

High-Performance GMRES Multi-Precision Benchmark

Design, Performance, and Challenges

Approved for public release

Ichitaro Yamazaki, Jennifer Loe, Christian Glusa, Siva Rajamanickam (Sandia National Labs)
Piotr Luszczek, and Jack Dongarra (University of Tennessee, Knoxville)

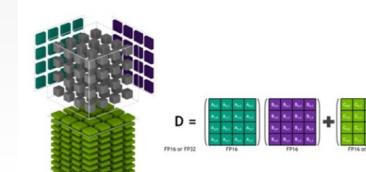
SIAM Conference on Computational Science and Engineering (CSE23)
Amsterdam, Netherland

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Goal & Motivations

- New benchmark is designed to
 - capture typical performance of **“real” applications**
 - allow the use of **mixed precision arithmetic**
- Some current & emerging HP computers provide higher performance for lower precision arithmetic
 - Some emerging accelerators may not support double precision
- Lower precision reduces the data transfer volume and may improve application performance
 - Application performance is often limited by communication (latency or bandwidth)

System	GPU	GPU Peak Performance (Tflop/s)		
		FP64	FP32	FP16
Frontier (ORNL)	AMD MI250X	26.5	26.5	191.0
Fugaku (Riken)	Fujitsu A64 FX	3.4	6.7	13.5
Summit (ORNL)	NVIDIA V100	7.5	19.5	N/A
Perlmutter (NERSC)	NVIDIA A100	9.7	19.5	312.0
Sierra (LLNL)	AMD MI100	11.5	23.1	184.0
Selena (NVIDIA)	AMD MI250X	26.5	26.5	191.0

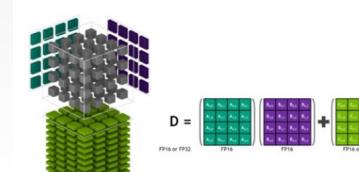


NVIDIA Sparse Tensor Core

Goal & Motivations

- Growing interests to utilize lower-precision for “real” applications
 - ECP xSDK multi-precision project funded by US DOE
- New benchmark could have wide impacts
 - Capture the computers capabilities for applications by allowing mixed-precision operations
 - Algorithmic & software efforts to utilize lower-precision
 - Motivate hardware vendors to design future HP computers that can obtain high application performance, with mixed-precision arithmetic

System	GPU	GPU Peak Performance (Tflop/s)		
		FP64	FP32	FP16
Frontier (ORNL)	AMD MI250X	26.5	26.5	191.0
Fugaku (Riken)	Fujitsu A64 FX	3.4	6.7	13.5
Summit (ORNL)	NVIDIA V100	7.5	19.5	N/A
Perlmutter (NERSC)	NVIDIA A100	9.7	19.5	312.0
Sierra (LLNL)	AMD MI100	11.5	23.1	184.0
Selena (NVIDIA)	AMD MI250X	26.5	26.5	191.0



NVIDIA Sparse Tensor Core

Existing HP Benchmark 1/3 : High Performance Linpack (HPL)

- HPL measures performance of solving dense linear system in double precision
 - It is based on exact dense LU factorization
- Its performance is dominated by dense matrix-matrix multiply, with a proper implementation.
- Its performance is close to double-precision **peak compute** performance of the target machine.
- It is used to rank HP computers for Top500 list, providing historical data
- It is also used to stress-test new systems

	Dense Problem Compute Intensive	Sparse Problem “real” appl. performance
Uniform Precision	HPL	HPCG
Mixed Precision	HPL-AL	

Existing HP Benchmark 2/3 : High Performance Conjugate Gradient (HPCG)

- HPCG is designed to reflect **application performance**
- It solves a sparse linear system using CG with GMG preconditioner (GS smoother).
 - Composed of computation & communication tasks common in real applications
 - Its performance is more limited by communication latency or bandwidth.
- It is meant to motivate the future HP computers that can achieve high application performance

	Dense Problem Compute Intensive	Sparse Problem “real” appl. performance
Uniform Precision	HPL	HPCG
Mixed Precision	HPL-AL	

HPCG Rank	HPL Rank	System	HPCG (Pflop/s)	HPL (Pflop/s)
1	1	Fugaku (Riken)	16.0	442.0
2	2	Summit (ORNL)	2.9	148.6
3	5	Perlmutter (NERSC)	1.9	70.8
4	3	Sierra (LLNL)	1.8	94.6
5	6	Selena (NVIDIA)	1.6	63.5

Data source : top500.org (Nov, 2021)

Existing HP Benchmark 3/3 : HPL - Accelerator Introspection (HPL-AI)

- HPL-AI solves the same **dense** linear system as HPL, but allows the use of **lower-precision**
- It uses lower-precision for **compute-intensive** LU (no pivoting), which dominates benchmark time.
- **Iterative refinement** is used to obtain the solution with double precision accuracy.
- It achieves much higher performance than HPL on machines with lower-precision at higher performance
 - It measures the computer's capability to perform compute intensive tasks

	Dense Problem Compute Intensive	Sparse Problem “real” appl. performance
Uniform Precision	HPL	HPCG
Mixed Precision	HPL-AI	

HPL-AI Rank	HPL Rank	System	HPL-AI (Pflop/s)	HPL (Pflop/s)
1	1	Fugaku (Riken)	2.00	0.44
2	2	Summit (ORNL)	1.41	0.15
3	6	Selena (NVIDIA)	0.63	0.06
3	5	Perlmutter (NERSC)	0.59	0.07
5	8	Juwels BM (FZJ)	0.47	0.04

Data source : top500.org (Nov, 2021)

New HP Benchmark : HP GMRES mixed-precision (HPGMP)

Input: $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^{n \times 1}$, initial guess $x_0 \in \mathbb{R}^{n \times 1}$, relative residual tolerance $rTol$

