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Abstract—The generalized Dryja–Smith–Widlund (GDSW)
preconditioner is a two-level overlapping Schwarz domain de-
composition (DD) preconditioner that couples a classical one-level
overlapping Schwarz preconditioner with an energy-minimizing
coarse space. When used to accelerate the convergence rate of
Krylov subspace iterative methods, the GDSW preconditioner
provides robustness and scalability for the solution of sparse
linear systems arising from the discretization of a wide range of
partial different equations. In this paper, we present FROSch
(Fast and Robust Schwarz), a domain decomposition solver
package which implements GDSW-type preconditioners for both
CPU and GPU clusters. To improve the solver performance
on GPUs, we use a novel decomposition to run multiple MPI
processes on each GPU, reducing both solver’s computational
and storage costs and potentially improving the convergence rate.
This allowed us to obtain competitive or faster performance
using GPUs compared to using CPUs alone. We demonstrate
the performance of FROSch on the Summit supercomputer with
NVIDIA V100 GPUs, where we used NVIDIA Multi-Process
Service (MPS) to implement our decomposition strategy.

The solver has a wide variety of algorithmic and implementa-
tion choices, which poses both opportunities and challenges for
its GPU implementation. We conduct a thorough experimental
study with different solver options including the exact or inexact
solution of the local overlapping subdomain problems on a GPU.
We also discuss the effect of using the iterative variant of the
incomplete LU factorization and sparse-triangular solve as the
approximate local solver, and using lower precision for computing
the whole FROSch preconditioner. Overall, the solve time was
reduced by factors of about 2× using GPUs, while the GPU
acceleration of the numerical setup time depend on the solver
options and the local matrix sizes.

I. INTRODUCTION

Domain decomposition methods (DDMs) [13], [26] may be
used to build a class of effective parallel solvers for sparse
linear systems arising from the discretization of partial differ-
ential equations. In DDMs, the global problem is decomposed
into smaller local subproblems, which can be processed in
parallel. As a result, DDM preconditioners are well-suited
for solving large-scale linear systems on distributed-memory
computers. However, for one-level DDMs, the number of itera-
tions required for the solution convergence typically increases
with an increasing number of subdomains. As a remedy, a
second-level coarse system, which is determined by carefully-
designed coarse basis functions, is introduced. As a results
the condition number of the preconditioned matrix, and thus
the required number of iterations, becomes asymptotically
independent of the number of subdomains. In this paper, we
consider the generalized Dryja–Smith–Widlund (GDSW) [11]

two-level Schwarz DDM, which combines classical one-level
overlapping additive Schwarz preconditioner with energy-
minimizing coarse basis functions and has been shown to be
robust and scalable for solving many challenging problems.

Our focus is on the GPU performance of the GDSW
preconditioner. Several algorithmic and software options are
possible for the GDSW algorithm. Each of these options
has multiple tunable parameters, and a good choice of the
parameters can be architecture and problem specific. Some of
these options also have algorithmic implications in addition to
the implementation choices. For example, the computational
complexity of the local sparse solver increases more than
linearly to the local matrix size. Since there are typically more
CPU cores than the GPUs, decomposing the global domain
to one subdomain per GPU instead of one subdomain per
CPU core may increase the complexity of the local subdomain
solver. Moreover, a fewer subdomains lead to a smaller coarse
space, which could degrade the convergence behavior. Finally,
many of the kernels, which DDM solvers depend on, such as
sparse direct solver, incomplete factorization, sparse triangular
solver, and sparse matrix-matrix multiply, are difficult to
optimize on GPUs. All of these properties pose challenges
when implementing the solver and tuning its performance for
the GPU architectures. As a result, the comprehensive GPU
performance study of two-level DDM solver has been lacking,
especially at scale, to the best of our knowledge.

To fill this gap, we study the GPU performance of FROSch
(Fast and Robust Schwarz), a solver package, which im-
plements GDSW preconditioners within Trilinos software
framework; cf. [18]. Our implementation is also portable
to different hardware architectures with a single code base.
As architectures change rapidly, it is critical to design the
software stack such that the solver is portable to different
hardware architectures (e.g., isolating the hardware-specific
codes and optimizations from the high-level solver design and
implementation). Though this avoids the need of re-writing
the solver for each new architecture, in order to obtain high
performance on a specific architecture, including on a GPU
cluster, the software stack must be carefully designed and new
variants of the algorithms may be needed. We evaluate many
of the algorithmic and software choices that are critical for
the GPU performance of the GDSW preconditioners including
new solver capabilities added for this purpose, e.g.,

• single-reduce variant [30] of the Krylov solver, which
performs only one global-reduce for each iteration,
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used effects other options available
Krylov solver single-reduce GMRES improve data access standard, pipelined, comm-avoid
GDSW two-level rGDSW reduce coarse space size standard, multi-level
Direct solver GPU-enabled Tacho allows use of GPU CPU-only, e.g., SuperLU
Sparse triangular solve supernode-based Kokkos-Kernels improve GPU utilization element-based, partitioned inverse
Inexact solver iterative variants FastILU/FastSpTRSV expose more parallelism standard on CPU/GPU
Precision single precision HalfPrecisionOp reduce data volume uniform double precision
# of subdomains # of CPU cores reduce solver costs # of GPUs

& improve convergence

TABLE I: Solver options used in this paper: each solver option has multiple tunable parameters, e.g., GMRES with restart
length, orthogonalization scheme, rGDSW with size of overlap, Tacho with matrix ordering scheme, FastILU with number
of levels, and Jacobi iteration count and damping factor, just to name a few main parameters.

• the exact solution of the local overlapping subdomain
and coarse space problems based on the direct sparse LU
factorization on a GPU [21],

• a supernodal-based sparse triangular solver [28], which
reduces the number of kernel launches and exploit the
hierarchical parallelism available on a GPU, and

• iterative variants of ILU factorization and sparse-
triangular solver [8], which have much higher costs
of computation but expose more parallelism than the
standard substitution-based algorithm.

