WSAND2023-12750C |

High-Performance GMRES Multi-Precision Benchmark

Design, Performance, and Challenges
,

ELCP E=e
Lo

Approved for public release

Ichitaro Yamazaki, Jennifer Loe, Christian Glusa, Siva Rajamanickam (Sandia National Labs)
Piotr Luszczek, and Jack Dongarra (University of Tennessee, Knoxville)

SIAM Conference on Computational Science and Engineering (CSE23)
Amsterdam, Netherland

i":" U.S. DEPARTMENT OF Oﬁ-’lce of

j EN ERGY Science

LA L =l

Sandia National Laboratories Z’Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
R str:owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract

@ENERGY NOSA DE-NA0003525.

Goal & Motivations

GPU Peak Performance
. . (Tflop/s)
* New benchmark is designed to
System GPU FP64 FP32 FP16
* capture typical performance of “real” applications
Frontier (ORNL) AMD MI250X 26.5 26.5 191.0
* allow the use of mixed precision arithmetic _ -
Fugaku (Riken) Fujitsu A64 FX 3.4 6.7 13.5
. . Summit (ORNL) NVIDIA V100 7.5 19.5 N/A
* Some current & emerging HP computers provide 1 -
higher performance for lower precision arithmetic Perimutter (NERSC) | NVIIDIAA100 9.7 9.5 312.0
Sierra (LLNL) AMD MI100 11.5 23.1 184.0
* Some emerging accelerators may not support double precision Selena (NVIDIA) AMD MI250X 26.5 26.5 191.0

* Lower precision reduces the data transfer volume and

0 . . 2 _ N
may improve application performance £ogize

* Application performance is often limited by communication
(latency or bandwidth)

NVIDIA Sparse Tensor Core

cerebras

o \
\ EXASCALE
) COMPUTING
\ PROJECT

Goal & Motivations

III

* Growing interests to utilize lower-precision for “real” applications

* ECP xSDK multi-precision project funded by US DOE

* New benchmark could have wide impacts

* Capture the computers capabilities for applications
by allowing mixed-precision operations

* Algorithmic & software efforts to utilize lower-precision

* Motivate hardware vendors to design future HP computers
that can obtain high application performance,
with mixed-precision arithmetic

o \
\ EXASCALE
) COMPUTING
\ PROJECT

GPU Peak Performance

(Tflop/s)
System GPU FP64 FP32 FP16
Frontier (ORNL) AMD MI250X 26.5 26.5 191.0
Fugaku (Riken) Fujitsu A64 FX 3.4 6.7 13.5
Summit (ORNL) NVIDIA V100 7.5 19.5 N/A
Perimutter (NERSC) | NVIIDIAA100 9.7 19.5 312.0
Sierra (LLNL) AMD MI100 11.5 23.1 184.0
Selena (NVIDIA) AMD MI250X 26.5 26.5 191.0

NVIDIA Sparse Tensor Core

cerebras

Existing HP Benchmark 1/3 : High Performance Linpack (HPL)

* HPL measures performance of solving dense linear system Dense Problem Sparse Problem
in double precision Compute Intensive “real” appli. performance

— Itis based on exact dense LU factorization Uniform Precision HPL HPCG

. ;]] . Mixed Precision HPL-AL
* Its performance is dominated by dense matrix-matrix multiply,

with a proper implementation.

NOVEMBER 2021 SITE COUNTRY CORES poimls FWER

* Its performance is close to double-precision peak compute
pe rfo rm ance Of the ta rget m aChlne. 2 Summit 1BM POWERS (22C, 3.07GHz), NVIDIA Volta GV100 (80C), Dual-Rail Mellanox EDR Infiniband DOE/SC/ORNL USA 2,414,592 148.6 10.1

