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/ Has the tremendous success of deterministic computing left
probabilistic applications behind?

~20W
~10"> synaptic events / second
Stochasticity reveals contrast in computing | | Fully stochastic
approaches Which approach is best
*  Modern microelectronics spends tobmterpre.t an .
tremendous resources in enforcing ambiguous input:
determinism
* The brain embraces and controls
stochasticity across spatial and time
scales
Developing probabilistic computing to ~400 W

address probabilistic applications

 Co-design is proving invaluable in
developing this novel paradigm for
microelectronics

~1013-10" FLOPS
Fully deterministic




P/ Today’s Minisymposium

What features of probabilistic
computing would enable the
applications of tomorrow?

How can we design novel
algorithms that utilize
probability and stochasticity in
relevant applications?

What new probabilistic,
numerical, and mathematical
theory are necessary?

How can design of systems and
circuits guide our mathematical
choices?
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A New Probabilistic Computing Paradigm
Today

Model

Desire Non-Uniform

Al

Sample Non-Uni for

/\[[I]]]lh/\ PRNG/_\

_LIITITH

Draw Uniform

MCMC
MH, Gibbs

Accept / Reject

~_

Future

Model stochastic systems entirely within stochastic hardware, no software.




A New Probabilistic Computing Paradigm
Level 0: Hardware draw uniform sample, convert to desired type in software

R """;;— _ —

« Use TRNG Bernoulli devices to ‘fj III S, Model
push random computation OOO llllllll I Ill- —
today onto hardware. @rQWEfe_ B f PRS2 6_’_ L _°_‘ SEEEA Software |

- Build devi ith i | ‘ l I
mL#]d w?ﬂgei?nvglrov?rfg SCStSeiclln 'OGGO LUUtUUe |

and energy of probabilistic SO . —— — < I W .
computing applications. Level 2: Perform computation on distributions, partially implementing model in hardware

 First - perform uniform TRNG e’
draw. | GGQQ uj]:m:h !!!!!!!! |

g | — ‘\d/ { ———
.@@8@ ’:‘:ijlh PO
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“Probabilistic neural computing with stochastic devices” Misra et al., Advanced Materials. 2023 ‘



7~ Random Numbers Are a Limiting Cost in Applications
4

Detector response

0.1 Hadronization in n x ¢ space
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Parton Hadron Detector

0.08

0.06

0.04 Up to half of compute time can be spent

just generating uniform random numbers.
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Fraction of CPU time in RNG
“Probabilistic neural computing with stochastic devices” Misra et al., Advanced Materials. 2023




From
COINFLIPS to

Distributions
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/" Drawing a Uniform Random Number

Suppose we have a fair coin.

=0.8125
1 1 0 1 0 0 0 0

1 1 1 1 1 1 1 1

2° 27 23 2° 28 26 27 28




P Drawing a Random Number from an Unfair Coin
Let x; € {0,1} with appropriate

What if your coin is biased?

Extend to a pdf on the real line.

Let x € [0,1] and let by, , be the firstn
digits in the binary expansion of x.

Set ¥ b, , to be the number of 1'sin by, 4.

blll bnk
fo(x) = 2npp EPnpe

probability.
Set

n
ZJC
2!

i=1

Then, the probability mass function is
gn(Xy) = pp i XipEii

1
Po F E:’ fﬂ._}ﬂ




. Draw a Random Number from an Unfair Coin
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7~ Quick Fun Fact - The Devil's Staircase

1.00- i
// 0.85- —
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Draw a Random Number from an Unfair Coin

e

p, = 0.24

0.00

T
Q.00

T
Q.10

T
0.20

T
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0.40
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T T
0.80

T T T T T T 1
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odf
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Approx. CDF, 8 coins with P(H)=0.24

location




How safe are biased coins?

/4 p; =051

1000 0.853 Pass 250 -
200 1

5000 0.631 Pass
150
10,000 0.119 Pass 100 -
5_0 .