Output: approximate solution x_m

```

1:  $r = b - Ax$ ,
2:  $\gamma = \|r\|_2$ 
3: while not converged do
4:    $v_1 = r_0/\gamma$ , and  $h_{1,1} = 0$ 
5:   for  $j = 1 : m$  do
6:     // GMG preconditioner  $M$ , followed by SpMV
7:      $w_j = AMv_j$ 
8:     // CGS2 orthogonalization
9:      $w_j = w_j - V_j t_j$  with  $t_j = V_j^T w_j$ 
10:     $h_{1:j,j} = t_j$ 
11:     $w_j = w_j - V_j t_j$  with  $t_j = V_j^T w_j$ 
12:     $h_{1:j,j} = h_{1:j,j} + t_j$ 
13:     $h_{j+1,j} = \|w_j\|_2$            GMRES in lower precision
14:     $v_{j+1} = w_j/h_{j+1,j}$ 
15:   end for
16:    $\hat{d} = \arg \min_{y \in \mathbb{R}^m} \|\gamma e_1 - H_{1:m+1,1:m} y\|_2$ 
17:    $x = x + V_m \hat{d}$ 
18:    $r = b - Ax$                   Refinement in double precision
19:    $\gamma = \|r\|_2$ 
20: end while

```

	Dense Problem Compute Intensive	Sparse Problem Compute/Comm pattern in "Real" Apps
Uniform Precision	HPL	HPCG
Mixed Precision	HPL-AL	HPGMP

- The new benchmark
 - measures computer's capability to perform computation & communication often found in **applications** (like HPCG)
 - allows use of **mixed-precision** (like HPL-AL)
- Iterative refinement for solving a sparse linear system
 - **Lower-precision** may be used to solve the sparse linear system
 - Sparse iterative solver, which typically dominates benchmark time
 - GMRES + GMG + GS smoother (sparse-triangular solve)
 - **Double-precision** is used to update the solution and to compute the new residual vector

Mixed-precision GMRES – Iterative Refinement for solving sparse non-symmetric linear system

- Generalized Minimum Residual (GMRES)
 - A popular Krylov method for solving a non-symmetric system
 - It computes an approximate solution minimizes the residual norm in the computed Krylov projection subspace
- Mixed-precision variant
 - is also a well-established algorithm
 - Growing interests, with lots of numerical theories and performance studies, in recent years

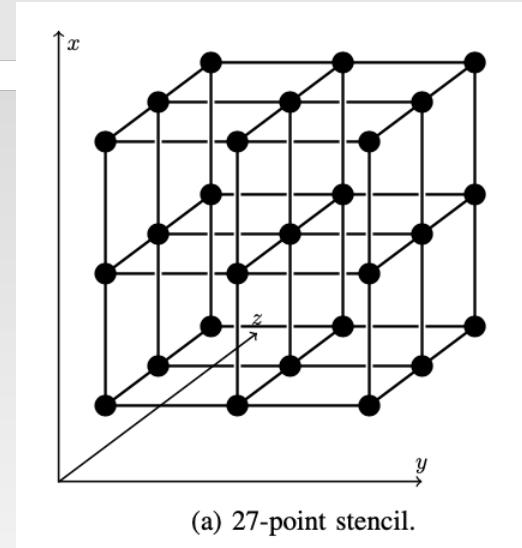
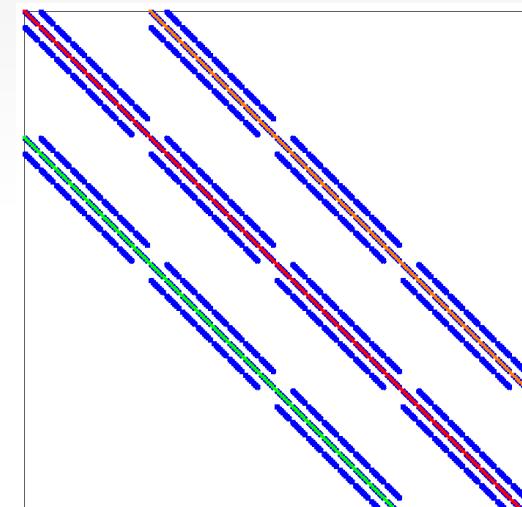
- 1) *P. Amestoy, A. Buttari, N. Higham, J. L'Excellent, T. Mary, and B. Vieuble. Five-precision GMRES- based iterative refinement. 2021.*
- 2) *P. Amestoy, A. Buttari, N. Higham, J. L'Excellent, T. Mary, and B. Vieuble. Combining sparse approximate factorizations with mixed precision iterative refinement. Technical report, The University of Manchester, 2022.*
- 3) *E. Carson and N. Higham. Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions. SIAM J. Sci. Comput., 40(2):A817–A847, 2018.*
- 4) *S. Gratton, E. Simon, D. Titley-Pe’loquin, and P. Toint. Exploiting variable precision in GMRES. ArXiv, abs/1907.10550, 2019*
- 5) *N. Lindquist, P. Luszczek, and J. Dongarra. Improving the Performance of the GMRES Method using Mixed-Precision Techniques. in Smoky Mountains Conference Proceedings, 2020.*
- 6) *J. Loe, C. A. Glusa, I. Yamazaki, E. G. Boman, and S. Rajaman- ickam. Experimental evaluation of multiprecision strategies for GMRES on gpus. In 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 469–478, 2021.*
- 7) ***K. Turner and H. Walker. Efficient high accuracy solutions with GMRES(m). SIAM J. Sci. Stat. Comput., 13(3):815–825, 1992.***
- 8) *Etc. etc.*

Also, mixed-precision MG:

- 1) *S. McCormick, J. Benzaken, and R. Tamstorf. Algebraic error analysis for mixed-precision multigrid solvers. SIAM J. Sci. Comp., 43(5):S392–S419, 2021.*

