
Approved for public release

High-Performance GMRES Multi-Precision Benchmark
Design, Performance, and Challenges

Ichitaro Yamazaki, Jennifer Loe, Christian Glusa, Siva Rajamanickam (Sandia National Labs)
Piotr Luszczek, and Jack Dongarra (University of Tennessee, Knoxville)

SIAM Conference on Computational Science and Engineering (CSE23)
Amsterdam, Netherland

SAND2023-12750C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

2

Goal & Motivations

• New benchmark is designed to

• capture typical performance of “real” applications

• allow the use of mixed precision arithmetic

• Some current & emerging HP computers provide
higher performance for lower precision arithmetic

• Some emerging accelerators may not support double precision

• Lower precision reduces the data transfer volume and
may improve application performance

• Application performance is often limited by communication
(latency or bandwidth)

GPU Peak Performance
(Tflop/s)

System GPU FP64 FP32 FP16

Frontier (ORNL) AMD MI250X 26.5 26.5 191.0

Fugaku (Riken) Fujitsu A64 FX 3.4 6.7 13.5

Summit (ORNL) NVIDIA V100 7.5 19.5 N/A

Perlmutter (NERSC) NVIIDIA A100 9.7 19.5 312.0

Sierra (LLNL) AMD MI100 11.5 23.1 184.0

Selena (NVIDIA) AMD MI250X 26.5 26.5 191.0

3

Goal & Motivations

• Growing interests to utilize lower-precision for “real” applications

• ECP xSDK multi-precision project funded by US DOE

• New benchmark could have wide impacts

• Capture the computers capabilities for applications
by allowing mixed-precision operations

• Algorithmic & software efforts to utilize lower-precision

• Motivate hardware vendors to design future HP computers
that can obtain high application performance,
with mixed-precision arithmetic

GPU Peak Performance
(Tflop/s)

System GPU FP64 FP32 FP16

Frontier (ORNL) AMD MI250X 26.5 26.5 191.0

Fugaku (Riken) Fujitsu A64 FX 3.4 6.7 13.5

Summit (ORNL) NVIDIA V100 7.5 19.5 N/A

Perlmutter (NERSC) NVIIDIA A100 9.7 19.5 312.0

Sierra (LLNL) AMD MI100 11.5 23.1 184.0

Selena (NVIDIA) AMD MI250X 26.5 26.5 191.0

4

• HPL measures performance of solving dense linear system
in double precision
– It is based on exact dense LU factorization

• Its performance is dominated by dense matrix-matrix multiply,
with a proper implementation.

• Its performance is close to double-precision peak compute
performance of the target machine.

• It is used to rank HP computers for Top500 list,
providing historical data

• It is also used to stress-test new systems

Existing HP Benchmark 1/3 : High Performance Linpack (HPL)

Dense Problem
Compute Intensive

Sparse Problem
“real” appli. performance

Uniform Precision HPL HPCG

Mixed Precision HPL-AL

5

• HPCG is designed to reflect application performance

• It solves a sparse linear system using CG with GMG preconditioner
(GS smoother).
– Composed of computation & communication tasks

common in real applications

– Its performance is more limited by communication
latency or bandwidth.

• It is meant to motivate the future HP computers
that can achieve high application performance

Existing HP Benchmark 2/3 : High Performance Conjugate Gradient (HPCG)

Data source : top500.org (Nov, 2021)

HPCG
Rank

HPL
Rank System

HPCG
(Pflop/s)

HPL
(Pflop/s)

1 1 Fugaku (Riken) 16.0 442.0

2 2 Summit (ORNL) 2.9 148.6

3 5 Perlmutter (NERSC) 1.9 70.8

4 3 Sierra (LLNL) 1.8 94.6

5 6 Selena (NVIDIA) 1.6 63.5

Dense Problem
Compute Intensive

Sparse Problem
“real” appli. performance

Uniform Precision HPL HPCG
Mixed Precision HPL-AL

6

• HPL-AI solves the same dense linear system as HPL,
but allows the use of lower-precision

• It uses lower-precision for compute-intensive LU
(no pivoting), which dominates benchmark time.

• Iterative refinement is used to obtain the solution with double
precision accuracy.