20,000 0.010 Pass
u-

50,000 1.0/e-4 Pass

50,000 2.17e-15 Fail




=0
[N] = :
E b o ipb =i LY
2 ; -\ PiPo T 5
Xerit 1S depenaen "gj ur Signiﬁcagce evel

and bits.
b is the number of bits.
py is the probability of heads.

E.‘r

" 2 2
(Z 1, (1) - N,’Z*’) -
ar[N]=c = =

v E|\ 4 (N/2%)

0.55

0.51

0.501

0.5001

0.50001

0.5

V]

1558

40,275

4,033,069

403,312,444

40,331,249,944
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Devices and Uncertain Bias

MT] Coinflip device

!

NYU
H

40 nm circular pMTJ with CoFeB/W/CoFeB

composite free layer

TD Coinflip device

Tunnel Current

Voltage

Devices may not fit into an idealized
setting.

Can we categorize a device with
random effects that can make use of
our developed methodologies?




Coins with

Uncertain Bias




€ (e=f())

Two cases:
« Realization of ¢ is fixed, but random across devices/coins.
+ Realization of € changes for a single coin from use to use.

Flipping a single coin repeatedly: E [N]
« For fixed ¢, we gain the bias of ¢.
« For random, we gain the mean of € on average. VCLT‘[N]

Flipping a different coin every time:
» For fixed ¢ per coin, you get 2” unique bin probabilities. ¢§
For iid, we gain the mean of € on average.




P/ Reducing Mean Bias

/ Probability

0.5—c¢
| 1558
095 _ 2 Two XORs!
N 0.505 161,269
10 0.25 — g?
00 025+ 2 +¢ ) 0.50005 1,613,249,944
11 0.25 - 2¢ +¢? e

- Whether using average bias contribution or a fixed repeated bias, a single XOR reduces
bias.

 For fixed coin-to-coin biases, more analysis is needed.




Real Data from a Tunnel Diode Device
Generate 100K 8-Bit Uniform Numbers

* Real devices probably do not 8-DR RSB RIRAS ORI R 30D

behave in those nice modes.

* Nonetheless, an XOR application
can still remove or lessen average 100 1

deviations from fair.
300

200 1

1[.“}_

00 0z 04 06 0.8 10

2 ROR: p-value ~ B.81%x 107238
2 XOR Stream at 100K Bits

passes our significance test.




/~Is a Coin the Best Model for the Device? A

* Being a reliable coin is probably unrealistic.

« Can we model the device state as a Poisson
arrival process?

A1

Device Estimates for Poisson Rate, lambda_0 Device Estimates for Poisson Rate, lambda_1
17.5 1
17 4
15.0
?ul 10 1 :I
lé l'é 125 A
5 ¥ Ag ¥ 1.763 5 Ay~ 1777
8 g™
y ® 7
m m 75 4
E 4 * » & E [ ]
(1] l (I} 5_:] i 'Y It
2 .
25 1 l L
ﬂ 1 I I I I T 1 ! ! I !
10t 10¢ 10° 10¢ 10° 10! 10¢ 10° 10¢ 107

Amount of Data Points Amount of Data Points
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Is the Coin the Best Model for the Device?

Ay Ag o
Pl0—0:At b - o~ (4 +4,)0t
| ] A, + 4 A, + A
A A, .
P[1—1:At - - o~ (A + 4,)At
| ] A, + 4, A, + A
1 1 ..
P[same;At] = 5 + FE_ ZAt

Device could be described as a
random variable that has a
preference of staying the same
value.

Given this preference, how can we
correct?

Can we correct with a simple
circuit?




/

rd

e

rd

Flipping the Output

Pl[1-1] =r
P[1-0]=1-17r

P[0 - 0] =7
Pl0—1]=1—7 ;

Let x; represent the device output and o; represent
an observed output.