3 Sierra I1BM POWERY (22C, 3.1GHz), NVIDIA Tesla V100 (80C), Dual-Rail Mellanox EDR Infiniband DOE/NNSA/LLNL USA 1,572,480 94.6 1.44
. . 4 Sunway TaihuLight Shenwei SW26010 (260C, 1.45 GHz) Custom Interconnect NSCC in Wuxi China 10,649,600 93.0 15.4

e |tis used to rank HP computers for Top500 list
v 5 Perlmutter HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10 (274 GB) LBNL USA 761,856 70.9 258

providing historical data
Performance Development

®

nnnnnn
o—0—0—0

* Itis also used to stress-test new systems poromermomo o i

Propls

rrrrrrr

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 201 202 203 204 2015 2016 2017 2018 2019 2020 2021

—_—
\\ EXASCALE
) COMPUTING
\ PROJECT
g

Existing HP Benchmark 2/3 : High Performance Conjugate Gradient (HPCG)

 HPCG is designed to reflect application performance Dense Problem Sparse Problem
Compute Intensive “real” appli. performance

* It solves a sparse linear system using CG with GMG preconditioner) itorm Precision HPL HPCG
(GS smoother).

— Composed of computation & communication tasks
common in real applications

Mixed Precision HPL-AL

— Its performance is more limited by communication

latency or bandwidth.
HPCG HPL HPCG HPL

Rank Rank System (Pflop/s) (Pflop/s)

e |t is meant to motivate the future HP computers
that can achieve high application performance Fugaku (Riken)
Summit (ORNL)

Perlmutter (NERSC)
Sierra (LLNL)
Selena (NVIDIA)

Data source : top500.org (Nov, 2021)

—_—
\\ EXASCALE
) COMPUTING
\ PROJECT
g

Existing HP Benchmark 3/3 : HPL - Accelerator Introspection (HPL-AI)

e HPL-Al solves the same dense linear system as HPL, Dense Problem Sparse Problem
but allows the use of lower-precision Compute Intensive “real” appli. performance
Uniform Precision HPL HPCG

e |t uses lower-precision for compute-intensive LU _ -
(no pivoting), which dominates benchmark time. MRS FreeREm HPL-AL

* |terative refinement is used to obtain the solution with double
precision accuracy.
_ _ _ HPL-Al HPL HPL-AI HPL
* |t achieves much higher performance than HPL on machines Rank Rank System (Pflop/s) (Pflop/s)

with lower-precision at higher performance Fugaku (Riken)

— It measures the computer’s capability to perform Summit (ORNL)
compute intensive tasks

Selena (NVIDIA)
Perimutter (NERSC)
Juwels BM (FZJ)

Data source : top500.org (Nov, 2021)

—_—
\\ EXASCALE
) COMPUTING
\ PROJECT
g

New HP Benchmark : HP GMRES mixed-precision (HPGMP)

Input: A € R™"*™, b € R™*!, initial guess zg € R™*!,
relative residual tolerance r7"ol
Output: approximate solution z,,
I: r=0b— Axz,
2: v = |Irll2
3: while not converged do
4: vy =ro/v,and h1 ;1 =0
5 | forj=1:mdo
6: // GMG preconditioner M, followed by SpMV
¥ wy; = AM'Uj
8: // CGS2 orthogonalization -
9: wj; = w; — Vjt; with t; = Vijj
10: hl;j,j =1j
11: w; = W —V}tj with t; ZVJ-ij B
12: hi:j,5 = h1:j,5 + 5 . -
= B
14: Vit1 = W;i/hjq1; -
15: end for
16: d = arg minyﬁRm lver — Hi:m+1,1:mYll2
17: x=z+ Vmnd
18 r=b- s -
19: vy =|Irl2
20: end while

EXASCALE
COMPUTING
PROJECT

Sl

Uniform HPL HPCG
Precision
Mixed Precision HPL-AL HPGMP

e The new benchmark

measures computer’s capability to perform computation &
communication often found in applications (like HPCG)

allows use of mixed-precision (like HPL-AI)

* Iterative refinement for solving a sparse linear system

Lower-precision may be used to solve the sparse linear system
e Sparse iterative solver, which typically dominates benchmark time
* GMRES + GMG + GS smoother (sparse-triangular solve)

Double-precision is used to update the solution and
to compute the new residual vector

Mixed-precision GMRES — Iterative Refinement
for solving sparse non-symmetric linear system

1) P.Amestoy, A. Buttari, N. Higham, J. L’Excellent, T. Mary, and B. Vieuble. Five-precision
GMRES- based iterative refinement. 2021.

