LU” decomposition), thus
eliminating iteration error. Therefore, discretization error is the primary source of numerical
uncertainty and the focus of this chapter.

7.1. Generation of Solution Verification Data

As discussed in Section 3.2, the solution verification workflow generates EM coupling peak data
based on different mesh discretization parameters and post-processes the data to compute a
numerical uncertainty that bounds the discretization error. An analyst defines a list of mesh
discretization parameters in a Dakota input deck, which tells the Dakota workflow to run Gemma
with those meshing parameters. Once the Gemma runs have completed, StREEQ reads in the data
and computes the coefficients that best fit the discretization error model,

ε = β1×hγ , (7.1)

where ε is the discretization error, β1 is a constant coefficient, h is the metric that describes the
mesh element size, and γ is the observed order of accuracy. Using this error model, StREEQ
calculates the median model fit with a 95% bootstrap confidence interval [17].

7.2. Solution Verification Results

To start, a handful of discretization sizes were selected, and Gemma results were post-processed
in StREEQ. Initial results suggested that the mesh was too coarse due to the lack of monotonic
convergence, so additional refined meshes were generated. Using the NGW tool, this iterative
process was followed until satisfactory results were obtained. The finalized mesh parameters
along with the corresponding peak coupling values are shown in Table 7-1.
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Table 7-1. Meshing parameters with the corresponding coupling peaks using
the CUBIT-specified mesh size parameter.

CUBIT-specified cell size (m) Peak Coupling [dB]

0.0200 13.92
0.0166 13.76
0.0150 13.85
0.0133 14.33
0.0100 14.50
0.0075 14.46
0.0050 14.37
0.0037 14.17

7.2.1. Peak Coupling Solution Verification Results

A StREEQ analysis using the values in Table 7-1 was completed, and the Richardson extrapolated
median value (14.37 dB) as well as the 95% bootstrap confidence interval (11.19 dB, 15.40 dB) is
shown in Figure 7-1. To show how refined each mesh was, the corresponding ratios with the
wavelength λ are also shown in the figure. Based on historical meshing procedures, a mesh size
that is smaller than λ

10 for the highest frequency is considered to be properly resolved.
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Figure 7-1. Numerical uncertainty for the Higgins cylinder problem using the
mesh size specified in the meshing file as the mesh metric.

While the largest difference in coupling is less than one decibel, the median observed
convergence rate of 0.97 is not within 10% of the theoretical convergence rate, which is 2.0. This
significantly increases the uncertainty to +1 dB/-3 dB. To better understand why this might be the
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case, the workflow was used to export additional mesh metrics and post-process the results with
StREEQ. The three additional mesh metrics are the average cell size, the quantity 1√

Nunknowns
, and

the maximum cell size. The various values of these metrics are tabulated along with the
corresponding computed coupling values in Tables 7-2 through 7-3. The coupling results versus
the different mesh metrics are shown in Figures 7-2 through 7-3.

Table 7-2. Average cell sizes with the corresponding coupling peaks.

Average cell size (m) Coupling Peak (dB)

0.0204 13.92
0.0174 13.76
0.0154 13.85
0.0137 14.33
0.0103 14.50
0.0077 14.46
0.0051 14.37
0.0039 14.17
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Figure 7-2. Numerical uncertainty for the Higgins cylinder problem using the
average cell size as the mesh metric.

The median Richardson extrapolations and 95% bootstrap confidence intervals are not
significantly different from those found using the CUBIT-specified mesh size, which means the
choice of mesh size metric is not the cause for the degraded convergence rate. Additional work to
determine the cause of the degraded convergence rate could include comparison of results
computed with rational interpolation to results generated with a uniform frequency sampling
across the range. The degraded convergence rate is primarily due both to the lack of code
verification evidence for the slot model and to the lack of initial mesh refinement of the slot itself.
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Table 7-3. Meshing parameters with the corresponding coupling peaks using
the maximum cell size meshing parameter.