Plo,=1|x,_ 1 =1|=P[x; = 1|x,_; = 1]
[

Plo;=1|x;_1 =0]=P[x; =0|x;,_, = 0]

=r

x:000110100110101

0:011010001010000

XAND

—_ O R O R R OO, O RmEmOoOo o
_ O R OR PR OORORmREm D oo
OO0 OROOORORM=O

Once XANDed to remove dependence, y
can reduce bias through repeated XORs.

ou
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/ 4-sided Die Histogram 2000 Samples

/" Future and Ongoing Work
4 00 90

/ Target Distribution

III-
X

[=1]
=

1
P[Coin1 = Hand Coin2 = H] = 3
1

P[Coin 1 = H and Coin2 =T] = %

1
P[Coin 1 = T and Coin 2 = H] = %

[=]
=

HT T™H
Bins

W '_I_| lP’[Coin 1=TandCoin2 = H] =% d-sided Die H|-5[ugrﬂm
0.5 4 oy
b L I
1 9 |
044 \ |
X=1 Coin1 Coin 2 Z ! '
. . , lg 0.3 9
Xx=10_ "Al-enhanced Codesign for Probabilistic Neural %
Circuits,” Cardwell SG et al. International g0
X=100 Conference on Rebooting Computing (ICRC) o
2022.

Binvi

fgg;ﬁ?ﬁﬁ?iﬁ @B —Toomer
0100 orene & —oreer “Stochastic Neuromorphic Circuits for Solving
Xt ) —ms MAXCUT” Theilman, BH et al. International Parallel
- . , _ . 0D —55537 and Distributed Processing Symposium (IPDPS)
“Probabilistic neural computing with stochastic devices” 2023. Accepted.
Misra S et al. Advanced Materials. 2023~ § | i ___
X 1




/4 Thanks!!
/4

« Office of Science Co-Design in
Microelectronics program

« Co-funded through ASCR and BES,
participation by NP, HEP, and FES

« COINFLIPS is partnering with a

growing number of organizations
o Andy Kent @ New York University

o Jean Anne Incorvia @ University of Texas Austin
o Katie Schuman @ University of Tennessee

o Prasanna Date @ Oak Ridge National Laboratory
o Les Bland @ Temple University

rd

« Check us out at https://coinflipscomputing.org

!

Ur %OAK RIDGE
National Laboratory

' ) U.S. DEPARTMENT OF Office of Sandla
ENERGY Science @ National

Laboratories

NYU



https://coinflipscomputing.org

Is it reasonable to think fair coins are unambiguously uniform?

“ o : p; =050
: Pass/Fail at
8-bit draws pvalue 9950
4000 -

1000 0.770 Fail 3500 1
000 1
10,000 0.382 Fail 2001
2000 A
1500 A

100,000 0.490 Fail

1000
500

1,000,000 829 Fail 04




/" Applying XAND then XOR to TD Data

GO0 1
500 4
4001 p-value: 3.83 x 107134

300 1
(Raw value was 5.5 x 107238
200 4

100 1




/" Adder, No Carry

V. Treat dependent TR E—
nature of flips as fair, :
+ €. 000 T
011 ri(1—r)
101 ’ (1 -1) Tt -y 0.5+ 2¢°
« Addthree 110 r(l-r)?
subsequent bits with 0 001 31— 1)
no carry. 010 r(l —r)?
100 : ?'El - r;‘? e pa e
111 21—
* You can reduce the 000 thl o)
dependence, but not — )
. ' 1 — &
remove It. 01 0 :ﬁl - :2 2r(l1 —r) 0.5 —2&*
110 ri(l —7)
. . 1
« |terations will 001 r(l — )2
decrease this 010 (1 — 1)’ . , ,
dependence like 100 ! e A
repeated XOR 11 3

reduces bias.
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Use of TD Data in Real Application

p+p—jets, Vs=510 GeV, PYTHIA

"

¢ pseudorandom
O TD data

4

1 1 1 I 1 1 1 I 1 1 1 I 1
0 20 40 &0 80 100 120 140

jet energy (GeV)

yield

102k

10

p+p—jets, Vs=510 GeV, PYTHIA

|

¢ psaudorandom
O TD data, XOR 4

1 1 I 1 1 1 I 1 1 1 I 1
20 40 &0 B8O 100 120 140

jet energy (GeV)




/d Expected N - Proof, sketch

Let N be the average number of observations before failing the hypothesis test.