2) P Amestoy, A. Buttari, N. Higham, J. L’Excellent, T. Mary, and B. Vieuble. Combining sparse
* Generalized Minimum Residual (GMRES) approximate factorizations with mixed precision iterative refinement. Technical report, The

University of Manchester, 2022.
— A popular Krylov method for solving a non-symmetric system
3) E. Carson and N. Higham. Accelerating the Solution of Linear Systems by lterative

— It computes an approximate solution minimizes the residual norm Refinement in Three Precisions. SIAM J. Sci. Comput., 40(2):A817-A847, 2018.
in the computed Krylov projection subspace

4) S. Gratton, E. Simon, D. Titley-Pe loquin, and P. Toint. Exploiting variable precision in
GMRES. ArXiv, abs/1907.10550, 2019

* Mixed-precision variant 5) N. Lindquist, P. Luszczek, and J. Dongarra. Improving the Performance of the GMRES
— s also a well-established algorithm g/?ztgod using Mixed-Precision Techniques. in Smoky Mountains Conference Proceedings,

— Growing interests, with lots of numerical theories
and performance studies, in recent years 6) J. Loe, C. A Glusa, |. Yamazaki, E. G. Boman, and S. Rajaman- ickam. Experimental

evaluation of multiprecision strategies for GMRES on gpus. In 2021 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 469—478,
2021.

7) K Turner and H. Walker. Efficient high accuracy solutions with GMRES(m). SIAM J. Sci.
Stat. Comput., 13(3):815-825, 1992.

8) Efc. etc.
Also, mixed-precigion MG:

1) S. McCormick, J. Benzaken, and R. Tamstorf. Algebraic error analysis for mixed-precision
multigrid solvers. SIAM J. Sci. Comp., 43(5):S392—-S419, 2021.

o \
\ EXASCALE
/ COMPUTING
\ PROJECT

HPGMP: Problem description

* Regular 3D grid with 27-points stencil /‘ /
* Same as HPCG ///././
y

* Parameterized for non-symmetric numerical values

* Represents finite difference discretization of an advection-diffusion problem

* Right-hand-side vector b = A*ones, and initial approximate solution x=zeros.

* MPI processes are arranged into a 3D process grid (p, p, p,)

Y
. e : . : N\
* Participant specifies the dimension of the local subdomain (n, n, n,) on each MPI)
R
. . . X,
* the global matrix size is (n,p, n,p, n,p,) \\\ \\
\\‘\\\ \\\
N D
R

o \
\ EXASCALE
) COMPUTING
\ PROJECT

HPGMP: Main tasks

1. Sparse Matrix Vector Multiply (SpMV) 3. Geometric Multi Grid (GMG)

* Point-to-point neighborhood communication (halo exchange)
. Exchange 1, n,, or n,2 elements with 7 ~ 26 neighbors
* Local SpMV with 27-pts stencil

. 54nm Flops / restart

2. Orthogonalization based on Classical Gram Schmidt
with reorthogonalization (CGS2)

* Blas-2 dense vector dot-product, local atomic and global reduce
e Total of 2n(1+m)m Flops / Restart
* Blas-2 vector update, embarrassingly parallel

* Total of 2n(1+m)m Flops / Restart

Mixture of sparse and dense operations,

commonly found in real applications
« With m = 30, about same number of flops for GMG and CGS2

o \
\ EXASCALE
/ COMPUTING
\ PROJECT

Same kernels as HPCG,
except for CGS2

One forward-sweep of Gauss-Seidel (GS) as pre &
post smoother

* Halo-exchange, Local SpTRSV

« Total of 2*(54*73)/64 nm Flops / Restart
Residual vector computation

* Halo-exchange, Local SpMV

« Total of 2*(54*73)/64 nm Flops / Restart
Restriction & Prolongation operators

* No communication, Local SpMV with a rectangular
matrix,
e.g., one nonzero per row

One forward sweep of GS at the final coarse level.
* Halo-exchange, Local SpTRSV
 Total 81 /512 nm Flops / Restart

Ql:

How much flexibility to allow in term of precision?