Table I lists some of the main solver options, which we will
evaluate in this paper, and other parameters we selected based
on our experience and past results.

Experimental results on the Summit supercomputer with
NVIDIA V100 GPUs demonstrate the potential of the two-
level DD solvers on the GPU clusters. We compare the GPU
performance with the CPU performance using all the CPU
cores on each node. We believe this provides a conservative but
fair performance comparison that an application is expected
to see. Using GPUs, the solve time for 3D elasticity problems
was reduced by factors of around 2×, while the effects on the
numerical solver setup time depends on the solver options and
the local matrix sizes. In cases of using local direct solvers,
the total solution time (the total of the numerical setup and
solve time) for a single linear system was reduced by a factor
of about 1.1× to 1.7×. If the application requires to solve a
sequence of the linear systems with different right-hand-sides,
the cost of the numerical setup can be amortized over multiple
solves and the speedups closer to 2× can be obtained.

The main contributions of this work are:

• A GPU implementation and large-scale GPU performance
study of a two-level DDM solver;

• A novel decomposition strategy that allows the use of
NVIDIA Multi-Process Service (MPS) to run multi-
ple MPI processes on each GPU, and significantly re-
duces both the computational and storage cost of the
DDM solver, and potentially improves convergence (Sec-
tion VI). We are not aware of other studies, which
use MPS with a production-ready linear solver. In our
performance studies of using MPS on Summit, both the
numerical setup and solve time of FROSch was reduced
by the factors of up to 3×.

• A detailed experimental study of several solver options

for the two-level DDM including direct, incomplete,
and approximate factorizations, with multiple parameter
choices for each of them.

• Numerical and GPU performance studies with inexact or
approximate local linear solver or with DDM precon-
ditioner in a lower precision, enabling the solution of
larger-scale linear systems than the linear system that the
typical DDM solvers can (the exact solution with local
direct solvers in double precision, which typical GDSW
in practice, and its theory, is based on).

II. RELATED WORK

As GPUs became a critical part in scientific computing,
there have been several works to optimize the computational
kernels, which are also needed for DDM solvers. On the
other hand, a GPU implementation of a two-level DDM solver
that uses these kernels in addition to other kernels has not
been demonstrated at scale. Luo et al. [22] investigated the
GPU performance of a one-level DDM, and the number of
MPI processes was limited by the number of GPUs. We will
show that this is sub-optimal in terms of performance and
convergence. Solver performance can be improved by using a
decomposition that maps one MPI process on each CPU core,
and multiple MPI processes on each GPU. In addition, they
used the GPU to only accelerate the local subdomain solver,
which was based on smooth-aggregate multi-grid with dense
coarse solver. Hence, the GPU performed only sparse-matrix
vector multiply, dense vector update, and dense triangular
solve, which are relatively easy to parallelize on a GPU (the
paper avoided using ILU since it is difficult to parallelize on
a GPU).

In parallel to our work, Šı́stek and Oberhuber employed
GPUs to speed up the local solves in the two-level balancing
domain decomposition by constraints (BDDC) method in [31];
in particular, they perform the factorization and forward and
backward solves of dense local Schur complement matrices
on the GPUs. For time-dependent simulations, where the
factorizations can be reused between different time steps, they
observed a speedup of up to 5×, compared to using CPUs
only, by simply storing the dense matrix on GPUs.

In this paper, we will study the GPU performance of
the two-level DDM solver using the kernels that are more
commonly used for the DDM solvers – sparse direct and
incomplete factorizations.



(a) Original problem. (b) Nonoverlapping partition.

Fig. 1: Domain decomposition with local 4-by-4 problem. In
Fig.1(b), interior and interface are represented by circle and
square markers, respectively.

III. THE GDSW ALGORITHM

We consider the solution of the linear system of equations,

Ax = b.

The DDM solvers have been extensively studied for the
matrices arising from the discretization of an elliptic partial
differential equation, in both theory and practice, but they have
been successfully applied to many other problems [13], [26].

The two-level overlapping additive Schwarz preconditioner
is based on a decomposition of the global domain Ω into np

nonoverlapping subdomains Ω1, . . . ,Ωnp
. These subdomains

are then extended by ℓ layers of mesh elements (alternatively
mesh nodes) to obtain corresponding overlapping subdomains
Ω′

1, . . . ,Ω
′
np

. The preconditioner is then given by

M−1 = ΦA−1
0 ΦT +

np∑
i=1

RT
i A

−1
i Ri, (1)

where Ri is the restriction operator from the global domain Ω
to the ith overlapping subdomain Ω′

i and Ai = RiART
i .

To construct a robust and efficient preconditioner, the critical
component is the coarse basis functions, the columns of the
matrix Φ, that yields the coarse matrix A0 = ΦAΦT .

The coarse basis functions Φ of GDSW [11] type precondi-
tioners are constructed as energy-minimizing extensions from
the interface Γ of the nonoverlapping DD to the interior I of
the subdomains; see Fig. 1 for an illustration of the decom-
position and see [18] for a discussion of the implementation
in FROSch. For our discussion, we reorder and partition the
global matrix A into a 2-by-2 block structure[

AII AIΓ

AΓI AΓΓ

]
,

such that the indices I and Γ correspond interior and the
interface degrees of freedom (dofs), respectively.

Let RΓ be the restriction operator from the global to the
interface dofs, such that AΓΓ = RΓART

Γ , and nI and nΓ

denote the numbers of the interior and interface dofs, respec-
tively. Then, the GDSW coarse basis functions are defined as
follows:

1) The interface Γ is partitioned into nc connected compo-
nents, Γ1, . . . ,Γnc , potentially with overlaps, and RΓi is the
restriction operator from the global interface Γ to Γi.

