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How to define “scalable” & 
why is it important for QC?
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 Scalable – the ability to add a qubit using 
the same hardware as previous qubits and 
without degrading fidelity.  

 Scalability depends on the scheme and 
concept of operation for the quantum 
computer.

 Examples of non-scalable hardware:
◦ Bulk optics for delivering lasers to ions
◦ Bulk optics for counting photons

1D chain



Experimental technology development to support the 
scaling of trapped-ion quantum systems
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1. Low excitation transport 2. Large(r) scale trap arrays

3. SoC control electronics 4. Microfabricated optics



Low excitation ion transport

§ Thermal excitation during a gate is one of the top contributor to 2Q gate infidelity, but coherent 
excitation prior to the gate must also be considered, especially for larger scale systems*

§ We transport an ion 3 electrodes (constituting one well) and back at 35 m/s with an initial transport 
waveform generated by simulation

§ Loss function (based on 1st and 2nd red sidebands) is a faster and more robust measurement 
compared to sideband thermometry.

§ Nelder-Mead optimization over 9 waveform parameters
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* “Entangling-gate error from coherently displaced motional modes of trapped ions”, Phys. Rev. A 
105, 052409

(contours in steps of 0.01)

2Q gate error vs. motion 

Funded by DOE/ASCR



Low excitation ion transport

§ Optimizer finds solution that achieves transport with 0.36 q per round trip*
§ This experiment used custom DACs with 12 MHz bandwidth.  If we artificially slow 

the DACs and re-run the optimization, we are unable to achieve the same final 
excitation.
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* “Closed-loop optimization of fast trapped-ion shuttling with sub-quanta excitation”, npj Quantum Information 8, 68 (2022) 

Funded by DOE/ASCR



Large(r) scale trap arrays6

§ Designed and are currently fabricating a trap that can store up to 200 ions in 
collaboration with Duke

§ >300 top surface electrodes
§ Trap would have ~4x capacitance of previous largest trap, but by perforating 

dielectric and raising the RF rails we are able to keep the capacitance constant

Current size

Funded by DOE/ASCR (QSA)



Control electronics using an SoC7

§ Collaboration with UNM (Eirini Tsiropoulou, Jim Plusquellic, Nafis Irtija, Tiamike Dudley)
§ Analysis of fastest reconfiguration time, with goal of achieving times on the order the 1Q gates.*

§ Based on a particular encoding for the gates and measured communication rates in a Xilinx Zynq 
UltraScale SoC

§ Communication in FPGA leads to a minimum 1.8 µs reconfiguration of all gates (DMA between RPU 
and PL)

* “Design and analysis of digital communication within an SoC-based control system for trapped-ion quantum computing”, IEEE Transactions on 
Quantum Engineering 4 (2023)

Funded by NSF (QSENSE)



Integrated waveguides and detectors (clocks → 
QC?)8

§ Waveguides used to deliver UV light 
(435 nm) to grating out couplers 
between electrodes* and focused on ions 
above the trap

§ This enables delivery to 2D arrays, but 
introduces new concerns: electric field 
noise, charging

* Ivory, et al. “Integrated Optical Addressing of a Trapped Ytterbium Ion”. PRX 11, 041033 (2021)
** Setzer, et al. “Fluorescence detection of a trapped ion with a monolithically integrated single-photon-countering avalanche diode”. APL 
119, 154002 (2021)

§ Single photon avalanche diodes 
(SPADs)** placed directly under ions 
break the long-term challenge of 
having an objective lens that is much 
larger than the array it images.

§ Improvements needed in efficiency, 
dark counts, background counts

Funded by DARPA



Microfabricated optical modulators9

§ Optical modulators are also important to 
integrate because they alleviate some of the 
I/O challenges with controlling ions in larger 
trap arrays 

§ Desire to be CMOS compatible, operate 
from 4K to 300K, accommodate many 
wavelengths of light, small footprint, 
modest voltage, switching speeds > 1 MHz

§ Piezo-activated modulators based on AlN are 
a good candidate based on these criteria

§ Use strain induced by applying voltage across 
an AlN layer to shift the phase in the 
waveguides and activate a Mach Zehnder 
Interferometer

Funded by DOE/ASCR



Microfabricated optical modulators10

§ <0.5 us turn on/off time
§ Similar variations in pulse area between AOM and 

MZM
§ Extinction ratios of 38.7 dB measured with drift of 

a few dB/hour
§ ~1.5 dB loss per MZI (2.5 mm waveguide)
§ Measured single qubit gate fidelities with GST, 

similar errors to AOM-based gates

Funded by DOE/ASCR
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Using PICs to support 2D ion arrays
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§ Almost all current ion QC’s and other platforms use 1D chains of ions, due to optical 
delivery, ion shuttling complexity, and trap fabrication

§ Increasing the number of ions that can be stored AND individually addressed and 
manipulated requires optical signals delivered via PICs

§ This introduces other challenges:
§ Loss in waveguides
§ Waveguide light scattering into detectors
§ I/O: coupling light onto the chips, can be mitigated using beam splitters and on-chip 

modulators
1D chain 2D array

Funded by DOE/ASCR



Low excitation ion transport
§ Thermal excitation during a gate is one of the top contributor to 2Q gate infidelity, 

but excitation prior to the gate must also be considered, especially for larger scale 
systems

§ Here we analyze the impact of coherent excitation prior to a gate*

13

* “Entangling-gate error from coherently displaced motional modes of trapped ions”, Phys. Rev. A 105, 052409

2Q gate error vs. motional energy 
(contours in steps of 0.01)



Low excitation ion transport

§ In this experiment we transport an ion 3 
electrodes (constituting one well) and back 
at 35 m/s

§ The initial transport waveform is generated 
via simulation

§ Loss function is a faster and more robust 
measurement compared to sideband 
thermometry.  Uses 1st and 2nd red 
sidebands

§ Multiple delay times
§ Nelder-Mead optimization over waveform 

parameters
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* “Closed-loop optimization of fast trapped-ion shuttling with sub-
quanta excitation”, npj Quantum Information 8, 68 (2022) 



Microfabricated optical modulators15

§Piezo-activated modulators 
based on AlN are a good 
candidate based on these 
criteria

§Use strain induced by applying 
voltage across an AlN layer to 
shift the phase in the 
waveguides and activate a 
resonant ring structure or a 
Mach Zehnder Interferometer



Microfabricated optical modulators16

§ Extinction ratios of 38.7 dB measured 
with drift of a few dB/hour

§ ~1.5 dB loss per MZI (2.5 mm 
waveguide)



Microfabricated optical modulators17

§Coupled to a trapped ion 
in a microfabricated 
surface via fibers

§Measured single qubit 
gate fidelities with GST

§Similar errors to AOM-
based gates

§Physical GST variant 
developed to identify 
errors due to imperfect 
extinction 