Current benchmark specification allows any precision
for the GMRES iteration.

The benchmark is not meant to be a robust or scalable solver.
* Itis designed to capture application performance
* Iteration count increases with MPI count
* |t may converge slower, or faster, using lower precision

We need verification and validation!!

* The solver should achieve the double precision accuracy

* If the solver requires more iterations, then the benchmark results should

be appropriately penalized

—
ey \
\ EXASCALE
) COMPUTING
\ PROJECT
S

Relative residual norm

10°

10-10 L

Without preconditioner

\
\
10°° \ \ -
\ .
\
\,

10710

Relative residual norm

Iteration count 10

With preconditioner

X

< dotted = Fp64+Fp32 — — 1024 MPIs, mixed

\ T 4096 MPIs, mixed

——16 MPIs, uniform
— — 16 MPIs, mixed

solid 1024 MPIs, uniform

= Fp64

——4096 MPIs, uniform

. More iterations with more MPlIs .

0

500 1000 1500 2000 2500 3000 3500 4000 4500
Iteration count

HPGMP benchmark : two steps

1. Verification step:

* Run both reference & optimized solver
* Using a fixed problem size on a fixed # of MPI processes
* To reach double-precision accuracy

* Record # of iteration needed by both
* Failure if optimized code did not converge

* Compute penalty factor
i, = min(1.0, # of optimized iterations / # of reference iteration)

2. Benchmark step:

* Run optimized solver for a fixed number of iterations
* Using user-specified problem size and # of MPI processes
* Until reaching a minimum # of solves or time

* Compute benchmark Gflop/s

* 1, x (# of Gflops / Optimized benchmark time)

o \
\ EXASCALE
) COMPUTING
\ PROJECT

The benchmark is designed
* To allow the use of mixed-precision

* To penalize if the lower-precision results in the loss
of accuracy (convergence rate

Note: we cannot run to double precision accuracy
for the large benchmark runs (iteration count
increases with # of MPIs)

HPGMP: Allowed optimizations

* Hardware specific optimization are allowed Similar to HPCG

* Data structures, communication schemes, etc.
* Matrix may be permuted for GS smoother to expose parallelism

* If the permutation increases the iteration count, benchmark performance is penalized (validation step)
* Algorithm changes are not allowed

* s-step (communication-avoiding), pipelined, or randomized variant of GMRES

* Low-synchronous/single-reduce orthogonalization

. Iterative-variant of GS smoother

* Knowledge of matrix structure cannot be used

* The matrix should be treated as a general matrix for SpMV
* Any precision(s) may be used for the sparse solver

* Need to pass the verification, and will be penalized on any increase in iteration count
* Matrix scaling is not allowed

* The matrix may not be scaled to fit in the numerical range of lower precision

* It can be used to improve the conditioning of the matrix

o \
\ EXASCALE
) COMPUTING
\ PROJECT

HPGMP reference implementation

* The reference implementation (solver & benchmark suite) is available

e https://github.com/iyamazaki/hpcg

template<class SparseMatrix_type, class SparseMatrix_type2, class CGData_type, class CGData_type2, class Vector_type>
int GMRES_IR(const SparseMatrix_type & A, const SparseMatrix_type2 & A_lo,
CGData_type & data, CGData_type2 & data_lo, const Vector_type & b_hi, Vector_type & x_hi,
° It reuses many Of HPCG CompOnentS clonst ir?t restart_length, const ir?t max_iter, const typename SparseMatrix_type::sceﬂar_type tolerance,
int & niters, typename SparseMatrix_type::scalar_type & normr, typename SparseMatrix_type::scalar_type & normr@,
double * times, bool doPreconditioning);

* Itis meant to be optimized by participants

* Itis based on C++ template
* To make it easier to use various precision

* It also provides CUDA/HIP backends

* |t uses GPUs to generate basis vectors,
while the tiny least square problem is solved redundantly on each CPU.