2) To obtain a partition of unity on the interface while
accounting for the overlapping portions of the interface de-
composition, we introduce diagonal scaling matrices DΓi

,
nc∑
i=1

RT
Γi
DΓi

RΓi
= IΓ,

where IΓ is the identity matrix on Γ.
3) Now, to obtain a robust and efficient preconditioner M−1,

the critical component of GDSW type preconditioners is the
n-by-nn matrix Z, which contains the null space of the global
Neumann matrix corresponding to A as columns. This matrix
may be computed “algebraically” for some cases (e.g., just
one constant column for a Laplace problem), while in some
applications, the null space may be explicitly available.

In Section VIII, we present performance results for a 3D
linear elasticity problem, for which, the null space consists of
the (linearized) rigid body motions, i.e., translations and lin-
earized rotations. As discussed in [16], the linearized rotations
cannot simply be obtained algebraically, however, the method
might still perform well when only the translations are used.

4) Finally, given the null space matrix Z, the energy-
minimizing coarse basis functions are computed as

Φ =

[
−A−1

II AIΓ

I

]
ΦΓ, (2)

where ΦΓ is an nI -by-(ncnn) matrix given by

ΦΓ = [RT
Γ1
ΦΓ1

, . . . , RT
Γnc

ΦΓnc
]

and each nI -by-nn matrix ΦΓi spans the null space restricted
to the ith interface, DΓi

RΓi
(RΓZ). Hence, ΦΓ has dimension

nI -by-(nnnc), while the dimension of Φ is n-by-(nnnc).
The computation of the subdomain problems in (1) par-

allelizes well since, in a distributed-memory implementation
with MPI, the ith subdomain Ai is assigned to the ith MPI
process and can be processed in parallel. The extensions (2)
can be parallelized similarly since AII has a block diagonal
structure, AII = diag(AI1I1 , . . . , AInp ,Inp

), where AIiIi cor-
responds to the interior part of the ith nonoverlapping subdo-
main. The GDSW coarse space can keep the condition number
of the preconditioned matrix AM−1, and hence the number of
iterations, asymptotically constant with an increasing number
of subdomains; see, e.g., [11].

There are several variants of GDSW including:
• As the number of subdomains and MPI processes in-

creases, the solution of the coarse problem A−1
0 even-

tually becomes a parallel performance bottleneck. To
alleviate this bottleneck a “reduced” variant of GDSW
(rGDSW) only uses only coarse basis functions corre-
sponding to vertices, but not to faces or edges; see [12],
[15]. Moreover, multi-level approaches have been pro-
posed to recursively apply GDSW on the coarse problem;
cf. [19].



• To enhance the coarse space for problems with a highly
heterogeneous coefficient, potentially with high jumps,
“adaptive” GDSW (AGDSW) enriches the coarse space
by additional components that are computed by solving
local generalized eigenvalue problems; see, e.g., [17].

We do not use the adaptive or multi-level variants in this paper,
however several of our results from this study apply to these
variants as well. In addition, the behavior of GDSW has been
extensively compared to other two-level DDMs, and many of
the DDM solvers use similar underlying kernels. Hence our
experimental study may provide insights to other methods.

IV. FROSCH SOFTWARE

FROSch [18] implements GDSW type preconditioners
within the Trilinos software framework [2], a collection
of open-source software packages that can be used as build-
ing blocks for developing large-scale scientific applications.
Fig. 2 shows the core Trilinos packages for solving linear
systems of equations. These packages can be combined to
develop a flexible and adaptable solver for large-scale scientific
applications. For instance, FROSch has interfaces to these
solver packages for solving its local overlapping subdomain
and coarse problems: direct solvers (Amesos2 [5]), inex-
act and preconditioned Krylov solvers (Ifpack2 [23] and
Belos [5]), and even a local algebraic multigrid solver or
Schwarz methods (MueLu [6] and FROSch [18]). In addition,
FROSch can be used as a preconditioner for Belos, which
implements Krylov solvers, including variants which can be
optimized for the GPU architectures, such as single-reduce,
communication-avoiding, and pipelined variants [29].

Furthermore, FROSch builds on the Trilinos software
stack, specifically packages that provide the portable perfor-
mance on different hardware architectures: In particular,

• Kokkos [27] is a C++ performance-portable program-
ming ecosystem. It provides the memory abstraction and
functionality to dispatch particular functions for parallel-
operations on a specific execution space on a CPU
or GPU. This enables portable thread performance on
different manycore architectures using a single code base
(assuming algorithms are performance portable).

• Kokkos-Kernels [24] is a collection of Kokkos-based
kernels for on-node sparse or dense matrix, or graph
operations on CPUs and GPU.

• Tpetra [1] implements distributed graph, matrix, and
vector operations for CPU and GPU clusters.

Though we focus on the FROSch software stack, this is not the
only option for the portable performance stack. For instance,
previous studies have compared the performance of the on-
node portable layers and individual kernels [27].

V. GPU ACCELERATION

Many of the current high-performance computers are com-
posed of the heterogeneous compute node architectures, i.e.,
each node consists of multicore CPUs and multiple GPU
accelerators. A GPU with a large number of compute cores
and a high memory bandwidth is suited for a highly-parallel

computation with a regular memory access pattern, while some
operations are better suited for CPUs.

This poses both challenges and opportunities for designing
high performance sparse linear solvers, including FROSch,
where most of the required computational kernels have ir-
regular memory accesses and a small ratio of the computa-
tion to the data accesses. As a result, their performance is
often bounded not by the computation but by the memory
bandwidth, if not by memory latency. In order for the solver
to utilize the GPUs well, both the solver and its underlying
computational kernels must be carefully designed, and new
variants of the algorithms may need to be developed. In this
section, we discuss some of the specific approaches taken to
improve the performance of FROSch on GPU clusters.