HPGMP: Problem description

- Regular 3D grid with 27-points stencil
 - Same as HPCG
 - Parameterized for non-symmetric numerical values
 - Represents finite difference discretization of an advection-diffusion problem
 - Right-hand-side vector $b = A * \text{ones}$, and initial approximate solution $x = \text{zeros}$.
- MPI processes are arranged into a 3D process grid (p_x p_y p_z)
- Participant specifies the dimension of the local subdomain (n_x n_y n_z) on each MPI
 - the global matrix size is $(n_x p_x \ n_y p_y \ n_z p_z)$



HPGMP: Main tasks

1. Sparse Matrix Vector Multiply (SpMV)

- **Point-to-point neighborhood communication** (halo exchange)
 - Exchange 1, n_x , or n_x^2 elements with 7 ~ 26 neighbors
- Local **SpMV** with 27-pts stencil
 - 54nm Flops / restart

2. Orthogonalization based on Classical Gram Schmidt with reorthogonalization (CGS2)

- **Blas-2 dense vector dot-product**, local atomic and **global reduce**
 - Total of $2n(1+m)m$ Flops / Restart
- **Blas-2 vector update**, embarrassingly parallel
 - Total of $2n(1+m)m$ Flops / Restart

**Mixture of sparse and dense operations,
commonly found in real applications**

- With $m = 30$, about same number of flops for GMG and CGS2

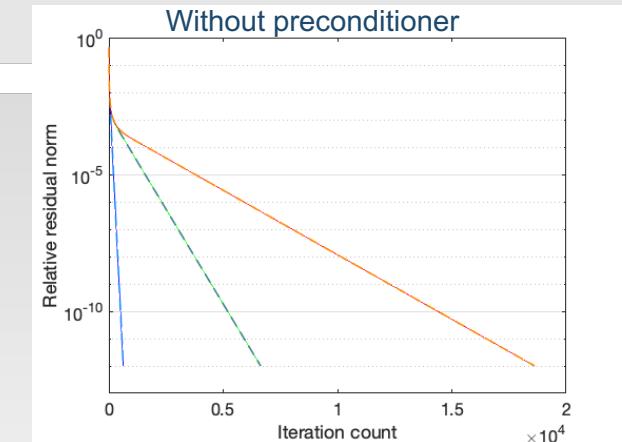
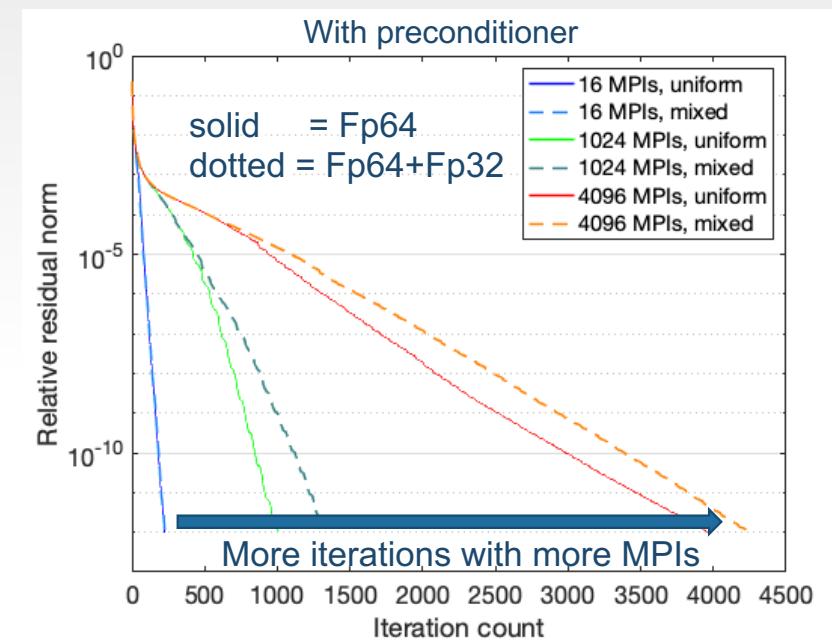
3. Geometric Multi Grid (GMG)

- One forward-sweep of Gauss-Seidel (GS) as pre & post smoother
 - **Halo-exchange**, Local **SpTRSV**
 - Total of $2*(54*73)/64$ nm Flops / Restart
- Residual vector computation
 - **Halo-exchange**, Local **SpMV**
 - Total of $2*(54*73)/64$ nm Flops / Restart
- Restriction & Prolongation operators
 - No communication, Local **SpMV** with a rectangular matrix,
e.g., one nonzero per row
- One forward sweep of GS at the final coarse level.
- **Halo-exchange**, Local **SpTRSV**
- Total 81 / 512 nm Flops / Restart

Same kernels as HPGCG,
except for CGS2

Q1 : How much flexibility to allow in term of precision?

- Current benchmark specification allows any precision for the GMRES iteration.
- The benchmark is **not** meant to be a **robust** or **scalable** solver.
 - It is designed to capture application performance
 - Iteration count increases with MPI count
 - It may converge slower, or faster, using lower precision
- We need verification and validation!!
 - The solver should achieve the double precision accuracy
 - If the solver requires more iterations, then the benchmark results should be appropriately penalized



HPGMP benchmark : two steps

1. Verification step:

- Run both reference & optimized solver
 - Using a fixed problem size on a fixed # of MPI processes
 - To reach double-precision accuracy
- Record # of iteration needed by both
 - Failure if optimized code did not converge
 - Compute penalty factor
 $i_p = \min(1.0, \# \text{ of optimized iterations} / \# \text{ of reference iteration})$

2. Benchmark step:

- Run optimized solver for a fixed number of iterations
 - Using user-specified problem size and # of MPI processes
 - Until reaching a minimum # of solves or time
- Compute benchmark Gflop/s
 - $I_p \times (\# \text{ of Gflops} / \text{Optimized benchmark time})$