* |t uses MPI for data exchange, while solely rely on vendor libraries for the GPU computation

* CuBLAS for CGS2, CuSparse SpMV & SpTRSV for GS and restriction/prolongation, and
CUDA library for memory management

* No custom CUDA/HIP code
* MPI message communication is through CPUs

. If the vector needs to be casted, then it is done on a CPU

o \
\ EXASCALE
) COMPUTING
\ PROJECT

https://github.com/iyamazaki/hpcg

Performance studies of reference implementation : Experimental setups

e OLCF machines

* Summit name value
e Each node with 2%22-core Power9 CPUs and six NVIDIA V100 GPUs Solver parameters
restart cycle, m 30
* Spock GMG levels 3
_ GS sweeps 1
* Each node with 1x64-core AMD EPYC 7662 CPU and four AMD MI100 GPUs Step 1 (Validation)
e Crusher problem size (ngz,ny,n,) (80,80,80)
convergence tol 10—°
* Each node with 1x64-core AMD EPYC 7A53 CPU and four AMD MI250X GPUs # of MPI procs 4
Step 2 (Benchmark)
« Weak-scaling # of 1tf?ra.t10ns 300
of minimum solves 10
* a fixed problem size per MPI (one MPI / CPU core or GPU) minimum time 30 minutes (disabled)

* Using single-precision for GMRES iterations Some of the parameter values are

* 1l.6xreduction in sparse matrix storage selected for convenience.

* Performance of the reference implementation

* Meant to motivate interests

o \
\ EXASCALE
) COMPUTING
\ PROJECT

Performance of reference implementation on Summit
IBM Power9 CPUs + NVIDIA V100 GPUs

* Speedup of 1.2x using a non-optimized reference

* Most of the solver time is spent in SpTRSV

- Time in seconds with GPUs TFlop/s with GPUs

Uniform
Mixed

Speedup

ECP

It has limited parallelism, and
its performance may be more dominated by latency

it is harder to get speedup using lower precision

Reference implementation uses CuSparse SpMV & SpTRSV
(no coloring)

GMG SpMV CGS2 Total GMG SpMV CGS2 Total

51.5 3.8 2.5 60.2 0.30 1.20 4.13 0.50
44.5 24 1.8 50.1 0.35 1.87 5.73 0.61
1.16 1.56 1.39 1.20 1.15 1.56 1.39 1.20

Performance on 8 Summit nodes with GPUs
(about same total # of flops for GMG or CGS2)

EXASCALE
COMPUTING
PROJECT

Gflop/s

108}

1.2

‘—e— double/single on GPUs (raw)

—>- double/single on GPUs (benchmark) |

—A—double on GPUs (reference)
—5—double/single on CPUs (raw)

—— double/single on CPUs (benchmark) | |

—£—double on CPUs (reference)

1 L

2 3

4 8 16
of nodes

32

Performance of reference implementation on Spock & Crusher

AMD EPYC CPUs + AMD MI100/250X GPUs

—O— double/single on GPUs (raw)

—>- double/single on GPUs (benchmark)
—A— double on GPUs (reference)

—8— double/single on CPUs (raw)

—— double/single on CPUs (benchmark)
—£— double on CPUs (reference)

1 2 3 4
of nodes

* Speedups, similar to those on Summit

« AMD MI250X GPUs on Crusher have same peak performance using double and single

_—
\\ EXASCALE
) COMPUTING
\ PROJECT
S

1

1.13;

H =

2
of nodes

Experimental studies with 16-bit floating precisions

» Kokkos-Kernels backends as an “optimized” implementation

— Portable implementation of LA operations on different
node architectures

* Perlmutter (NVIDIA A100) and Crusher (AMD 250X), or Fugaku (A64 FX)

— Allows the use of FP16 or BF16, and mixed-precision operations

 We look at performance (time / iteration)
and convergence (# iterations needed for convergence)
— FP16 for GMRES iterations, except accumulations are stored in FP32

(e.g., Hessenberg matrix for LSP, and norms for convergence check,
on CPU)

