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Has the tremendous success of deterministic computing left 
probabilistic applications behind?
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Stochasticity reveals contrast in computing 
approaches
• Modern microelectronics spends 

tremendous resources in enforcing 
determinism

• The brain embraces and controls 
stochasticity across spatial and time 
scales

Developing probabilistic computing to 
address probabilistic applications
• Co-design is proving invaluable in 

developing this novel paradigm for 
microelectronics

~20 W
~1015 synaptic events / second
Fully stochastic 

~400 W
~1013-1014 FLOPS
Fully deterministic

Which approach is best 
to interpret an 

ambiguous input?



Today’s Minisymposium

3

• What features of probabilistic 
computing would enable the 
applications of tomorrow?

• How can we design novel 
algorithms that utilize 
probability and stochasticity in 
relevant applications?

• What new probabilistic, 
numerical, and mathematical 
theory are necessary?

• How can design of systems and 
circuits guide our mathematical 
choices?
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Can devices provide ubiquitous, 
useful stochasticity?

Can we compute on distribution?



A New Probabilistic Computing Paradigm
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Today

Future

Model stochastic systems entirely within stochastic hardware, no software.



A New Probabilistic Computing Paradigm
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• Use TRNG Bernoulli devices to 
push random computation 
today onto hardware.

• Build devices with use case in 
mind while improving speed 
and energy of probabilistic 
computing applications.

• First – perform uniform TRNG 
draw.

“Probabilistic neural computing with stochastic devices”  Misra et al., Advanced Materials. 2023



Random Numbers Are a Limiting Cost in Applications
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Up to half of compute time can be spent 
just generating uniform random numbers.

“Probabilistic neural computing with stochastic devices”  Misra et al., Advanced Materials. 2023



From 
COINFLIPS to 
Distributions



Drawing a Uniform Random Number
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H H T T TTH T

1               1              0               1              0               0              0               0

Suppose we have a fair coin.



Drawing a Random Number from an Unfair Coin

10

What if your coin is biased?



Draw a Random Number from an Unfair Coin
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Quick Fun Fact – The Devil’s Staircase
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Draw a Random Number from an Unfair Coin
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How safe are biased coins?
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8-bit draws p-value

1000 0.853 Pass

5000 0.631 Pass

10,000 0.119 Pass

20,000 0.010 Pass

50,000 1.07e-4 Pass

50,000 2.17e-15 Fail



How many samples can I draw?
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0.55 1558

0.51 40,275

0.501 4,033,069

0.5001 403,312,444

0.50001 40,331,249,944

0.5



Devices and Uncertain Bias
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MTJ Coinflip device

40 nm circular pMTJ with CoFeB/W/CoFeB 
composite free layer

• Devices may not fit into an idealized 
setting.

• Can we categorize a device with 
random effects that can make use of 
our developed methodologies?

TD Coinflip device



Coins with 
Uncertain Bias



Coins with Uncertain Bias
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Reducing Mean Bias

19

• Whether using average bias contribution or a fixed repeated bias, a single XOR reduces 
bias.

• For fixed coin-to-coin biases, more analysis is needed.

Coin Probability
0
1

Coins Probability XOR Probability
0 1

1
1 0
0 0 

0
1 1 

0.55 1558

0.505 161,269

0.50005 1,613,249,944

Two XORs!



Real Data from a Tunnel Diode Device
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• Real devices probably do not 
behave in those nice modes.

• Nonetheless, an XOR application 
can still remove or lessen average 
deviations from fair.

8-bit Binary-Encoded Output from a TDXOR 8-Bit Binary Output from a TD2 XOR 8-Bit Binary Output from a TD

2 XOR Stream at 100K Bits 
passes our significance test.

Generate 100K 8-Bit Uniform Numbers



Is a Coin the Best Model for the Device?
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• Being a reliable coin is probably unrealistic.
• Can we model the device state as a Poisson 

arrival process?
0 1



Is the Coin the Best Model for the Device?

22

• Given this preference, how can we 
correct?

• Can we correct with a simple 
circuit?

• Device could be described as a 
random variable that has a 
preference of staying the same 
value.



Flipping the Output

23

XAND

Once XANDed to remove dependence, you 
can reduce bias through repeated XORs.



Future and Ongoing Work
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“AI-enhanced Codesign for Probabilistic Neural 
Circuits,” Cardwell SG et al.  International 
Conference on Rebooting Computing (ICRC) 
2022.

“Probabilistic neural computing with stochastic devices”  
Misra S et al.  Advanced Materials. 2023

“Stochastic Neuromorphic Circuits for Solving 
MAXCUT” Theilman, BH et al. International Parallel 
and Distributed Processing Symposium (IPDPS) 
2023. Accepted.



Thanks!!
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• Office of Science Co-Design in 
Microelectronics program
• Co-funded through ASCR and BES, 

participation by NP, HEP, and FES

• COINFLIPS is partnering with a 
growing number of organizations

o Andy Kent @ New York University
o Jean Anne Incorvia @ University of Texas Austin
o Katie Schuman @ University of Tennessee
o Prasanna Date @ Oak Ridge National Laboratory
o Les Bland @ Temple University

• Check us out at https://coinflipscomputing.org 

https://coinflipscomputing.org


Is it reasonable to think fair coins are unambiguously uniform?
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8-bit draws p-value Pass/Fail at 
99.5%

1000 0.770 Fail

10,000 0.382 Fail

100,000 0.490 Fail

1,000,000 .829 Fail



Applying XAND then XOR to TD Data
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Adder, No Carry
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Previous Coin Next Sequence Added Value Probability Total 
Probability



Use of TD Data in Real Application
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Lemmas – Idea 
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Realized Features of Brain 
Inspiration in 

Neuromorphic Hardware

• Event-driven communication 

• Graph based connectivity

• Processing in Memory

• In situ learning 

• Analog computation

• Post-Moore’s Law Devices

• Ubiquitous stochasticity



36

Realized Features of Brain 
Inspiration in 

Neuromorphic Hardware

• Event-driven communication 

• Graph based connectivity

• Processing in Memory

• In situ learning 

• Analog computation

• Post-Moore’s Law Devices

• Ubiquitous stochasticity

Intel Loihi 2
Millions of CMOS neurons
Billions of CMOS synapses
~ 1 Watt power

Today

Tomorrow

Zidan et al., 2018

Post-Moore Devices 
(ECRAM, Memristors, MTJs, etc)

Scale to human sizes?