Max Cell Size (m) Peak Coupling (dB)

0.0268 13.92
0.0216 13.76
0.0200 13.85
0.0172 14.33
0.0131 14.50
0.0097 14.46
0.0067 14.37
0.0059 14.17
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Figure 7-3. Numerical uncertainty for the Higgins cylinder problem using the
maximum cell size as the mesh metric.
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Since our meshes were generated to be lower than λ/10, this is only a mesh size approximation
for the background mesh and not the mesh size for the slot. Identifying an appropriate mesh size
approximation for the slot would help eliminate this issue. The workflows here could be used to
generate and process the data to develop an appropriate mesh size approximation.

A key result needed from the solution verification is the response uncertainty due to the
estimation of the numerical bias. At present this result is not provided directly from StREEQ, but
it can be approximated from the bootstrap confidence intervals using the well-known Chebyshev
inequality [3]. For a random variable X following some distribution with finite mean µ and
variance σ2, Chebyshev’s inequality states:

P(|X−µ| ≥ kσ)≤ 1
k2

That is, there is only a 1/k2 chance that a value lies more than k standard deviations from the
mean of the distribution. This inequality can be leveraged to create a confidence interval for the
mean that makes no assumption on the shape of the underlying probability distribution, only that
the mean and variance exist (e.g., a Cauchy distribution would not be suitable, but any distribution
in the exponential family would).

Starting from the confidence interval, we can also construct an approximate estimate of σ .
Denote the lower and upper bounds of the interval as X0.025 and X0.975, respectively. Then equate
X0.025 = µ− kσ and X0.975 = µ + kσ , so that the difference between the values is 2kσ . Since the
interval is at 95% confidence, we set 1/k2 = 0.05 and obtain k =

√
20. This results in an estimate

of σ̂ =
X0.975−X0.025

2
√

20
.

Applying this to the bootstrap confidence interval provided above, we obtain the uncertainty in
peak coupling due to estimating numerical bias to be (15.40−11.19)/(2

√
20) = 0.471dB. On a

variance scale, this is unum
2 = 0.222dB2. This estimate could be improved using knowledge of

the shape of the distribution (e.g., Normal). In addition, the need for an approximation can be
circumvented entirely by modifying StREEQ so that the bootstrap standard deviation is produced
directly, rather than strictly a bootstrap confidence interval.

7.2.2. Geometric Area Solution Verification Results

Lastly, the geometric discretization error is evaluated. When the cylinder is meshed, the surface
area of the mesh does not exactly match the area of the cylinder. This difference is referred to as
geometric discretization error. However, as the mesh is refined, the sum of the element areas
should converge to the exact area of the cylinder. Based on work in Section 3.3.3 of [20], the
theoretical order of accuracy for geometric discretization error is 2.0. The observed order of
accuracy found here using the solution verification workflow was 1.995, matching the theoretical
order of accuracy to three digits, as shown in Figure 7-4.

Since the uncertainty is low and bounds the exact solution, as shown in Table 7-4 and Figure 7-5,
and this uncertainty is counted within the total numerical uncertainty, the error due to geometric
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Figure 7-4. Mesh refinement of the area for the Higgins cylinder.

discretization is found not to be a major contributor of numerical uncertainty. This report will
therefore focus on other sources of numerical error since they are significantly larger than
geometric discretization error.

Table 7-4. Area convergence of the Higgins cylinder.

Parameter Exact Value Median Lower Bound Upper Bound Bounded?

Surface Area 0.9475 0.9475 0.9473 0.9477 True
Order-of-Accuracy 2.0 1.995 1.770 2.364 True

For cases where defeaturing does occur, the impact of the defeaturing should be measured. While
meshing both the original geometry and the defeatured geometry would be ideal, meshing both
geometries is often not practical due to meshing or computational resource limitations. An
alternative approach is to measure the impact of a specific defeaturing, such as the impact of
rounding a bolt or of smoothing a corner. This approach can identify which defeaturing steps
significantly impact solution accuracy and may need to be modified. This process could
potentially be streamlined by the NGS Morph meshing software [18].
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Figure 7-5. Mesh refinement of the area for the Higgins cylinder.
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8. CALIBRATION AND VALIDATION

Validation activities assess how well the model matches reality, which requires comparisons to
experimental data. Validation is typically preceded by calibration, where the model parameters
are tuned to achieve a better match. However, calibration should be completed with subject-matter
expert judgment to ensure that the model can extrapolate to areas where the model will be used.