- The benchmark is designed
 - To allow the use of mixed-precision
 - To penalize if the lower-precision results in the loss of accuracy (convergence rate)
- Note: we cannot run to double precision accuracy for the large benchmark runs (iteration count increases with # of MPIs)

HPGMP: Allowed optimizations

- Hardware specific optimization are allowed
 - Data structures, communication schemes, etc.
- Matrix may be permuted for GS smoother to expose parallelism
 - If the permutation increases the iteration count, benchmark performance is penalized (validation step)
- Algorithm changes are **not** allowed
 - s -step (communication-avoiding), pipelined, or randomized variant of GMRES
 - Low-synchronous/single-reduce orthogonalization
 - Iterative-variant of GS smoother
- Knowledge of matrix structure **cannot** be used
 - The matrix should be treated as a general matrix for SpMV
- **Any precision(s) may be used for the sparse solver**
 - **Need to pass the verification, and will be penalized on any increase in iteration count**
- **Matrix scaling is not allowed**
 - The matrix may not be scaled to fit in the numerical range of lower precision
 - It can be used to improve the conditioning of the matrix

Similar to HPCG

HPGMP reference implementation

- The reference implementation (solver & benchmark suite) is available
 - <https://github.com/iyamazaki/hpcg>
 - It is meant to be optimized by participants
- It reuses many of HPCG components
- It is based on C++ template
 - To make it easier to use various precision
- It also provides CUDA/HIP backends
 - It uses GPUs to generate basis vectors, while the tiny least square problem is solved redundantly on each CPU.
 - It uses MPI for data exchange, while solely rely on vendor libraries for the GPU computation
 - **CuBLAS** for CGS2, **CuSparse** SpMV & SpTRSV for GS and restriction/prolongation, and **CUDA library** for memory management
 - No custom CUDA/HIP code
 - MPI message communication is through CPUs
 - If the vector needs to be casted, then it is done on a CPU

```
template<class SparseMatrix_type, class SparseMatrix_type2, class CGData_type, class CGData_type2, class Vector_type>
int GMRES_IR(const SparseMatrix_type & A, const SparseMatrix_type2 & A_lo,
              CGData_type & data, CGData_type2 & data_lo, const Vector_type & b_hi, Vector_type & x_hi,
              const int restart_length, const int max_iter, const typename SparseMatrix_type::scalar_type tolerance,
              int & niters, typename SparseMatrix_type::scalar_type & normr, typename SparseMatrix_type::scalar_type & normr0,
              double * times, bool doPreconditioning);
```

Performance studies of reference implementation : Experimental setups

- OLCF machines
 - Summit
 - Each node with 2×22-core **Power9** CPUs and six **NVIDIA V100** GPUs
 - Spock
 - Each node with 1×64-core **AMD EPYC 7662** CPU and four **AMD MI100** GPUs
 - Crusher
 - Each node with 1×64-core **AMD EPYC 7A53** CPU and four **AMD MI250X** GPUs
- Weak-scaling
 - a fixed problem size per MPI (one MPI / CPU core or GPU)
- Using single-precision for GMRES iterations
 - 1.6x reduction in sparse matrix storage
- Performance of the **reference** implementation
 - Meant to motivate interests

name	value
Solver parameters	
restart cycle, m	30
GMG levels	3
GS sweeps	1
Step 1 (Validation)	
problem size (n_x, n_y, n_z)	(80,80,80)
convergence tol	10^{-9}
# of MPI procs	4
Step 2 (Benchmark)	
# of iterations	300
# of minimum solves	10
minimum time	30 minutes (disabled)

Some of the parameter values are selected for convenience.

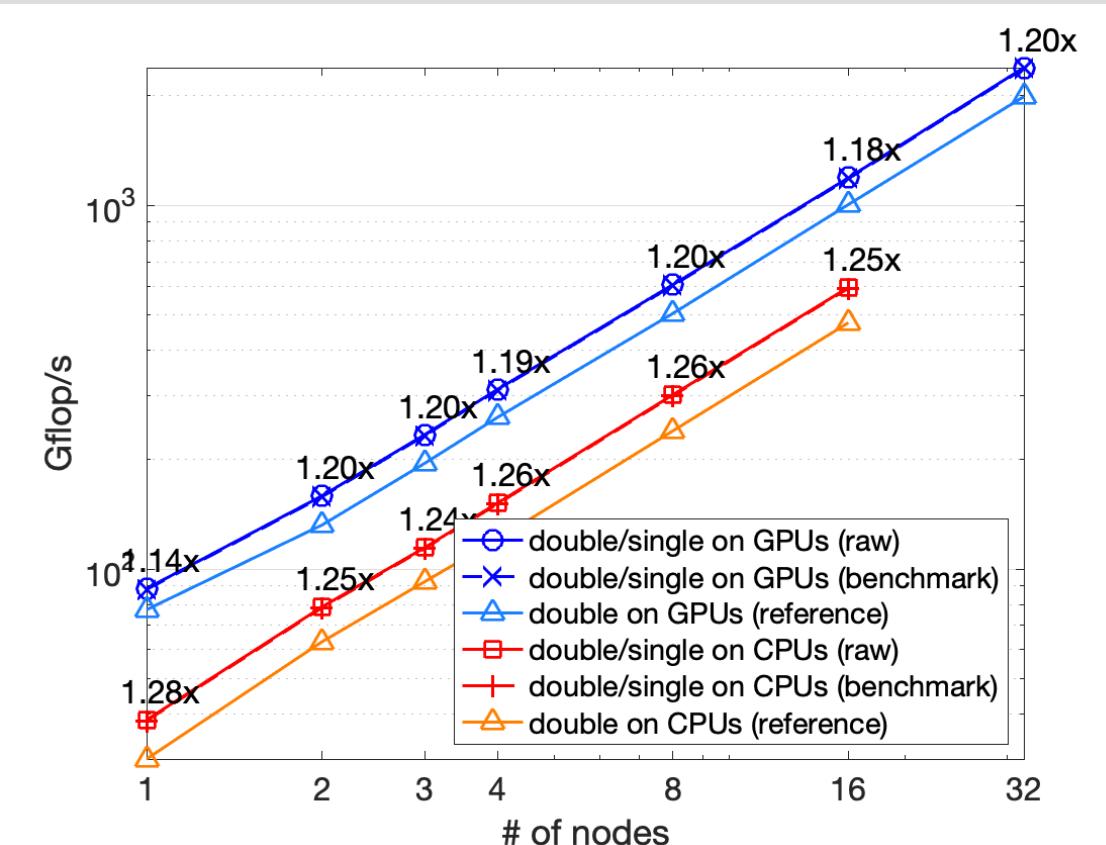
Performance of reference implementation on Summit

