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Elliptic nonlocal operators
Let § € (0, oo] be the horizon, 2 C R* a bounded open domain, define the
interaction domain

Q:={yeR"\Q:|x—y| <4, forxeQ}.

We want to numerically solve equations involving the nonlocal operator

Lot =p. [ () -unxndy,  xew
QU
with
’Y(X7Y) = ¢(X7Y) |X - Y|7B(X’Y) X|x7y\§5a X,y € Qu Qla
o(x,y) > 0.
m Examples:

m Integral fractional Laplacian: ¢ ~ const, 8 = d 4 2s,s € (0,1),0 = oo
m Tempered fractional Laplacian: ¢(x,y) ~ exp(—A|x —y|)
m Truncated fractional Laplacian: ¢ finite
m Variable order fractional Laplacians with varying coefficient: 3(x,y) = d + 2s(x, y),
d(x,y) >0
m Integrable kernels: constant kernel (3 = 0), “peridynamic” kernel (5 = 1)
m Assumptions:
| 7y is symmetric.
m Interaction domain is defined wrt £5-norm.
2/18



After FEM discretization:

Ax = Db, AcR™"

Depending on § and h:
m Straightforward discretization can lead to a fully dense matrix.

m Assembly and solve would have at least O(nQ) complexity and memory
requirement.

Better approach

Panel clustering / Fast Multipole Method / hierarchical matrix approximation

Operator targeted for this talk:

(=AY u(x) =p. v./ dy (u(x) —u(y))v(x,y), xeQcR?

Rd

d+2s 5 o

with kernel y(x,y) ~ 1/ |x —y| oo and homogeneous Dirichlet boundary

conditions.
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Hierarchical matrices: Admissible sub-blocks B .

1. Flag sub-blocks for compression

2. Construct low-rank approximations

Build tree of clusters of DoFs.

m root contains all unknowns

m subdivision based on coordinates

m distributed computations: first level given by MPI distribution of unknowns
Criterion:

m Cluster pairs (P, Q) that are sufficiently separated compared to their sizes are
admissible for compression.

m Matrix entries that are not part of any admissible blocks are assembled directly
into a sparse near-field matrix Anear.
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Hierarchical matrices: low-rank approximation o
T T T T

m Splitting of operator into sub-blocks based on admissibility

A = Anear + Afar = Anear + Z AP,Q
blocks(P,Q)

m H-matrix approximation
Apq & Upr@UB (low-rank approximation)

m H2-matrices
Using hierarchical nestedness of clusters, can express

Up = Z UaTa,r

Qchild of P
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Matrix-vector product with an 2-matrix s

[ 1 1 1 1 1 1 ]
. . wEa s
™
... = n EEN
A= ] + """ ]
.. " " Em
| - Em ]
. o " " =
5 EEm

Steps:
m Matvec with sparse near-field matrix
m Upward
m Cluster-cluster interaction

[ recursion

H2-matrix approximation

Matrix-vector product (and FE assembly) in O (n log®® n) operations & memory.
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Representation using sparse matrices s

Recast hierarchical matrices in terms of sparse matrices
m No special purpose code

m Leverage well-optimized distributed sparse linear algebra

Reindexing of far-field leads to
AR Anear + B (14T (14 T)T T[4 70) - (14 T BT,

Anear and I' involve MPI communication, all other matrices are block diagonal

7/18



Sandia
Solvers () .

m Dense direct solvers
O(n*) complexity, O(n?) memory

m Hierarchical direct solvers O(nlog n) scaling, but often very large constant and
nontrivial implementation

m lterative solvers

m O(nlogn) for single matvec

m need preconditioners to achieve small number of iterations
m Scalable options for elliptic PDEs:

B Domain decomposition
B Multigrid
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Geometric multigrid (D=

User specifies:
m Operators Ay, assembled on hierarchy of nested meshes
m Transfer operators: prolongations P,y 1_,¢, restrictions Re—e+1 = Pjq1_,,,

® Smoothers S?re/pm (e.g. Jacobi)
m Coarse solver S;
How does multigrid work?

m On each level: smoother reduces high frequency error, low frequency error is
transferred to coarser levels

m High/low frequency splitting depends on mesh
Drawbacks:
m Need hierarchy of nested meshes, complications for locally refined meshes

m Assembly on every level, tight coupling between assembly and solve
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Smoothed Aggregation Algebraic multigrid (SA-AMG) @ .

User specifies:
m Ap, DoF coordinates ¢, near-nullspace (constant, rigid body modes, etc)
AMG setup

m “aggregation”: construction of transfer operators P41, using only algebraic
information (e.g. matrix graph, strength of connection)

m Galerkin projection Apy1 = PLrlﬂgAePz-H—w
Issues for nonlocal problems:

m Usual graph algorithms used for AMG construction cannot be applied directly
to H-matrices

m Inefficient for operators that are too dense

m Hierarchical information contain in H-matrix does not translate well into a
multigrid hierarchy.
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Auxiliary operator multigrid (]

m Construct multigrid transfer operators Py 1 ¢ wrt an auxiliary matrix Zo.

m Then construct preconditioner via Galerkin projections
Avi1 =Pl eAcPrii—se.