— Both performance & convergence depend on how
mixed-precision operations are implemented through
software stacks and on hardware

o \
\ EXASCALE
) COMPUTING
\ PROJECT

GPU Peak Performance

(Tflop/s)
System GPU FP64 FP32 FP16
Crusher (ORNL) AMD MI250X 26.5 26.5 191.0
Fugaku (Riken) Fujitsu A64 FX 3.4 6.7 13.5
Perimutter (NERSC) | NVIIDIAA100 9.7 19.5 312.0
Sierra (LLNL) AMD MI100 11.5 23.1 184.0
Selena (NVIDIA) AMD MI250X 26.5 26.5 191.0

Special thanks to Kokkos-Kernels team,

Brian Kelley, Evan Harvey, and Vinh Dang

Performance (time / iteration) using FP16 on Perlmutter (Six NVIDIA A100 GPUs / node)

1.18x
500 ‘ ; . 2.11x
450 F|—£— Mixed (double/half) 1188 & » using FP16 did help reducing the iteration time
400 ;| —8— Mixed (double/float) L6
350 | |[—©— Reference (uniform double) /f: — Performance & speedup dominated by GMG
300 |
1.18 — We used clustered GS from Kokkos-Kernels
250 | %
2
»n 200
S~
&
&5 150 ¢ 1 - Time in milliseconds / iter GFIopIs Speedup
g2 GMG SpMV CGS Total GMG SpMV CGS Total GMG SpMV CGS Total
7
100 + Fp64 8.80 067 388 134 42.3 1621 649 55.1 - - - -
Fp64/32 8.11 0.47 3.55 121 45.8 232.6 71.0 60.7 1.08 1.43 1.09 1.10
1., Fp64/16 8.02 0.40 3.04 11.5 46.4 274.4 82.7 64.2 1.10 1.69 1.27 1.17
310
7]
; \ : ' : R Performance on one Perlmutter node with GPUs
1 2 4 6 8 (about same total # of flops for GMG or CGS2)
of nodes

—_—
\\ EXASCALE
) COMPUTING
\ PROJECT
S

Performance (time / iteration) using FP16 on Perlmutter (Four NVIDIA A100 GPUs / node)

~— Residual norm, uniform

= = Computed residual norm, mixed(64/32/16)
~——True residual norm, mixed(64/32/16)

* Number of iterations increased using FP16

— Bad from solver point (longer time to solution)

—_—
\\ EXASCALE
) COMPUTING
\ PROJECT
S

Wshamoadaan 4 .]

1

1

I

\i

]

F

OO O O O O O OO OO0 ©O O o o oo oo o
- N M = ~N 0O O O © ~ AN O =

- - - -

108

—B— Mixed (double/float)

—£— Mixed (double/half)

—O&— Reference (uniform double)

:;.10x

of nodes

— Good from benchmark point (captured and penalized benchmark results)

Performance (time / iteration) using FP16 on Crusher (Six AMD MI250X GCDs / node)

Gflop/s

10°

ECP

—£— Mixed (double/half)
—B— Mixed (double/float)

—&— Reference (uniform double)

1.45x
}.35x

* Number of iterations increased using FP16

— Bad from solver point (longer time to solution)

of nodes

108

—8— Mixed (double/float)
—O&— Reference (uniform double)
—£— Mixed (double/half)

- 2

of nodes

— Good from benchmark point (captured and penalized benchmark results)

EXASCALE
COMPUTING
PROJECT

Final remarks

e Developing a new benchmarks
— Captures the performance of applications
— Allows the use of mixed lower precision arithmetic

— Please see our SC’22 workshop paper

e Reference implementation is publicly available

— Working with Kokkos-Kernels backend as “optimized” version,
for numerical & performance tests with more mixed-precision

* Optimizing Kernel performance, with FP16

e Improving stability (following/breaking current specifications)
— Running on current top-ranked HP computers, at larger-scale, and beyond
— Comparing with application performance

- etc.

Open for feedbacks & collaborations !!

o \
\ EXASCALE
/ COMPUTING
\ PROJECT

Acknowledgments

e This work was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National Nuclear Security Administration. Sandia
National Laboratories is a multimssion laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA -
0003525. This paper describes objective technical results and analysis. Any subjective views or opinions
that might be expressed in the paper do not necessarily represent the views of the U.S. Department of
Energy or the United States Government.

