

Exceptional service in the national interest

Algebraic multigrid solver for nonlocal equations

Christian Glusa

CCR, Sandia National Laboratories
February 27, 2023

Elliptic nonlocal operators

Let $\delta \in (0, \infty]$ be the *horizon*, $\Omega \subset \mathbb{R}^d$ a bounded open domain, define the *interaction domain*

$$\Omega_I := \{\mathbf{y} \in \mathbb{R}^d \setminus \Omega : |\mathbf{x} - \mathbf{y}| \leq \delta, \text{ for } \mathbf{x} \in \Omega\}.$$

We want to numerically solve equations involving the nonlocal operator

$$\mathcal{L}u(\mathbf{x}) = \text{p.v.} \int_{\Omega \cup \Omega_I} (u(\mathbf{y}) - u(\mathbf{x})) \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{y}, \quad \mathbf{x} \in \Omega,$$

with

$$\begin{aligned} \gamma(\mathbf{x}, \mathbf{y}) &= \phi(\mathbf{x}, \mathbf{y}) |\mathbf{x} - \mathbf{y}|^{-\beta(\mathbf{x}, \mathbf{y})} \mathcal{X}_{|\mathbf{x} - \mathbf{y}| \leq \delta}, & \mathbf{x}, \mathbf{y} \in \Omega \cup \Omega_I, \\ \phi(\mathbf{x}, \mathbf{y}) &> 0. \end{aligned}$$

■ Examples:

- Integral fractional Laplacian: $\phi \sim \text{const}$, $\beta = d + 2s$, $s \in (0, 1)$, $\delta = \infty$
- Tempered fractional Laplacian: $\phi(\mathbf{x}, \mathbf{y}) \sim \exp(-\lambda |\mathbf{x} - \mathbf{y}|)$
- Truncated fractional Laplacian: δ finite
- Variable order fractional Laplacians with varying coefficient: $\beta(\mathbf{x}, \mathbf{y}) = d + 2s(\mathbf{x}, \mathbf{y})$, $\phi(\mathbf{x}, \mathbf{y}) > 0$
- Integrable kernels: constant kernel ($\beta = 0$), “peridynamic” kernel ($\beta = 1$)

■ Assumptions:

- γ is symmetric.
- Interaction domain is defined wrt ℓ_2 -norm.

After FEM discretization:

$$\mathbf{A}\mathbf{x} = \mathbf{b}, \quad \mathbf{A} \in \mathbb{R}^{n \times n}$$

Depending on δ and h :

- Straightforward discretization can lead to a fully dense matrix.
- Assembly and solve would have at least $\mathcal{O}(n^2)$ complexity and memory requirement.

Better approach

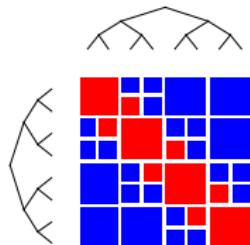
Panel clustering / Fast Multipole Method / hierarchical matrix approximation

Operator targeted for this talk:

$$(-\Delta)^s u(\mathbf{x}) = \text{p.v.} \int_{\mathbb{R}^d} d\mathbf{y} (u(\mathbf{x}) - u(\mathbf{y})) \gamma(\mathbf{x}, \mathbf{y}), \quad \mathbf{x} \in \Omega \subset \mathbb{R}^d$$

with kernel $\gamma(\mathbf{x}, \mathbf{y}) \sim 1/|\mathbf{x} - \mathbf{y}|^{d+2s}$, $\delta = \infty$ and homogeneous Dirichlet boundary conditions.

Hierarchical matrices: Admissible sub-blocks



1. Flag sub-blocks for compression
2. Construct low-rank approximations

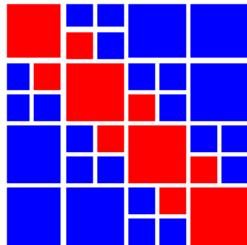
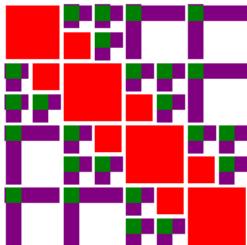
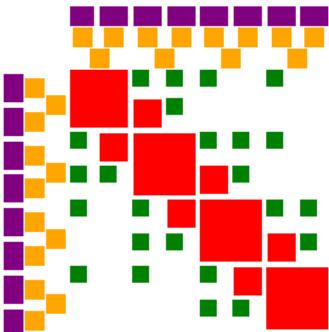
Build tree of clusters of DoFs.