8.1. Calibration

While there are a few parameters that could be used for calibration, slot width was chosen since
it’s been shown to be the most sensitive parameter in the slot model [14]. Additionally, due to
manufacturing techniques, the slot width varies along the length of the slot, making it difficult to
quantify the width by a single value. To ensure the model is relevant for predicting coupling
across the whole frequency range rather than just at the peaks, the calibration process uses data
across the entire range. The Gemma workflow, shown in Figure 3-1, includes a computation of
the L2 norm of the difference between the experimental coupling data [10] and the Gemma
prediction. This workflow is wrapped by a Dakota workflow, which varies the slot width. The
mesh element size was also varied to determine how mesh resolution impacts the calibration
process. For this study, the range of slot widths was chosen to be double a reasonable
manufacturing tolerance value of 5 mils. Table 8-1 shows the slot width and mesh resolution for
each iteration.

Table 8-1. Parameter used for the calibration process.

Case # Slot Width (cm) CUBIT-specified cell size (m)

1 0.04 0.01 (Fine)
2 0.045 0.01 (Fine)
3 0.0508 0.01 (Fine)
4 0.055 0.01 (Fine)
5 0.06 0.01 (Fine)
6 0.04 0.02 (Coarse)
7 0.045 0.02 (Coarse)
8 0.0508 0.02 (Coarse)
9 0.055 0.02 (Coarse)
10 0.06 0.02 (Coarse)

Unfortunately, as shown in Figure 8-1, the experimental data near the peak is limited, which
artificially reduces the resonance peak height since data was not collected near the actual peak.
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Also, the resonance peaks for all Gemma simulations are shifted to the right, impacting the
effectiveness of the calibration. Even with these two drawbacks, trends in the data can still be
observed. For instance, the coupling levels are shifted up with larger slot widths. Additionally,
mesh refinement shifts the simulated peak frequency closer to the experimental peak frequency.
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Figure 8-1. Calibration process.

Since the finer mesh results match the experimental data better, the calibration process used the
L2 norm values based on these results to determine the optimal slot width. By interpolating and
minimizing the L2 norm with respect to the slot width, the optimal width is found to be 0.049 cm,
as illustrated in Figure 8-2. This value is used in the validation and uncertainty quantification
assessments.

8.2. Validation

Validation assesses the difference between the experimental peak value and the predicted peak
value from Gemma (see Eq. 1.1). While a NGW tool was not used for validation, data from the
solution verification and calibration workflows contributed to this analysis. The difference
between the peak coupling data in [10] and that predicted by Gemma using the calibrated slot
width is shown in Table 8-2. Typically, validation data should be different from the calibration
data. However, calibration and validation data are taken from the same dataset here solely to
demonstrate the workflow.
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Figure 8-2. Calibration results.

Table 8-2. Validation results after calibration of slot width.

Peak # Experimental Peak (dB) Gemma Peak (dB) Difference (dB)

1 -9.01 14.22 23.23
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While the discrepancy between the Gemma prediction and the experimental data is large, it is
likely due to lack of frequency resolution in the experimental data. Additionally, experimental
uncertainty is not provided, so it is assumed to be zero, which is not realistic. Obtaining
experimental measurements (along with measurement uncertainty) that better resolve the
resonance peak would likely reduce the disagreement observed here. Calibration of the slot width
using a finer mesh would also improve the validation assessment, but less so than obtaining better
experimental data.

39



9. UNCERTAINTY QUANTIFICATION

Previous PCMM sections have focused on the various sources of uncertainty. This section focuses
on input parameter uncertainty as well as accumulating all of the known sources of uncertainty to
calculate the validation uncertainty.