IBM Power9 CPUs + NVIDIA V100 GPUs

- Speedup of 1.2x using a non-optimized reference
- Most of the solver time is spent in SpTRSV
 - It has limited parallelism, and its performance may be more dominated by latency
 - it is harder to get speedup using lower precision
 - Reference implementation uses CuSparse SpMV & SpTRSV (no coloring)

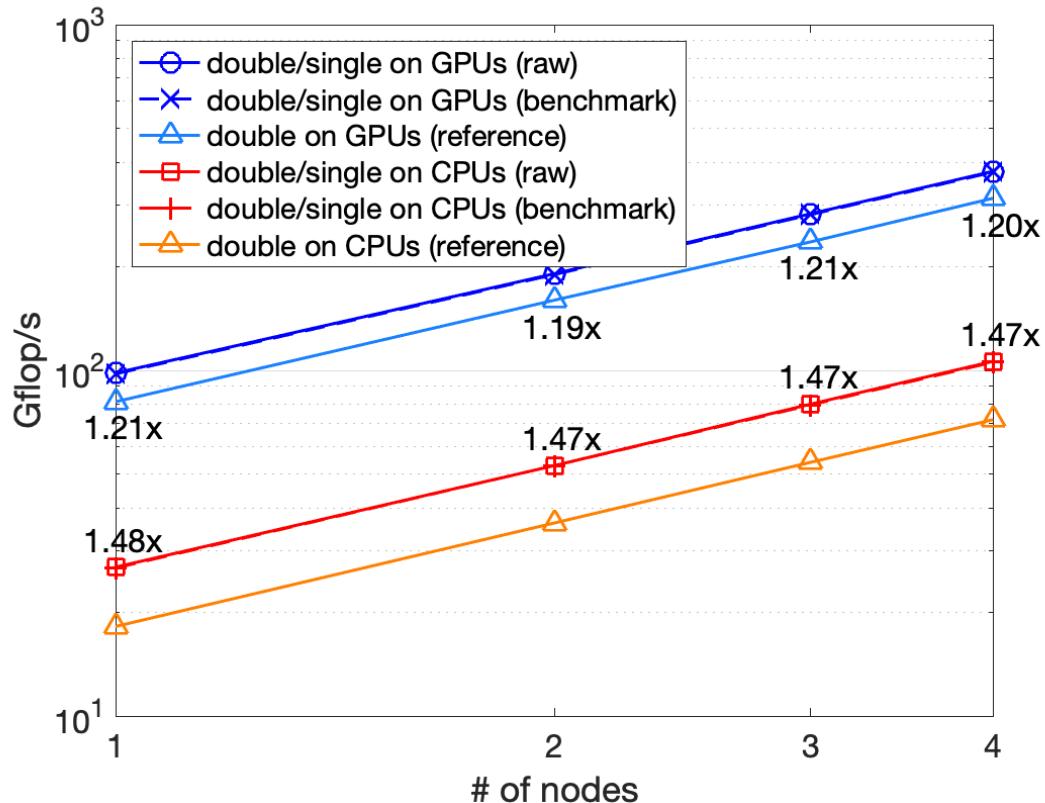
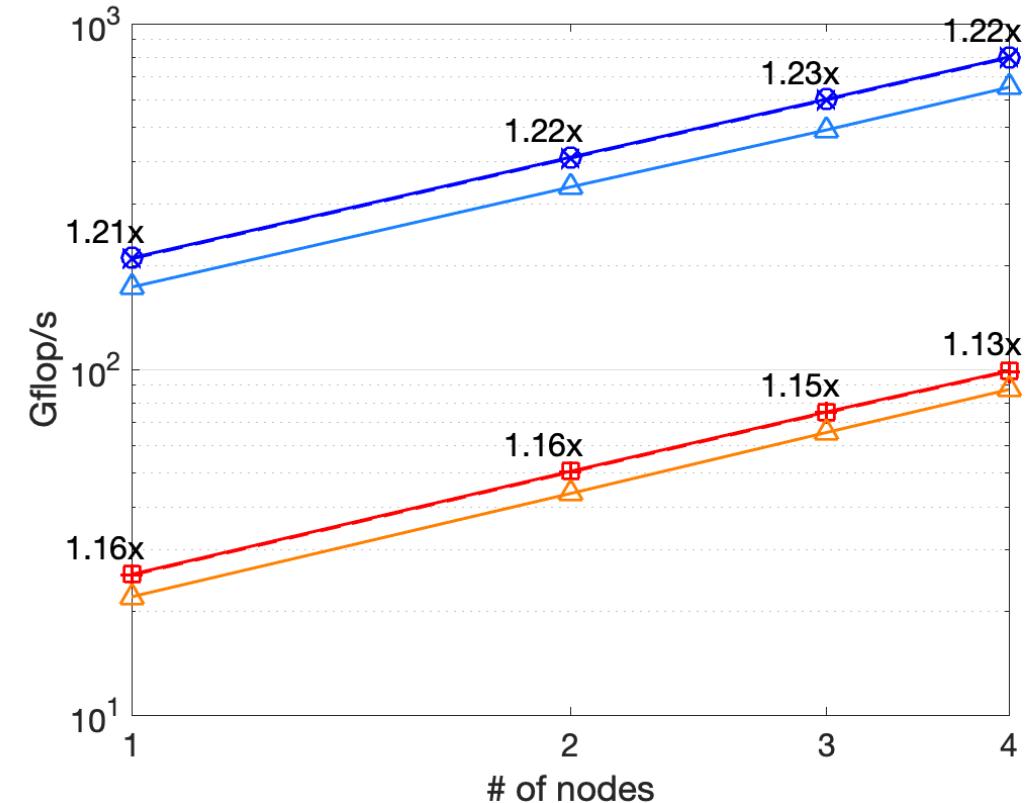
	Time in seconds with GPUs				TFlop/s with GPUs			
	GMG	SpMV	CGS2	Total	GMG	SpMV	CGS2	Total
Uniform	51.5	3.8	2.5	60.2	0.30	1.20	4.13	0.50
Mixed	44.5	2.4	1.8	50.1	0.35	1.87	5.73	0.61
Speedup	1.16	1.56	1.39	1.20	1.15	1.56	1.39	1.20