A. Software Considerations

1) Software Structure: In many scientific and engineering
simulations, we often perform the numerical factorization mul-
tiple times for a given mesh with the same sparsity structure or
need to solve a sequence of linear systems with different right-
hand-side vectors. Hence, all the linear solvers in Trilinos
have three distinct phases:
(a) Symbolic Factorization, given a sparsity structure or a

graph, performs all the symbolic analysis and factorization
and allocate required GPU memories. Operations such as
the symbolic analysis for an LU factorization, computing
the level sets for a triangular solve, are done here. This is
typically done on a CPU.

(b) Numerical Factorization, given numerical values of the
input matrix, performs the numerical factorization; in
FROSch, this part includes the computation of the coarse
basis functions, computing the coarse space matrix, and
factoring the overlapping local subdomain and coarse
matrices. Steps such as the sparse matrix - sparse matrix
multiplication for computing A0, numerical factorization
of the LU factorization or incomplete factorization are also
part of this step. We compute these on the GPUs, when
appropriate.

(c) Solve Phase, given right-hand-side vector(s), compute the
solution to the linear system. The sparse triangular solve
for the direct or incomplete factorization of local matrix
is done on the GPU as part of this phase.

These distinct phases are critical, especially for GPUs since
large parts of the symbolic analysis are difficult to parallelize,
and the GPU memory allocations can take a significant amount
of time.

2) Lower Precision Preconditioning: Within Trilinos,
the software package Belos implements Krylov solvers. It
uses the Operator class for applying a preconditioner, in-
cluding algebraic multigrid (AMG) and domain decomposition
(DD) preconditioners, which are implemented in the MueLu
and FROSch packages, respectively. These preconditioners
are typically constructed from a sparse matrix class, called
CrsMatrix.

A new utility function that converts a CrsMatrix ob-
ject into a new object in half the precision was developed



(a) Trilinos solver software stack.

Flexible Solver Interface
ShyLU Distributed DD preconditioner (FROSch) and

on-node factorization-based local solvers (Basker, Tacho)
MuLue Algebraic multigrid solver
Amesos2 Direct solver interfaces (e.g., KLU, PaRDISO, SuperLU, Tacho)
Belos Krylov solvers (e.g., CG, GMRES, BiCG, and

their communication-avoiding or pipelined variants)
Ifpack2 Algebraic preconditioners (ILU, relaxation, one-level Schwarz)

Portable Performance
Tpetra Distributed sparse/dense matrix-vector operations
Kokkos-Kernels Performance portable on-node graph and sparse/dense matrix operations
Kokkos C++ programming model for performance portable applications

on different node architectures (e.g., CPUs, NVIDIA/AMD GPUs)

(b) Linear solver package descriptions.

Fig. 2: Trilinos linear solver packages

(e.g., if the original matrix is in double precision, then the
new matrix will be in single precision), allowing users to
construct the preconditioner also in half the precision. The
new HalfPrecisionOperator class, which inherits the
base Operator class in the working precision and internally
holds the operator in half the precision as its member variable,
is also implemented. When this new operator is applied to
vectors, it internally type-casts the input vectors into half the
precision, applies the operator (e.g., preconditioner) in half
the precision, and then type-casts the resulting output vector
back into the working precision. Though it has the overhead of
type-casting, these new capabilities allow users to apply many
of the preexisting Trilinos preconditioners in half the precision
within the current Trilinos framework. Currently, MueLu and
FROSch (whose cost of applying is typically much higher
than that of type-casting vectors) have been extended to utilize
these new capabilities

B. Algorithmic Consideration
1) Sparse Direct Matrix Factorization: Most of the theo-

retical results for DD solvers (including the condition number
estimates for the preconditioned matrix) assume the exact
solution of the overlapping subdomain and coarse problems.
As a result, in practice, DD solver typically use sparse direct
solvers.

Sparse direct solvers are a critical component in many
scientific applications, and there have been extensive efforts
to develop high performance sparse direct solvers [9]. For
our experiments, we used SuperLU and Tacho software
packages that provide two different approaches to the sparse
direct solvers:

• SuperLU [10] implements left-looking sparse LU fac-
torization with partial pivoting. It mainly targets a single
CPU core, though it could be linked to threaded BLAS
or LAPACK for runing on multicore CPUs. It uses the
supernodal block structures of the LU factors in order to
exploit the memory hierarchy.

• Tacho [21] is based on multifrontal factorization with
pivoting only inside the frontal matrices. The original
Tacho used the task programming model of Kokkos.
Though the current implementation still uses Kokkos, it

exploits the hierarchical parallelism available on a GPU
through the combination of level-set scheduling and team-
level BLAS/LAPACK like kernels. It also has interface to
the vendor-optimized kernels (i.e., NVIDIA’s CuBLAS/-
cuSolver and AMD’s rocBLAS/rocSolver) to factorize
large frontal matrices with GPU streams. Tacho cur-
rently supports Cholesky, LDLT , or LU factorization of
a symmetric positive definite, symmetric indefinite, or
numerically nonsymmetric matrix but with symmetric
pattern, respectively.

2) Sparse Triangular Solve: When a direct sparse matrix
factorization is used, the resulting sparse triangular matrix
typically has the dense blocks called supernodes. It is possible
to exploit this supernodal structure to accelerate the triangular
solves. For instance, Kokkos-Kernels implements sparse-
triangular solver based on level-set scheduling of supernodal
blocks [28]. Working with blocks instead of matrix elements
may give several performance advantages on a GPU. For
instance, it reduces the height of the level-set trees and the
length of the critical path in the parallel execution (e.g.,
number of kernel launches) of the sparse triangular solve. In
addition, it allows the hierarchical parallelization, which fits
well to the hierarchical parallelism available on a GPU and can
be exposed using team-based kernels in Kokkos-Kernels.

The sparse-triangular solver in Kokkos-Kernels also
has an option to perform the partitioned inverse [3] that
transforms the sparse triangular solve into a sequence of
sparse-matrix vector multiply which provides more parallelism
than the standard substitution-based algorithm [28].