• It achieves much higher performance than HPL on machines
with lower-precision at higher performance
– It measures the computer’s capability to perform

compute intensive tasks

Existing HP Benchmark 3/3 : HPL - Accelerator Introspection (HPL-AI)

Data source : top500.org (Nov, 2021)

HPL-AI
Rank

HPL
Rank System

HPL-AI
(Pflop/s)

HPL
(Pflop/s)

1 1 Fugaku (Riken) 2.00 0.44

2 2 Summit (ORNL) 1.41 0.15

3 6 Selena (NVIDIA) 0.63 0.06

3 5 Perlmutter (NERSC) 0.59 0.07

5 8 Juwels BM (FZJ) 0.47 0.04

Dense Problem
Compute Intensive

Sparse Problem
“real” appli. performance

Uniform Precision HPL HPCG

Mixed Precision HPL-AL

7

• The new benchmark
– measures computer’s capability to perform computation &

communication often found in applications (like HPCG)

– allows use of mixed-precision (like HPL-AI)

• Iterative refinement for solving a sparse linear system
– Lower-precision may be used to solve the sparse linear system

• Sparse iterative solver, which typically dominates benchmark time

• GMRES + GMG + GS smoother (sparse-triangular solve)

– Double-precision is used to update the solution and
to compute the new residual vector

New HP Benchmark : HP GMRES mixed-precision (HPGMP)

Dense Problem
Compute Intensive

Sparse Problem
Compute/Comm pattern

in “Real” Appls

Uniform
Precision

HPL HPCG

Mixed Precision HPL-AL HPGMP

Refinement in double precision

GMRES in lower precision

8

Mixed-precision GMRES – Iterative Refinement
for solving sparse non-symmetric linear system

• Generalized Minimum Residual (GMRES)
– A popular Krylov method for solving a non-symmetric system

– It computes an approximate solution minimizes the residual norm
in the computed Krylov projection subspace

• Mixed-precision variant
– is also a well-established algorithm

– Growing interests, with lots of numerical theories
and performance studies, in recent years

1) P. Amestoy, A. Buttari, N. Higham, J. L’Excellent, T. Mary, and B. Vieuble. Five-precision
GMRES- based iterative refinement. 2021.

2) P. Amestoy, A. Buttari, N. Higham, J. L’Excellent, T. Mary, and B. Vieuble. Combining sparse
approximate factorizations with mixed precision iterative refinement. Technical report, The
University of Manchester, 2022.

3) E. Carson and N. Higham. Accelerating the Solution of Linear Systems by Iterative
Refinement in Three Precisions. SIAM J. Sci. Comput., 40(2):A817–A847, 2018.

4) S. Gratton, E. Simon, D. Titley-Pe ́loquin, and P. Toint. Exploiting variable precision in
GMRES. ArXiv, abs/1907.10550, 2019

5) N. Lindquist, P. Luszczek, and J. Dongarra. Improving the Performance of the GMRES
Method using Mixed-Precision Techniques. in Smoky Mountains Conference Proceedings,
2020.

6) J. Loe, C. A. Glusa, I. Yamazaki, E. G. Boman, and S. Rajaman- ickam. Experimental
evaluation of multiprecision strategies for GMRES on gpus. In 2021 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 469–478,
2021.

7) K. Turner and H. Walker. Efficient high accuracy solutions with GMRES(m). SIAM J. Sci.
Stat. Comput., 13(3):815–825, 1992.

8) Etc. etc.

Also, mixed-precigion MG:

1) S. McCormick, J. Benzaken, and R. Tamstorf. Algebraic error analysis for mixed-precision
multigrid solvers. SIAM J. Sci. Comp., 43(5):S392–S419, 2021.

9

HPGMP: Problem description

• Regular 3D grid with 27-points stencil

• Same as HPCG

• Parameterized for non-symmetric numerical values

• Represents finite difference discretization of an advection-diffusion problem

• Right-hand-side vector b = A*ones, and initial approximate solution x=zeros.

• MPI processes are arranged into a 3D process grid (px py pz)

• Participant specifies the dimension of the local subdomain (nx ny nz) on each MPI

• the global matrix size is (nx px ny py nz pz)

10

HPGMP: Main tasks

1. Sparse Matrix Vector Multiply (SpMV)

• Point-to-point neighborhood communication (halo exchange)

• Exchange 1, nx, or nx2 elements with 7 ~ 26 neighbors

• Local SpMV with 27-pts stencil

• 54nm Flops / restart

2. Orthogonalization based on Classical Gram Schmidt
with reorthogonalization (CGS2)

• Blas-2 dense vector dot-product, local atomic and global reduce

• Total of 2n(1+m)m Flops / Restart

• Blas-2 vector update, embarrassingly parallel

• Total of 2n(1+m)m Flops / Restart

3. Geometric Multi Grid (GMG)

• One forward-sweep of Gauss-Seidel (GS) as pre &
post smoother

• Halo-exchange, Local SpTRSV

• Total of 2*(54*73)/64 nm Flops / Restart

• Residual vector computation

• Halo-exchange, Local SpMV

• Total of 2*(54*73)/64 nm Flops / Restart

• Restriction & Prolongation operators

• No communication, Local SpMV with a rectangular
matrix,
e.g., one nonzero per row

• One forward sweep of GS at the final coarse level.