9.1. Input Parameter Uncertainty

Input parameter uncertainty refers to the uncertainty or variability in the response (in this case,
the peak EM coupling level) that arises as a result of varying the input parameters. In the present
analysis we consider three inputs: length, width, and depth of the slot. From past investigations,
these parameters are believed to have independent effects on SE [4]. Because of this, we
employed a centered parameter study, varying only one parameter at a time while holding the
others equal to their mean value. The Low Resolution Validation (LRV) framework was
developed to provide a basic validation and uncertainty quantification analysis for this type of
study. LRV is used since it’s computationally cheaper than other parameter uncertainty
propagation methods and is appropriate to use when the correlation between the parameters is
low. Refer to [12] for a more complete mathematical description of this framework.

In addition to being designed exclusively for a centered parameter study, the LRV method also
makes the critical assumption of local linearity in the response as the input parameters change.
While the global trend in the response will not always be a linear function with the inputs, a
suitable restriction of the input space can force local linearity. In this validation study, we assess
the linearity of peak EM coupling as a function of the inputs prior to applying LRV using the
calibrated slot parameters plus four additional data points per parameter (nominal ±5 mils and
nominal ±10 mils). A qualitative assessment can be found in Figure 9-1. In this figure, the input
variables have been standardized to the [0,1] interval to enable relative comparisons as well as an
assessment of linearity. The standardization was performed as
x′i = (xi−minxi)/(maxxi−minxi), where xi denotes the vector of values for the ith input
variable and x′i denotes the standardized version of the vector.

Based on Figure 9-1 we can be confident that LRV is a suitable method. A quantitative
assessment could be obtained by conducting a lack-of-fit test of the linear approximation (a
simple linear regression fit) against a polynomial model of degree 2 or 3. However the results in
Figure 9-1 show sufficient linearity. While the peak SE appears to have slight curvature with
respect to slot width, the key aspect that local linearity is needed for is obtaining the slope of a
least-squares regression, and the observed curvature is small enough that a straight-line
approximation is reasonable.
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Another assumption of LRV is that the center point of the input parameters is at least
approximately equal to the true (unmeasurable) mean of the input variable. Since a calibration
study was performed in advance of the validation study to ensure that the input parameters were
centered in approximately the best-fitting location, this assumption was also satisfied.

There are several results that naturally come out of LRV. One such result is a basic UQ analysis.
Figure 9-1 can be interpreted as a main effects plot, and indicates that slot width has the most
dramatic impact on the EM coupling prediction. In addition, LRV produces an estimate of the
variability in EM coupling as a function of the input variation, and this value is the sum of
variation contributions due to each of the input parameters. From these we can compute the
percent contribution of each input parameter to the total uncertainty due to input parameters.
These results are provided in Table 9-1, which gives both the percent contribution as well as the
estimated uncertainty (variance) in field coupling due to each input variable. Again, we observe
that the slot width is (by far) the largest contributor to the uncertainty in field coupling.

Table 9-1. Response uncertainty (variance) and associated percent contribu-
tion of each input parameter.

Percent SE Var

Length 0.001074 0.021287
Width 0.994032 19.705415
Depth 0.004895 0.097028

The total uncertainty in field coupling due to input parameter variation is the sum of the
individual response uncertainties in Tab 9-1, which is uinput

2 = 19.82373.

9.2. Combining Uncertainties using ASME VVUQ 20

Uncertainty quantification for the Higgins cylinder is a culmination of assessing code bug
uncertainty (code verification), geometric discretization uncertainty (representation and geometric
fidelity), model fidelity uncertainty (physics and material model fidelity), numerical uncertainty
(solution verification), experimental uncertainty, and input parameter uncertainty. These
uncertainties were either minimized (code bug uncertainty, geometric discretization uncertainty,
and model fidelity uncertainty), assumed to be zero (experimental uncertainty), or assessed
(numerical uncertainty and input parameter uncertainty). Using the uncertainties that were
assessed and (1.4), the validation uncertainty is computed to be

uval =

√√√√√√ unum
2︸ ︷︷ ︸

Solution
Verification

+ uinput
2︸ ︷︷ ︸

Input Parameter
Uncertainty

+
�
�
�>

0
uexp

2︸︷︷︸
Experimental
Uncertainty

= 4.477.