As N is an (average) number of observations, N must be at least 1. (In all cases an
observation must be made before drawing a conclusion, therefore the average number of
observations before failure must be at least 1.)

Let y.,i+ be the chosen critical value of the y* hypothesis test. This value will be dependent
on a desired significance level and on the number of coinflips/number of bits in the
expansion. The number of bits determines the degrees of freedom.

Let {74, T,, ... } be the outcome string of b flips of a coin with P[1] = p;, po = 1 — p,. Let
H(xj,{ri},N) be the value of the histogram in the j™ bin after counting the first N draws of
{Ti}.

Letting 1, be the indicator function of the jt bin,
N
Ho (T N) = ) 15,
=1

Note, {z;} is an iid random variable collection independent of N. This makes H a function of

many random variables.




/ Expected N - Proof, sketch (cont)

/"« To calculate E[N], we will take the expected value at the moment the y? test statistic
/ equals the chosen critical value.

+ For binvalue x;, let n; representthe number of 1's in the binary decimal representative of
the jt bin.

+ The proof rests on two lemmas. First:
B[H (. (), MIN] = N ()5, )
«  Second:
E [(H(xj,{ri},zv))2 ‘N] = N (ppe )+ NV = 1) (pripg—n;)z

Observe:

N]d

—F \%DIE [(H(xj,{‘fi}, N))z-‘N] — 2E|H(x;, {t;},N)|N] + %_

(H(x;, {r:},N) — N/2b)°
N /2P

B - (H(x;, {r;}, N) — N/2P)°
E = E|E N7




/4 Expected N - Proof, sketch (cont)
Hence:

(H(x A1}, N) — N/2P) ‘

2 2
n; b-n; 1 n; b-n; 1 2b
ZbN p1}p0 } _) -2° (P11P0 j _) 7

N/Zb 2b 2 4
2

n;: b-n 1 n: b-n: 1 2b

2 (Pl’po —5) B2 (o -g) + 5

« Taking the expected vaIue for the y? test statlstlc at the critical value yields

N 2b
b 71 /

2 2
n; b-n; 1 n; b-n; 1 2P
E Zb(pl’po ’—ﬁ) IE[N]—Z"(pl’p0 ’—5) +

- 2 2
. 1 b - b-n; 1 220
NlZ( )(Pf’% ﬁ) ‘Z”Z(j)(”f’po ""z) vy




P Expected N - Proof, sketch (cont)

« Ergo, we canrepresentE[N] as a functlon of xcrit: .
2b b nj b-n; 1 22b
Xerit + ] pl pO E _T

b n; b-n; 1\?
230, (.)(p;po '~ )

« Note that when P1 =Py == the denominator collapses to zero. This is expected as when

PL=DPo =73 the histogram generated should be uniform. We are comparing to uniform
hence we should never expect to fail the hypothesis test on average.

E[N] =




P Lemmas - Idea

« Both Lemmas are proofs by induction on the value of N.
The result for E[H|N] conforms to intuition.
« The proof for E[H#|N] requires knowing E[H|N — 1].

While exceedingly tedious, both are rather straightforward and only require breaking up
sums along the first N — 1 possibilities for a sequence of draws.




Realized Features of Brain

Inspiration in
Neuromorphic Hardware

Event-driven communication
Graph based connectivity
Processing in Memory

In situ learning

Analog computation
Post-Moore's Law Devices

Ubiquitous stochasticity




Realized Features of Brain

Inspiration in
Neuromorphic Hardware

Event-driven communication
Graph based connectivity
Processing in Memory

In situ learning

Analog computation
Post-Moore's Law Devices

Ubiquitous stochasticity

Tomorrow

Zidan et al., 2018

Intel Loihi 2

Millions of CMOS neurons
Billions of CMOS synapses
~ 1 Watt power

Post-Moore Devices

(ECRAM, Memristors, MT]Js, etc)

Scale to human sizes?