• Halo-exchange, Local SpTRSV

• Total 81 / 512 nm Flops / Restart
Mixture of sparse and dense operations,
commonly found in real applications
• With m = 30, about same number of flops for GMG and CGS2

Same kernels as HPCG,
except for CGS2

11

Q1 : How much flexibility to allow in term of precision?

• Current benchmark specification allows any precision
for the GMRES iteration.

• The benchmark is not meant to be a robust or scalable solver.

• It is designed to capture application performance

• Iteration count increases with MPI count

• It may converge slower, or faster, using lower precision

• We need verification and validation!!

• The solver should achieve the double precision accuracy

• If the solver requires more iterations, then the benchmark results should
be appropriately penalized

solid = Fp64
dotted = Fp64+Fp32
solid = Fp64
dotted = Fp64+Fp32

More iterations with more MPIs

With preconditioner

Without preconditioner

12

HPGMP benchmark : two steps

• The benchmark is designed

• To allow the use of mixed-precision

• To penalize if the lower-precision results in the loss
of accuracy (convergence rate

• Note: we cannot run to double precision accuracy
for the large benchmark runs (iteration count
increases with # of MPIs)

1. Verification step:

• Run both reference & optimized solver

• Using a fixed problem size on a fixed # of MPI processes

• To reach double-precision accuracy

• Record # of iteration needed by both

• Failure if optimized code did not converge

• Compute penalty factor
ip = min(1.0, # of optimized iterations / # of reference iteration)

2. Benchmark step:

• Run optimized solver for a fixed number of iterations

• Using user-specified problem size and # of MPI processes

• Until reaching a minimum # of solves or time

• Compute benchmark Gflop/s

• Ip x (# of Gflops / Optimized benchmark time)

13

HPGMP: Allowed optimizations

• Hardware specific optimization are allowed

• Data structures, communication schemes, etc.

• Matrix may be permuted for GS smoother to expose parallelism

• If the permutation increases the iteration count, benchmark performance is penalized (validation step)

• Algorithm changes are not allowed

• s-step (communication-avoiding), pipelined, or randomized variant of GMRES

• Low-synchronous/single-reduce orthogonalization

• Iterative-variant of GS smoother

• Knowledge of matrix structure cannot be used

• The matrix should be treated as a general matrix for SpMV

• Any precision(s) may be used for the sparse solver

• Need to pass the verification, and will be penalized on any increase in iteration count

• Matrix scaling is not allowed

• The matrix may not be scaled to fit in the numerical range of lower precision

• It can be used to improve the conditioning of the matrix

Similar to HPCG

14

HPGMP reference implementaTon

• The reference implementation (solver & benchmark suite) is available

• https://github.com/iyamazaki/hpcg

• It is meant to be optimized by participants

• It reuses many of HPCG components

• It is based on C++ template

• To make it easier to use various precision

• It also provides CUDA/HIP backends

• It uses GPUs to generate basis vectors,
while the tiny least square problem is solved redundantly on each CPU.

• It uses MPI for data exchange, while solely rely on vendor libraries for the GPU computation

• CuBLAS for CGS2, CuSparse SpMV & SpTRSV for GS and restriction/prolongation, and
CUDA library for memory management

• No custom CUDA/HIP code

• MPI message communication is through CPUs

• If the vector needs to be casted, then it is done on a CPU

https://github.com/iyamazaki/hpcg

15

Performance studies of reference implementation : Experimental setups

• OLCF machines

• Summit

• Each node with 2×22-core Power9 CPUs and six NVIDIA V100 GPUs

• Spock

• Each node with 1×64-core AMD EPYC 7662 CPU and four AMD MI100 GPUs

• Crusher

• Each node with 1×64-core AMD EPYC 7A53 CPU and four AMD MI250X GPUs

• Weak-scaling

• a fixed problem size per MPI (one MPI / CPU core or GPU)

• Using single-precision for GMRES iterations

• 1.6x reduction in sparse matrix storage

• Performance of the reference implementation

• Meant to motivate interests

Some of the parameter values are
selected for convenience.