(9.1)
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By assessing the size of the validation uncertainty compared to the validation error from
Section 8.2, conclusions can be drawn about the predictive ability of Gemma’s simulation of
coupled EM fields. Recall that the validation error was E = 23.23 dB, which is much larger than
the validation uncertainty uval = 4.477. Hence, clearly, the observed validation error is not within
a ±1uval bound. However, it is not uncommon for a random variable to produce a value more than
one standard deviation away from the mean. If we assume that Gemma’s prediction model is
unbiased (so that the expected validation error is zero), we can again make use of the Chebyshev
inequality to determine how unlikely of an event the value E = 23.23 represents. Recall that
Chebyshev’s inequality is given by:

P(|X−µ| ≥ kσ)≤ 1
k2

We now equate the validation discrepancy to the random variable X , and under the assumption
that Gemma is unbiased set µ = 0. So we take k = E/uval, which yields k = 5.19 and
1/k2 = 0.0371. Therefore, based on the Chebyshev inequality, the probability of the observed
validation error E (or a validation error E ′ where |E ′|> |E|) is at most 3.71%. Since we assumed
that Gemma was unbiased, this probability can be interpreted as a p-value testing the hypothesis
of unbiasedness.It is common in Statistics to compare a p-value to some threshold such as 0.05 or
0.01 (though this is not strictly necessary, as a p-value is simply measuring the probability of an
event; comparing to a specified threshold is only a means of turning a continuous measure into a
binary value for decision-making).

This probability is sensitive to knowledge of the underlying probability distribution of E. When
using the Chebyshev inequality we make no assumption of the probability distribution except that
it has a finite mean and variance. If we were to assume, say, a normal distribution for E, the
corresponding probability would be 2.13e−5%. For this reason, a characterization of the
distribution of E would be useful.

9.3. Interpretation of Results

While an event with probability 3.71% is not unreasonable to occur, if we are not assuming a
distribution we do not know whether 3.71% or 2.13e−5% is the true probability of the event
E = 23.23, and regardless would prefer the observed validation error to represent a more likely
scenario. There are several means by which this can be achieved. First, the model could be
improved. If there are known deficiencies or inaccuracies in the model, correcting or reducing
these could result in improved accuracy. However, it is not a given that there are any aspects of
the model to improve. If the real-world process is a highly noisy process, then even a perfectly
unbiased model could often result in predictions deviating significantly from experimental data,
leading to a large validation error.

This leads naturally to the second approach of estimating the experimental uncertainty. As noted
we assumed that the uexp = 0, which may not be reasonable. If there is experimental uncertainty,
then ignoring it makes E appear to be more unlikely than it is in reality. Conducting additional
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experimentation to characterize uexp would result in an increased uval, one consequence of
which would one that the observed E would not appear to be such an unlikely event.

A third approach is to increase the range of the input parameters. For the present validation
experiment the range of the input variables was set based on a validation study, and these ranges
are believed to represent a ±1σ bound on each input parameter. Revisiting the selected input
space could result in a conclusion that the 1σ bounds are wider than were assumed. This is a
second natural result of the LRV analysis, which acts in some ways as a secondary calibration.
For instance if we want to constrain the validation error to be within ±1uval, the LRV analysis
suggests that the input parameter uncertainties (which is reflected in the range in the inputs) needs
to be increased by 454%. This is a dramatic inflation of the input uncertainty, though this would
be somewhat mitigated by incorporation of experimental uncertainty.

Finally, it is worth noting that the observed results show that the experimental peak coupling is
lower than the Gemma-calculated peak, which is a deviation in a "good" direction (Gemma
underestimating the experimental result would be an error in a "bad" direction). The LRV
framework is designed to bound the experiment using a 2-sided interval. But if only a bound on
the upper side is consequential, it may be possible to modify the methodology of LRV to consider
this scenario.