Requirements for auxiliary operator:

B sparse

m contains sufficient information about nonlocal problem
Possible auxiliary operators:

m PDE Laplacian on the same mesh

m distance Laplacian on graph G of filtered near-field matrix

LYl —ql i) € G,
-l ifi=],

m lumped and re-scaled near-field matrix

, ¢ DoF coordinates
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Additional operations on 2-matrices @ .

m Galerkin projection:
If

AR Anear +B[(1+T) - (14 To) | T [(1+ To) - (1 + T&)] B',
then

PTAP ~ P'AnearP + (P'B) [(I1+Tk)"- - (I+To) | D[(I+To)--- (I+Tk)] (P'B)".

multiplied out  multiplied out

m This is reusing the same compression of the off-rank matrix blocks.
m Low-rank representation of small sub-blocks might not be efficient anymore.

m Recompression:
Drop one (or more) levels of the cluster tree:

A~ [Ancar + B(I + T¢) Tk (I + Tk)B']
+ [BU+T)"] [(1+ Tk—1)" -+ (1 + To)"] [T = Tk [(1+ To) - - (I + Tk—1)] [B(I +

m Conversion to dense format: multiply it all out

= All operations required for AMG setup use sparse matrix-matrix addition &
multiplication.
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Implementation details

Components:
m PyNucleus? for assembly of nonlocal operators
m Trilinos/Tpetra? for distributed sparse linear algebra
m Trilinos/Belos? for Krylov solvers
m Trilinos/MueLu? for Algebraic Multigrid
m Kokkos® programming model for performance portability

Features:
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Laboratories

Lkokkos

m 7- and H>-matrices, reader for hierarchical operators

m Krylov solvers, AMG preconditioner

m MPI distributed

m Compute architectures supported by Kokkos:
CPU (Serial, OpenMP), GPU (Cuda, HIP, ...), ...

'https://github.com/sandialabs/PyNucleus
https://github.com/trilinos/Trilinos

*https://github. com/kokkos/kokkos
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Numerical results - CPU () .
Solo, SNL, Broadwell CPUs

® Quasi-uniform mesh, P1 elements
m 2 Jacobi sweeps of pre-/post-smoothing

m LAPACK coarse solve

memory (finest IeveI) iterations (time)
DoFs | ranks dense H? | PDEA distance A
12,173 4 1.1GB 0.1GB | 8(0.15s) 8(0.14s)
49,139 18 18 GB 0.55GB | 8(0.47s) 9(0.54s)
197,565 72 291 GB 3GB | 9(0.73s) 10(0.84s)
792,548 288 | 4,680 GB 19.7GB | 9(1.43s) 10 (1.56s)
n n nZ  nlog'n constant (log? n)

Table: 2D fractional Poisson problem on unit disk, s = 0.75, § = oo

m Dense matrices only for comparison.

m Only the first two dense problems would actually fit in memory.
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Numerical results - Comparison with unpreconditioned CG s

— CG
14 —o— CG+AMG

seconds

4 18 72 288
MPI ranks

m Both solvers use a H2-matrix.

m AMG preconditioned solve is scalable, Krylov by itself is not.
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Numerical results - graded meshes @ .

m Motivation: resolution of low regularity near
domain boundary improves convergence of
discretization error

m Weak scaling of solve time needs work (load
balancing).

memory (finest level) | iterations (time)
DOFs  Hmax/hmin | ranks dense H? | CG+SA-AMG

15,852 105 4 1.87GB 0.33GB | 7(0.37s)
78,674 218 18 46.1 GB 2.4GB | 7(1.74s)
363,472 439 72 | 984.3GB 16.6 GB | 8(3.73s)

Table: 2D fractional Poisson problem on graded unit disk, s = 0.75, § = oo
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Numerical results - GPU D=

Lassen, LLNL, V100 GPUs

memory (finest level) | iterations (time)

DoFs | ranks dense H? | CG+SA-AMG
49,139 4 18 GB 0.6GB | 9(0.12s)
197,565 16 291 GB 2.9GB | 11(0.29s)

792,548 64 4,680GB  14.7GB | 12(0.62s)
3,175,042 256 | 75,109GB  61.9GB | 12(1.79s)

Table: 2D fractional Poisson problem on unit disk, s = 0.75, § = oo

m 1000x reduction in memory

m Weak scaling behavior can be improved
(no AMG parameter tuning for GPU so far)
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Conclusion:

m Algebraic multigrid for nonlocal elliptic equations in hierarchical format:
scalable in iterations, memory, complexity

m Sparse matrix representation of hierarchical matrices allows to leverage a lot of
existing code.

Outlook:
m Coefficients variations (AMG should be good for that!)

m Application to nonlocal operators in sparse format
(finite kernel interaction horizon, peridynamics)

m Application to boundary integral equations

Thank you for your attention!
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