3) Incomplete Local Solver: Though DD theory is based on
exact solution of the local subdomain and coarse problems, an
inexact local solver may work well in practice, in particular,
if its application is somewhat spectrally equivalent to apply-
ing an exact solver. In this paper, we explore inexact local
solver based on level-based incomplete sparse LU factoriza-
tion. Though several parallel ILU implementations have been
proposed, the standard paralelization scheme for the ILU and
spares-triangular solve is based on the level-set scheduling [4].
In Trilinos, these are implemented as SpILU and SpTRSV in
Kokkos Kernels [24].



(a) two subdomains. (b) Four subdomains.

Fig. 3: Overlapping domain decomposition into two or four
subdomains (e.g., one or two MPIs on each of two GPUs).
Instead of assigning two large subdomains to two GPUs (left),
we assign four small subdomains to two GPUs (right).

Though incomplete factorization leads to a fewer fills and
may expose more parallelism, it may still not provide enough
parallelism to utilize a GPU. To expose more parallelism,
iterative variants of sparse approximate factorization and of
sparse triangular solver are proposed [8]. It uses Jacobi it-
erations to approximate each entries of the LU factors or to
approximately solve the linear system with a sparse triangular
matrix. Though each iteration requires the about same number
of floating point operations as the standard algorithms, this
variant has significantly more parallelism. As a result, when
the solver needs a small number of iterations to obtain the
solution of the desired approximation accuracy (our default
is five iterations for both), it may obtain much shorter time
to solution on a GPU. In Trilinos, these are implemented as
FastILU and FastSpTRSV [7].

VI. DISCUSSION

Current heterogeneous node architectures typically have
more CPU cores than GPUs on each node (e.g., each node
of the Summit supercomputer has 42 IBM Power9 CPU cores
and 6 NVIDIA V100 GPUs). Such a heterogeneous node
architecture poses challenges for a node-to-node performance
comparison of the DD solver on CPUs and with GPUs. This
is because, in most cases, the computational complexity of
the local sparse solver increases more than linearly to the
local matrix size. For example, for a 3D problem, when the
nested dissection [14] is used to permute the local matrix
with dimension of ni, the sparse direct factorization and
corresponding sparse-triangular solve of the local problem
typically have the computational complexities of O(n2

i ) and
O(n

4/3
i ), respectively. As a result, for our strong parallel-scale

studies, the computational cost of the DD solver decreases
superlinearly with the number of MPI processes. Since each
node typically has fewer GPUs than CPU cores, if we launch
one MPI process on each CPU core for CPU runs and one
MPI process on each GPU for GPU runs (these are the most
common setups in practice), each process has a much smaller
computational cost for the CPU runs than for the GPU runs.

Moreover, the condition number of the matrix precondi-
tioned with a GDSW preconditioner is bounded as follows:

κ
(
M−1

GDSWA
)
≤ C

(
1 +

H

δ

)(
1 + log

(
H

h

))2

;

where H is the maximum diameter of the subdomains and δ is
the width of the overlap cf. [11]. Hence, the condition number
will decrease with a smaller subdomain size (H/h), e.g., as
the number of subdomains increases with a fixed problem size.

For our experiments, we used NVIDIA Multi-Process Ser-
vice (MPS) to run multiple MPI processes on each GPU (see
Fig. 3). Compared to having just one process on each GPU,
this not only reduces the computational and storage costs of the
DD solver, but it may also improve the condition number of the
preconditioned matrix, and hence the convergence rate of the
Krylov solver. It is possible to obtain the same decomposition
by having multiple subdomains per MPI and using GPU
streams. However, this will require significant algorithmic
innovations and software efforts for a two-level solver. Though
it may not be optimal, MPS allows us to run the existing
code without these code changes and can provide significant
performance gain running multiple subdomains per GPU.

VII. EXPERIMENTAL SETUP

For all of our performance results presented in this paper,
we used the “reduced” GDSW coarse space with an algebraic
overlap of one . Then, as our Krylov solver, the single-reduce
variant [30] of the Generalized Minimum Residual (GMRES)
method [25] was used, which is a popular Krylov method
for solving nonsymmetric linear systems of equations. We
used the restart length of 30, and considered GMRES to be
converged when the residual norm is reduced by a factor of
10−7. Finally, we focused on solving 3D elasticity problems
in this paper. Though there are several other preconditioning
options in FROSch, since our focus is on the performance
comparison, and not on the numerical study of GDSW, these
setups provide representative performance of FROSch.

We present performance results on the Summit Supercom-
puter at Oak Ridge Leadership Computing Facility. Each node
of Summit has 42 IBM Power9 CPU cores and 6 NVIDIA
V100 GPUs. Unless specified otherwise, for our CPU runs,
we launched 42 MPI processes on each node (one MPI per
CPU core), while for our GPU runs, we used NVIDIA Multi-
Process Service (MPS) to run up to 7 MPI processes on
each GPU (up to 42 MPI processes per node). The codes
were compiled using CUDA 10.2.89 and GCC 7.5.0, and
linked to the vendor-optimized libraries, NVIDIA’s CUBLAS,
CuSparse on GPUs, and IBM’s Engineering and Scientific
Subroutine Library (ESSL) 6.3.

VIII. PERFORMANCE RESULTS

A. Exact Local Solvers

In this section, we study the performance of FROSch
using exact solution of the local overlapping subdomain and
coarse space problems. The nested dissection ordering from
Metis [20] was used to reduce the number of fills in the LU



# comp. nodes 1 2 4 8 16
matrix size 375K 750K 1.5M 3M 6M
CPU 2.03 (75) 2.07 (69) 1.87 (61) 1.95 (58) 2.48 (69)

G
PU

np/gpu = 1 1.43 (47) 1.52 (53) 2.82 (77) 2.44 (68) 2.61 (75)
2 1.03 (46) 1.36 (65) 1.37 (60) 1.52 (65) 1.98 (86)
4 0.93 (59) 0.91 (53) 0.98 (59) 1.33 (77) 1.21 (66)
6 0.67 (46) 0.99 (65) 0.92 (57) 0.91 (57) 0.95 (57)
7 1.03 (75) 1.04 (69) 0.90 (61) 0.97 (58) 1.18 (69)

speedup 2.0× 2.0× 2.1× 2.0× 2.1×

(a) SuperLU.