44



10. CONCLUSIONS

Assessing the model credibility for models within Gemma is an important step in using Gemma
for qualification evidence. Using PCMM is an effective way to assess the model credibility. Since
generating PCMM evidence is labor intensive, setting up workflows to iterate certain PCMM
activities speeds up the evidence generation process as well as the investigative process when the
data is suggesting counterintuitive results. This report focuses on developing three workflows to
speed up the PCMM activities: solution verification, which computes the numerical uncertainty;
calibration/validation, which computes the validation comparison error and reports the
experimental uncertainty; and uncertainty quantification, which computes the uncertainty in the
output due to uncertainties in the input parameters. Based on the results shown in Section 9.2, the
validation comparison error is much larger than the uncertainties quantified in this report. If the
validation comparison error is too large for the intended application, this means one of two things:
either the model form error is large and should be reduced or there are uncertainties that are not
being quantified (e.g. experimental uncertainty). Using the workflows developed in this work,
additional analysis can be quickly completed if the improvements to the model are made or if
better experimental data with uncertainty is collected.
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APPENDIX A. Gemma Input Deck

1 %YAML 1.1
2 ---
3
4 Gemma-dynamic:
5
6 Global:
7 Description: 2 prisms with slot between them
8 Solution type: matrix
9

10 Mesh:
11 File:
12 File Type: Exodus
13 File Name: {mesh_file_name}
14
15 Property:
16 slot:
17 Slot:
18 Width: {Width}
19 Depth: {Depth}
20 Conductivity: {Slot_Cond}
21 inside_surface_probe:
22 Resistive metal:
23 Region normals toward: 2Inside (R2)
24 Region normals away: PEC
25 Sigma: {Surf_Cond}
26 inside_surface:
27 Resistive metal:
28 Region normals toward: 2Inside (R2)
29 Region normals away: PEC
30 Sigma: {Surf_Cond}
31 outside_attached_slot:
32 Perfect metal:
33 Equation: pec_efie
34 Normals: in
35 Region: 1Outside (R1)
36 outside_remainder:
37 Perfect metal:
38 Equation: pec_cfie
39 Normals: in
40 Region: 1Outside (R1)
41
42 Region:
43 1Outside (R1):
44 Homogeneous:
45 Material: air
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46 2Inside (R2):
47 Homogeneous:
48 Material: air
49
50 Material:
51 air:
52 Simple:
53 Epsilon: [1.0, 0.0]
54 Mu: [1.0, 0.0]
55
56 Excitation:
57 Excitation 1:
58 Plane wave spherical:
59 Region: 1Outside (R1)
60 Incident field:
61 H field:
62 H theta: [0.0026544,0.0]
63 H phi: [0.0,0.0]
64 Propagation angle:
65 Theta: [0.0]
66 Phi: [0.0]
67
68 Frequency:
69 Rational interpolation:
70 Frequency lower bound: 1.12e9
71 Frequency upper bound: 1.15e9
72 Probe coordinate: [0.0, -0.30050, -0.0254]
73 Probe test direction: [0.0, 1.0, 0.0]
74 Relative tolerance: 1e-3
75 Maximum points: 31
76
77 Output:
78 File: output
79
80 ...
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APPENDIX B. Gemma Mesh File

1 # Build the Higgins slotted cylinder with one slot
2 # Cylinder is aligned with y axis with slot centered about z axis
3 #
4 # Units are meters
5
6 reset
7 reset aprepro
8 #{include("params.apr")}
9