- root contains all unknowns
- subdivision based on coordinates
- distributed computations: first level given by MPI distribution of unknowns

Criterion:

- Cluster pairs (P, Q) that are sufficiently separated compared to their sizes are *admissible* for compression.
- Matrix entries that are not part of any admissible blocks are assembled directly into a sparse near-field matrix A_{near} .

Hierarchical matrices: low-rank approximation



- Splitting of operator into sub-blocks based on admissibility

$$A = A_{\text{near}} + A_{\text{far}} = A_{\text{near}} + \sum_{\text{blocks}(P, Q)} A_{P, Q}$$

- \mathcal{H} -matrix approximation

$$A_{P, Q} \approx U_P \Gamma_{P, Q} U_Q^T \quad (\text{low-rank approximation})$$

- \mathcal{H}^2 -matrices

Using hierarchical nestedness of clusters, can express

$$U_P = \sum_{Q \text{ child of } P} U_Q T_{Q, P}$$

Matrix-vector product with an \mathcal{H}^2 -matrix

$$A = \text{red sparse matrix} + \text{purple block-diagonal matrix with yellow blocks}$$

Steps:

- Matvec with sparse near-field matrix
- Upward recursion
- Cluster-cluster interaction
- Downward recursion

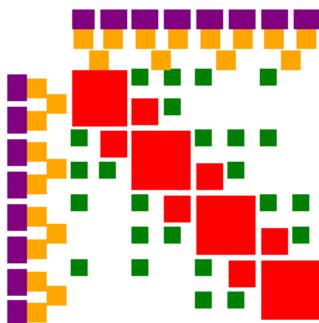
\mathcal{H}^2 -matrix approximation

Matrix-vector product (and FE assembly) in $\mathcal{O}(n \log^{2d} n)$ operations & memory.

Representation using sparse matrices

Recast hierarchical matrices in terms of sparse matrices

- No special purpose code
- Leverage well-optimized distributed sparse linear algebra



Reindexing of far-field leads to

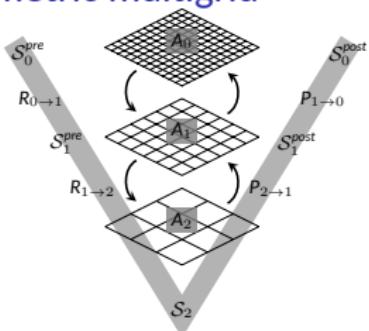
$$A \approx A_{\text{near}} + B \left[(I + T_K)^T \cdots (I + T_0)^T \right] \Gamma \left[(I + T_0) \cdots (I + T_K) \right] B^T,$$

A_{near} and Γ involve MPI communication, all other matrices are block diagonal

Solvers

- Dense direct solvers
 $\mathcal{O}(n^3)$ complexity, $\mathcal{O}(n^2)$ memory
- Hierarchical direct solvers $\mathcal{O}(n \log n)$ scaling, but often very large constant and nontrivial implementation
- Iterative solvers
 - $\mathcal{O}(n \log n)$ for single matvec
 - need preconditioners to achieve small number of iterations
 - Scalable options for elliptic PDEs:
 - Domain decomposition
 - Multigrid

Geometric multigrid



User specifies:

- Operators A_ℓ , assembled on hierarchy of nested meshes
- Transfer operators: prolongations $P_{\ell+1 \rightarrow \ell}$, restrictions $R_{\ell \rightarrow \ell+1} = P_{\ell+1 \rightarrow \ell}^T$,
- Smoothers $S_\ell^{\text{pre/post}}$ (e.g. Jacobi)
- Coarse solver S_L

How does multigrid work?