# comp. nodes 1 2 4 8 16
matrix size 375K 750K 1.5M 3M 6M
CPU 1.60 (75) 1.63 (69) 1.49 (61) 1.51 (58) 1.90 (69)

G
PU

np/gpu = 1 1.17 (47) 1.37 (53) 1.92 (77) 1.78 (68) 2.21 (75)
2 0.79 (46) 1.14 (65) 1.05 (60) 1.18 (65) 1.70 (86)
4 0.85 (59) 0.81 (53) 0.78 (59) 1.22 (77) 1.19 (66)
6 0.60 (46) 0.86 (65) 0.75 (57) 0.84 (57) 0.91 (57)
7 0.99 (75) 0.93 (69) 0.82 (61) 0.93 (58) 1.22 (69)

speedup 1.6× 1.8× 1.8× 1.6× 1.6×

(b) Tacho.

TABLE II: Total iteration time in seconds and Iteration count
for Weak-scale 3D elasticity problems on Summit.

factors, and also to expose more parallelism. We used either
SuperLU or Tacho to factor our local and coarse matrices on
CPUs or GPUs, respectively. To apply the preconditioner on a
GPU with the LU factors computed by SuperLU, the supern-
odal sparse-triangular solver [28] from Kokkos-Kernels
was used, while on CPU, we used the SuperLU’s internal
triangular solver since Kokkos-Kernels solver is designed
to exploit the manycore architectures and is not suited on a
single CPU core. With Tacho, we used its internal sparse-
triangular solver for both CPU and GPU runs. We did not use
the partitioned inverse, and all the sparse-triangular solvers,
either on a CPU or on a GPU, are numerically equivalent.

Table II shows the the weak-parallel scaling of the total
iteration time required for the solution convergence, where
the local problem size on each compute node is fixed and
the global matrix size grows linearly to the number of the
compute nodes. We used MPS to run multiple MPI processes
on each GPU. As we discussed in Section VII, with the direct
factorization of of the local overlapping subdomain matrix,
the resulting sparse-triangular solve has the computational cost
that scales superlinearly to the size of the local matrix. Hence,
as we map more MPI processes on each GPU using MPS, the
local subdomain becomes smaller, and the iterative solution
time is reduced, significantly (with speedups of 1.3 ∼ 2.7×).
Overall, using GPUs, the solution time was reduced by a factor
of around 2×, compared to the CPU runs.

In some applications, the setup time can also take a sig-
nificant share of the total simulation time. Hence, we now
study the numerical setup time of FROSch. Fig. 4 shows the
breakdown of the numerical setup time on a single compute
node of Summit. As we expect, especially on CPUs, a signif-
icant part of the numerical setup time is spent by the sparse
direct solver. For both CPU and GPU runs with SuperLU, the
local overlapping and coarse matrices are factored on CPU,
and the factorization time are the same on CPUs and with

(a) SuperLU (b) Tacho

Fig. 4: Breakdown of the numerical setup time on one node
of Summit (n = 375K on 42 MPI processes).

# comp. nodes 1 2 4 8 16
matrix size 375K 750K 1.5M 3M 6M
CPU 2.5 3.0 3.3 3.8 3.6

G
PU

np/gpu = 1 60.0 71.5 70.9 85.6 85.1
2 22.9 22.3 26.1 26.9 25.8
4 8.4 9.4 9.1 9.8 10.2
6 5.5 5.2 5.2 6.2 6.3
7 3.5 4.2 4.8 5.4 5.4

slowdown 1.4× 1.4× 1.5× 1.4× 1.5×

(a) SuperLU.

# comp. nodes 1 2 4 8 16
matrix size 375K 750K 1.5M 3M 6M
CPU 1.3 1.6 1.7 1.8 1.9

G
PU

np/gpu = 1 3.2 3.5 3.9 5.4 5.6
2 2.1 2.3 2.9 3.3 3.4
4 1.4 1.8 2.1 2.2 2.3
6 1.5 1.6 1.7 2.0 2.3
7 1.2 1.6 1.7 2.0 2.2

slowdown 0.9× 1.0× 1.0× 1.1× 1.1×

(b) Tacho.

TABLE III: Numerical Setup Time in seconds for Weak-scale
3D elasticity problems on Summit. Number of MPI process
per GPU changes between every GPU row from 1 to 7. This
improves the numerical setup time up to 17x and 3x for
SuperLU and Tacho on GPU runs. The GPU runs are slightly
slower than CPU runs in this phase.

GPUs. On the other hand, Tacho can exploit the GPU, and
the local factorization time was reduced for the GPU run by
2.4×. This is the first benefit of using GPUs. Unfortunately,
we also see that some of the setup time beside the sparse
direct solver is running slower with GPUs (“black” part of the
bar)1, and a significant amount of time is spent setting up the
Kokkos-Kernels sparse-triangular solve with SuperLU:

• SuperLU performs partial pivoting during its numerical
factorization. This ensures the numerical stability of the
solver, but the sparsity structures of the LU factors
depend on the numerical values. As a result there is
very little work that can be reused from the symbolic
factorization. For instance, with SuperLU, both the sym-
bolic and numerical setups for the Kokkos-Kernels

1This is mostly due to sparse-sparse matrix product to form the coarse
matrix and communication to form the local overlapping subdomain matrix.



(a) Numerical setup time. (b) Solve time.

Fig. 5: Strong parallel scaling with 3D elasticity (n = 1M).

sparse-triangular solver need to be performed after each
numerical factorization, which takes up significant part
of the difference between the setup times on CPUs and
with GPUs in the plot.