10 # mesh size
11 # frequency of 5 GHz
12 # {delta=mesh_size}
13
14 # slot length
15 # Length is projected slot length; actual arc length is slightly longer
16 # Slot length is set on inner radius and adjusted on outer radius
17 # to give same arc length for slot inlet and outlet
18 #{slot_len_inch=slot_len} # length in inches
19 #{_slotlen=0.0254*slot_len_inch}
20 # Dimensions of cavity interior
21 # radius=4 in, h=24 in
22 #{_ri=0.1016}
23 #{_hi=0.6096}
24 # Dimensions of cavity exterior
25 # radius=4.25 in, h=24.5 in
26 #{_ro=0.1076}
27 #{_ho=0.6223}
28
29
30 create cylinder height {_ho} radius {_ro}
31 create cylinder height {_hi} radius {_ri}
32
33 # rotate cylinder to align with y axis
34 rotate volume all angle 90 about x
35 # create vertical curves to decompose surfaces
36 create curve vertex 1 2
37 create curve vertex 3 4
38 # Save ids of curves
39 #{cvo=5}
40 #{cvi=6}
41
42 # create horizontal curves to decompose for slot
43 curve 2 copy move x 0 y {0.5*_ho} z 0
44 curve 4 copy move x 0 y {0.5*_hi} z 0
45 #{cho=7}
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46 #{chi=8}
47
48 # Make curves to decompose cylinder symmetrically
49 curve {cvi} {cvo} copy rotate 180 about y
50
51 # Decompose for slot on inside and outside
52
53 # Adjust outside slot length to match slot length on inside
54 #{thi=asind(0.5*_slotlen/_ri)} # angle in degrees for inside slot
55 #{tho=_ri/_ro*thi} # match slot arc lengths
56 curve {cvi} copy rotate {-90+thi} about y
57 curve {cvi} copy rotate {-90-thi} about y
58 curve {cvo} copy rotate {-90+tho} about y
59 curve {cvo} copy rotate {-90-tho} about y
60
61 imprint volume 1 2 with curve with num_parent=0
62 delete curve with num_parent=0
63
64 # create triangle with centroid at probe location (1 in from axis)
65 #{_vertex1=Id("vertex")}
66 create vertex 0.0 {-0.5*_hi} {-0.0254-(delta/sqrt(3))}
67 create vertex { 0.5*delta} {-0.5*_hi} {-0.0254+(0.5*delta/sqrt(3))}
68 create vertex {-0.5*delta} {-0.5*_hi} {-0.0254+(0.5*delta/sqrt(3))}
69 create curve vertex {_vertex1+1} {_vertex1+2}
70 create curve vertex {_vertex1+2} {_vertex1+3}
71 create curve vertex {_vertex1+3} {_vertex1+1}
72 imprint volume 2 with curve with num_parent=0
73 delete curve with num_parent=0
74
75 # create slot surface
76 #{_curv1=Id("curve")}
77 create curve vertex 30 40
78 create curve vertex 23 33
79 create surface curve 24 {_curv1+1} 44 {_curv1+2}
80 merge curve in volume 1 with curve in volume 3
81 merge curve in volume 2 with curve in volume 3
82
83 # reverse normals for inside so they point into cavity
84 # (In Cubit 15.3 only works correctly if done before meshing)
85 reverse surface in volume 2
86
87 # Mesh
88 surface all size {delta}
89 surface all scheme trimesh
90 surface in vol 3 scheme map
91
92 # mesh slot
93 curve with length<0.0065 in volume 3 interval 1
94 curve 24 44 size {delta}/2
95 mesh surface in volume 3
96
97 # mesh inside and outside surfaces
98 mesh surface in volume 2 with has_scheme "trimesh"
99 mesh surface in volume 1 with has_scheme "trimesh"
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100
101 block 1 surface in volume 3 # slot
102 block 2 surface with area<{delta*delta} in volume 2 # probe element
103 block 3 surface with area>{delta*delta} in volume 2 # cavity inside
104 block 4 tri in volume 1 in node in curve in volume 3 # outside attached to

slot
105 block 5 tri in volume 1 except tri in node in curve in volume 3 # rest of

outside
106 #
107 block 1 name "slot"
108 block 2 name "inside_surface_probe"
109 block 3 name "inside_surface"
110 block 4 name "outside_attached_slot"
111 block 5 name "outside_remainder"
112
113 export mesh "higgins_cylinder_meters.g" overwrite
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