16

Performance of reference implementaTon on Summit
IBM Power9 CPUs + NVIDIA V100 GPUs

• Speedup of 1.2x using a non-optimized reference

• Most of the solver time is spent in SpTRSV

• It has limited parallelism, and
its performance may be more dominated by latency

• it is harder to get speedup using lower precision

• Reference implementation uses CuSparse SpMV & SpTRSV
(no coloring)

Time in seconds with GPUs TFlop/s with GPUs

GMG SpMV CGS2 Total GMG SpMV CGS2 Total

Uniform 51.5 3.8 2.5 60.2 0.30 1.20 4.13 0.50

Mixed 44.5 2.4 1.8 50.1 0.35 1.87 5.73 0.61

Speedup 1.16 1.56 1.39 1.20 1.15 1.56 1.39 1.20

Performance on 8 Summit nodes with GPUs
(about same total # of flops for GMG or CGS2)

17

Performance of reference implementation on Spock & Crusher
AMD EPYC CPUs + AMD MI100/250X GPUs

• Speedups, similar to those on Summit

• AMD MI250X GPUs on Crusher have same peak performance using double and single

18

• Kokkos-Kernels backends as an “optimized” implementation
– Portable implementation of LA operations on different

node architectures
• Perlmutter (NVIDIA A100) and Crusher (AMD 250X), or Fugaku (A64 FX)

– Allows the use of FP16 or BF16, and mixed-precision operations

• We look at performance (time / iteration)
and convergence (# iterations needed for convergence)
– FP16 for GMRES iterations, except accumulations are stored in FP32

(e.g., Hessenberg matrix for LSP, and norms for convergence check,
on CPU)

– Both performance & convergence depend on how
mixed-precision operations are implemented through
software stacks and on hardware

Experimental studies with 16-bit floating precisions

Special thanks to Kokkos-Kernels team,
Brian Kelley, Evan Harvey, and Vinh Dang

GPU Peak Performance
(Tflop/s)

System GPU FP64 FP32 FP16

Crusher (ORNL) AMD MI250X 26.5 26.5 191.0

Fugaku (Riken) Fujitsu A64 FX 3.4 6.7 13.5

Perlmutter (NERSC) NVIIDIA A100 9.7 19.5 312.0

Sierra (LLNL) AMD MI100 11.5 23.1 184.0

Selena (NVIDIA) AMD MI250X 26.5 26.5 191.0

19

• using FP16 did help reducing the iteration time
– Performance & speedup dominated by GMG

– We used clustered GS from Kokkos-Kernels

Performance (time / iteration) using FP16 on Perlmutter (Six NVIDIA A100 GPUs / node)

Time in milliseconds / iter GFlop/s Speedup
GMG SpMV CGS Total GMG SpMV CGS Total GMG SpMV CGS Total

Fp64 8.80 0.67 3.88 13.4 42.3 162.1 64.9 55.1 -- -- -- --

Fp64/32 8.11 0.47 3.55 12.1 45.8 232.6 71.0 60.7 1.08 1.43 1.09 1.10
Fp64/16 8.02 0.40 3.04 11.5 46.4 274.4 82.7 64.2 1.10 1.69 1.27 1.17

Performance on one Perlmutter node with GPUs
(about same total # of flops for GMG or CGS2)

20

Performance (time / iteration) using FP16 on Perlmutter (Four NVIDIA A100 GPUs / node)

• Number of iterations increased using FP16
– Bad from solver point (longer time to solution)

– Good from benchmark point (captured and penalized benchmark results)

21

Performance (time / iteration) using FP16 on Crusher (Six AMD MI250X GCDs / node)

• Number of iterations increased using FP16
– Bad from solver point (longer time to solution)

– Good from benchmark point (captured and penalized benchmark results)

22

Final remarks

• Developing a new benchmarks
– Captures the performance of applications

– Allows the use of mixed lower precision arithmetic
– Please see our SC’22 workshop paper

• Reference implementation is publicly available
– Working with Kokkos-Kernels backend as “optimized” version,

for numerical & performance tests with more mixed-precision
• Optimizing Kernel performance, with FP16

• Improving stability (following/breaking current specifications)

– Running on current top-ranked HP computers, at larger-scale, and beyond
– Comparing with application performance

– etc.

Open for feedbacks & collaborations !!

23

Acknowledgments

• This work was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National Nuclear Security Administration. Sandia
National Laboratories is a multimssion laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-
0003525. This paper describes objective technical results and analysis. Any subjective views or opinions
that might be expressed in the paper do not necessarily represent the views of the U.S. Department of
Energy or the United States Government.