• On the other hand, Tacho performs the pivoting only
within its frontal matrices and given the same sparsity
structure of the input matrices, the sparsity structures
of the LU factors stay the same, allowing us to reuse
the symbolic setup for the numerical factorization of
different matrices. In addition, Tacho can utilize the
GPU. Overall, we see similar numerical setup times of
Tacho on CPUs and with GPUs.

Table III compares the the weak-scaling numerical setup
time of FROSch using up to 672 CPU cores and 96 GPUs. As
we discussed in Section VII, the computational cost for factor-
ing the local overlapping subdomain scales superlinearly to the
size of the local matrix. Hence, similar to the iterative solution
time, the numerical setup time was reduced significantly using
MPS (obtaining speedups of 15 ∼ 17× with SuperLU and
2 ∼ 3× with Tacho). Running multiple MPI processes on
each GPU also reduced the memory required to store the LU
factors, enabling the solution of a larger linear system.

Overall, using Tacho, the total solution time (the sum of
setup and solve time for solving a single linear system) was
1.1 ∼ 1.8× faster with GPUs. If the application requires to
solve a sequence of linear systems (the same matrix A but
with different right-hand-side b in sequence), then the cost of
the numerical factorization can be amortized over the multiple
solves, and speedups closer to 2× can be obtained.

To summarize our studies with the exact solver, Fig. 5 shows
the strong parallel-scaling results, where either 6 or 42 MPI
processes were used on each node. For our CPU runs with 6
MPI processes per node, we linked Tacho with the threaded
version of ESSL and used 7 threads for each MPI process.
We clearly see the advantage of having 42 MPI processes on
each node for both CPU and GPU runs. Overall, the GPUs
can provide speedups for both setup and solve time as long
as the local matrix sizes are large enough.

B. Approximate Local Solvers

1) Incomplete LU Factorization: We now study the effects
of using an incomplete LU (ILU) factorization as our local
solver on the performance of FROSch. For these experiments,

ILU level 0 1 2 3

C
PU

No 1.5 1.9 3.0 4.8
ND 1.6 2.6 4.4 7.4

G
PU

KK(No) 1.4 1.5 1.8 2.4
KK(ND) 1.7 2.0 2.9 5.2
Fast(No) 1.5 1.6 2.1 3.2
Fast(ND) 1.5 1.7 2.5 4.5

speedup 1.0× 1.2× 1.4× 1.5×

(a) Setup (table on left) and total time (figure on right).

ILU level 0 1 2 3

C
PU

No 2.55 (158) 3.60 (112) 5.28 (99) 6.85 (88)
ND 4.17 (227) 5.36 (134) 6.61 (105) 7.68 (88)

G
PU

KK(No) 3.81 (158) 4.12 (112) 4.77 (99) 5.65 (88)
KK(ND) 2.89 (227) 4.27 (134) 5.57 (105) 6.36 (88)
Fast(No) 1.14 (173) 1.11 (141) 1.26 (134) 1.43 (126)
Fast(ND) 1.49 (227) 1.15 (137) 1.10 (109) 1.22 (100)

speedup 2.2× 3.2× 4.3× 4.8×

(b) Solve time (iteration count).

TABLE IV: Performance of FROSch for 3D elasticity prob-
lems on one Summit node (n = 648K on 42 MPI processes)
using local Kokkos-Kernels ILU (KK) or FastILU
(Fast) and no reordering (No) or nested dissection (ND).

we used level-based ILU(k) as local solver only for solving
the local overlapping subdomain problems, while Tacho
was used for computing the basis function and for solving
the coarse problem. The inexact solvers reduce the required
storage cost, and hence, we are solving larger linear systems
in this section, compared to those solved in Section VIII-A.

Table IVa shows the effects of the number of ILU levels,
k, on the numerical setup time. Besides SpILU and SpTRSV
(based on level-set scheduling), we also show the performance
of their iterative variants, FastILU and FastSpTRSV,
where we performed three and five Jacobi iterations, respec-
tively. As we increase the level (and the computation required
to compute ILU factors increases), the speedup gained using
the GPUs for the numerical setup time increased.

Table IVb shows the total iteration time with increasing
levels for ILU. FastILU computes approximation to the
ILU factors, and FastSpTRSV solves the triangular system,
approximately. As a result, compared to SpILU, GMRES re-
quired more iterations to converge using FastILU. However,
they provide more parallelism, which the GPU can exploit.
Overall, GMRES had the fastest time to solution using the
iterative variants with the speedups of 2.8 ∼ 4.4×.

Finally, Table V shows weak-scaling results using the inex-
act ILU(1) local solver on up to 672 CPU cores and 96 GPUs.
For all these experiments, we used the original matrix ordering
since the matrix reordering did not improve the performance
significantly, while it could increase the iteration count. Even
with the inexact local solver, the iteration counts were almost
independent of the number of subdomains. It can be seen in
Table V that even with the higher iteration count, the inexact
(Fast) option is faster than the exact triangular solve (KK).



# comp. nodes 1 2 4 8 16
matrix size 648K 1.2M 2.6M 5.2M 10.3M
CPU 1.9 2.2 2.4 2.4 2.6

G
PU

KK 1.4 2.0 2.2 2.4 2.8
Fast 1.5 2.2 2.3 2.5 2.8

speedup 1.3× 1.0× 1.0× 1.0× 0.9×

(a) Setup time (s).

# comp. nodes 1 2 4 8 16
matrix size 648K 1.2M 2.6M 5.2M 10.3M
CPU 4.0 (119) 3.8 (110) 3.7 (105) 3.3 (97) 4.1 (109)

G
PU

KK 4.3 (119) 3.9 (110) 4.8 (105) 4.3 (97) 4.9 (109)
Fast 1.2 (154) 1.0 (133) 1.1 (130) 1.3 (117) 1.6 (131)

speedup 3.3× 3.8× 3.4× 2.5× 2.6×

(b) Solve time (s) (iteration count).