Performance on 8 Summit nodes with GPUs
(about same total # of flops for GMG or CGS2)



Performance of reference implementation on Spock & Crusher

AMD EPYC CPUs + AMD MI100/250X GPUs



- Speedups, similar to those on Summit
 - AMD MI250X GPUs on Crusher have same peak performance using double and single

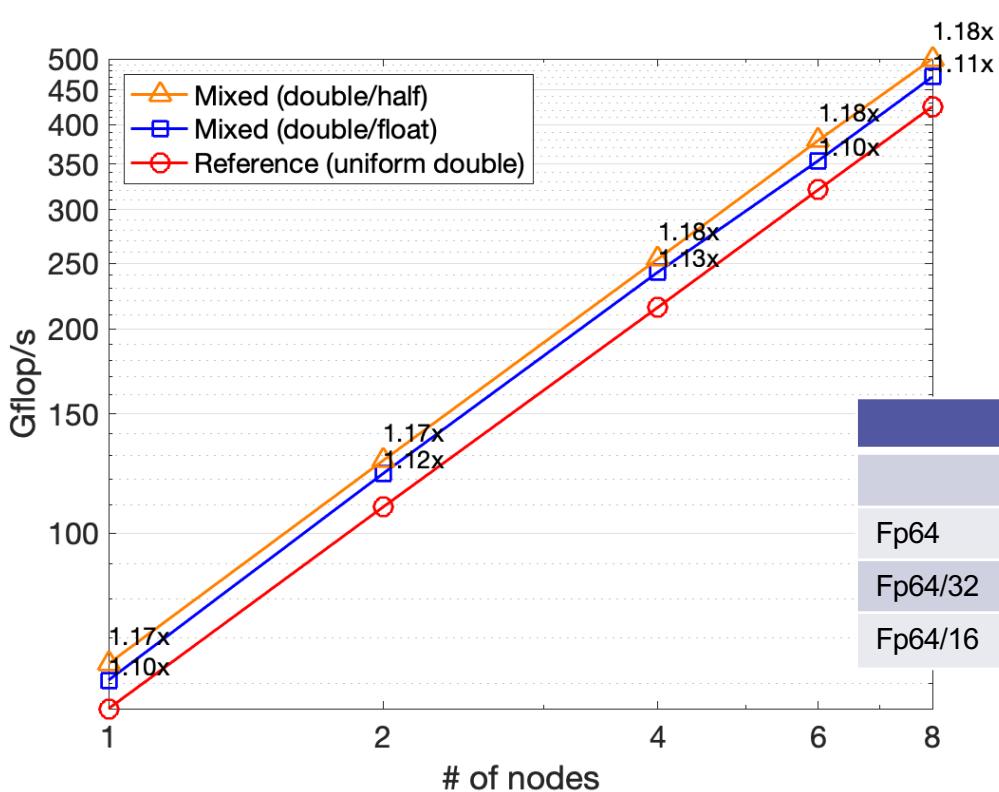
Experimental studies with 16-bit floating precisions

- Kokkos-Kernels backends as an “optimized” implementation
 - Portable implementation of LA operations on different node architectures
 - Perlmutter (NVIDIA A100) and Crusher (AMD 250X), or Fugaku (A64 FX)
 - Allows the use of FP16 or BF16, and mixed-precision operations
- We look at **performance** (time / iteration) and **convergence** (# iterations needed for convergence)
 - FP16 for GMRES iterations, except accumulations are stored in FP32 (e.g., Hessenberg matrix for LSP, and norms for convergence check, on CPU)
 - Both performance & convergence depend on how mixed-precision operations are implemented through software stacks and on hardware

System	GPU	GPU Peak Performance (Tflop/s)		
		FP64	FP32	FP16
Crusher (ORNL)	AMD MI250X	26.5	26.5	191.0
Fugaku (Riken)	Fujitsu A64 FX	3.4	6.7	13.5
Perlmutter (NERSC)	NVIDIA A100	9.7	19.5	312.0
Sierra (LLNL)	AMD MI100	11.5	23.1	184.0
Selena (NVIDIA)	AMD MI250X	26.5	26.5	191.0

Special thanks to Kokkos-Kernels team,
Brian Kelley, Evan Harvey, and Vinh Dang

Performance (time / iteration) using FP16 on Perlmutter (Six NVIDIA A100 GPUs / node)