- On each level: smoother reduces high frequency error, low frequency error is transferred to coarser levels
- High/low frequency splitting depends on mesh

Drawbacks:

- Need hierarchy of nested meshes, complications for locally refined meshes
- Assembly on every level, tight coupling between assembly and solve

Smoothed Aggregation Algebraic multigrid (SA-AMG)

User specifies:

- A_0 , DoF coordinates \mathbf{c} , near-nullspace (constant, rigid body modes, etc)

AMG setup

- “aggregation”: construction of transfer operators $P_{\ell+1 \rightarrow \ell}$ using only algebraic information (e.g. matrix graph, strength of connection)
- Galerkin projection $A_{\ell+1} = P_{\ell+1 \rightarrow \ell}^T A_\ell P_{\ell+1 \rightarrow \ell}$

Issues for nonlocal problems:

- Usual graph algorithms used for AMG construction cannot be applied directly to \mathcal{H} -matrices
- Inefficient for operators that are too dense
- Hierarchical information contained in \mathcal{H} -matrix does not translate well into a multigrid hierarchy.

Auxiliary operator multigrid

Idea

- Construct multigrid transfer operators $P_{\ell+1,\ell}$ wrt an auxiliary matrix \tilde{A}_0 .
- Then construct preconditioner via Galerkin projections

$$A_{\ell+1} = P_{\ell+1 \rightarrow \ell}^T A_\ell P_{\ell+1 \rightarrow \ell}.$$

Requirements for auxiliary operator:

- sparse
- contains sufficient information about nonlocal problem

Possible auxiliary operators:

- PDE Laplacian on the same mesh
- distance Laplacian on graph G of filtered near-field matrix

$$L_{ij} = \begin{cases} -1/|\mathbf{c}_i - \mathbf{c}_j| & \text{if } (i, j) \in G, i \neq j, \\ -\sum_{k \neq i} L_{ik} & \text{if } i = j, \end{cases}, \quad \mathbf{c}_i \text{ DoF coordinates}$$

- lumped and re-scaled near-field matrix

Additional operations on \mathcal{H}^2 -matrices

- Galerkin projection:

If

$$A \approx A_{\text{near}} + B \left[(I + T_K)^T \cdots (I + T_0)^T \right] \Gamma \left[(I + T_0) \cdots (I + T_K) \right] B^T,$$

then

$$P^T A P \approx \underbrace{P^T A_{\text{near}} P}_{\text{multiplied out}} + \underbrace{(P^T B)}_{\text{multiplied out}} \left[(I + T_K)^T \cdots (I + T_0)^T \right] \Gamma \left[(I + T_0) \cdots (I + T_K) \right] (P^T B)^T.$$

- This is reusing the same compression of the off-rank matrix blocks.
- Low-rank representation of small sub-blocks might not be efficient anymore.

- Recompression:

Drop one (or more) levels of the cluster tree:

$$A \approx \left[A_{\text{near}} + B(I + T_K)^T \Gamma_K (I + T_K) B^T \right]$$

$$+ \left[B(I + T_K)^T \right] \left[(I + T_{K-1})^T \cdots (I + T_0)^T \right] [\Gamma - \Gamma_K] \left[(I + T_0) \cdots (I + T_{K-1}) \right] \left[B(I + T_K)^T \right]$$

- Conversion to dense format: multiply it all out

⇒ All operations required for AMG setup use sparse matrix-matrix addition & multiplication.

Implementation details

Components:

- PyNucleus¹ for assembly of nonlocal operators
- Trilinos/Tpetra² for distributed sparse linear algebra
- Trilinos/Belos² for Krylov solvers
- Trilinos/MueLu² for Algebraic Multigrid
- Kokkos³ programming model for performance portability

Features:

- \mathcal{H} - and \mathcal{H}^2 -matrices, reader for hierarchical operators
- Krylov solvers, AMG preconditioner
- MPI distributed
- Compute architectures supported by Kokkos:
CPU (Serial, OpenMP), GPU (Cuda, HIP, ...), ...