TABLE V: Weak scaling Parallel Performance (42 MPIs on
each node) of 3D elasticity problems on Summit, using ILU(1)
as local subdomain solvers.

# comp. nodes 1 2 4 8 16
matrix size 375K 750K 1.5M 3M 6M

C
PU

double 2.5 3.0 3.3 3.8 3.6
single 1.8 2.2 2.3 2.6 2.6
speedup 1.4× 1.4× 1.4× 1.5× 1.4×

G
PU

double 3.5 4.2 4.8 5.6 5.4
single 2.6 3.2 3.4 4.0 4.0
speedup 1.3× 1.3× 1.4× 1.4× 1.4×

(a) SuperLU.

# comp. nodes 1 2 4 8 16
matrix size 375K 750K 1.5M 3M 6M

C
PU

double 1.3 1.6 1.7 1.8 1.9
single 1.0 1.2 1.3 1.4 1.4
speedup 1.3× 1.3× 1.3× 1.3× 1.4×

G
PU

double 1.2 1.6 1.7 2.0 2.2
single 1.0 1.3 1.4 1.7 2.0
speedup 1.2× 1.2× 1.2× 1.2× 1.1×

(b) Tacho.

TABLE VI: Numerical Setup Time in seconds, using single
or double precision FROSch: for Weak-scale 3D elasticity
problems on Summit.

We see 3.1 ∼ 4.4× speedups using the iterative variants on
GPUs. We also observe 2.5 ∼ 3.8× speedup using GPUs.
The setup times are nearly the same on CPUs and GPUs with
ILU(1) on multiple nodes.

2) Single-precision FROSch: Even though typical scientific
applications require double precision accuracy, some emerging
hardware delivers lower-precision arithmetic at higher perfor-
mance. There are other machines that provide the same per-
formance for double and single precision arithmetic. However,
even in that case, using a lower-precision arithmetic reduces
the required amount of data transfer. Since the performance of
the sparse solver is often limited by the memory bandwidth,
reducing the required communication volume alone could
reduce the solver time.

Table VII shows the performance results, where FROSch
in single precision is used to precondition GMRES in double
precision. For these particular problems, the setup time was

# comp. nodes 1 2 4 8 16
matrix size 375K 750K 1.5M 3M 6M

C
PU

double 2.03 (75) 2.07 (69) 1.87 (61) 1.95 (58) 2.48 (69)
single 1.89 (76) 1.60 (69) 1.71 (62) 1.75 (58) 2.37 (69)
speedup 1.0× 1.3× 1.1× 1.1× 1.0×

G
PU

double 1.03 (75) 1.04 (69) 0.90 (61) 0.97 (58) 1.18 (69)
single 1.01 (75) 1.03 (69) 0.98 (62) 1.10 (58) 1.28 (69)
speedup 1.0× 1.0× 0.9× 0.9× 0.9×

(a) SuperLU.

# comp. nodes 1 2 4 8 16
matrix size 375K 750K 1.5M 3M 6M

C
PU

double 1.60 (75) 1.63 (69) 1.49 (61) 1.51 (58) 1.90 (69)
single 1.11 (76) 1.13 (69) 1.02 (62) 1.04 (58) 1.30 (69)
speedup 1.4× 1.4× 1.4× 1.4× 1.5×

G
PU

double 0.99 (75) 0.93 (69) 0.82 (61) 0.93 (58) 1.22 (69)
single 1.00 (75) 0.92 (69) 0.84 (62) 0.93 (58) 1.21 (69)
speedup 1.0× 1.0× 1.0× 1.0× 1.0×

(b) Tacho.

TABLE VII: Total iteration time and Iteration count, using
double or single precision FROSch for Weak-scale 3D elas-
ticity problems on Summit.

reduced using single-precision FROSch, while the number of
iterations required for the convergence to same accuracy as
double precision use cases is maintained. Specifically, using
single precision, both on 672 CPU cores and 96 GPUs,
we observe 1.3 ∼ 1.5× speedup in SuperLU based setup,
while we observe 1.1 ∼ 1.4× speedup in Tacho based
setup. We do not see a benefit in solve times when using
single precision (Table VII). Nevertheless, GMRES converges
in similar number of iterations when using single or double
precision preconditioner.

C. Summary of Key Results

Using multiple subdomains per GPU improves the perfor-
mance considerably. In terms of the setup time using a direct
factorization for the subdomain solver, GPU-based factoriza-
tion in Tacho provides a distinct advantage over CPU-based
SuperLU. There is no distinct advantage in the solve time
on the GPUs when using SuperLU and Kokkos Kernels
combination or using Tacho. Incomplete factorizations allow
us to solve larger problems. Though we do not see noticeable
difference in performance over direct factorization due to the
trade-off between number of iterations and setup/solve times,
the solve time was reduced using GPUs. Iterative incomplete
factorizations and triangular solve result in significant speedup
compared to the standard incomplete factorizations even with
increased number of iterations. Using lower precision compu-
tations allows us to solve a larger linear system, and improved
the setup time though not the solve time.

IX. CONCLUSION

We presented FROSch, which implements the GDSW al-
gorithm for GPU cluster within Trilinos software frame-
work. Our performance results on Summit supercomputer with
NVIDIA V100 GPUs demonstrated the potential of FROSch:
with GPUs, the numerical setup times remain about the same



as that on CPUs, while the solve time can be reduced by
factors of around 2×. We presented a thorough experimental
study varying several solver options from two direct solvers,
incomplete factorization techniques with different level of fill
and different orderings, inexact factorizations and the use
of lower precision arithmetic. Though we only showed the
performance results with NVIDIA GPUs, our implementation
is portable to other GPUs through the use of Kokkos. We plan
to study performance of FROSch with AMD GPUs.
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