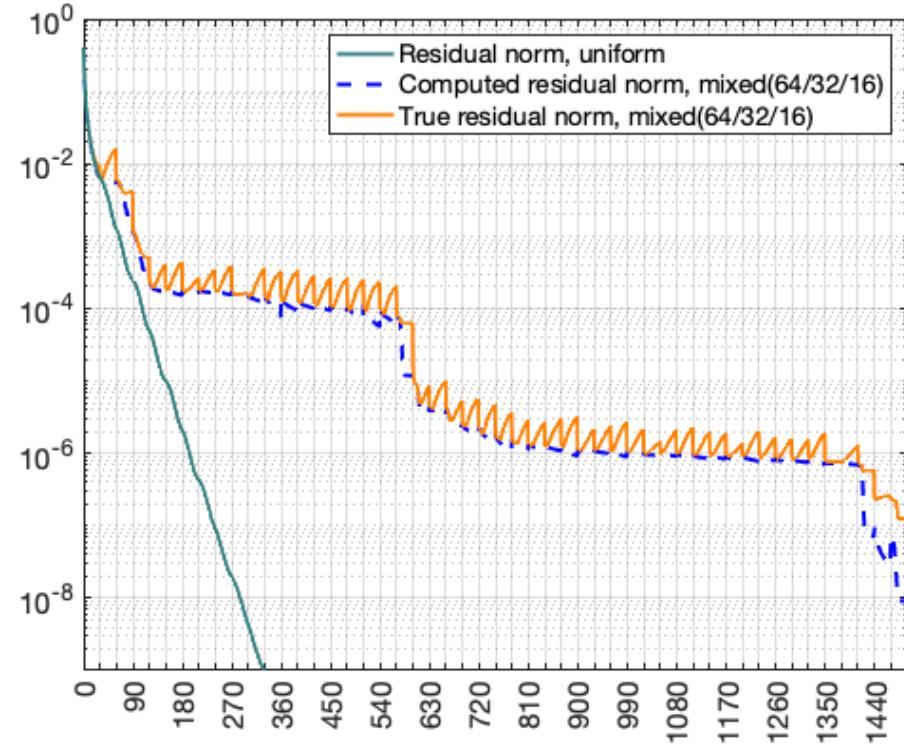
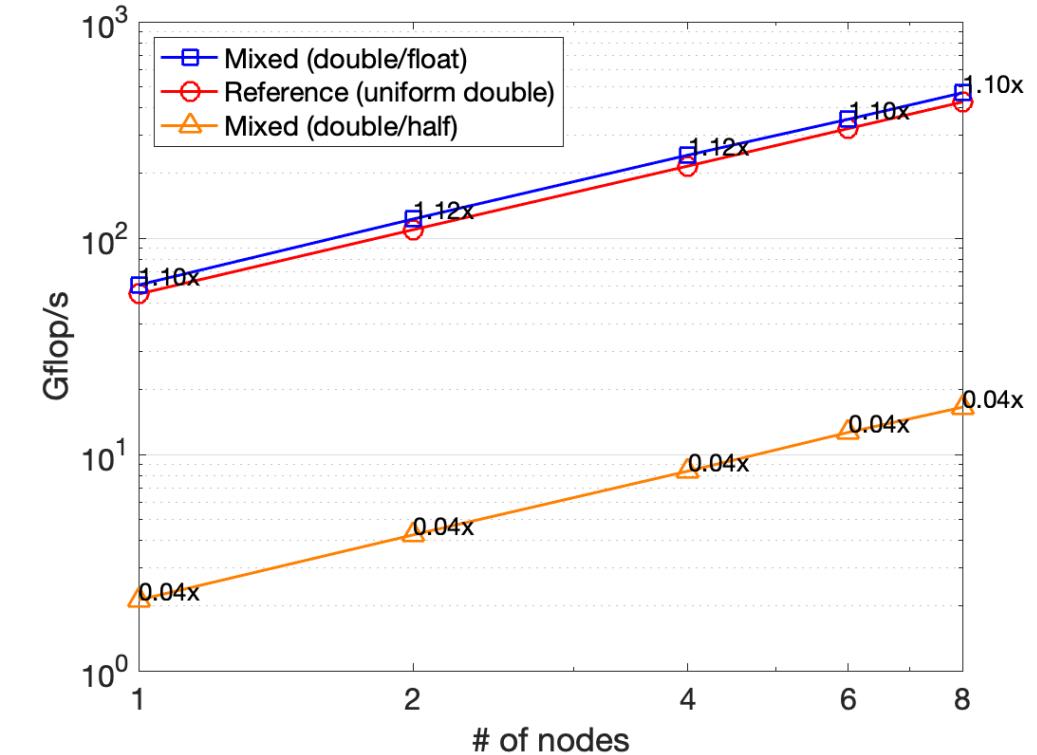


- using FP16 did help reducing the iteration time
 - Performance & speedup dominated by GMG
 - We used clustered GS from Kokkos-Kernels

	Time in milliseconds / iter				GFlop/s				Speedup			
	GMG	SpMV	CGS	Total	GMG	SpMV	CGS	Total	GMG	SpMV	CGS	Total
Fp64	8.80	0.67	3.88	13.4	42.3	162.1	64.9	55.1	--	--	--	--
Fp64/32	8.11	0.47	3.55	12.1	45.8	232.6	71.0	60.7	1.08	1.43	1.09	1.10
Fp64/16	8.02	0.40	3.04	11.5	46.4	274.4	82.7	64.2	1.10	1.69	1.27	1.17