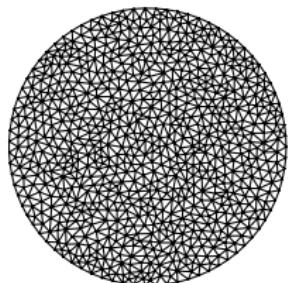
¹<https://github.com/sandialabs/PyNucleus>

²<https://github.com/trilinos/Trilinos>

³<https://github.com/kokkos/kokkos>

Numerical results - CPU

Solo, SNL, Broadwell CPUs



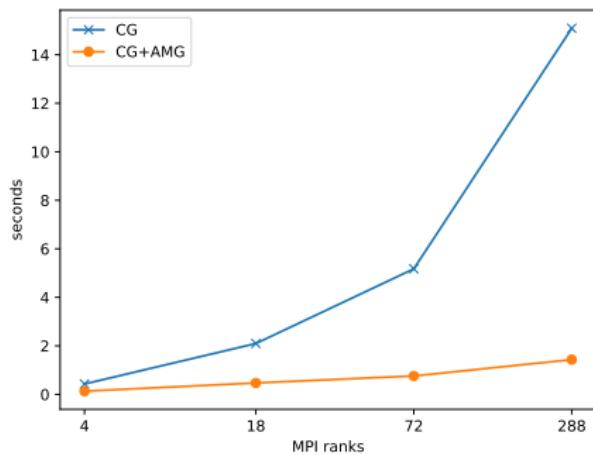
- Quasi-uniform mesh, P1 elements
- 2 Jacobi sweeps of pre-/post-smoothing
- LAPACK coarse solve

DoFs	ranks	memory (finest level)		iterations (time)	
		dense	\mathcal{H}^2	PDE Δ	distance Δ
12,173	4	1.1 GB	0.1 GB	8 (0.15s)	8 (0.14s)
49,139	18	18 GB	0.55 GB	8 (0.47s)	9 (0.54s)
197,565	72	291 GB	3 GB	9 (0.73s)	10 (0.84s)
792,548	288	4,680 GB	19.7 GB	9 (1.43s)	10 (1.56s)
n	n	n^2	$n \log^4 n$	constant ($\log^4 n$)	

Table: 2D fractional Poisson problem on unit disk, $s = 0.75$, $\delta = \infty$

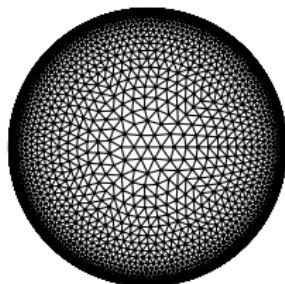
- Dense matrices only for comparison.
- Only the first two dense problems would actually fit in memory.

Numerical results - Comparison with unpreconditioned CG



- Both solvers use a \mathcal{H}^2 -matrix.
- AMG preconditioned solve is scalable, Krylov by itself is not.

Numerical results - graded meshes



- Motivation: resolution of low regularity near domain boundary improves convergence of discretization error
- Weak scaling of solve time needs work (load balancing).

DoFs	h_{\max}/h_{\min}	ranks	memory (finest level)		iterations (time) CG+SA-AMG
			dense	\mathcal{H}^2	
15,852	105	4	1.87 GB	0.33 GB	7 (0.37s)
78,674	218	18	46.1 GB	2.4 GB	7 (1.74s)
363,472	439	72	984.3 GB	16.6 GB	8 (3.73s)

Table: 2D fractional Poisson problem on graded unit disk, $s = 0.75$, $\delta = \infty$

Numerical results - GPU

Lassen, LLNL, V100 GPUs

DoFs	ranks	memory (finest level)		iterations (time) CG+SA-AMG
		dense	\mathcal{H}^2	
49,139	4	18 GB	0.6 GB	9 (0.12s)
197,565	16	291 GB	2.9 GB	11 (0.29s)
792,548	64	4,680 GB	14.7 GB	12 (0.62s)
3,175,042	256	75,109 GB	61.9 GB	12 (1.79s)

Table: 2D fractional Poisson problem on unit disk, $s = 0.75$, $\delta = \infty$

- 1000x reduction in memory
- Weak scaling behavior can be improved
(no AMG parameter tuning for GPU so far)

Conclusion:

- Algebraic multigrid for nonlocal elliptic equations in hierarchical format:
scalable in iterations, memory, complexity
- Sparse matrix representation of hierarchical matrices allows to leverage a lot of
existing code.

Outlook:

- Coefficients variations (AMG should be good for that!)
- Application to nonlocal operators in sparse format
(finite kernel interaction horizon, peridynamics)
- Application to boundary integral equations

Thank you for your attention!