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Motivation and goals

* A 30+ year module will most likely experience a large hail event in its design lifespan
* Damage due to hail is measured as pass or fail, which is insufficient resolution for calculating risk
* A method for quantifying module damage risk is needed

IEC61215-2:2016 MQT17 (Hail Test) Standards

Diameter Mass Test velocity

mm g mis

25 PASS 7.53 230
35 PASS 20,7 27,2
45 FAIL 43,9 30.7

Qualification standards do not fully describe damage risk
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Mean days per year with a hail size greater than 2” (1986-2015)
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Project scope and overview

e Capture the hail impact vs. module event in simulation
* Validate that the simulation matches reality

— Ice ball material model

— Module dynamic response model

— Module damage model

e Use validated simulations to conduct parametric studies to find what physical characteristics
correlate to damage probability
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Capture the hail impact vs. module event in simulation

* Impact simulations require both the projectile (hail) and target (module) to be modeled

* Hail model: Exists in literature and previously implemented at Sandia for other applications
— Elastic-plastic with rate-dependent yield and supplemental failure criteria

*  Module model: Previously developed under DuraMAT 1 projects
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A combined hail vs. PV module simulation. Capturing both hail ice material properties and module
deformation upon impact is needed to accurately predict damage
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Validating the simulation: The ice material model

Ice ball|

* Force vs. time profiles were recorded for impacts TRV Labs
against an instrumented target: E

— |EC-standard hail from 25 mm to 75 mm
— Non-ideal ice (to probe real-life hail variability)

— Non-ice objects (to baseline measurements)

 Comparing measured results to simulations gives
confidence in model applicability

50 kHz force ¢
sensor

IEC-defined ice ball Conglomerate ice ball  Non-ice projectiles Imact force setup @CFV Labs
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Example force vs. time profile (65mm IEC-standard ice ball)
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Measured impact observations and project next steps

e Allice impacts were surprisingly repeatable
* |EC-standard ice balls are a worst case scenario, but perhaps not excessive:

— Very repeatable impact force profile despite variable appearance, bubbles, density
* Project next steps: adjust for test fixture dynamics to complete material model validation
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Validating the simulation: Module dynamic response

e Stereo high speed video of a hail impact was recorded for analysis with digital image correlation
to process module deflections vs. time

* Matching dynamic response to simulations provides confidence in model applicability
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Module dynamic response observations and project next steps

*  Proof-of-concept has been demonstrated for the experimental technique
e Collection of validation datasets (2 module designs, 96 shots each) is underway
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Visual video of hail impact Video processed for Simulated impact event EL images able to show
displacements showing displacements cracks under DIC patterning
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Validating the simulation: Module damage model

* Pre- and Post-impact electroluminescence (EL) imaging can be applied to identify cell damage

* A battery of hail tests is underway to collect cell and glass failure statistics (in tandem with high
speed video and digital image correlation for dynamic response)

— 8 samples of a 72-cell, 3.2mm glass-backsheet module, ~12 shots per module
— 8 samples of a 144-cell, half-cut, 2mm/2mm glass-glass module, ~12 shots per module

Cell crack probability
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With sufficient tests, damage trends begin to emerge simulation and damage model validation
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Module damage model observations and project next steps

* Module damage is complex! Full data collection currently underway for both module designs
— Cell damage is defect-driven (remote damage occurs with lower strain than impact site)
— Cell- and glass- failure thresholds often overlap
— Existing cell damage is accelerated by hail impacts
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A 45mm IEC standard impact

A 55mm IEC standard impact resulting in glass failure
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Conduct parametric studies using validated models to find which
characteristics correlate to module damage

*  Parametric studies with validated models can quantitatively inform module design and
operation to maximize hail survivability (or optimize insurance decision making)
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Initial parametric studies demonstrate the effect of various inputs on cell stress
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Summary

e Capture the hail impact vs. module event in simulation
* Validate that the simulation matches reality

— Ice ball material model

— Module dynamic response model

— Module damage model

e Use validated simulations to conduct parametric studies to find what physical characteristics
correlate to damage probability
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Questions or comments?

James Y. Hartley Jen Braid
Sandia National Laboratories Sandia National Laboratories
ikvuan@sandia.gov ilbraid@sandia.gov

Colin Sillerud
CFV Labs
colin.sillerud@cfvlabs.com

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration

under contract DE-NA0003525
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