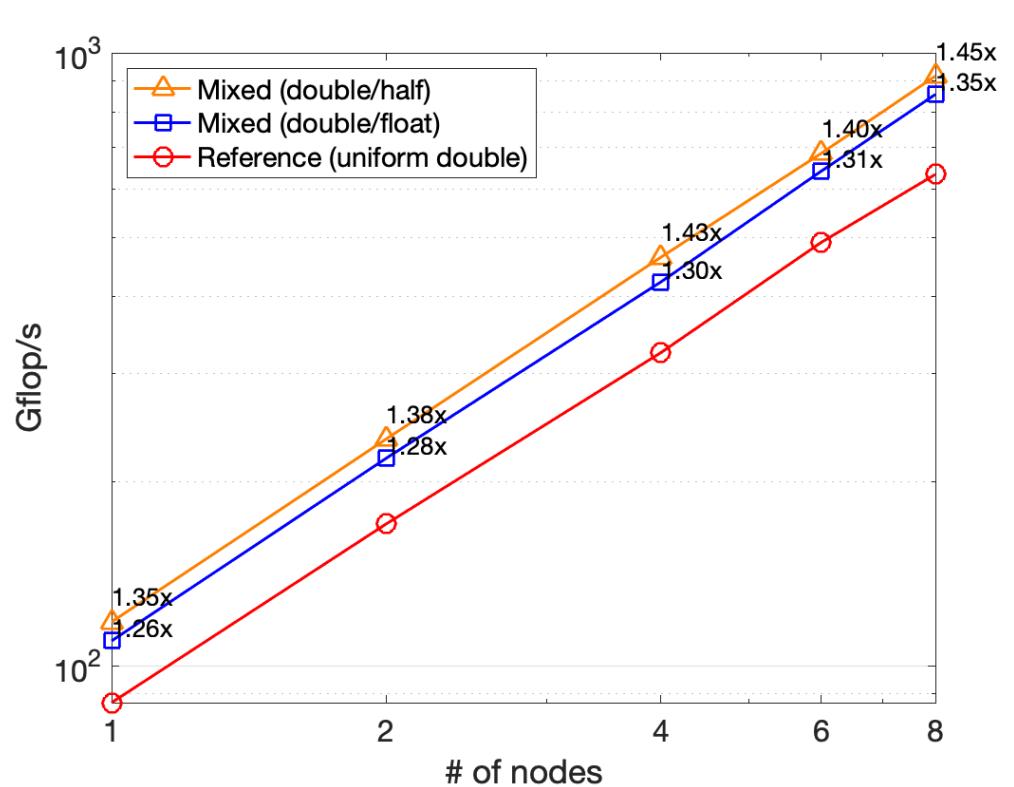
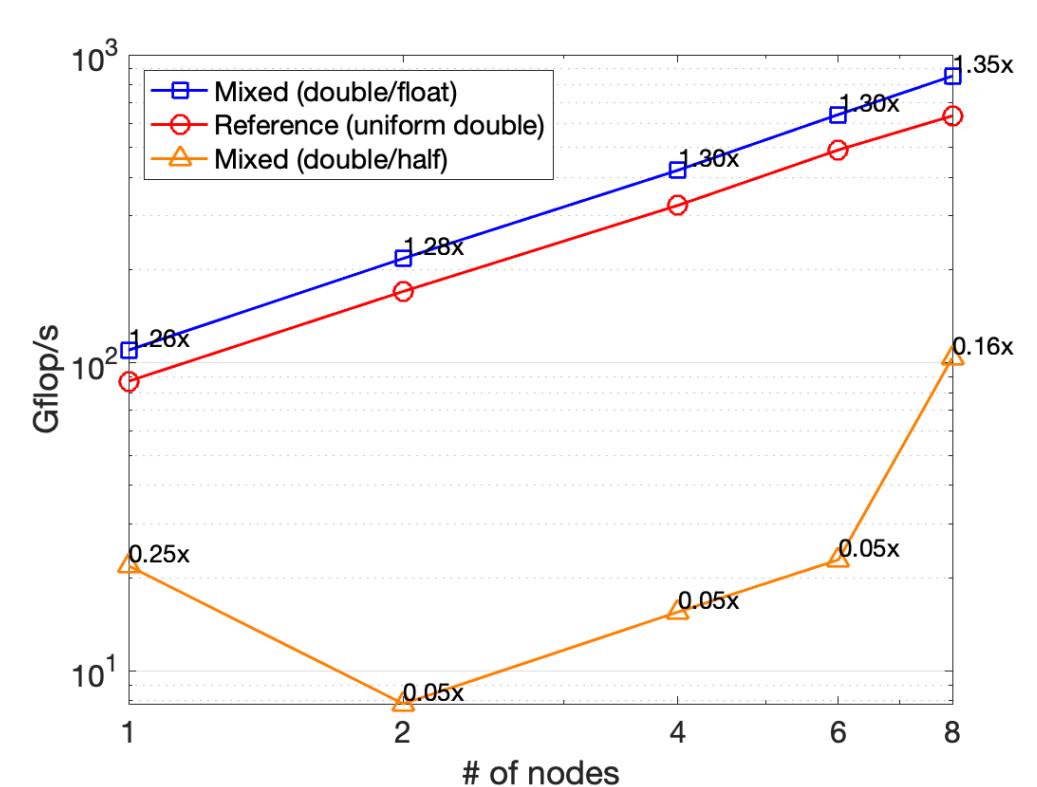
Performance on one Perlmutter node with GPUs
(about same total # of flops for GMG or CGS2)

Performance (time / iteration) using FP16 on Perlmutter (Four NVIDIA A100 GPUs / node)



- Number of iterations increased using FP16
 - Bad from solver point (longer time to solution)
 - Good from benchmark point (captured and penalized benchmark results)

Performance (time / iteration) using FP16 on Crusher (Six AMD MI250X GCDs / node)



- Number of iterations increased using FP16
 - Bad from solver point (longer time to solution)
 - Good from benchmark point (captured and penalized benchmark results)

Final remarks

- Developing a new benchmarks
 - Captures the performance of applications
 - Allows the use of mixed lower precision arithmetic
 - Please see our SC'22 workshop paper
- Reference implementation is publicly available
 - Working with Kokkos-Kernels backend as “optimized” version, for numerical & performance tests with more mixed-precision
 - Optimizing Kernel performance, with FP16
 - Improving stability (following/breaking current specifications)
 - Running on current top-ranked HP computers, at larger-scale, and beyond
 - Comparing with application performance
 - etc.

Open for feedbacks & collaborations !!

Acknowledgments

- This work was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.